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In recent years, interest in studies of traditional medicine in Asian and African countries

has gradually increased due to its potential to complement modern medicine. In this

review, we provide an overview of Thai traditional medicine (TTM) current development,

and ongoing research activities of TTM related to metabolomics. This review will also

focus on three important elements of systems biology analysis of TTM including analytical

techniques, statistical approaches and bioinformatics tools for handling and analyzing

untargeted metabolomics data. The main objective of this data analysis is to gain a

comprehensive understanding of the system wide effects that TTM has on individuals.

Furthermore, potential applications of metabolomics and systems medicine in TTM will

also be discussed.
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SEARCH METHODOLOGY

Literature search procedure that we used to produce this manuscript is described below. The
PubMed, Google Scholar,Web of Science database were searched with the terms of “metabolomics,”
“traditional Thai medicine,” “metabolome analysis,” “herbal medicine” or “analytical chemistry,”
“integrative data analysis” or “omic analysis” or “univariate analysis” or “multivariate analysis” or
“omics in Chinese herbal medicine”. Search criteria were included original research articles, review
articles, books, national reports that were published in English language only.

THAI TRADITIONAL MEDICINE (TTM)

Traditionally, Thai traditional medicine (TTM) is defined as a holistic medicine that comprises
both methods and practices. The TTM is heavily influenced by Buddhism. According to this
religious belief, the human body is composed of four elements: earth, water, wind and fire, and
an imbalance in one of these elements will lead to illness (Chokevivat and Chuthaputti, 2005).
TTM consists of four different aspects: medical practice (diagnosis and treatment), pharmacy
practice (the production and the use of herbal medicines), traditional midwifery and traditional
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Thai massage (Akarasereenont et al., 2015). A number of theories
and hypotheses used in TTM have accumulated from several eras
including Sukhothai to Ayutthaya (1350–1767), Thonburi (1767–
1782) and the early period of Rattanakosin (Bangkok) in 1782–
1851 (Chuthaputti and Boonterm, 2010). This knowledge was
built based on the historical experiences, traditional wisdom, and
ancient medical textbooks that were passed down and developed
by each generation to practictioners. To promote TTM in the
national healthcare system, the Thai government has continued
to fully support TTM research, particularly since 1997 in the
area of medicinal plants. This national strategic plan resulted
in widespread research on herbal medicines, with most of the
research being focused on the preclinical study of single herbs.
This action has led to the development of several databases
of herbal medicine such as, Medplant online (http://www.
medplant.mahidol.ac.th) by the Faculty of Pharmacy at Mahidol
University, and Thaicrudedrug (http://www.thaicrudedrug.com)
by the Faculty of Pharmaceutical Sciences at Ubon Ratchathani
University.

Although research and development efforts involving TTM
have continued to increase, the use of herbal medicines for the
treatment of illnesses in Thailand is relatively low compared
to modern medicine. This is mostly due to the lack of clinical
evidence, especially in the aspect of efficacy and safety of the
various herbal medicines. Therefore, additional effort is needed
for the deep investigation of herbal medicines at both molecular
and phenotypic levels.

METABOLOMICS

The advent of high-throughput technology known as “omics”
has proven to be very useful across multiple areas of biology.
Among these, metabolomics has shown to be a promising tool
to describe the phenotypes in a dynamic context. Metabolomics
is the area of study that seeks to identify and quantify the
complete set of metabolites in a given organism (Nicholson
et al., 1999; Fiehn, 2001). Typically, metabolites are defined as
small molecules (<1 kDa) that are intermediates or products of
metabolic reactions (Holmes et al., 2008). Metabolome analysis
normally consists of a series of several steps that include sample
preparation, measurement and data analysis (Villas-Bôas et al.,
2006; Mushtaq et al., 2014). In metabolomics, quenching is a
process used to stop metabolite turnover, especially during the
sampling and sample preparation steps. The process is highly
effective formost of the primarymetabolites such as, amino acids,
sugars, organic acids or carbohydrates. Secondary metabolites,
on the other hand, which include a group of metabolites that
are derived from three families such as, phenolics, alkaloids,
and terpenes and steroids (Bourgaud et al., 2001), typically
have a much slower turnover rate and are more chemically
stable than primary metabolites, elminating the need to quench
during sample preparation. These latter groups of metabolites
are often of more interest for use in traditional medicine
(Kennedy and Wightman, 2011). After quenching, samples are
extracted, which typically involves a wide range of organic or
inorganic solvents such as, methanol (Kanchanapoom et al.,

