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Abstract

Oxides based on the perovskite structure exhibit a surprisingly large diversity in
materials properties and are found in many different applications, several related to
clean energy technologies, such as solar cells, batteries and fuel cells. Many proper-
ties in materials are the result of lattice imperfections, commonly denoted defects,
and much effort is devoted to fine tuning materials properties through controlling
the defects therein. Therefore, a thorough understanding of defect properties on
a microscopic scale is desirable, and first-principles calculations have proven an
invaluable tool in complementing experimental observations. In the present thesis
density functional theory (DFT) calculations have been employed to describe two
types of hydrogen point defects in perovskite oxides with the aim of deepening the
understanding as well as to develop tools for modelling and characterising point
defects. In paper I a strain tensor formalism for describing the anisotropic volume
expansion of a point defect is developed. The formalism is successfully applied
to the proton forming a hydroxide ion and the oxygen vacancy in acceptor-doped
barium zirconate. It is inferred that both the hydroxide ion and the oxygen va-
cancy are smaller than the oxygen host ion, but that the difference in size causes
an expansion in hydration which could lead to micro-cracking of the material. In
paper II the substitutional hydride ion on an oxygen site in barium titanate is
investigated. For this oxyhydride material two possible electronic states are per-
missible leading to different conductive properties; on the one hand the delocalised
band-state as predicted by band theory and on the other hand a polaron state, in
which an electron localises on one of the titanium ions next to the hydride ion, the
description of which requires beyond DFT-methods. The two electronic states are
investigated through their influence on the hydrogen vibrations, using both theo-
retical methods and inelastic neutron scattering measurements, and through their
different volume expansion. The conclusion that the electronic state is predom-
inantly band-like is confirmed both through the vibrational characterisation and
the strain tensor formalism. The thesis reiterates the usefulness of first-principles
calculations in assisting interpretation of experimental data.

Keywords: BaZrO3, BaTiO3, point defects, proton conductor, chemical expansion,
oxyhydride, polaron, phonon, density functional theory
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1
Introduction

When we talk colloquially about defects the implication is often of a negative
property or even detrimental flaw. And indeed, defects change the properties of the
host material and can lead to unwanted effects if not properly controlled. However,
when properly controlled, defects are the material engineer’s way of tuning material
properties into desired ditos. The semi-conductor industry, for example, relies
heavily on such manipulation of the material through point-defects.

Defects come in such variety that the possibilities seem endless. While the num-
ber of elements in the periodic table is limited already the number of combinations
containing two elements is large. The number of possible configurations by intro-
ducing just one point defect is even larger. In addition to which element is chosen,
the defect can be placed in many different sites and be in different charge states,
leading to different material properties. Therefore, a thorough understanding of
point defects on a microscopic scale is crucial to the understanding of material
properties.

Owing to its intrinsic zero dimensional nature, a point defect, or any single
atom, is difficult to observe experimentally and much of the knowledge about point
defects is inferred by implicit methods. The still relatively recent development of
first principle methods, such as the density functional theory, has therefore proved
an invaluable tool in modelling the microscopic origin of macroscopic phenomena.

Hydrogen as a point defect is found in many applications, e.g., in proton conduct-
ing ceramics such as the perovskite BaZrO3 [1]. In order to improve the proton
conduction a thorough understanding of the diffusion mechanisms is important.
However, in the pursuit of knowledge and understanding it is desirable to broaden
the perspective also to other types of hydrogen defects which may lead to new
insights and new perspectives.

The aim with the present thesis is to deepen the understanding of hydrogen
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Chapter 1. Introduction

point defects in perovskite oxides as well as to develop tools for modelling and
characterising point defects.
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2
The perovskite structure

Perovskite is a mineral named after the Russian mineralogist Count Lev Perovski
[2]. Perovskite has a very distinctive crystal structure and although the perovskite
mineral is composed of calcium titanate (CaTiO3) its crystal structure is shared by
many other compounds. Other materials exhibiting perovskite structure are often,
although somewhat incorrectly, called perovskites. We will adopt this terminology
of calling a material exhibiting the perovskite structure a perovskite.

Perovskites are rather extensively studied due to the abundance of properties
exhibited by different perovskites in combination with their rather simple crystal
structure. Bhalla et al. [3] even claim it is “the single most versatile ceramic
host”. Among the properties exhibited by perovskites are high dielectric constant
[4], ferro- and anti-ferro-electricity [5], piezoelectricity [6], magnetoresistance [7,8],
thermoelectricity [9], superconductivity [10, 11], oxygen ion conduction [12] and
last but not least proton conductivity [1].

