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Microscopic modeling of tunable graphene-based terahertz Landau-level lasers
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In the presence of strong magnetic fields the electronic band structure of graphene drastically changes. The
Dirac cone collapses into discrete nonequidistant Landau levels, which can be externally tuned by changing
the magnetic field. In contrast to conventional materials, specific Landau levels are selectively addressable
using circularly polarized light. Exploiting these unique properties, we propose the design of a tunable laser
operating in the technologically promising terahertz spectral range. To uncover the many-particle physics behind
the emission of light, we perform a fully quantum mechanical investigation of the nonequilibrium dynamics of
electrons, phonons, and photons in optically pumped Landau-quantized graphene embedded in a high-quality
optical cavity. The microscopic insights gained allow us to predict optimal experimental conditions to realize a
technologically promising terahertz laser.
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I. INTRODUCTION

The terahertz (THz) regime of the electromagnetic spec-
trum can be exploited in a wide range of applications
including medical diagnostics, atmosphere and space science,
and security and information technology [1–4]. Although THz
research has progressed significantly in the last 20 years,
the transition from laboratory demonstration to practical
environment remains challenging for the industry despite the
tremendous potential of submillimeter waves. The largest
challenge is the lack of adequate, frequency-tunable THz
radiation sources. In 1986, Aoki proposed the design of
Landau-level (LL) lasers exploiting the discreteness of LLs
in two-dimensional electron gases [5]. Here, the energetic
LL spacing and thus the possible laser frequency can be
externally tuned through the magnetic field. The challenge in
the realization of such a laser is to obtain a stable population
inversion, i.e., a larger carrier occupation within an energet-
ically higher LL. Since conventional semiconductors exhibit
an equidistant spectrum of LLs, strong Coulomb scattering
acts in favor of an equilibrium Fermi-Dirac distribution and
strongly counteracts the buildup of a population inversion.
In contrast, graphene as a two-dimensional material with a
linear dispersion exhibits a nonequidistant LL separation of-
fering entirely different conditions for many-particle processes
[6,7]. Exploiting these remarkable properties of Landau-
quantized graphene, we propose an experimentally accessible
scenario to achieve continuous wave lasing with tunable
frequencies in the technologically promising terahertz spectral
regime.

The nonequidistant arrangement of energy levels [8,9]

εl = sgn{l}h̄vF

√
2e0B

h̄
|l|, (1)

combined with selection rules for circularly polarized light,
allow us to selectively address individual inter-LL transi-
tions. Here, the magnetic field B is perpendicular to the
graphene layer, vF denotes the Fermi velocity in graphene, and
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l = . . . ,−2,−1,0,1,2, . . . is the LL quantum number. Left
(right) circularly polarized light, denoted σ+(−), exclusively
induces transitions with quantum numbers [10,11] |l| → |l| +
(−)1. Thus, a linearly polarized optical pump field with an
energy matching the transition l = −2 → +3 simultaneously
induces a population inversion between l = +2 and l = +1 as
well as between l = −1 and l = −2 [cf. Fig. 1(a)].

To achieve lasing, graphene needs to be embedded in a high-
quality microcavity [13] with a resonator mode matching the
energy difference between l = +1 and l = +2 [cf. Fig. 1(c)].
Thus, the population inversion leads to a multiplication
of trapped cavity photons due to stimulated emission of
THz photons via the transition 2 → 1 or, rather, −1 → −2
[cf. Fig. 1(b)]. For continuous light amplification, radiative
processes (optical pumping, emission of cavity photons) have
to be complemented by nonradiative relaxation to establish
a closed three-level laser system. In our exemplary pump
scheme, efficient laser operation requires a fast depopulation
of the lower laser level l = +1 and a repopulation of the pump
level l = −3, which, e.g., can happen by a direct transition via
the emission of optical phonons [cf. green arrow in Fig. 1(b)].
However, the interaction with phonons can concurrently assist
the relaxation of carriers in the upper laser level as indicated by
the red arrow in Fig. 1(b) and thereby counteract lasing. Since
phonon-induced decay rates strongly depend on how well the
transitions match the phonon energy, the efficiency of the laser
scheme varies with the magnetic field, depending on how well
the competing (laser cycle supporting and counteracting) LL
transitions are in resonance with phonon modes.

In contrast to conventional materials, the nonequidistant
spectrum of LLs in graphene efficiently quenches elastic
Coulomb scattering processes, since they are allowed only
if two LL transitions with the same energy are possible.
Moreover, the proposed pump scheme induces an electron-
hole-symmetric carrier distribution, which further reduces the
influence of Coulomb scattering, since each electron scattering
process l → l′ in combination with the corresponding hole
scattering −l → −l′ is exactly as strong as its respective
inverse process.

While in previous studies [7,12] only the possibility of
a population inversion between LLs in graphene has been
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FIG. 1. Laser scheme. Sketch of the energetically lowest Landau
levels in graphene embedded in an optical cavity. (a) The linearly
polarized optical pump field induces transitions l = −3 → +2
and l = −2 → +3 (yellow arrows), which results in a population
inversion between l = +1 and l = +2 in the conduction band and
l = −1 and l = −2 in the valance band. (b) The emission of optical
phonons can act in favor of the laser cycle (green arrows) or counteract
the buildup of the population inversion (red arrows). (c) To achieve
stimulated emission of photons, the system is embedded in an optical
cavity.

theoretically predicted, in the current work we provide a fully
quantum-mechanical modeling of the coupled dynamics of
electrons, phonons, and photons in a Landau-level laser. The
aim of our work is to provide profound insights into the
complex interplay of pumping, stimulated and spontaneous
emission of photons, and Coulomb- and phonon-induced
nonradiative processes, allowing us to predict optimal con-
ditions for lasing at different tunable magnetic fields. To
model the laser dynamics, we use a quantum mechanical
many-particle approach providing microscopic access to all
relevant interaction processes in Landau-quantized graphene.
The model allows us to provide a recipe for the realization of
tunable THz LL lasers with optimal experimentally accessible
conditions including magnetic field, cavity quality factor, and
pump intensity.

II. MICROSCOPIC MODEL

Based on the density matrix formalism in second quanti-
zation [14–17] combined with tight-binding wave functions

[8,18,19], we derive a set of luminescence Bloch equations:

ρ̇l(t) = 2
∑
μl′

�{∣∣gμ

l′l

∣∣2
S

μ

ll′ −
∣∣gμ

ll′
∣∣2

S
μ

l′l
} +

∑
l′

Pll′ (ρl′ − ρl)

+�in
l (t)(1 − ρl) − �out

l (t)ρl, (2)

ṅμ(t) = 8NB

∑
ll′

∣∣gμ

ll′
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S
μ

l′l
} − 2κ(nμ − n0), (3)

Ṡ
μ

ll′ (t) = i(ωll′ + ωμ + iγll′ (t) + iκ)Sμ

ll′ + nμ(ρl′ − ρl)

+ ρl′ (1 − ρl) + T
μ

l′ − T
μ

l . (4)

This system of differential equations describes the time
development of the occupation probabilities ρl(t) = 〈a†

l al 〉(t)
of LLs with quantum number l and the number of photons
nμ(t) = 〈c†μcμ〉(t) of the two cavity modes μ = σ±, where a

†
l

(c†μ) is the electronic (photonic) creation operator. The carrier
occupation is coupled to the number of photons via the photon-
assisted electron-hole correlation S

μ

ll′ (t) = 〈c†μa
†
l al′ 〉(t), which

is a measure of the probability of emitting a μ photon via the
electronic LL transition l′ −→ l. Details about the derivation
of the above equations can be found in the Appendix. Further,
the derivation of all interaction coupling elements used can be
found in Ref. [19].

