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Introduction

Within the area of mechanical engineering in a broader sense, covering
various machines, mechanisms and structures, there are numerous design
situations, where the vibrational characteristics of the object are
extremely important.

In many of such situations, the vibration could be treated as linear,
allowing superposition of solutions, which is the pre-condition for
modal analysis.

Nowadays, the FEM technique is considered to be an almost universal
tool for solving various kinds of vibrational problems. This technique
was originally developed for solving linear partial differential equa-
tions, which in context of vibration describe small amplitude vibra-
tion in continuous systems.

The FEM concept has nowadays been extended to the non-linear range,
and the finite elements must not necessarily be approximations of con-
tinuously distributed mass and elasticity. They could as well describe
real machine components, e.g., engine blocks, flywheels, helical
springs and shafts, which all have well known mass and stiffness char-
acteristics.

A broad variety of FEM programs have over the years been developed for
automated computation, many of them also for the PC environment.

In typical machine design situations the machine components are spe-
cific elements, which with a reasonable degree of accuracy could be
described as rigid bodies or massless elastic elements. Furthermore,
machines normally carry some nominal load and its parts move in some
prescribed pattern, either steadily, intermittently or transiently.

At operation, dynamic add-on loads are generated in machines in mo-
tion. Theoretically, by solving a set of non-linear ordinary differen-
tial equations, such dynamic add-on loads and unconstrained element
motion could be predicted reasonably well. Such procedures for deriva-
tion and solution of equations of motion are nowadays well formalized
and also implemented for automated computation. The corresponding
scientific discipline is often referred to as MultiBody System (MBS)

analysis. By its nature, MBS analysis is generally non-linear.

Jowever, in some applications related to steadily operating machines
(or general discrete or lumped parameter systems), vibration within
the linear range is of primary interest. In such systems the vibra-
tional characteristics depend not only on component mass and stiffness
properties, but also on steady-state loads or pre-loads, as, e.g., is
the case at pendulums. -
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How should such problems be analyzed? Should sophisticated non-linear
FEM programs or complex MBS programs be preferred?

None of the mentioned two groups of analytical tools can really com-
pete in efficiency and versatility with a recently developed alterna-
tive hybrid method, which basically implies a linearization of the
complete equations of motion in the vicinity of the equilibrium or
steady-state loaded system configuration.

The hybrid concept was briefly introduced at the 1lst Modal Testing &
FEM Seminar in Arhus in 1988 [1] by the present author and the com-
plete theory is currently in the process of international publication
[2]. The main feature of the new hybrid theory is the systematic par-
tition of the total restoring action in a systen, represented by a
symmetric matrix K, into an elastic matrix F and a pre-load related
matrix P, whereafter the equations for undamped motion read with the

displacement vector d as the independent variable:
Md+Kd=Md+(E+P)d=0 = K=E+P ....Eq. 1

The combined or hybrid restoring action requests on one hand input of
both of the element stiffnesses and pre-loads, but allows on the other
hand an automatic evaluation of both "elastic" and "pendulum type"
vibration at the same time, no matter if they contribute with the same
order of magnitude, no matter which of them that happens to be
quantitatively dominating, and no matter if one of them vanishes. The
hybrid theory a priori also assumes that the equilibrium configuration
and load distribution are known for the system (which is far from

obvious for hyperstatic systems).

Model Components and their Characteristics

The hybrid theory so far is developed for undamped systems only, which
is a reasonable approximation for lightly damped systems as far as
eigenfrequencies and eigenmodes are studied. (Inclusion of damping
elements will not complicate the derivation of governing differential
equations of motion but it will make the computation of eigenvalues
much more complex). The undamped system contains the following types
of components:

* rigid bodies
* massless springs/connectors

A rigid body is characterized by its mass and principal moments of
inertia with reference to the center of gravity of the body.