2.1 Ideal crystal structure
A perovskite is an ABO3 compound, where A and B are cations whose formal
charge sum is +6 and the O is the −2 charge anion.1 This makes the perovskite
as a whole charge balanced. Due to the limited restriction on the valency of the A
and B atoms, the charge sum of +6 may be either 1+5, 2+4 or 3+3, there is an
abundance of perovskites [2,13]. Many more structures can also be constructed by
alloying on the A or B site. The ’ideal’ perovskite structure, shown in Figure 2.1a,
is simple cubic with the A atoms in the corners (0,0,0), B atoms in the body centre

1Other species are possible in stead of oxygen, such as F, N or H. These can also be referred
to as perovskites, but we will limit the discussion to oxides.
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Chapter 2. The perovskite structure
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Figure 2.1: (a) The cubic crystal structure of the ideal perovskite with symmetry
Pm3̄m together with its octahedron dual. The A atoms are marked green, the B
atoms blue and oxygen red. (b) The Brillouin zone of the cubic perovskite.

(1/2, 1/2, 1/2) and oxygen on the faces, (1/2, 1/2, 0). The A atoms are shared between
eight unit cells to a total of one A-atom per unit cell. Similarly the oxygen atoms
are shared between two cells which yields a total of 3 oxygen per unit cell.

A very important aspect of a crystal is its reciprocal cell. The reciprocal cell is
the Fourier transform of the (primitive) unit cell of the real space crystal lattice. It
is a convenient mathematical construction in which both electronic and vibrational
properties of a crystal can be calculated and visualised. The reciprocal unit cell,
also known as the Brillouin zone, of a simple cubic lattice, such as the perovskite
structure, is also simple cubic and shown in Figure 2.1b. Due to the symmetries
of the cube it is customary to specify the properties only at certain points, the
high symmetry points, and along the lines connecting them. In Figure 2.1b the
high symmetry points Γ, X,M and R corresponding to the points (0,0,0), (0,0,1/2),
(0,1/2, 1/2) and (1/2, 1/2, 1/2) are shown.

2.2 Distorted crystal structures
Very few perovskites exhibit the ideal cubic structure [2, 13]. In fact, not even
CaTiO3, the perovskite mineral itself, is truly cubic. Since most perovskites are
considered to be ionic, the ions building up the crystal can to a first approximation
be regarded as hard spheres with ionic radii R. For such a model, the lattice
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2.3. Tilts and instabilities

constant as measured along the B-O-B axis equals a = 2RA + 2RO or if measured
along the face diagonal

√
2a = 2RB + 2RO. Due to the differences in ionic radii in

real materials these two measurements lead to different lattice constant, and the
discrepancy is accommodated for in the tolerance factor or Goldschmidt ratio [14].

t =
RA +RO√
2 (RB +RO)

(2.1)

A tolerance factor close to unity is assumed to favour the ideal cubic perovskite
structure.

With the ionic radii defined by Shannon [15] the tolerance factor is 1.002 for
SrTiO3, which is indeed cubic at room temperature [16]. So is BaZrO3, which
is studied in Paper I, with a tolerance factor of 1.004. A tolerance factor in
the interval 0.9 < t < 1 often implies cubic structure [13] but a tolerance factor
lower than unity will in general favour distortions into structures of lower symme-
try. For example, although CaTiO3 has a tolerance factor of 0.97, which is near
unity, CaTiO3 is orthorhombic at room temperature. Tolerance factors larger than
unity also cause distortions, generally towards hexagonal close-packed structure [2].
BaTiO3, which is the material investigated in Paper II, has a tolerance factor of
1.06 and is not cubic at room temperature, but has a different kind of distortion
into tetragonal symmetry and it is not until at a temperature of 120◦C that BaTiO3
becomes cubic.

Although the tolerance factor may serve as a first guide to the crystal structure
of a perovskite it is but a rough estimate. Even SrTiO3, which is cubic at room
temperature and has a tolerance factor close to 1 undergoes a phase transition
when cooled.

2.3 Tilts and instabilities
A tilt consists of a rotation of the inscribed BO6 octahedron about the pseudo-
cubic axes. The octahedron, illustrated in Figure 2.1a, is regarded as rigid and
a rotation leaves the B-atom centred in the cage, but does not disrupt its corner
sharing connectivity.

The tilts can be designated according to Glazer [17,18] by the rotations along the
three Cartesian coordinates axes, which coincide with the basis vectors. General,
unequal, rotations about the axes x, y and z are denoted by a, b and c with a
superscript + indicating tilts in successive layers in the same direction, i.e. in-
phase rotation, and − in opposite directions, i.e. out-of-phase rotation. A zero
superscript indicates no rotation. Thus a rotation a+b+c+ indicates three unequal
rotations about the axes x, y and z, with the octahedra along the axes tilted the
same way. The R-point instability exhibited by SrTiO3 (cf. Section 6.2.6) is a
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Chapter 2. The perovskite structure

a0a0c− tilt indicating a rotation about the z-axis with successive layers in opposite
directions. This is illustrated in Figure 2.2b. In order to leave the oxygen octahedra
rigid the lattice constants must change during a tilt, and for the rotation around
the z-axis the lattice constant in the x and y direction decrease by an equal amount
leading to a tetragonal I4/mcm symmetry.