Here, we briefly explain the different contributions in
the dynamical equations and the appearing parameters. The
interaction strength between electrons and cavity photons
is determined by the coupling element g

μ

ll′ [cf. Eq. (A5),
Appendix]. Furthermore, the photon generation rate is in-
fluenced by the number of emitters, which is given by
the magnetic-field-dependent LL degeneracy NB = BA/	0

corresponding to the number of magnetic flux quanta 	0 =
h/e0 within the graphene layer of area A. We consider a finite
cavity photon lifetime (2κ)−1 = Q/ωσ±, which is given by
the quality factor Q and the magnetic-field-dependent photon
frequency ωσ+ = ωσ−. Therefore we account for photon
losses due to cavity imperfections and laser light out-coupling,
which leads to a decay of the photon number towards a thermal
occupation n0. The process of optical pumping enters the
equations through the pump rate Pll′ , which transfers carriers
from l to l′. The explicit expression for the pump rate follows
from a semiclassical treatment of the interaction of carriers
with the optical pump field. Here, an adiabatic approximation
for inter-LL coherences yields an analytical expression for the
optical transition rates [cf. Eq. (A20) in the Appendix]. One
finds that the pump rate is essentially given by the incident
light intensity and contains energy conservation as well as the
LL-specific selection rules as mentioned in Sec. I.

The carrier-carrier and carrier-phonon interactions are
treated within a correlation expansion on a two-particle level
[20], which leads to time- and energy-dependent in- and
out-scattering rates �in/out

l (t). Those incorporate all electron-
electron and electron-phonon scattering channels, i.e., all
energy-allowed LL transitions, including time-dependent
Pauli blocking terms. The explicit form of the scattering
rates is given by (A13) in the Appendix. These particle
conserving scattering rates complement the optical excitation
via a redistribution of excited carriers along all LLs, leading to
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an ultrafast thermalization of the carrier system into a Fermi
distribution.

The Coulomb interaction is calculated by taking into
account many-particle screening in the random phase ap-
proximation according to the Lindhard formula [8,11]. The
screening induced by the substrate is considered a dielectric
background, where we have used the exemplary value of
εbg = 3.3 corresponding to a SiC substrate throughout this
work. Within the relevant momentum regime, the energies of
acoustic phonons are too low to induce inter-LL transitions.
Therefore, carrier-phonon scattering is considered only for the
dominant optical phonon modes �TO, �LO, KTO, and KLO
[21,22] in a bath approximation [19], with εKLO = 151 meV,
εKTO = 162 meV, ε�LO = 198 meV, and ε�TO = 192 meV.

We take into account finite lifetimes for many-particle
correlations giving rise to a Lorentzian-type softening of the
energy conservation within all transition rates. The width γll′ of
the appearing Lorentz functions determines the broadening of
LL transitions and is self-consistently calculated considering
scattering- and impurity-induced dephasing [23–25]. Details
of the self-consistent determination of the dephasing rates
can be found in the Appendix. Recently predicted LL energy
renormalization effects [26,27] are neglected, since they are
assumed to be small compared to the LL broadening γll′ .

To prove whether coherent laser light is emitted from
graphene, we also track the temporal evolution of the photon
statistics via the second-order autocorrelation

g(2)
μ (t) = 〈c†μc†μcμcμ〉(t)

〈c†μcμ〉(t)2
. (5)

This quantity is a measure for the quantum mechanical
intensity fluctuations of the emitted light [28]. Coherent
laser light is characterized by g(2)(t) = 1, whereas g(2)(t) > 1
holds for thermal and g(2)(t) < 1 for nonclassical light. To
calculate g(2) we consider the evolution of photon-photon
and higher electron-photon correlations [as, for example,
T

μ

l (t) = �〈c†μa
†
l al cμ〉(t) in Eq. (4)] up to the quadruplet level

[29,30] (cf. the Appendix).

III. RESULTS

The solution of the luminescence Bloch equations reveals
the nonequilibrium dynamics of the electron distribution and
the number of photons within the cavity, which provides a
microscopic understanding of the switch-on characteristics
of the Landau-level laser. In the following, we investigate
the dynamics at room temperature and under the following
experimentally accessible conditions: cavity cross-section
area A = 1000 μm2 determining the number of emitters
[corresponding to the size of the graphene sheet; cf. Fig. 1(c)],
cavity length fixed due to the resonance condition L = λμ/2,
quality factor [31,32] Q = 5000 , and background screening
εbg = 3.3 (corresponding to a SiC substrate).

A. Laser dynamics

First, we study the laser dynamics at the fixed magnetic
field B = 4 T and the pump intensity I = 20 kW/cm2. Since
in undoped graphene, the electron and hole populations within
conduction and valence bands are fully symmetric, we focus on

FIG. 2. Laser dynamics. (a) Time development of the occupation
probabilities of the two laser levels in the conduction band ρ2 and
ρ1 at B = 4 T. The thermal electron population at t = 0 is inverted
(blue-shaded area) after the pump field is turned on (yellow line).
Without stimulated emission, the inversion would stay at the indicated
value �max (dashed lines). (b) Corresponding overall gain of the
multilevel electronic system. (c) Evolution of the right circularly
polarized photon number nσ− (logarithmic) and the second-order
correlation g

(2)
σ− (right axis). The population inversion induces an

exponential increase in the photon number by stimulated emission.
Due to the finite pump and relaxation rates, the population inversion
is depleted with rising photon number (gain compression), resulting
in a quasistationary threshold inversion �th. During the stable laser
equilibrium the system emits coherent laser light characterized by the
second-order correlation function g

(2)
σ− = 1.

the electron dynamics in the following. Figure 2(a) shows the
temporal evolution of the electron occupation probability of the
two laser levels l = +2 and l = +1. Initially both occupations
are at thermal equilibrium characterized by a Fermi-Dirac
distribution with ρ1 > ρ2. At 100 ps, the constant optical pump
field is turned on, transferring carriers from l = −3 to l = +2,
which leads to a population inversion with ρ2 > ρ1 [cf. the
blue-shaded region in Fig. 2(a)].

Phonon-induced relaxation of excited carriers counteracts
the optical excitation mainly through the transitions l = +2 →
−2 and l = +2 → −3 [cf. red arrows in Fig. 1(b)]. At the
chosen magnetic field of B = 4 T the transition l = +1 →
−3 is in resonance with optical � phonons. Therefore, the
depopulation of l = −3 as result of optical pumping indirectly
leads to a phonon-induced decrease in ρ1. Coulomb-induced
scattering is strongly suppressed due to the nonequidistant
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nature of the Landau quantization. The only efficient process
is Auger scattering between equidistant LL transitions 2 →
8 and 2 → 0. Shortly after the pulse is switched on, a
quasiequilibrium between optical excitation and relaxation
due to the emission of phonons is reached, resulting in a
pump-induced population inversion �max [cf. Fig. 2(a)]. The
resulting photon gain generated from the pumped electronic
system is shown in Fig. 2(b), which is discussed further below.