2001; Nakamura et al., 2008; Sawasdee et al., 2009; Tripatara
et al., 2012; Padumanonda et al., 2014), ethanol (Sutthanut et al.,
2007; Thiengsusuk et al., 2013), ethyl acetate (Shimokawa et al.,
2013), or hexane (Lu et al., 2009) depending upon themetabolites
of interest. There are numerous extraction methods available,
e.g., classical solvent extraction, steam extraction, supercritical
fluids extraction, microwave-assisted extraction, subcritical water
extraction or high hydrostatic pressure extraction (Starmans
and Nijhuis, 1996; Stalikas, 2007; Zhang et al., 2011; Khoddami
et al., 2013; Khoomrung et al., 2013). These methods often allow
for the addition of internal standards (ISs) at the beginning
of the extraction step to enable, e.g., accurate quantification of
the metabolite of interest, and normalization against technical
variability or other experimental variations. Furthermore,
the addition of ISs is helpful for subsequently calculating
the efficiency of extraction or purification of the clean-up
methods. In addition to the extraction and quantification
steps, the identification of metabolites is also a crucial step in
metabolomics. This can be performed using two separate and
complementary approaches: untargeted and targeted (Patti et al.,
2012).

Untargeted Metabolomics
Untargeted analysis (Figure 1) aims to simultaneously detect as
many metabolites as possible in a given sample. Liquid or gas
chromatography (LC/GC) coupled with mass spectrometry (MS)
and nuclear magnetic resonance (NMR) are often employed for
this purpose (Wishart, 2016). Untargeted metabolomics relies
heavily on the technology for the measurement of numerous
features (metabolites) as well as bioinformatics tools to handle
the dataset. With the latest advancements in MS technology, it
is now possible to routinely detect more than 2000 features in a
single run; however, data processing, data analysis andmetabolite
identification remains a big challenge of this approach.

Analyzing Untargeted MS-Based Metabolomics Data
The ultimate goals of metabolomics data analysis are
quantification and identification of compounds in the
sample. The typical output from GC-MS and LC-MS are
the chromatograms representing the amounts of detected
compound(s), and mass spectra representing the fingerprint
of the compound. Ideally, a chromatogram represents the
amount of an individual compound. However, in many
situations, co-elution of more than one compound is often
encountered. Deconvolution (Colby, 1992) can be applied,
which uses an algorithm to discriminate a desired signal from
raw data. This is particularly useful when the desired signal
has been contaminated by other interferences. This process
can be performed using commercial software from different
vendors such as, Agilent technologies, ThermoFisher, Waters
Corporation, or from a research institution such as, the National
Institute of Standards and Technology (NIST). Typically, the
algorithm detects peaks by calculating signal to noise ratios, then
performs calibrations using data from chromatograms and m/z
aligment (Niu et al., 2014) to obtain confidence features and
their intensity. Normalization and scaling are the next two steps
to make data comparable across different samples.
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FIGURE 1 | Overview of the steps involved in untargeted metabolomics.