A massless spring or connector is related to two rigid bodies in a
virtually unsymmetrical way: one of the two bodies is arbitrarily de-
<ined to be a base body, the other becomes then automatically a con-
nected body. The spring is considered to be a part of the base body,
and just one of the spring ends has significance in the analysis: the
"ypper" end, where the connected body is attatched to the spring. That
voint is by definition the connecting point. The spring stiffness is
Gefined in relative terms as the linear relationships between the vec-
corial displacement of the connecting point relative the base body,
and the vectorial change of load, or elastic load, at the connecting
point, cf. Fig. 1 and Egs 2 and 3. Tt should be observed that the
initial load or pre-load is also a characteristic of the spring. It
maintains its magnitude and orientation relative to the base body when
the spring is arbitrarily deformed.
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Fig. 1: Spring in initial and displaced/deformed configuration
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It is understood that for a sufficiently small spring displacement
from its original equilibrium state (the initial deformation may,
however, be large!), a linear relationship will be found between the
incremental displacement and load change vectors, expressed as a six
by six element symmetric stiffness matrix S, if the vectors consist of
three components each, as is generally the case. The stiffness matrix
has the characteristics of a tensor.

Simple and reliable theoretical procedures for the evaluation of the
complete stiffness matrix S are available only for a limited number of
types of pre-loaded springs, e.g., axially pre-loaded strings, beams
and helical springs. For other types and/or differnetly pre-loaded
springs the stiffness matrix may be obtained either experimentally or
analytically by using advanced finite- element techniques.

2

Topology and Geometrical Description of the System

Systems to be considered, may contain an unlimited number of rigid
bodies and massless springs. However, for programming reasons in the
PC environment, the number of bodies is limited to 15 (due to maximum
variable size in Turbo Pascal), and the number of springs is limited
to 100 (to give a realistic size to the problem definition file, as
that file in Turbo Pascal cannot be dimensioned dynamically).

Components are identified by ordinal numbers as subscripts. Typical
body ordinals are i and j and a typical spring ordinal is k. Lowest
body ordinal, zero, is reserved for the inertial frame or Y“earth'".
Highest body ordinal is denoted g (max. 15) and highest spring ordinal
is denoted p (max. 100). A typical system may look like Fig. 2.

The geometrical quantification of the system needs to locate points
(centers of gravity, connecting points and additional points, needed
in the analysis of forced harmonic vibration, to define locuses of
applied loads and evaluated responses). It also needs to specify the
orientations of principal axes of inertia of rigid bodies and charac-
teristic axes of elasticity of springs.
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2: Topology of a typical system

The quantitative description of the geometry of the system is facili-
tated by three different categories of Cartesian frames, all of them
immobile in the inertial space:

*

*

Each

One arbitrarily located global frame of reference, (1,m,n).

A number of body-specific local frames, (X,Y,2), with their ori-
gins at the center of gravity and axes along principal axes of
inertia of each body in its equilibrium position. Each of these
frames has a physically well defined location and orientation.

A number of spring-specific local frames, (a,b,c), with their
origins at the connecting points of each spring and with the the
orientation in a convenient direction for specification of the
spring stiffness. These frames may be chosen arbitrarily within
limits of practicality. '

local frame needs the following information for its definition:

—

A position vector defining its origin, u, as an absolute or rela-
tive quantity, e.g., U, ¢=U, it U; k.

The Euler angles - or an equivalent set of data - expressing a

transformation ROT that describes rotation of frames, specifying
the orientation of a coordinate system absolutely or relatively,

e.g., ROT, ,=ROT, . ROT, ;.

Typical coordinate systems and position vectors are shown in Fig. 3.

Tn addition to the minimum required geometrical information as stated
above, by means of position vectors only, a number of additional
points of interest could be defined, where harmonic excitation could
be applied or where the response could be studied. Each of such
points, identified by an ordinal, typically ¢, must belong to a spe-
cific base body.
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Fig. 3: Typical frames of reference and position vectors

Types of Springs or Connectors

In order to facilitate the creation of the element stiffness matrix S,
a number of frequently occurring types of springs have been pre-defi-
" ned in the program, for which the stiffness matrix could be generated
automatically.

From the theoretical point of view, S so far is consistently defined
for only such springs, which display symmetry about an "axial" direc-
tion. This means that stiffness matrices could be evaluated theoreti-
cally for axially pre-loaded springs, only. The axial orientation must
then coinside with the "a" axis of the spring-specific local frame,
the pre-load must be colinear with that axis, and it is defined as
positive, when acting upon the base side of the connecting point.

For springs without axial symmetry the stiffness matrix must be given
as an input quantity. Then the pre-load could have an arbitrary orien-
tation (but must be consistent with the given stiffness data, which is
not checked by the program).