Including an optical cavity, the number of photons increases
exponentially via stimulated emission, once a population
inversion is established. Figure 2(c) shows the time evolution
of the right circularly polarized photon number nσ−. For
about 100 ps the population inversion stays stable despite
the growing photon avalanche. However, after approximately
200 ps it slowly decreases, reflecting the so-called gain
compression, which results from the finite pump and relaxation
rates. The occupation of the upper laser level ρ2 decreases,
since the stimulated emission of photons via l = +2 → +1
breaks the balance between pumping and phonon relaxation.
Similarly, the finite lifetime of l = +1 leads to an accumulation
of carriers, resulting in an enhanced ρ1 [cf. Fig. 2(a)]. After
approximately 350 ps, a new quasiequilibrium is reached that
is characterized by a reduced threshold population inversion
�th. At that point, the photon generation via l = +2 → +1
and photon losses due to cavity imperfections or off-resonant
absorption via other LL transitions compensate each other and
the number of photons remains constant [Fig. 2(c)].

The time evolution of the photon number, Eq. (3), can
be simplified by considering the static limit of Eq. (4)
under negligence of spontaneous emission and higher order
electron-photon correlations. Then the photon dynamics can
be written as

ṅμ(t) ≈ (Gμ(t) − 2κ)nμ. (6)

Here, we have introduced the gain coefficient

Gμ(t) = 8πNB

∑
ll′

∣∣gμ

ll′
∣∣2

(ρl(t) − ρl′(t))Lγll′+κ (ωl′l − ωμ)

(7)

including the coupling with all LL transitions l → l′. The
coefficient is given by the carrier occupation difference and the
Lorentzian Lγ (ω) determining the LL width γ . As a result, LL
transitions, which are slightly detuned from the laser frequency
(�ε ∼ h̄γ ), can reabsorb cavity photons and thereby lower the
gain generated by the inverted LL transition. Figure 2(b) shows
the temporal evolution of the gain coefficient. To be able to
generate photons, the overall gain has to exceed the threshold
gain Gth = 2κ , which is given by the cavity photon lifetime
τphoton = (2κ)−1. Moreover, to enter the lasing regime, the gain
has to be stabilized with pumping and phonon relaxation to
hold it above the threshold value during the growing photon
avalanche. After a certain number of photons is reached,
the gain is compressed to the threshold value. Due to the
finite pump and relaxation efficiency, the light amplification
saturates until it compensates the cavity losses, which charac-
terizes the stable laser equilibrium. Here, the internal quantum
efficiency, i.e., the effective fraction of emitted laser photons
per absorbed pump photon, is about 3.5%. This comparatively
low value results from the Coulomb- and phonon-induced

relaxation of the upper laser level and from the parasitic
absorption of cavity photons by the off-resonant transitions l =
2 → 3, l = 3 → 4, etc. However, the quantum efficiency can
be optimized, since the loss via unwanted scattering processes
could be reduced by using dielectric substrates, which signif-
icantly screen the Coulomb interaction. Furthermore, lower
operation temperatures would increase the Pauli blocking and
therefore suppress the unwanted phonon relaxation.

Finally, to describe the statistics of the emitted pho-
tons, we calculate the second-order correlation function g(2)

[cf. the right y axis in Fig. 2(c)]. Initially before the optical
pumping, we find g(2) = 2 characterizing photons in thermal
equilibrium. Once a population inversion is reached, the
number of photons increases due to stimulated emissions, and
g(2) approaches the value 1, characterizing coherent laser light.

B. Tunability of the laser frequency

A crucial advantage of the LL laser is the straightforward
tunability of its frequency, since the spacing between LLs is
adjustable through the magnetic field. However, as discussed
in the last section, the efficiency of a laser scheme essentially
depends on phonon-induced nonradiative processes stabilizing
the gain during stimulated emission. The probability for the
emission of a phonon significantly changes with the energetic
separation h̄ωll′ of the involved levels, since it depends on
how well the transition matches the phonon energy h̄�νq.
Consequently, the fast emission of � phonons via l = +1 →
−3, complementing the laser cycle at B = 4 T, will become
inefficient if the magnetic field is changed. In this section, we
investigate the tunability of a graphene-based LL laser from
a microscopic perspective. We vary the magnetic field widely
and then answer the question in what frequency range the
proposed laser scheme works. For a single tunable laser device,
a change in the magnetic field would need to be complemented
by a tunable mid-IR pump laser in the range of 5–9 μm and a
dynamic cavity of adjustable length in the range of 20–40 μm.

To obtain insight into the competing nonradiative processes,
we apply the same conditions at each magnetic field by
holding the pump transition rate constant at P0 = 1.2 ×
10−2 ps−1 (corresponds to the scenario at B = 4 T and Ipump =
20 kW/cm2), only exciting carriers via −3 → 2 and −2 → 3.
Moreover, the length L of the cavity is adjusted to the B-
dependent resonance condition L = λμ/2 = πch̄/(ε2 − ε1).

Figure 3 shows the temporal evolution of the overall gain
[Fig. 3(a)], the photon number [Fig. 3(b)], and the second-order
correlation function g(2) [Fig. 3(c)] for the σ− polarization
within the technologically relevant magnetic-field range.
Complex interplay of the multiple phonon resonances as well
as Coulomb-scattering processes gives rise to a remarkable
magnetic-field dependence, exhibiting alternating B ranges
with drastically different laser dynamics. More precisely, we
distinguish four zones, called I–IV, where lasing takes place.

In analogy to the discussion in the last section, we now
describe the temporal evolution of the system, allowing us to
explain the different behavior in the four lasing zones and to
identify the dominating many-particle mechanisms assisting
or harming the laser scheme. As in the last section, the
thermal equilibrium at t = 0 is pumped to an intermediate
quasiequilibrium at t = 100 ps. Only if the achieved gain [blue
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FIG. 3. Laser frequency tunability. Time development of (a) the
gain, (b) the photon number, and (c) the second-order correlation
function g(2) for technologically relevant magnetic fields at a constant
pump rate. The emission of optical phonons can either support
or counteract the laser operation, which leads to a remarkable
magnetic-field dependence of the laser dynamics. There are four
regimes (labeled I–IV), where the achieved gain is large enough to
generate a significant number of photons and to produce coherent
THz radiation characterized by g(2) = 1.

areas in Fig. 3(a)] significantly exceeds the cavity losses given
by Gth can stimulated emission induce a photon avalanche
resulting in an exponential increase in emitted photons
[cf. bright areas in Fig. 3(b)] characterized by g(2) = 1,
describing coherent laser light [cf. green areas in Fig. 3(c)].

The appearance of distinct magnetic-field zones with vary-
ing laser characteristics can be well understood by examining
the B dependence of the efficiency of carrier-phonon scattering
processes. The rate of a phonon-induced LL transition l → l′
can be described in analogy with Fermi’s golden rule,

σll′ = 2π

h̄2

∑
νq

∣∣Gνq
ll′

∣∣2
(NνqLγll′ (ωll′ + �νq)

+ (Nνq + 1)Lγll′ (ωij − �νq)), (8)

where we sum over all phonon modes ν with momentum q
weighted by the square of the electron-phonon matrix element
[19] G

νq
ll′ and the phonon occupations Nνq.