Usually, a single IS or mix of ISs are used as a control
to counter the unwanted variations which may occur during
experimental measurements. It has been shown that statistical
models utilizing multiple ISs for normalization often provide
more robust results as compared to the use of a single IS
(Redestig et al., 2009; Risso et al., 2014). Sysi-Aho et al.
(2007) introduced a normalization method called normalization
using optimal selection of multiple ISs (NOMIS) (Sysi-Aho
et al., 2007). This method employs multiple ISs to estimate the
optimal value for normalization of an individual feature in the
chromatogram. Furthermore, both supervised and unsupervised
approaches can be applied in the NOMIS algorithm. In 2009,
Redestig and co-workers introduced a method called cross-
contribution compensating multiple standard normalization
(CCMN) (Redestig et al., 2009). This CCMNmethod was built on
a supervised statistical model and aimed to capture the influence
of all metabolites in the sample based on the signal of ISs. The
method follows the concept of cross-contribution and uses the
model to correct the unwanted variation. In De Livera et al.
(2015) proposed a normalizationmethod based on a linear mixed
effects modeling approach. This algorithm performed well by
being able to reduce a greater number of unwanted variations
from datasets as compared to other methods such as, NOMIS or
CCMN. A great attribute of all aforementioned algorithms here is
that they have been implemented as packages in R suite software,
which is freely available for researchers.

The next step in metabolomics data analysis is to find
important features such as, significant metabolomic differences
comparing between experimental conditions. A univariate

analysis such as, the parametric Student’s t-test, ANOVA or non-
parametric Mann-Witney U-test is typically the first method of
choices for the standard analysis. Multiple testing corrections
such as, false discovery rate (FDR) can then be performed to
balance the number of false positives and false negatives. When
performing a univariate analysis, the most common output
for results will be in the form of fold changes and p-values
(adjusted-p-values). These results can be used to further evaluate
the identities of significant features in the considered dataset.
In untargeted metabolomics, it is common for more than two
variables or features (e.g., metabolite identity, peak intensity,
retention times or mass spectra) to be simultaneously measured
in one sample. Therefore, multivariate analysis is used for
capturing possible relationships between individual variables.
Two well-known methods that have been used extensively are
principal component analysis (PCA) and partial least square
analysis (PLS). PCA (Wold et al., 1987) is an unsupervised
method that is often used to evaluate intrinsic variability among
the observations (samples). PCA is a dimensional reduction
method that employs covariances of a dataset to transform the
data to a new coordinate system, enabling one to distinguish
which factors contribute most to the variability in the data.
Mathematically, the number of principal components will be
equal to the number of original samples. In PCA, the 1st
component captures the largest possible amount of variance
in the data, whereas the 2nd component describes the next-
largest variation in a direction that is orthogonal to the 1st
component. Unlike PCA, PLS is a supervised method that
needs to have defined categorical variables. PLS applies multiple
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linear regression models by projecting measured variables to
the categorical variables in a new space. The PLS model
can further be used for discriminatory analysis referred to as
PLS-DA (partial least square discriminant analysis). Typically,
a PLS-DA model is formulated from the separation planes
between classes (more than a 1-dimensional plane), leading to
class-specific information being given by the PLS-DA model
(Bylesjo et al., 2006). In Trygg and Wold (2002) proposed an
extension of PLS-DA model by incorporating an orthogonal
signal correction method which was previously proposed by
Wold et al. (1998) called OPLS-DA (orthogonal partial least
square discriminant analysis). Incorporation of orthogonal signal
correction into PLS maximizes the explained covariance in
the model, leading to improved discrimination among classes
when compared with PLS-DA. Both PLS-DA and OPLS-DA
can be performed in SIMCA (Soft Independent Modeling of
Class Analogies) software (Bylesjo et al., 2006) or freeware
under R suite environment (Thevenot et al., 2015). Multivariate
analysis approaches are comprehensively reviewed by Worley
et al. (Worley and Powers, 2013) and have been applied
to various metabolomic studies, including the analysis of
plant metabolomics (Madala et al., 2014; Hagel et al., 2015),
plasma and serum metabolomics (Barri and Dragsted, 2013),
and metabolomic data of lung cancer tissues (Wikoff et al.,
2015).