The distortion in BaTiO3 differs from the octahedral tilting mentioned above in-
sofar as that the A and B-cations are displaced relative to the polyhedral centres of
coordination. This causes a permanent electric dipole moment, which is the cause
of the ferroelectricity exhibited by BaTiO3. There are three possible directions for
the B-cation displacement; along the [100] direction, the [110] direction and the
[111] direction. These displacements cause distortions into crystals of tetragonal,
orthorhombic and rhombohedral symmetry, respectively. BaTiO3 is important be-
cause it exhibits all these three phases and is therefore sometimes considered as
the prototypical ferroelectric [19]. The tilt exhibited by SrTiO3 also carries a lo-
cal dipole moment which is out-of-phase from one unit cell to the next. SrTiO3
therefore exhibits anti-ferroelectricity.

It is important to understand tilts and structural phase transitions in perovskites.
Calculations are generally performed at zero kelvin. If the investigated phase is
stable only at elevated temperatures, such as the cubic phase of BaTiO3, a slight
perturbation of the stoichiometry might induce not only a point defect but also a
structural phase transition. To be able to identify a structural phase transition and
prevent or remove unwanted structural transitions in a defect calculation is crucial
for obtaining correct formation energies.

2.4 Point defects
In addition to the structural instabilities discussed above, all real materials con-
tain defects, including point defects such as vacancies and interstitials, line defects
such as dislocations and plane defects such as grain boundaries. In this thesis
the focus is on three types of point defects; interstitials, vacancies and substitu-
tional defects. These are illustrated schematically in Figure 2.3. A point defect
is a non-stoichiometric perturbation of the ideal lattice which may or may not be
electrically charged. Point defects cause an increase of the configurational entropy
contribution to the free energy at non-zero temperatures and will therefore always
be present. Materials can also be prepared in such a way as to increase the number
of defects. This is referred to as doping and is performed, e.g. to make BaZrO3
proton conducting.

By substituting a tetravalent zirconium ion with a trivalent ion, such as yttrium,
a substitutional defect is created. In Kröger-Vink notation, which is often used in
defect chemistry, this is written as Y′

Zr, where Y denotes yttrium and the subscript

6



2.4. Point defects

(a) (b)

Figure 2.2: (a) The ferroelectric distortion of BaTiO3 into the tetragonal P4mm
and (b) the a0a0c− anti-ferroelectric distortion of the SrTiO3 into the tetragonal
I4/mcm crystal structure.

Zr indicates the host site. While zirconium donates four electrons to the lattice
making the zirconium ion charged +4, yttrium donates only three and the yttrium
ion is charged +3. Since the defect charge is given relative to the original site in
Kröger-Vink notation the apostrophe indicates a defect charge of −1.

A vacancy is formed by removal of an atom, e.g. an oxygen atom. Since the oxy-
gen ion has a charged of −2 the defect left behind after removal of an oxygen atom
will be vO

•• in Kröger-Vink notation, where v indicates a vacancy2, the subscript
O indicates the oxygen host site and the defect charge of +2 is denoted by two dots.
Thus the combination of e.g., two yttrium substitutional defects and one oxygen
vacancy makes the material charge neutral. Alloying with substitutional defects
in this manner is usually referred to as acceptor doping due to the similarities to
semiconductor doping.

An interstitial is an ion situated between ideal lattice sites. An interstitial can
be of any type, including those already found in the host, and is denoted by an
index i. A proton (H+) interstitial would for example be denoted Hi

•, where the
dot denotes the positive charge of the proton. The proton studied in Paper I
however, is so closely bound to the nearest neighbour oxygen that the notation
(OH)O

• is more appropriate.

2Vacancies are often denoted with an upper-case V. Here we adhere to the convention of using
lower-case to avoid confusion with a substitutional vanadium. Similarly a lower-case i is used to
denote the interstitial.

7



Chapter 2. The perovskite structure

Figure 2.3: Schematic illustration of (a) a substitutional defect (b) a vacancy and
(c) an interstitial.

It is often necessary to include a non-defect site in chemical reaction formulas.
The notation for an ideal site is written O×

O, which is an oxygen on an oxygen site
with neutral charge.

2.5 Hydration
In Paper I the hydration of a BaZrO3 is studied. Although a small number
of vacancies can be present also in undoped BaZrO3 a higher concentration of
vacancies is made possible by the presence of acceptor doping, such as yttrium in
BaZrO3. During hydration an oxygen vacancy is filled and two hydroxide ions are
formed.