In Fig. 4, we compare the magnetic-field dependence of the
maximum gain (left axis) and the equilibrium photon number
(right axis) [Fig. 4(a)] and the phonon-induced transition rates
for the most relevant scattering channels [Fig. 4(b)]. Hereby,
the laser assisting transitions are represented by blue shading
in Fig. 4(b), whereas counteracting decay rates are shaded red.
First, we discuss the behavior for the magnetic fields B > 2 T,
where the LLs involved in the laser scheme are sufficiently far
away from each other to allow direct transition via the emission
of phonons. Apparently, the lasing zones, labeled I–IV, are
characterized by strong resonances for supporting channels
[cf. Fig. 4(b)] such as 1 → −3 in zones II and III. This
transition allows efficient continuous-wave (cw) operation
since carriers can perform cycles in a three-level system and
also enhances the maximum gain by lowering ρ1. As a result,
the gain exceeds the threshold, which allows the generation of
a large number of photons (cf. upper panel). In zones III and
IV the 1 → −1 channel assists the cw operation by depleting
the lower laser level and, additionally, coupling the two-laser
transition in conduction and valence bands. The simultaneous
resonance of both mentioned supporting channels explains the
maximal photon number at approximately B = 4.8 T.

The lasing zones are separated by regimes (shaded gray)
where the pumped gain stays below the threshold [orange-
shaded areas in Fig. 4(a)]. Here, phonon relaxation processes
dominate, which strongly counteract lasing by depleting the
population inversion, e.g., via direct relaxation of the upper
laser level 2 → −2,−3, explaining the lack of lasing between
zone I and zone II as well as between zone II and zone III.
Additionally, resonances with LLs, which are not directly
involved in the laser scheme, also play an important role, as
the relaxation 8 → 1, e.g., at B = 6 T. As a consequence
of Auger scattering 2 → 8 (in addition to 2 → 0), the pump
process leads to an unwanted accumulation of carriers in l = 8.
Therefore, an efficient phonon relaxation 8 → 1 causes an
indirect pumping of the lower laser level, counteracting the
population inversion between zone III and zone IV.

At low magnetic fields, B = 1–2 T, the LLs involved
in the laser scheme are too close to allow direct phonon
relaxations. The resulting accumulation of pumped carriers
gives rise to enhanced Auger scattering into higher lying LLs,
such as the already mentioned process involving l = 8 or the
equivalent process for the lower laser level 1 → 4 in parallel
with 1 → 0. Hence, phonon resonances involving l = ±4,±8
determine the behavior at low magnetic fields by providing
indirect relaxation channels. For magnetic fields below 1 T,
neighboring LLs begin to strongly overlap, so that the applied
theoretical approach is no longer valid.

Another interesting aspect of the laser dynamics is the
behavior at the borders of the four lasing zones. Although the
pumped gain initially exceeds the threshold, e.g., at B ∼ 6.5 T,
we do not observe a stable laser operation (no photons in
equilibrium). Here, the laser supporting nonradiative processes
are too slow, so that the gain saturates or even falls below
the threshold, before the avalanche of stimulated emission
generates a significant number of photons. As a result, a
population inversion does not guarantee lasing.
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FIG. 4. Interplay of phonon resonances. (a) Magnetic-field dependence of the maximum pumped gain (left axis) and the number of photons
at equilibrium (right axis). A significant number of photons (black curve) is generated only when the pumped gain exceeds the threshold
(blue-shaded parts of the upper curve). (b) Phonon-induced transition rates for the most relevant channels. The distinguished laser zones from
Fig. 3 are determined by the efficiency of carrier-phonon scattering channels that either support a closed laser cycle or counteract the population
inversion.

To sum up, the proposed LL laser is widely tunable due
to the broadening of LLs allowing multiple nonradiative
relaxation pathways supporting the laser cycle. At a reasonable
pump rate, we find four distinct magnetic field zones in
which the laser works, generating coherent radiation within
the technologically desired THz range.

C. Optimal conditions

So far, we have investigated the laser dynamics at a fixed
optical pump rate, cavity quality factor, and temperature. Here,
we vary these experimentally accessible quantities, aiming
at optimal conditions for lasing. We assume again that the
Landau-level laser is driven by a tunable pump laser and has a
cavity which changes the length in line with the magnetic field
in order to stay in full resonance with the laser transition,
i.e., L = πch̄/(ε2 − ε1). Furthermore, when changing the
magnetic field, the pump frequency is adjusted to match the
transition energy of −3 → 2. Since the distance between LLs
and also their broadening increase with the magnetic field, the
pump rate P ∝ I/(ω2γ ), i.e., the number of excited carriers
per time, decreases when the incident intensity I of the pump
field remains constant.

Figure 5(a) illustrates the number of photons within
quasiequilibrium as a function of the pump intensity and the
magnetic field at room temperature and Q = 5000. In black
areas, the pump intensity is too low to establish lasing. The
pronounced line between dark and bright areas denotes the

threshold intensity as a function of the magnetic field. The
threshold line shows a general upward trend, owing to the
decrease in the pump rate. Furthermore, it exhibits maxima
and minima, which can again be ascribed to the efficiency
of laser supporting and counteracting phonon resonances,
as discussed in the last section. While phonon-induced LL
transitions 1 → −3 [cf. Fig. 4(b)] act in favor of a low
threshold at 2.5 and 4 T, the counteracting phonon-induced
transitions 2 → −2,−3 give rise to maxima in the threshold
line at 2 and 3 T. The phonon resonance 8 → 1 at B = 6 T
results in a threshold intensity of several hundred kW/cm2,
since it indirectly couples l = 2 and l = 1, which counteracts
the selective excitation of the upper laser level.

Assuming that the cavity photon lifetime 1/(2κ) is
solely limited due to laser light out-coupling, the overall
output intensity can be estimated as Iout = 2κ

∑
μ h̄ωμnμ/A.

Figure 6(a) in the Appendix shows the input-output curve for
three characteristic magnetic fields, B = 1.5, 3, and 4 T. Our
calculations reveal that even in the chosen exemplary model,
based on one single graphene layer as the gain medium,
THz output powers of several W/cm2 are achievable. The
low input/output ratio [Fig. 6(a)], in the range of 10−4–10−5

mainly results from the low absorption efficiency of our lasing
setup, where only a small fraction (∼1%) of the incident
pump light is absorbed by the graphene layer. In a real laser
device, the pump absorption efficiency could be significantly
increased by using stacks of separated graphene layers and
reusing unabsorbed pump light via mirrors. The presence of
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FIG. 5. Laser threshold. (a) Photon number at quasiequilibrium
as a function of the magnetic field B and pump intensity. For each B,
there is a minimum pump intensity required to achieve lasing. The B

dependence of the laser threshold and the photon generation efficiency
reflect the interplay of laser cycle supporting and counteracting
phonon processes. (b) Magnetic-field dependence of the threshold
pump intensity for different cavity quality factors Q and temperatures
T . High qualities and low temperatures act in favor of a lower laser
threshold.

several graphene layers would additionally lead to an effective
increase in the number of emitters per cavity cross section,
which would yield an enhanced matter-light coupling and
therefore would significantly improve the internal quantum
efficiency.