Targeted Metabolomics
Targeted metabolomics relies heavily on analytical chemistry,
and typically involves the measurement of specific metabolites
of interest, or for confirmation of results from an untargeted

analysis. Traditionally, the targeted approach (Figure 2) begins
with the evaluation of the analytical performance of the detection
method (instrument) such as, specificity, linearity, sensitivity,
limit of detection, limit of quantification, accuracy, and precision.
Typically, evaluating the performance of these parameters is
performed using authentic standards. Once the detectionmethod
has been implemented, the analytical protocol (including sample
preparation) should be validated. Validation of the analytical
protocol is normally accomplished by using a standard reference
material (Khoomrung et al., 2012, 2014; Phinney et al., 2013) (if
available) or a spiking experiment to estimate the overall recovery
of the protocol (Khoomrung et al., 2013). After validation of
the analytical procedure, the method is then applied to quantify
metabolites in the real samples of interest.

Metabolome Databases
Once the significant features have been identified from statistical
methods, the next critical step is to determine their identity.
This step is particularly challenging for untargeted metabolomics
where metabolic identification is the largest bottleneck for
acquiring new biological knowledge from the given study.
Putative identification of the significant features obtained by
MS are normally performed based on an accurate measurement
of the mass-to-charge (m/z) ratio to define the molecular
formula. Normally, mass spectra and/or retention time will be
searched against MS libraries through databases; for example,
metlin, lipidmaps, HMDB, or massbank (Tautenhahn et al.,
2012), to identify possible compound name(s) for the queried
MS peaks. The two problems most often encountered are
either there are no hits, or multiple hits are found. The

FIGURE 2 | Overview of the steps involved in targeted metabolomics.
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putatively identifiedmetabolites are subsequently confirmedwith
an MS/MS experiment, by comparing their mass spectra and
retention time with the authentic standards or an independent
targeted experiment (Section Targeted Metabolomics). Even
though metabolite identification remains a major challenge
in untargeted metabolomics, there exists a wide variety of
metabolome databases to assist with this process. The recent
review by Fukushima and Kusano (2013) summarized a wide
range of metabolome databases, which include mass spectrum-
oriented databases for metabolite identification; compound-
oriented databases for chemical information; metabolite-profile
databases for compound information; and pathway-oriented
databases for compound annotation in the context of metabolic
pathways (Fukushima and Kusano, 2013). Further information
on the strategies, approaches, and tools used for metabolite
identification are beyond the scope of this review, and have been
covered in greater detail by Dunn et al. (2013), Fukushima and
Kusano (2013) and Vinaixa et al. (2016).

INTEGRATIVE OMICS DATA ANALYSIS FOR
TTM

Single omics has until now been the predominant form of global
data acquisition and analysis, with transcriptomics being one of
the most mature and commonly studied omics (Ma et al., 2001;
Wang et al., 2017; Yin et al., 2017). Transcriptomics provides
a snapshot of mRNA profiles within a specific context, and is
increasingly used in Chinese medicine research to characterize
physiology, regulatory mechanisms and metabolisms of Chinese
medicinal herbs, as reviewed in Lo et al. (2012). Another
common omics method, proteomics, involves the quantification
of proteins, protein post-translational modifications, and protein
interactions. For instance, in the area of herbal medicine,
proteomics has been used to investigate the mechanism of action
of a Chinese herb, Salvia miltiorrhiza (Hung et al., 2010) and
abundance of Ginseng peptides (Ye et al., 2016). Metabolomics
data provide the comprehensive profiling of metabolites in a
system under consideration. Typically metabolites, along with
proteins, are the molecular components that ultimately carry
out the cellular functions encoded by the genome. Hence
metabolite levels can be considered as the most reflective of
biological systems to any perturbations. There are a number
of studies employing metabolite profiles to describe molecular
mechanisms of medicinal plants (Fukuhara et al., 2011; Liu et al.,
2013; Zhang et al., 2013; Le et al., 2016; Jiang et al., 2017).
Additionally, metabolomics has been applied for drug discovery,
pharmacokinetic analyses, pharmacodynamics investigations,
evaluation of toxicity and toxic mechanisms of compounds in
phamaceutical research (Zhang et al., 2014; Su et al., 2016; Cui
et al., 2017; Kantae et al., 2017; Li et al., 2017). The emergence
of metabolomics has enabled this type of data to be integrated
with other omics types (genomics, transcriptomics, epigenomics,
and proteomics) to gain a more comprehensive understanding
of biological systems under study. However, translation of
these omics data into biologically meaningful knowledge is still
progressing and requires the development of more advanced