H2O(g) + VO
•• + OO

× → 2(OH)O
• (2.2)

The hydrogen atom is rather loosely bound to the oxygen and is mobile in the
shape of a positively charged proton, making the material proton conducting.

In analogy with the ionic radii of atoms, the vacancy is often described in terms
of an ionic radius. This is intrinsically difficult and the modelling of a vacancy as
a hard sphere is problematic as the vacancy should rather be modelled as the lack
of one. Similarly, the proton can be given an ionic radius. Usually, the radius is
not assigned to the proton itself, but to the hydroxide ion. The difference in ionic
radius between the vacancy and the hydroxide ion causes a chemical expansion in
the lattice when the material is hydrated [20].

The chemical expansion during hydration is a serious problem in applications
with mechanical stress and fatigue that can cause micro cracking and deteriora-
tion of the material. Therefore, chemical expansion has been investigated, both

8



2.6. The oxyhydride barium titanate

experimentally [21–23] and theoretically [24–28]. Despite the efforts to understand
chemical expansion and thus the size difference between the vacancy and the pro-
ton, the size of the vacancy has been debated. The size of the oxygen vacancy is
addressed in Paper I.

2.6 The oxyhydride barium titanate
Having studied the hydrogen in the state of a positively charged proton, the ques-
tion naturally arises whether hydrogen can exist in other charged states in per-
ovskites, such as the negatively charged hydride ion, H− [29, 30]. It turns out
that negatively charged hydride ions do exist in, e.g., oxyhydride phases, where
a hydride ion is substituted on an oxygen site, H•

O. Oxyhydrides are rather rare
in nature and until recently the layered perovskite structured LaSrCoO3H0.7 and
SrCo2O4.33H0.84 were the only reported transition metal oxides exhibiting higher
than defect level amounts [31, 32]. The discovery of the oxyhydride perovskites
(Ca,Sr,Ba)TiO3−xHx was therefore rather unexpected [33, 34]. Among these BTO
exhibits the highest amounts of hydrogen, up to x ≲ 0.6.

The formation energy of a substitutional hydride ion is large and positive which
implies that oxyhydride BTO is not thermodynamically stable and can form only
under strongly reducing conditions provided by, e.g., CaH2. Nevertheless, it is
kinetically stable in air (up to 200◦C) and under inert conditions up to 450◦C,
above which hydrogen gas is released [33]. The lattice constant increases slightly
compared to the pristine lattice constant, and a phase transformation occurs from
tetragonal to cubic. The substitutional hydride thus stabilises the cubic phase.
In addition, oxyhydride BTO is a dark blue-black material, in contrast to white
pristine BTO. The origin of the blue colour is not fully understood yet.

The substitutional hydrogen is stable only in the positive charge state (H•
O) over

the entire range of fermi levels within the bandgap [35,36]. The formation reaction
is thus

1
2
H2 + O×

O → 1
2
O2 + H•

O + e′ (2.3)
Therefore, it acts as a shallow donor contributing to n-type conductivity in the
initially empty Ti 3d band. Conductivity measurements confirm that BaTiO3−xHx

is electrically conducting [33, 37]. However, while SrTiO3−xHx exhibits metallic-
like conductivity over the whole concentration range, BaTiO3−xHx exhibits semi-
conductor-like conductivity at lower concentrations. At x = 0.14 the conductivity
in epitaxial thin films is semiconductor-like for all temperatures, at x = 0.24 a
semiconductor to metal transition occurs at 200 K, and at higher concentrations
the conductivity is metallic for all temperatures [37]. This semiconductor-like con-
ductivity has been attributed to the presence of small electron polarons forming a
localised defect level in the bandgap [36].

9



Chapter 2. The perovskite structure

2.7 Polaron as a quasi-particle
A band-state electron (or hole), i.e. an electron inside an allowed energy band,
e.g., the conduction band, moves freely in the crystal with an effective mass, m∗,
which differs from the electron mass in vacuum me [38, 39]. However, band theory
follows from solving the electronic Hamiltonian in an assumed rigid lattice. In
real materials the ions are mobile and at least in an ionic material an electron
can polarise the lattice in its neighbourhood and localise. The combination of a
localised, self-trapped electron with its accompanying lattice distortions can be
treated as a quasi-particle called polaron [40–42].

If the extent of the polaron is large compared to the lattice spacing, the polaron
is called large or Fröhlich polaron [40]. In this long wavelength limit the solid is
treated in a continuum approximation in the adiabatic limit and the polaron moves
around in the lattice with an increased effective mass compared to a bandstate
electron.

A polaron with a radius for the lattice distortion of the order of the lattice
spacing is called a small polaron. Hence, the charge carrier is often localised to
a single atomic site. Figure 2.4 shows an example of a small polaron where the
charge is localised almost entirely to one atom. Because of the short range of the
small polarons the Fröhlich continuum theory is not applicable. Small polarons
are on the other hand accessible through ab initio calculations. The small polaron
can be described similar to a substitutional point defect and diffuses through the
material through hopping between lattice sites [39].