At the generation of stiffness data, the program assumes as a basic
case clamped conditions at both of the spring ends. However, if the
spring is symmetrical about its axial midlength, the program is also
able to generate automatically hinged end conditions at either one or
both of the spring ends.
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The program will automatically compose the stiffness matrix for the
following types of axially symmetrical springs:

x+ helical springs (incl. lateral stiffness)
* beams (2nd order theory)

* fictitious springs:

groove ball bearings

cylindrical roller bearings

spherical ball and roller bearings
Hookean joints

guided plates

% % % % * ¥

completely rigid connections

Some of the pre-programmed fictitious springs are depicted in Fig. 4.
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Fig. 4: Some pre-programmed types of fictitious springs

General Structure of the Program

The program is written in Turbo Pascal 4.0 by Jan Larsson and Lars

. Lindkvist as a thesis for their M.Sc. degree in Mechanical Engineering
at Chalmers University of Technology, Goéteborg, Sweden [3]. The work
was supervised by the present author. The first version, incl. manual,
was in Swedish. Later on the program was translated to English.

The program is menu driven and intended to be almost self-instructive
if some main definitions as described above are familiar to the user.
The main menu contains the following alternatives:

%* Case Description, with input data editing and filing facilities
* Computation, with options free and harmonically forced vibration

* output of input and computed data to Screen, Printer or ASCII
file

* Miscellaneous, listing defined cases, directories, free memory,
etc.

* Quit
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Case editing facilities include the commands Add, Modify, Copy and
Delete for all full or partial body or spring input data. Case filing
facilities include the commands Retrieve, Create, Modify and Delete.
Cases are identified by a max. 8 character name in accordance with the
MS-DOS filename rules. Some Current Case is always active in the com-
puter memory. Data is normally saved continuously upon acceptance to
the current Case files in binary file format, unless ASCII file output
as a complement is ordered from the Output menu option.

It should be observed that input data for forced vibration (additional
points, exciting harmonic loads) are requested from the Computation
menu option, and Add, Modify and Delete commands apply.

The Computation option includes as a first step the creation of the
system inertia and restoring matrices, M and K, respectively. The
Free Vibration option comprises the calculation of all eigenfrequen-
cies and eigenmodes, which - at the present stage - are evaluated by
using the MATHPAK 87 machine code procedure package [4], which is
based upon the QR Triangularization method. Eigenvectors are scaled by
division with the magnitude of the largest component, making that com-
ponent to unity. The method evaluates also repeated eigenvalues (e.qg.,
at symmetry), zero eigenvalues (at rigid body motion) and imaginary
eigenvalues (at system instability). "

The Forced Vibration option accepts excitation with one frequency at a
time. However, the excitation load may have many simultaneous compo-
nents, all in phase or antiphase. The steady-state response at all
centers of gravity is evaluated by using MATHPAK 87 procedures, based
upon Gaussian elimination. The response of any center of gravity is
later easily transformed to any other point of the same rigid body.

The Output menu option allows viewing on screen, documentation on
printer and saving as a file in the neutral ASCII format all input and
computed data. Data could be selected in full, or by body or spring
ordinals, and by eigenvalue ordinals, arranged in the order of ascend-
ing eigenfrequencies.

Hard- and Software Requirements

The program runs on all IBM compatibles under MS-DOS 2.0 or higher. It
requires, however, a 80x87 math coprocessor to speed up heavy numer-
ical tasks. 384 KB RAM is recommended. A hard disk is not an impera-
tive, but it will facilitate storage of various cases. All Screen and
Printer output is alphanumeric, why graphic adapters are not required.

Computation Time
Time required for solving a problem depends on two major processes:

* data input

* computation of solution _
The time needed for data preparation and data input is reduced to a
minimum by a high degree of interactivity and pre-programmed features
(cf. automatic generation of stiffness matrices for the most common
types of spring elements), as well as a reduction of geometric input
to a minimum (just one node per spring). Still, this process seems to
be the most time-consuming part of the total problem solving process,
because most components tend to have fully unique data.