computational and statistical methods. Currently, there exist
several approaches for the integrative analysis of omic data
which can potentially be applied to TTM. For example, in plant
research, genome-scale metabolic models have been exploited
in conjunction with metabolomics and transcriptomics to
examine characteristics of metabolic networks, unravel metabolic
phenotypes and further guide genetic engineering (Fukushima
et al., 2014; Lakshmanan et al., 2015, 2016; de Oliveira Dal’Molin
et al., 2016). Furthermore, a systems biology-based approach
has been used to elucidate mechanisms of traditional Chinese
medicinal formulas in specific diseases (Huang et al., 2015; Zhao
et al., 2017).

Conceptually, methods which aim to integrate multi-omic
data can be divided into two approaches: horizontal and vertical
integration (Tseng et al., 2012). Horizontal data integration has
been used extensively over recent years for microarray meta-
analysis. This method combines a single level of omic data sets
(e.g., transcriptomics) which are under similar conditions (Marot
et al., 2009; Shen and Tseng, 2010; Tseng et al., 2012; Xia et al.,
2013). Meanwhile, vertical data integration assimilates multi-
level omic data sets (e.g., integration of transcriptomics and
metabolomics) and is the predominant method used in systems
biology to integrate data (Xia et al., 2013). The concept of vertical
data integration is the main focus of this part of the review. A
number of computational- and statistical-based approaches for
vertical integrative analysis include empirical correlation-based
analysis (CBA) (Wanichthanarak et al., 2015; Cavill et al., 2016),
pathway- or ontology-based analysis (Wanichthanarak et al.,
2015; Cavill et al., 2016), network-based analysis (Fukushima
et al., 2014; Wanichthanarak et al., 2015) and machine learning
approaches (Li and Ngom, 2015).