The formation of a polaron from a delocalised bandstate electron is associated
with an energy cost for the polarisation of the lattice. The energy gain by localising
the electron must therefore be larger than the energy cost of the lattice polarisation
to promote the the formation of a polaron. Figure 2.5 shows a schematic illustration
of the energy as a function of lattice distortion. The formation energy Epol is defined
as the total energy difference between the relaxed polaronic and delocalised states,
and is a combination of the strain energy required to distort the lattice Est and the
electronic energy gained by localising the electron in the distorted lattice, Eel.

In some cases the strain energy is too large compared to the electronic energy gain
for the polaron to be favourable. Under such circumstances self-trapped electron
polarons will not form. This is believed to be the case in pristine BaTiO3 [36]. A
polaron can still form if strain can be induced by other means, e.g. by a charged
point defect which attracts the polaron. The strain induced by the point defect
lowers the strain energy required to form the polaron and a bound polaron is created.

Small self trapped electron polarons have been described in rutile TiO2 (although
not in anatase) both theoretically [43–46] and experimentally [46–48]. The simi-
larities between the electronic structure of BaTiO3 and TiO2 near the band edge
suggests that the electronic properties should be similar, and that the difference

10



2.7. Polaron as a quasi-particle

lies in the polarisability.
Bound polarons on the other hand have been discussed in BTO in connection

with n-type doping such as Nb+5 substitution and oxygen vacancies [49, 50]. It is
therefore plausible to assume that bound polarons could exist on the titanium ion
in oxyhydride BTO where the natural associate defect site is the n-type H×

O defect
[36].

Detection of polarons has proven a challenging task, both experimentally and
theoretically. Due to the very short range of the lattice distortion, polarons cannot
be seen from X-ray diffraction. Also the theoretical modelling of polarons in oxides
has proven challenging. Density Functional Theory (cf. Section 5) with local and
semi-local xc-functionals suffers from the well known self-interaction error which
favours delocalisation of the electron and thus cannot properly describe charge
localisation such as polarons. In Paper II we describe a method for polarons in
ab initio calculations and how to characterise the bandstate from the polaron state
using inelastic neutron scattering.
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Figure 2.4: The polaron state of the oxyhydride phase of BaTiO3−xHx with a
substitutional hydrogen on an oxygen site.

Generalised coordinate
(lattice distortion)

E
n

e
rg

y
(a

rb
.

u
n

it
s
)

ba
nd

p
o
la

ro
n

Epol

Est Eel

Figure 2.5: Schematic illustration showing the polaronic (Epol), lattice strain (Est),
and electronic (Eel) energies as a function of lattice distortion for the delocalised
bandstate and the localised polaron state
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3
Energy of point defect formation

The formation of a point defect can be regarded as a chemical reaction which, at
constant pressure, p, and temperature, T , proceeds in the direction that lowers the
Gibbs free energy defined as

G = U + pV − TS = H − TS (3.1)

where U is the internal energy, V the volume and S is the entropy. H is the
enthalpy, defined as H = U + pV .

If we consider the formation of n independent defects the change in free energy
can be written as

∆G = n∆fG− T∆fSconf (3.2)

where ∆fSconf is the configurational entropy, the part of the entropy change associ-
ated with randomly distributing n defect in the material. ∆fG, the formation free
energy for a single defect, can be written as

∆fG = ∆fU + p∆fV − T∆fS (3.3)

and is independent of the number of defects.

3.1 Formation energy
The formation free energy, ∆fG, can be separated into different contributions of
chemical bonding and vibrational character [51]. The largest contribution is the
formation energy, ∆fE, responsible for chemical bonding. The defect formation
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Chapter 3. Energy of point defect formation

energy for a defect X in charge state q is defined as [52, 53]

∆fE [Xq] = Etot [X
q]− Etot [bulk] + Eq

corr

−
∑
i

∆niµ̄i + q (εv + µe +∆v0)
(3.4)

where Etot [X
q] is the total energy at zero kelvin from a supercell calculation includ-

ing the defect and Etot [bulk] is the reference energy of the pristine material. Eq
corr

is the energy correction which compensates for the spurious electrostatic interac-
tion between charged defects in the supercell approach. There are several different
correction schemes. Paper II makes use of the modified Makov-Payne correction
scheme of Lany and Zunger [54]

∆Ecorr =
2

3

Mq2

2εL
, (3.5)

where M is the Madelung constant, q is the charge, ε is the dielectric constant
and L is the linear dimension of the supercell. The integer ∆ni is the number
of atoms of type i that have been added (∆ni > 0) or removed (∆ni < 0) from
the supercell in creating the defect, and µ̄i is the corresponding chemical potential.
The chemical potential µ̄i is the reference energy of the reservoir with which the
atoms are exchanged. If the reservoir is a gaseous phase the chemical potential can
be computed from the expressions for a classical ideal gas. The electron chemical
potential, µe, is often called the Fermi energy and is customarily given relative
to the valence band maximum, εv. The additional term ∆v0 is used for properly
aligning the electrostatic potentials of the bulk and the defect containing supercells
[55, 56].