Furthermore, the laser characteristics can be modified by
improving the experimental conditions. Figure 5(b) shows the
magnetic field dependence of the threshold pump intensity
for different cavity quality factors Q (at room temperature)
and different temperatures T (at the fixed Q = 5000). In
general, high quality factors and low temperatures lead to an
overall decrease of the laser threshold. Since the Q-factor
is a measure for the photon lifetime, it directly scales the
threshold gain Gth = (τphoton)−1 = ωphoton/Q. However, for
Q −→ ∞, the minimum pump intensity still has to be
sufficient enough to induce a positive gain, namely to invert
the thermal occupation of the laser levels and to compensate
the off-resonant absorption by other LL transitions. Hence,
we observe a saturation behavior for high quality factors.
Finally, a cooling of the system would further be beneficial to
obtain lower threshold intensities, since the lower the thermal
occupation of l = 1, the fewer carriers need to be pumped
into l = 2 to achieve a population inversion. Additionally, low
temperatures decrease the efficiency of counteracting phonon

emissions due to an increased Pauli blocking, which benefits
the internal quantum efficiency of the laser mechanism.

One can conclude that provided the pump power is
sufficient, the proposed laser design is in principle tunable over
a broad spectral range at room temperature. When applying a
constant pump intensity of 40 kW/cm2, the Landau-level laser
can be continuously tuned in the range 4–8.5 THz by applying
magnetic fields of about 1–5.5 T.

In conclusion, we predict a strategy to achieve coherent
terahertz laser emission exploiting the unique properties of
graphene in magnetic fields. Based on a microscopic and fully
quantum-mechanical study of the coupled electron, phonon,
and photon dynamics in optically pumped Landau-quantized
graphene coupled to an optical cavity, we show that the
emission of coherent terahertz radiation can be obtained under
feasible experimental conditions. Provided the high-quality
cavity is adequate and the pump power sufficient, the proposed
laser scheme works in the frequency range between 4 and
8.5 THz. The presented work provides a concrete recipe for the
experimental realization of tunable graphene-based terahertz
laser systems.
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APPENDIX

1. Theoretical approach

a. Many-particle Hamilton operator

The temporal evolution of electrons in Landau-quantized
graphene coupled to a set of photon and phonon modes is
determined by the many-particle Hamilton operator

H = Hel + Hph + Hpt. (A1)

The electronic part reads

Hel = H0,el + Hel-el + Hel-l

=
∑

i

εia
†
i ai + 1

2

∑
ijkl

Vijkla
†
i a

†
j akal

− ih̄
e0

m0

∑
ij

Mij · A(t)a†
i aj (A2)

and is constituted by the electronic creation and annihilation
operators a

†
i and ai . Here the compound index i = (li ,mi,si,ξi)

determines the electronic state [8,19], containing the Landau-
level index l = . . . ,−2,−1,0,1,2, . . . and the quantum num-
ber m = 0,1, . . . ,NB − 1, which can be associated with the
position of the cyclotron orbits in the graphene plane of
surface A [NB = Ae0B/(2πh̄) is the number of magnetic flux
quanta within the graphene plane], the spin s = ±1/2, and
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the valley index ξ = ±1. We include the free contribution of
carriers with eigenenergies εi (cf. the text), the carrier-carrier
interaction determined by the Coulomb matrix element Vijkl ,
and a semiclassical carrier-light coupling, which is given
by the optical matrix element Mij = 〈i|∇|j 〉 and the local
vector potential A(t). The elementary charge and the electron
mass are denoted e0 and m0, respectively. The tight-binding
expressions of the electronic eigenenergies and eigenfunctions
and all matrix elements can be found in our review article on
Landau-quantized graphene [19]. The semiclassical carrier-
light coupling is used to describe the interaction with the
optical pump field, whereas the light of the laser mode is
treated fully quantum mechanically.

The phonon (photon) part of the Hamiltonian denoted by
the subscript ’ph’ (’pt’) is given by

Hph = H0,ph + Hel-ph

=
∑
νq

h̄�νqb
†
νqbνq +

∑
ijνq

G
νq
ij a

†
i aj (bqν + b

†
−qν), (A3)

Hpt = H0,pt + Hel-pt

=
∑

μ

h̄ωμc†μcμ − ih̄
∑
ijμ

(
g

μ

ij a
†
i aj cμ − g

μ∗
ij a

†
j aic

†
μ

)
(A4)

and includes phononic (photonic) creation operators b
†
νq (c†μ),

corresponding to the mode ν (μ) and the phonon momentum
q. It consists of a free part given by the phonon (photon)
frequency �νq (ωμ) and an interaction part including the
carrier-phonon (carrier-photon) matrix element G

νq
ij (gμ

ij ).
The electron-photon Hamiltonian can be deduced from the

semiclassical electron-light coupling by quantizing the vector
potential A and expanding it in normal modes. Hence, the

electron-photon matrix element is given by

g
μ

ij = e0

m0

√
h̄

2ε0V ωμ

Mij · eμ, (A5)

with the normalized polarization vector of the photon mode eμ

and the quantization volume V , which in the case of a laser is
equal to the volume of the cavity.

b. Equations of motion

We evaluate the Heisenberg equation of motion ih̄∂t 〈O〉 =
〈[O,H ]〉 to determine the temporal evolution of the occupation
probabilities of electronic eigenstates ρi = 〈a†

i ai〉 and the
photon numbers nμ = 〈c†μcμ〉. To prove whether coherent
laser light is emitted from graphene, we also track the
temporal evolution of the photon statistics via the second-order
correlation function g(2), which for zero delay time is given by

g(2)
μ (t) = 〈c†μc†μcμcμ〉(t)

〈c†μcμ〉(t)2
= 2 + hμ(t)

nμ(t)2
. (A6)

Coherent laser light (Poisson statistics) is characterized by
g(2)(t) = 1, whereas g(2)(t) > 1 holds for thermal and g(2)(t) <

1 for nonclassical light [28]. To calculate g(2) we need
to consider the evolution of the photon-photon correlation
hμ(t) = 〈c†μc†μcμcμ〉c(t). To this end, we calculate all rele-
vant electron-photon-correlations up to the quadruplet level
[29,30], thus including equations for T