The computation time needed depends partly of the problem to be
solved, partly on the computer that is used. Obviously, the number of
rigid bodies in the system is a very significant factor (it determines
the size of the matrices M and K), but the number of springs is al-
most not significant at all. Also, computation of forced vibration is
considerably less time-consuming than computation of free vibration.
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The computation time depends, of course, very much of the processor
used, but less of the speed of the mass storage device (because disk
access is minimal during computation, however higher at data input) .

Some representative computation times are given in Tab. 1, where Case
1 is an 8088 processor running at 4.77 MHz and a floppy disk, whilst
Case 2 is the same processor running at 8 MHz and a 68 ms hard disk.

Tab. 1: Some representative computation times (in seconds)

No. of| Forced vibration Free vibration
bodies Case 1 Case 2 Case 1 Case 2
1 10C 1 10 1
2 13 2 20 3
3 15 3 35 10
4 20 4 60 19
5 27 5 S0 33
6 30 6 120 50
7 40 7 195 90
8 45 8 255 120
9 50 S 325 155
10 55 11 450 230
11 57 12 610 320
12 60 13 720 335
13 65 14 840 440
14 75 16 1050 555
15 80 20 1515 615

Numerical Accuracy

The program is written in standard Turbo Pascal double precision
floating point format. This accuracy is definitely maintained through
the composition of the matrices M and K. The computation of the free
and forced vibration is formally also carried out in double precision
format, but as the eigenvalue and Gaussian elimination algorithms are
to some extent iterative and the iteration limits are not controllable
by the program user, some loss of accuracy is expected in the last

phase of the computation.

The accuracy has been checked by numerical experiments, which at the
came time also demonstrate the error introduced by discretization or
lumping. Vibration of a slender, circular beam of steel has been stu-
died at three different support arrangements. The length of the beam
is 1.10 m or 1.20 m and the diameter is 50 mm. The various support
arrangements are shown in Fig. 5.
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Fig. 5: End conditions of slender beam
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The computed data display complete agreement between exact discertized
and computed results for Case A in longitudinal and torsional vibra-
tion. The difference betweeen continuous and lumped systems is negli-
gible at the lowest modes but of some significance at higher modes,
cf. Tab. 2.

The computed data for Case B in bending vibration display reasonable
to excellent agreement between continuous vs. exact discretized vs.
computed results for all modes, cf. Tab 3.

The influence of axial load at the lowest mode is identical for the
continuous and discretized model for the lowest modes within the pre-
buckling range, cf. Tab. 4 (buckling load = 441 kN).

Tab. 2: Case A, longitudinal and torsional vibration
angular frequencies (1/s) .
Mode Longitudinal Torsional
No. |continuous computed | continuous computed
= lumped = lumped
1 7409.51 7403.22 4595.18 4591.28
2 22228.53 22058.94 13785.55 13680.38
3 37047 .55 36265.61 22975.91 22490.98
4 51866.58 49734.01 32166.28 30843.73
5 66686.60 62189.98 41356.65 38568.59
6 81504.62 73379.94 50547.02 45508.31
7 96323.64 83076.09 59737.39 51521.60
81 111142.66 91081.05 68927.75 56486.07
9{ 156236.24 97231.86 78118.12 60300.64
10| 174616.98{ 101403.32 87308.49 62887.67
11| 192999.71| 103510.49 96498.85 64194.49
Tab. 3: Case B, bending vibration angular frequencies (1/s)
Mode Bending
No. |continuous lumped computed
1 444,54 444 .54 444 .54
2 1778.15 1778.06 1778.06
3 4000.85 3999.63 3999.63
4 7112.62 7104.98 7104.98
5 11113.47 11080.17 11080.17
6 16003.39 15887.22 15887.21
7 21782.40 21434.05 21434.04
8 28450.47 27517.48 27517 .44
9 36007.64 33732.02 33731.96
10 44453.87 39371.22 39371.14
11 53789.19 43436.44 43436.34
Tab. 4: Case C, bending vibration angular frequencies (1/s)
F Bending
kN [ continuous computed
100 390.08 390.08
200 328.80 328.80
300 251.71 251.71
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The numerical values for exact discretized systems in Tabs 2 and 3 are
computed according to [5].

Versatility

The versatility of the program is demonstrated best by some hands on
examples. Its strength is the combined handling of elastic and pendu-
lum types of vibration within the same algorithm.
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