3.2 Chemical potentials for the gas phases
In a first approximation the chemical potentials for the gas phases µ̄i can be taken as
the total energies from electronic structure calculations similar to Etot [X

q]. This
is marked by a bar in Equation (3.4) and would correspond to the free energy
at zero kelvin, neglecting zero point effects. At finite temperatures the pressure
dependence for the gas phases can be assumed to follow classical ideal gas behaviour.
The chemical potential for a mono atomic gas can then be written as

µi(pi, T ) = µ̄i + kBT ln
(
piVQ

kBT

)
(3.6)

where kB is Boltzmann’s constant, pi is the partial pressure and VQ = (2πℏ2/mkBT )
3/2

is the quantum volume [53]. For molecules involving more than one atom additional

14



3.3. Vibrational free energy for the solid phases

terms containing vibrational and rotational degrees of freedom must also be taken
into account.

The vibrational contribution contains a temperature independent part, the zero
point energy, εZP, which can be separated from the temperature dependent part.
If the zero-point energy is computed within the harmonic approximation the zero
point energy is εZP =

∑
k ℏωk/2, where ωk are the molecular vibrational frequencies.

These frequencies can be obtained from tables [57] or computed with ab initio
methods as described in Section 6.

The temperature dependence can be obtained by computing the full partition
function, which is illustrated for the vibrational degrees of freedom in Section 3.3,
but can also been taken, relative to the reference pressure p◦, from thermodynamic
tables [58] if shifted such that h◦i (0) = 0. The full pressure and temperature
dependence of the chemical potential for the gas phases can, under the assumption
of ideal gas behaviour, be written as

µi(pi, T ) = µ̄i + εZP
i + h◦i (T )− Ts◦i (T ) + kBT ln

(
pi
p◦

)
(3.7)

3.3 Vibrational free energy for the solid phases
Atoms in solids vibrate at characteristic frequencies related to the strength of the
bond between the atoms which counter the displacement away from the equilibrium
positions. In the harmonic approximation the restoring force follows Hooke’s law
and the potential is approximated to second order. Vibrations contribute to the free
energy of the system and can be regarded as a correction to the formation energy
in Equation (3.4). These contributions apply not only at finite temperature but,
due to quantum mechanical effect, also at zero kelvin. Historically the vibrational
contributions have often been neglected, partly due to the computational effort
required [53].

The quantum mechanical energy for a harmonic oscillator is the given by

Eni =

(
n+

1

2

)
ℏωi (3.8)

where n = 0, 1, 2 . . . is the quantum number, and ωi is the vibrational frequency. For
a collection of independent harmonic oscillators with frequencies ωi the partition
function is given by (with β = (kBT )

−1)

Zvib =
∏
i

Zi =
∏
i

∞∑
n=0

e−βEin =
∏
i

e−βℏωi/2

1− e−βℏωi
(3.9)
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Chapter 3. Energy of point defect formation

The internal energy and the entropy can be obtained as derivatives of the partition
function

Uvib = − ∂

∂β

(
lnZvib

)
=
∑
i

(
ℏωi

2
+

ℏωi

eβℏωi − 1

)
(3.10)

Svib =
∂

∂T

(
kBT lnZvib

)
= kB

∑
i

(
βℏωi

eβℏωi − 1
− ln

(
1− e−βℏωi

))
(3.11)

The vibrational motion thus contributes both to the internal energy and the en-
tropy.

3.3.1 Effect of constant pressure vs constant volume
Many defect calculations are performed at a constant volume under the assumption
that the formation volume ∆fV in equation (3.3) in a solid is negligible. While
this is true in general, the formation volume also affects other quantities indirectly,
e.g. the relaxations around a point defect can cause significant changes to the
vibrational properties and thus the formation entropy [59].