For CBA, the primary aim is to find correlative links between
data sets, such as, omic data and clinical data. In addition,
CBA is useful for the analysis of unannotated metabolites
from an untargeted analysis, since it has a limited number
of biochemical domains or pathway information (Grapov
et al., 2015). An effort to calculate a weighted correlation
network of human blood metabolomics and transcriptomics
has been demonstrated by Bartel et al. (2015). By creating
this network, the authors were able to show that pairs of
strongly correlated metabolites and transcripts biologically relate
in terms of regulatory signaling and transport mechanisms.
Pathway- or ontology-based analyses are one of the most
commonly used methods for biological interpretations of omic
data. It reduces data complexity by grouping related metabolites
or genes based on pathways or biological functions before
calculating enrichment statistics (Khatri et al., 2012). For
example, a tool such as, IMPaLA (Integrated Molecular Pathway
Level Analysis) improves identification of pathways through
enrichment or overrepresentation analysis by integrating lists
of metabolites and genes (Kamburov et al., 2011). The current
generation of pathway analysis approaches includes additional
information such as, pathway topology (Khatri et al., 2012;
Li et al., 2013; Ihnatova and Budinska, 2015) and expression
correlations (Feng et al., 2016) to enhance specificity, sensitivity
and accuracy of pathway identification. From a network of
molecular interactions, network-based analysis infers biological
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information from topological measures (such as, closeness
centrality, degree distribution, degree centrality, betweenness
centrality, and clustering coefficient (Winterbach et al., 2013).
These biological networks can also serve as a scaffold for the
integration of multiple omic datasets to identify active subgraphs,
and support other visual analyses of omic data in the context
of networks (Gerasch et al., 2014; Vehlow et al., 2015). A study
by Fahrmann et al. uses a network derived from biochemical
reactions and chemical structural similarity relationships to show
metabolic alterations in type 1 diabetic and nondiabetic mice
(Fahrmann et al., 2015). Machine learning approaches (such as,
support vector machines, decision tree, Bayesian classifier, and
neural networks) are capable of making predictive models and
knowledge discovery by integrating data sets from several sources
or multiple levels (Li and Ngom, 2015). Rajasundaram et al.
(Rajasundaram and Selbig, 2016) summarized that integrative
data analysis is often used for examining underlying relationships
between omic datasets and for increasing predictive accuracy by
using information from one or more datasets. One challenge of
data integration is the heterogeneity of the different omics data.
This can be considerably challenging for data-driven strategies,
nonetheless applications of such methods are being increasingly
reported in this big data era in various disciplines, such as, plant
science (Bassel et al., 2011; Ma et al., 2014), chemoinformatics
(Mitchell, 2014), drug discovery (Lavecchia, 2015), and medicine
and health (Andreu-Perez et al., 2015; Kourou et al., 2015; Swan
et al., 2015; Hao et al., 2016). It can therefore be seen that these
methods can be successfully applied to study the properties and
impacts of TTM. By intergating different omics as well as clinical
data (both in vitro and in vivo experiments) for the study of
TTM (Figure 3), it will therefore be possible to accelerate the
development of TTM in several aspects such as, drug discovery
and development, and medical treatment.

CURRENT METABOLOMICS ACTIVITIES
RELATED TO TTM

Metabolomics is a relatively new approach to the field of TTM,
with only targeted approaches having been performed so far,
particularly in the area of herbal plants. Most of the analyses have
focused on searching for novel or known bioactive compounds
from herbal plants. In many cases, the analysis of metabolites
from the herbal plants was performed without a quenching
step. The traditional liquid extraction remains the most popular
method and is widely used in herbal plant research because of
simplicity, easy to develop protocal, universal application, and
relatively low cost. Sutthanut et al. (2007) employed ethanol
(95%, v/v) to extract flavonoids from Kaempferia parviflora
(Krachaidum). The rhizomes of Krachaidum have been widely
used in TTM, especially for the treatment of health, promoting
anti-inflammatory activity (Yenjai et al., 2004) or gastrointestinal
disorders (Jaipetch et al., 1983). In 2014, Padumnonda and co-
workers (Padumanonda et al., 2014) also reported the use of
methanol to extract melatonin (N-acetyl-5-methoxytryptamine)
from seven herbs. The seven samples used in this study were Piper
nigrum L, Sesbania glandiflora (L.) Desv., Sesbania sesban (L.)

Merr., Senna tora (L.) Roxb, Moringa oleifera Lam., Momordica
charantia L. and Baccaurea ramiflora Lour. These herb samples
are normally recommended for sleeping aids or treatment of
insomnia.