μ

i (t) = 〈c†μa
†
i ai cμ〉c(t)

and U
μ

ij (t) = 〈c†μc†μa
†
i aj cμ〉c(t). Carrier-carrier and carrier-

phonon correlations beyond doublets are neglected. We obtain
the set of coupled differential equations

d

dt
ρi = 2

∑
μ,j

�{∣∣gμ

ji

∣∣2
S

μ

ij − ∣∣gμ

ij

∣∣2
S

μ

ji

} +
∑

j

Pij (ρj − ρi) + �in
i (1 − ρi) − �out

i ρi, (A7)

d

dt
nμ = 2

∑
ij

∣∣gμ

ij

∣∣2�{
S

μ

ji

} − 2κμ

(
nμ − n0

μ

)
, (A8)

d

dt
S

μ

ij = i(ωij + ωμ + iκμ + iγij )Sμ

ij + ρj (1 − ρi) − nμ(ρi − ρj ) − T
μ

i + T
μ

j , (A9)

d

dt
T

μ

i = −(2κμ + γii)T
μ

i + 2
∑

j

�{∣∣gμ

ji

∣∣2
U

μ

ij − ∣∣gμ

ij

∣∣2
U

μ

ji

} + 2
∑

j

�{∣∣gμ

ji

∣∣2
S

μ

ij (nμ + 1 − ρi) − ∣∣gμ

ij

∣∣2
S

μ

ji(nμ + ρi)
}
, (A10)

d

dt
U

μ

ij = i(ωij + ωμ + 3iκμ + iγij )Uμ

ij − 2
∣∣gμ

ji

∣∣2(
S

μ

ij

)2 − hμ(ρi − ρj ) − 2nμ

(
T

μ

i − T
μ

j

) + 2(1 − ρi)T
μ

j − 2ρjT
μ

i , (A11)

d

dt
hμ = 4

∑
ij

∣∣gμ

ij

∣∣2�{
U

μ

ji

} − 4κμhμ, (A12)

where we have rescaled S
μ

ij −→ g
μ

jiS
μ

ij and U
μ

ij −→ g
μ

jiU
μ

ij for simplicity. Further, ωij = (εi − εj )/h̄ denotes the electronic
transition frequency and the finite photon lifetime (2κμ)−1 = Q/ωμ accounts for cavity losses, which are determined by the
cavity quality factor Q. The Coulomb and phonon interactions are treated within the second-order Born-Markow approximation
[17], which gives rise to the scattering rates �in/out

i = �
in/out,el
i + �

in/out,ph
i , with

�
in,el
i = 2π

h̄2

∑
abc

Vabci(Vciab − Vicab)ρaρb(1 − ρc)L(γac + γbi,ωac + ωbi), (A13)

�
out,el
i = 2π

h̄2

∑
abc

Vabci(Vciab − Vicab)(1 − ρa)(1 − ρb)ρcL(γac + γbi,ωac + ωbi), (A14)
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�
in,ph
i = 2π

h̄2

∑
jνq

∣∣Gνq
ij

∣∣2
ρj (NνqL(γij ,ωji + �νq) + (Nνq + 1)L(γij ,ωji − �νq)), (A15)

�
out,ph
i = 2π

h̄2

∑
jνq

∣∣Gνq
ij

∣∣2
(1 − ρj )(NνqL(γij ,ωij + �νq) + (Nνq + 1)L(γij ,ωij − �νq)). (A16)

Within a bath approximation the phonon number Nνq =
〈b†νqbνq〉 is fixed to the thermal occupation (Bose-Einstein
statistics). Moreover, phonon scattering is considered only
for the dominant optical phonon modes �TO, �LO, KTO
and KLO [21,22], with εKLO = 151 meV, εKTO = 162 meV,
ε�LO = 198 meV, and ε�TO = 192 meV (Einstein approxima-
tion), since the energies of acoustic phonons are too low within
the relevant momentum regime to induce inter-LL transitions.

The energy conservation is softened due to the Lorentzian
broadening

L(γ,ω) = 1

π

γ

γ 2 + ω2
, (A17)

whose width is given by the dephasing γij , which is self-
consistently determined [17] considering impurity and many-
particle scattering. It reads

γij = γimp + γ el
ij + γ

ph
ij with

γ
el/ph
ij = 1

2

∑
k=i,j

(
�

in,el/ph
k + �

out,el/ph
k

)
. (A18)

Since the scattering rates �i themselves depend on the
dephasing, they are determined iteratively starting with γij =
γimp.

The disorder contribution to the equation of motion is
derived within a self-consistent Born approximation, following
the approach of Shon and Ando [23,24]. We assume [19]

γimp = vF

lB
√

Aimp
= vF

√
e0B

h̄Aimp
, (A19)

where Aimp denotes a dimensionless parameter characterizing
the scattering strength of the impurity potential [23,24]. Since
this parameter is not accessible in experiments, we assume
the impurity parameter Aimp = 420 , since the corresponding
broadening of 2.5 meV at B = 4 T is in good agreement with
experimental studies of linewidths in absorption spectra [33].

To obtain the optical pump rate Pij , the equation of motion
for the microscopic polarization pij = 〈a†

i aj 〉 is solved within
the Markow and rotating-wave approximation. For a constant
optical pump field with the frequency ωP, intensity IP, and
polarization eP one obtains

Pij =
(

e0

m0

)2
πIP

ε0cω
2
P

|Mij · eP|2

× (L(γij ,ωij + ωP) + L(γij ,ωij − ωP)). (A20)

The degeneracy of Landau levels in spin s = ±1/2, valley
ξ = ±1, and quantum number m = 0,1, . . . ,NB − 1 gives rise
to a total amount of 4NB LLs with the same energy. Our
numerical calculations show that for NB  1 the electronic
dynamics depend only on the Landau-level index l, i.e., all

degenerated levels behave equally. Thus, we define averaged
quantities,

ρl = 1

4NB

∑
m,s,ξ

ρ(l,m,s,ξ ), (A21)

S
μ

l,l′ = 1

4NB

∑
m,s,ξ

S
μ

(l,m,s,ξ )(l′,m,s,ξ ), (A22)

where we have to consider only s-, ξ -, and m-diagonal polar-
izations, since other polarizations are forbidden by selection
rules [19]. T

μ

i and U
μ

ij are treated in an analogous manner. As
we assume that all observables are in good approximation
independent of m, s, and ξ , we set ρl ≈ ρ(l,m,s,ξ ), S

μ

l,l′ ≈
S

μ

(l,m,s,ξ )(l′,m,s,ξ ), and so forth. Hence, the photon generation
rate in Eq. (A8) can be written as∑

ij

∣∣gμ

ij

∣∣2
S

μ

ji ≈ 4NB

∑
li ,lj

∣∣gμ

li lj

∣∣2
S

μ

lj li
, (A23)

where [19] g
μ

ij = g
μ

li lj
δmi ,mj

δsi ,sj
δξi ,ξj

. The same procedure
applies for the sums in Eq. (A12).

2. Laser efficiency

A figure of merit for a laser device is its power conversion
efficiency, which for an optically driven laser is given by the
intensity ratio of the incident pump field and the generated
output. To calculate the output intensity of the Landau-level
laser, we assume that the photon decay rate 2κ [cf. Eq. (A8)] is
determined solely by cavity-light out-coupling. In that case, the
overall output intensity is given by IOut = 2κ

∑
μ h̄ωμnμ/A,

i.e., the number of dissipated photons per time and cavity cross
section A. Figure 6(a) shows the input-output curve for three
exemplary magnetic fields at T = 300 K and Q = 5000.