Although it is possible to compute the formation entropy directly through full
vibrational calculations of the respective constant pressure systems, the constant
(zero) pressure properties can be derived from the constant volume equivalent. The
vibrational entropy at constant pressure can for example be written as [59–61]

∆fS
vib (p = 0) = ∆fS

vib (V0) +

∫ V p=0(T )

V0(T )

(
∂S

∂V

)
T

dV (3.12)

Assuming that the integrand in the dilute limit only depends on the bulk properties
it can be rewritten using the Maxwell relations [61, 62](

∂S

∂V

)
T

=

(
∂P

∂T

)
V

= −V
(
∂P

∂V

)
T

1

V

(
∂V

∂T

)
P

= βTαP (3.13)

where αP and βT are the isobaric thermal expansion and isothermal bulk modulus
respectively and can be obtained from tables or, in the spirit of first principle,
be computed from a series of phonon calculations at different volumes, i.e. the
quasi-harmonic approximation [63, 64]. Assuming that αV and βT are constant
and unaffected by the defect formation the defect formation entropy at constant
pressure for the defect X can be written as

∆fS
vib [X] (p = 0) = ∆fS

vib (V0) [X] + αV βT∆fV [X] (3.14)
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3.4. Configurational entropy

3.4 Configurational entropy
While the formation energy must be positive for the material to be stable the
configurational entropy must be large enough to lower the free energy to a negative
value to enable defect formation. Without the configurational entropy there would
be no defect chemistry.

Unfortunately, the configurational entropy is by nature extremely difficult to cal-
culate since each configuration has a probability of the respective Boltzmann factor.
This means that the energy of every possible configuration must be computed in
some way to give the probability of this configuration and thus the entropy. This
can be done with cluster expansion in combination with Monte Carlo simulations
and the Metropolis algorithm. However, since defect formation energies are often
calculated in the dilute limit, i.e. in the limit where individual defects can be as-
sumed to be independent of each other, it is possible to resort to a simpler first
approximation to the configurational entropy, the ideal solution where all configu-
rations have the same probability.

For n defects distributed on N sites with a degeneracy factor m accounting for
the internal degrees of freedom of the point defect, the number of microstates is

Ω =
mN ·m(N − 1) · · ·m(N − n+ 1)

n
= mn

(
N

n

)
(3.15)

and the entropy can be written with the use of Stirling’s approximation as

S = kB lnΩ ≈ n lnm+N ln N

N − n
− n ln n

N − n
(3.16)

Since Ω ≥ 1 and T are always positive, the configurational formation entropy
contribution to the free energy is always negative, thus favouring defect formation.

In the dilute limit the total free energy change ∆G is a function of the number
of defects n only through the configurational entropy and can now be written as in
Equation (3.2), restated here for convenience

∆G = n∆fG− TSconf(n) (3.2)

An equilibrium is obtained when the derivative with respect to the number of
defects is zero. The equilibrium condition then reads

∂G

∂n
=

∂

∂n
∆G

= ∆fG+ kBT

(
ln n

N − n
− lnm

)
= 0

(3.17)
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Chapter 3. Energy of point defect formation

It is convenient to introduce the defect concentration x = n/N . The equilibrium
concentration is then given by

xeq

1− xeq
= me−∆fG/kBT (3.18)

If one of the constituent elements is exchanged with a gas phase the pressure
dependence can be written out explicitly using Equation (3.7) and the equilibrium
concentration is given by

xeq

1− xeq
= m

(
pi
p◦

)
e−∆fG

◦/kBT (3.19)

where ∆fG
◦ is the formation free energy at the reference pressure p◦.

18



4
Chemical expansion

While the formation volume contribution to the formation free energy is negligible,
the formation volume is significant when it comes to chemical expansion. As already
mentioned in Section 2.5 the formation volume induces strain in the material upon
defect formation. In a material where the composition changes constantly, such
as in a proton conducting fuel cell membrane where the material is constantly
hydrated and de-hydrated, this is particularly important. Chemical expansion is
often measured as a unit cell volume change per defect, or per water molecule. This
works well in (pseudo) cubic material where the strain can be considered isotropic,
but does not capture the anisotropy or shear that a single defect may induce. To
model this we have expressed the chemical expansion it terms of defect induced
strain tensor in Paper I. Although it turned out that the strain tensors indeed
were diagonal Paper I is written with just such a general case in mind.

4.1 A thermodynamics view on strain
Let us consider the crystal volume, V = V (T, P, {xk}), to depend on the tempera-
ture, pressure and defect concentration of species k. In analogy with the thermal
expansion coefficient and the bulk modulus mentioned above we now define the
chemical expansion coefficient as [20]

βk =
1

V

(
∂V

∂xk

)
P,T,xk′ ̸=xk

(4.1)

In order to generalise the scalar chemical expansion coefficient to three dimensions,
we first note that the volume expansion of a material in the small strain limit is
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Chapter 4. Chemical expansion

given by the trace of the strain tensor [65, 66]

∆V

V
= Tr (ε) (4.2)

By dividing by the change in defect concentration ∆xk and taking the infinitesimal
limit we can write the chemical expansion coefficient as

βk = Tr
(
∂ε

∂xk

)
P,T,xk′ ̸=xk

= Tr (λk)P,T,xk′ ̸=xk
(4.3)

where λ is the defect induced strain tensor in the infinite dilute limit [67].