In general, methanol and ethanol are the most widely used
organic solvents for extraction of different metabolites from
herbal plants, and the combination of methanol and water is
also very attractive for many biological samples (Kanchanapoom
et al., 2001; Villas-Bôas et al., 2006; Teo et al., 2011; Padumanonda
et al., 2014). However, these extraction methods may not always
provide relevant data for all cases in TTM, such as, in the
case of water decoction (hot aqueous extract), whereby a liquid
medicine is made from the extraction of multiple herbs in boiling
water. After the medical preparation, only the liquid fraction is
used as the medicine and administered to patients. The goal of
metabolome analysis in this scenario is to chemically characterize
metabolites present in the extract taken by the patients, rather
than the entire set of metabolites contained within the herbs.
In this case, water would be a more appropriate solvent for
extraction as compared to methanol or ethanol. Furthermore,
the downstream protocol used for the chemical analysis should
be prepared as similarly as possible to the preparation process
of the decoction medicine (glassware, time, and temperature).
This will improve the accuracy of the metabolome information,
and will greatly affect the overall outcome of the study. On
the other hand, analysis of herbal medicines or herbal products
can be even more complicated (Charoonratana et al., 2014).
For example, many Thai medicines result from the mixture of
different herbal material in various quantities to one another.
These mixtures are ultimately manufactured in different forms;
for example, in pill, capsule, or bolus form, and are consumed
directly by the patient, without using an extraction step. However,
the chemical compositions of these drugs are largely unknown,
and a chemical analysis using a traditional extraction such as,
a single solvent or two-phase solvent systems (e.g., methanol-
water, methanol-chloroform) will yield an incomplete picture of
the drug composition, especially if only one fraction is analyzed.
This is therefore unlikely to provide sufficient information about
all the possible metabolites that have been consumed by the
patients, as there is no universal extraction method that can
cover the entire spectrum of metabolites in a single extraction.
In such cases, a good extraction protocol for chemical analysis of
herbal medicines may include using more than just one solvent,
or the extraction protocol can be performed more than once
with different solvents (Yang et al., 2016). Increasing proportion
of the organic solvents in the extraction process can lead to
an increase in the number of extracted metabolites; however,
this may require many additional sample clean-up steps prior
to the measurements. In a previous study by the Nielsen group
(Khoomrung et al., 2015), it was shown that the coverage
of metabolites in a yeast sample can be increased (by 16%)
when the analysis is performed on both polar and non-polar
fractions as compared to the results from the polar-fraction
alone. This approach could potentially be adopted to analyze the
metabolome following treatment with herbal medicines. A study
by Teo et al. (2011) demonstrated the use of multiple approaches
for global metabolome analysis in Stevia rebaudiana and Coptidis
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FIGURE 3 | Integration of multi-omics and clinical data into TTM. (A) Herbal plants and herbal medicines. (B) Chemical characterization of herbal plants, herbal

medicines, and biofluids using targeted and untargeted metabolomics. (C) Clinical trial of herbal plants and herbal medicines by cell lines, animal, or human models.

(D) Biofluid for metabolome analysis. (E) Integrative analysis of different omics data and clinical data. (F) Systems biology network. (G) Individualized data.

rhizoma. The authors usedmethanol-water extraction and green-
solvent microwave-assisted extraction (MAE) for the extraction
of primary and secondary metabolites, and the subsequent
isolated-extracted metabolites were monitored with GC-MS,
1H NMR and HPLC-UV techniques. Analysis of primary
metabolites from the methanol fraction by GC-MS and 1H
NMR in both samples showed the presence of the common
polar and slightly non-polar metabolites such as, amino acids,
sugars, organic acids, carbohydrates, and lipids. Analysis of
the secondary metabolites by HPLC-UV after MAE extraction
showed fewer metabolites e.g., stevioside, rebaudioside and
berberine. The profiling of primary metabolites enabled a clear
differentiation of sample origins, whereas metabolome data from
secondary metabolites could not be used to distinguish samples
from different sources.

In contrast to the targeted approach, the development and
application of untargeted metabolomics in TTM is relatively
unexplored. This is in part due to the relatively recent emergence
of metabolomics, as well as the ongoing advancement of
technologies such as, GC-MS, LC-MS, NMR, and the pace of
advancement in bioinformatics for processing big data in the
area of TTM. Nonetheless, due to the rapid evolution of these
technologies and approaches, it is expected for progress to
advance quickly in the early stages of development.