All three output characteristics show a strong nonlinear
behavior due to saturation of the power conversion with
increasing pump intensities. Such power characteristics are
typical of three-level systems and result from finite pump and
relaxation rates as discussed in the text. The laser threshold as
well as the slope of the input-output curve (slope efficiency)
[cf. Fig. 6(b)] is guided by the interplay of phonon relaxation
channels, yielding a strong magnetic-field dependence of the
power conversion rate. Our calculations reveal that even in the
chosen exemplary model, based on one single graphene layer
as the gain medium, THz output powers of several W/cm2 can
be achieved. The external efficiency ηext of the proposed laser
design is essentially determined by the product

ηext = ηpump × ηdefect × ηint × ηcavity, (A24)

where ηpump characterizes the pump absorption efficiency,
ηdefect stands for the ratio of laser and pump frequency, ηint

reflects the internal quantum efficiency of the gain medium,
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FIG. 6. Input-output characteristics. (a) THz output intensities of
the Landau-level laser in relation to the incident pump intensity for
three characteristic magnetic fields at T = 300 K and Q = 5000 and
(b) corresponding slope efficiencies dIOut/dIIn.

and ηcavity accounts for the out-coupling efficiency of the
laser cavity. In our particular pump scheme, the energy defect

due to the frequency conversion is given by ηdefect = (
√

2 −√
1)/(

√
3 + √

2) ≈ 0.13, which is the upper limit for the
efficiency of the proposed laser mechanism. The above-made
assumption regarding the photon lifetime corresponds to a
perfect out-coupling efficiency ηcavity = 1, i.e., the only loss of
cavity photons is given by the out-coupling of laser light. The
comparatively low input/output ratio in the range of 10−5–10−4

[cf. Fig. 6(b)] mainly results from the low absorption efficiency
of our lasing setup, where only a small fraction (∼1%) of the
incident pump light is absorbed by the graphene layer. In a
real laser device, the pump absorption efficiency could be
significantly increased by using stacks of separated graphene
layers and reusing unabsorbed pump light via mirrors.

The internal quantum efficiency of the Landau-level laser,
i.e., the effective fraction of emitted laser photons per absorbed
pump photon, is also in the range of several percent. This
results from the Coulomb- and phonon-induced relaxation of
excited carriers and from the parasitic absorption of cavity
photons by the off-resonant transitions l = 2 → 3, l = 3 → 4,
etc. The internal efficiency can be optimized by using dielectric
substrates, which significantly screen the Coulomb scattering,
or rather by providing lower operation temperatures to increase
the Pauli blocking and therefore suppress unwanted phonon
relaxation. The presence of several graphene layers as the gain
medium would, in addition to better pump absorption, lead
to an effective increase in the emitter density, which would
yield an enhanced matter-light coupling and therefore would
significantly improve the internal quantum efficiency.

[1] M. Tonouchi, Cutting-edge terahertz technology, Nat. Photon.
1, 97 (2007).

[2] E. Pickwell and V. P. Wallace, Biomedical applications of
terahertz technology, J. Phys. D 39, R301 (2006).

[3] H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang,
Terahertz spectroscopy and imaging for defense and security
applications, Proc. IEEE 95, 1514 (2007).

[4] J. Federici and L. Moeller, Review of terahertz and subterahertz
wireless communications, J. Appl. Phys. 107, 111101 (2010).

[5] H. Aoki, Novel Landau level laser in the quantum Hall regime,
Appl. Phys. Lett. 48 559 (1986).

[6] T. Morimoto, Y. Hatsugai, and H. Aoki, Cyclotron radiation
and emission in graphene—A possibility of Landau-level laser,
J. Phys.: Conf. Ser. 150, 022059 (2009).

[7] F. Wendler and E. Malic, Towards a tunable graphene-based
Landau level laser in the terahertz regime, Sci. Rep. 5, 12646
(2015).

[8] M. O. Goerbig, Electronic properties of graphene in a strong
magnetic field, Rev. Mod. Phys. 83, 1193 (2011).

[9] M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W.
A. de Heer, Landau Level Spectroscopy of Ultrathin Graphite
Layers, Phys. Rev. Lett. 97, 266405 (2006).

[10] K. M. Rao and J. E. Sipe, Coherent photocurrent control in
graphene in a magnetic field, Phys. Rev. B 86, 115427 (2012).

[11] F. Wendler, A. Knorr, and E. Malic, Carrier multiplication in
graphene under Landau quantization, Nat. Commun. 5, 3703
(2014).

[12] Y. Wang, M. Tokman, and A. Belyanin, Continuous-wave lasing
between Landau levels in graphene, Phys. Rev. A 91, 033821
(2015).

[13] M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. v.
Löhneysen, P. Avouris, and R. Krupke, Light–matter interaction
in a microcavity-controlled graphene transistor, Nat. Commun.
3, 906 (2012).

[14] H. Haug and S. W. Koch, Quantum Theory of the Optical
and Electronic Properties of Semiconductors, Vol. 5 (World
Scientific, Singapore, 1990).

[15] F. Rossi and T. Kuhn, Theory of ultrafast phenomena in
photoexcited semiconductors, Rev. Mod. Phys. 74, 895 (2002).

[16] M. Kira and S. Koch, Many-body correlations and excitonic
effects in semiconductor spectroscopy, Prog. Quantum Electron.
30, 155 (2006).

[17] E. Malic and A. Knorr, Graphene and Carbon Nanotubes:
Ultrafast Optics and Relaxation Dynamics (John Wiley & Sons,
New York, 2013).

[18] S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, Tight-
binding description of graphene, Phys. Rev. B 66, 035412
(2002).

[19] F. Wendler, A. Knorr, and E. Malic, Ultrafast carrier
dynamics in Landau-quantized graphene, Nanophotonics 4, 224
(2015).

[20] E. Malic, T. Winzer, E. Bobkin, and A. Knorr, Microscopic
theory of absorption and ultrafast many-particle kinetics in
graphene, Phys. Rev. B 84, 205406 (2011).

045427-10

https://doi.org/10.1038/nphoton.2007.3
https://doi.org/10.1038/nphoton.2007.3
https://doi.org/10.1038/nphoton.2007.3
https://doi.org/10.1038/nphoton.2007.3
https://doi.org/10.1088/0022-3727/39/17/R01
https://doi.org/10.1088/0022-3727/39/17/R01
https://doi.org/10.1088/0022-3727/39/17/R01
https://doi.org/10.1088/0022-3727/39/17/R01
https://doi.org/10.1109/JPROC.2007.898903
https://doi.org/10.1109/JPROC.2007.898903
https://doi.org/10.1109/JPROC.2007.898903
https://doi.org/10.1109/JPROC.2007.898903
https://doi.org/10.1063/1.3386413
https://doi.org/10.1063/1.3386413
https://doi.org/10.1063/1.3386413
https://doi.org/10.1063/1.3386413
https://doi.org/10.1063/1.96506
https://doi.org/10.1063/1.96506
https://doi.org/10.1063/1.96506
https://doi.org/10.1063/1.96506
https://doi.org/10.1088/1742-6596/150/2/022059
https://doi.org/10.1088/1742-6596/150/2/022059
https://doi.org/10.1088/1742-6596/150/2/022059
https://doi.org/10.1088/1742-6596/150/2/022059
https://doi.org/10.1038/srep12646
https://doi.org/10.1038/srep12646
https://doi.org/10.1038/srep12646
https://doi.org/10.1038/srep12646
https://doi.org/10.1103/RevModPhys.83.1193
https://doi.org/10.1103/RevModPhys.83.1193
https://doi.org/10.1103/RevModPhys.83.1193
https://doi.org/10.1103/RevModPhys.83.1193
https://doi.org/10.1103/PhysRevLett.97.266405
https://doi.org/10.1103/PhysRevLett.97.266405
https://doi.org/10.1103/PhysRevLett.97.266405
https://doi.org/10.1103/PhysRevLett.97.266405
https://doi.org/10.1103/PhysRevB.86.115427
https://doi.org/10.1103/PhysRevB.86.115427
https://doi.org/10.1103/PhysRevB.86.115427
https://doi.org/10.1103/PhysRevB.86.115427
https://doi.org/10.1038/ncomms4703
https://doi.org/10.1038/ncomms4703
https://doi.org/10.1038/ncomms4703
https://doi.org/10.1038/ncomms4703
https://doi.org/10.1103/PhysRevA.91.033821
https://doi.org/10.1103/PhysRevA.91.033821
https://doi.org/10.1103/PhysRevA.91.033821
https://doi.org/10.1103/PhysRevA.91.033821
https://doi.org/10.1038/ncomms1911
https://doi.org/10.1038/ncomms1911
https://doi.org/10.1038/ncomms1911
https://doi.org/10.1038/ncomms1911
https://doi.org/10.1103/RevModPhys.74.895
https://doi.org/10.1103/RevModPhys.74.895
https://doi.org/10.1103/RevModPhys.74.895
https://doi.org/10.1103/RevModPhys.74.895
https://doi.org/10.1016/j.pquantelec.2006.12.002
https://doi.org/10.1016/j.pquantelec.2006.12.002
https://doi.org/10.1016/j.pquantelec.2006.12.002
https://doi.org/10.1016/j.pquantelec.2006.12.002
https://doi.org/10.1103/PhysRevB.66.035412
https://doi.org/10.1103/PhysRevB.66.035412
https://doi.org/10.1103/PhysRevB.66.035412
https://doi.org/10.1103/PhysRevB.66.035412
https://doi.org/10.1515/nanoph-2015-0018
https://doi.org/10.1515/nanoph-2015-0018
https://doi.org/10.1515/nanoph-2015-0018
https://doi.org/10.1515/nanoph-2015-0018
https://doi.org/10.1103/PhysRevB.84.205406
https://doi.org/10.1103/PhysRevB.84.205406
https://doi.org/10.1103/PhysRevB.84.205406
https://doi.org/10.1103/PhysRevB.84.205406


MICROSCOPIC MODELING OF TUNABLE GRAPHENE- . . . PHYSICAL REVIEW B 96, 045427 (2017)

[21] S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J.
Robertson, Kohn Anomalies and Electron-Phonon Interactions
in Graphite, Phys. Rev. Lett. 93, 185503 (2004).

[22] J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P.
Ordejón, Phonon Dispersion in Graphite, Phys. Rev. Lett. 92,
075501 (2004).

[23] T. Ando and Y. Uemura, Theory of quantum transport in
a two-dimensional electron system under magnetic fields. I.
Characteristics of level broadening and transport under strong
fields, J. Phys. Soc. Jpn. 36, 959 (1974).

[24] N. H. Shon and T. Ando, Quantum transport in two-dimensional
graphite system, J. Phys. Soc. Jpn. 67, 2421 (1998).

[25] H. Funk, A. Knorr, F. Wendler, and E. Malic, Microscopic view
on Landau level broadening mechanisms in graphene, Phys. Rev.
B 92, 205428 (2015).

[26] A. López, A. Di Teodoro, J. Schliemann, B. Berche, and B.
Santos, Laser-induced modulation of the Landau level structure
in single-layer graphene, Phys. Rev. B 92, 235411 (2015).

[27] Y. A. Bychkov and G. Martinez, Magnetoplasmon excitations
in graphene for filling factors ν � 6, Phys. Rev. B 77, 125417
(2008).

[28] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, UK, 1997).

[29] C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, Semiconductor
model for quantum-dot-based microcavity lasers, Phys. Rev. A
75, 013803 (2007).

[30] R. Jago, T. Winzer, A. Knorr, and E. Malic, Graphene as
gain medium for broadband lasers, Phys. Rev. B 92, 085407
(2015).

[31] K. J. Vahala, Optical microcavities, Nature 424, 839 (2003).
[32] T. Chen, P. Liu, J. Liu, and Z. Hong, A terahertz photonic crystal

cavity with high q-factors, Appl. Phys. B 115, 105 (2014).
[33] M. Mittendorff, F. Wendler, E. Malic, A. Knorr, M. Orlita, M.

Potemski, C. Berger, W. A. de Heer, H. Schneider, M. Helm
et al., Carrier dynamics in Landau-quantized graphene featuring
strong Auger scattering, Nat. Phys. 11, 75 (2015).

045427-11

https://doi.org/10.1103/PhysRevLett.93.185503
https://doi.org/10.1103/PhysRevLett.93.185503
https://doi.org/10.1103/PhysRevLett.93.185503
https://doi.org/10.1103/PhysRevLett.93.185503
https://doi.org/10.1103/PhysRevLett.92.075501
https://doi.org/10.1103/PhysRevLett.92.075501
https://doi.org/10.1103/PhysRevLett.92.075501
https://doi.org/10.1103/PhysRevLett.92.075501
https://doi.org/10.1143/JPSJ.36.959
https://doi.org/10.1143/JPSJ.36.959
https://doi.org/10.1143/JPSJ.36.959
https://doi.org/10.1143/JPSJ.36.959
https://doi.org/10.1143/JPSJ.67.2421
https://doi.org/10.1143/JPSJ.67.2421
https://doi.org/10.1143/JPSJ.67.2421
https://doi.org/10.1143/JPSJ.67.2421
https://doi.org/10.1103/PhysRevB.92.205428
https://doi.org/10.1103/PhysRevB.92.205428
https://doi.org/10.1103/PhysRevB.92.205428
https://doi.org/10.1103/PhysRevB.92.205428
https://doi.org/10.1103/PhysRevB.92.235411
https://doi.org/10.1103/PhysRevB.92.235411
https://doi.org/10.1103/PhysRevB.92.235411
https://doi.org/10.1103/PhysRevB.92.235411
https://doi.org/10.1103/PhysRevB.77.125417
https://doi.org/10.1103/PhysRevB.77.125417
https://doi.org/10.1103/PhysRevB.77.125417
https://doi.org/10.1103/PhysRevB.77.125417
https://doi.org/10.1103/PhysRevA.75.013803
https://doi.org/10.1103/PhysRevA.75.013803
https://doi.org/10.1103/PhysRevA.75.013803
https://doi.org/10.1103/PhysRevA.75.013803
https://doi.org/10.1103/PhysRevB.92.085407
https://doi.org/10.1103/PhysRevB.92.085407
https://doi.org/10.1103/PhysRevB.92.085407
https://doi.org/10.1103/PhysRevB.92.085407
https://doi.org/10.1038/nature01939
https://doi.org/10.1038/nature01939
https://doi.org/10.1038/nature01939
https://doi.org/10.1038/nature01939
https://doi.org/10.1007/s00340-013-5579-y
https://doi.org/10.1007/s00340-013-5579-y
https://doi.org/10.1007/s00340-013-5579-y
https://doi.org/10.1007/s00340-013-5579-y
https://doi.org/10.1038/nphys3164
https://doi.org/10.1038/nphys3164
https://doi.org/10.1038/nphys3164
https://doi.org/10.1038/nphys3164