POTENTIAL APPLICATIONS OF
METABOLOMICS TO TTM

In the early stage of development, an application ofmetabolomics
to TTM could potentially be seen in the area of medical and

pharmacy practice. It is now widely accepted that metabolite
levels are highly sensitive to environmental or physiological
changes; thus, metabolomics could serve as an excellent tool
to characterize metabolic profiles to help diagnose and treat
patients. This could easily be accomplished through a minimally
invasive, untargeted approach, e.g., analyzing body fluids such
as, serum, plasma, urine, and saliva from subjects with different
illnesses and comparing the results with healthy subjects. For
example, the broad spectrum of detected features (metabolites)
could aid the discovery of significant molecules contributing
to particular diseases. Subsequently, such compounds can be
validated using the targeted approach, which is more sensitive
and accurate in determining both identity and quantity of a given
metabolite. These strategies have been successful in the diagnosis
of several diseases in modern medicine (Armitage and Barbas,
2014). Another promising application of metabolomics would
be the use of targeted metabolomics to characterize chemical
structures and components of bioactive compounds in herbal
medicines, since one of the bottlenecks in herbal medicines is
that most of the active components of the drugs are poorly
defined. Furthermore, the constituents of these compounds can
vary greatly from batch to batch, depending on several factors;
for example, age of the plant, cultivation conditions (weather
and season) or production process. In this context, the targeted
metabolomics approach is particularly useful, by characterizing
and defining the exact identities and concentrations of bioactive
compounds contained within herbal material for each given
product. This information would assist greatly in controlling the

consistency of herbal medicine produced from different batches.

Furthermore, understanding the chemical composition of herbal
medicines provides an opportunity to elucidate their mechanism
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of action after taken by the patients. Untargeted metabolomics
could be performed to profile metabolites from biofluids after
the patients have taken the drugs, whereas targeted analysis will
assist in the elucidation of metabolic processing of an individual
drug. This information is particularly useful to aid the design and
development of herbal medicine as well as to improve treatment
and therapy in TTM.

THE ESTABLISHMENT OF A NATIONAL
INFRASTRUCTURE TO IMPROVE TTM

At the Faculty of Medicine Siriraj Hospital, Mahidol University,
we have been conducting research in several areas of systems
biology and systems medicine such as, genomics, proteomics,
metabolomics, and clinical research. To further increase
research capacity, we have recently established the university
metabolomics and phenomics platform, namely Siriraj
Metabolomics and Phenomics Center (SiMPC) at Mahidol
University. The aim of the SiMPC is to develop a top-level
university platform for metabolomics and phenomics research.
The center will conduct both research and service in the fields of
metabolomics and phenomics as well as providing education and
training to the students and researchers in Thailand. The scope
of diseases and research topics will focus initially on diabetes
mellitus, cancer, cardiovascular disease, dengue hemorrhagic
fever, transplantation, and TTM. Using an integrated big data
network at Siriraj Hospital, this will lead to the development
of precision medicine and facilitate the translation of scientific
knowledge into clinical practice for high impact diseases.

CONCLUSION AND PERSPECTIVES

TTM is a holistic medicine with a long history of serving Thai
society for many generations. Furthermore, TTM has remained
a highly popular medical resource in Thailand for the Thai
community; however, a major drawback of their use, until now,

has been a lack of clinical evidence for what bioactive compounds
they contain that mediate their therapeutic effects, and what
their mechanism of action is within the patient. To promote
the use of TTM in society, metabolomics can be utilized to
identify chemical compositions, to screen for potentially active
compounds in herbal plants or herbal medicines, as well as to
evaluate the therapeutic effect of TTM during pre-clinical and
clinical studies. Furthermore, integration of metabolomics and
other omics will help to improve the overall understanding of
the phenotypic characteristics of an individual subject, and will
increase the rate of TTM development. Since metabolomics is
relatively new to TTM, perhaps the greatest challenge in the early
stages of development would be in implementing a measurement
technology, such as, routine protocols for untargeted and

targeted analysis, alongside the bioinformatics platform to
handle the large dataset subsequently produced. Infrastructures,
such as, SiMPC, will thus provide a promising contribution
toward efforts to accelerate the development of TTM in the
future.
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