4.2 The defect induced strain tensor
The defect induced strain tensor is the natural generalisation of the chemical expan-
sion coefficient. In practical calculations with a finite concentration, we consider
the effect of a single defect introduced in a volume V0. With a defect concentration
xd = Ωc/V0, where Ωc is the volume of a primitive unit cell, the defect induced
strain tensor is

λ =
1

xd
ε (4.4)

With this definition we get the chemical expansion coefficient as

β = Tr (λ) = 1

xd
Tr (ε) = V0

Ωc

· ∆V
V0

=
∆V

Ωc

(4.5)

and the defect formation volume is given by

∆fV = ΩcTr (λ) (4.6)

4.3 Strain in one dimension
The strain tensor appearing in Equations (4.3) and (4.4) is often calculated from
the relative lattice expansion, the linear strain, for each axis in the crystal. In
an isotropic cubic material in which the defects can be assumed to be randomly
oriented, causing no sheer strain, the linear strains are all equal and are found along
the diagonal in the three dimensional strain tensor. With the volume expansion in
Equation (4.2) equal to the trace of the strain tensor the volume expansion can be
written as three times the linear strain.
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4.4. The strain tensor

Consider therefore a one-dimensional object of initial length l0. This can e.g. be
the lattice constant in a cubic material. It is, by some means, forced into a new
length l, which can be either larger or smaller than l0. The elongation

∆l = l − l0 (4.7)

is defined such that it is positive (negative) if the length of the rod has increased
(decreased). The strain is the dimensionless quantity

e =
∆l

l0
(4.8)

This is called the engineering strain [68] and is the measured quantity in an exper-
iment. There is, in general, no reason to favour l0 over l in the denominator and
the engineering strain can just as well be defined with l in place of l0. To relate
the elongation to the original length of the rod , i.e. using l0 in the denominator, is
called the Lagrangian strain measure and relating the elongation to the final length,
l, is called Eulerian strain measure [68].

Under the assumption that the strain is small the Lagrangian strain and the
Eulerian strain are approximately equal, but under greater strain one would ideally
measure the length l at every infinitesimal ∆l in order to compute the logarithmic
or true strain. The true strain is defined as

e =

l∫
l0

dl′
l′

= ln
(
l

l0

)
≈ l − l0

l0
(4.9)

where the last approximation is valid under small strain and takes us back to the
engineering strain. The one-dimensional engineering strain is the average of the
diagonal terms in the full strain tensor e = Tr(ε)/3 and the chemical expansion
coefficient can now be computed as

β = 3
∆l/l0
xd

=
3e

xd
(4.10)

4.4 The strain tensor
When there is sheer strain present, or when the crystal is not cubic the linear
strain is not sufficient to describe the deformation of the crystal. Under such
circumstances a formalism for a three dimensional body has to be used.

Assume a body in three dimensions can be described as a periodic lattice with
a unit cell of basis vectors a1, a1 and a3. Let

ai = L0 ei (4.11)
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Chapter 4. Chemical expansion

be the one-to-one matrix transformation that maps the cartesian coordinates ei

onto the undeformed crystal ai. After deformation the crystal is defined by the
new set of basis vectors

a′
i = L ei = LL0

−1ai (4.12)
The last equality follows because L0 is one-to-one and Equation (4.11) is invertible.

The location of an arbitrary point P = (p1, p2, p3) as measured relative to the
cell vectors in the undeformed crystal can be written as

r =
∑
i

piai (4.13)

and analogously after deformation. The displacement of the point is

u = r′ − r =
∑
i

pi (a′
i − ai) =

(
LL0

−1 − 1
)

r (4.14)

The linear transformation F = LL0
−1 that maps the undeformed system onto the

deformed is called the displacement gradient and can formally written as

F =
∂r′i
∂rj

(4.15)

from which the Biot strain tensor is defined as

εij =
∂ui
∂rj

=
∂(r′i − ri)

∂rj
=
∂r′i
∂rj

− δij = F − I (4.16)

We can now recognise
ε =

(
LL0

−1 − 1
)

(4.17)
in Equation (4.14) as the Biot strain tensor in the Lagrangian description of con-
tinuum mechanics.

A transformation of a three dimensional body can in general be decomposed
in three different actions; translation, rotation and deformation. Translation, as
well as rotation, can have no thermodynamical significance, since they do not alter
the internal structure of the body. Translation are by construction not included.
Rotations on the other hand can in principle be present since the Biot strain tensor
is not by necessity symmetric.

Rotations can be removed through a symmetrization procedure. In general this
can be done through a polar decomposition [68], but for small rotations it is suf-
ficient to add the transpose and take the mean. The strain tensor is then given
by

εij =
1
2

(
∂ui
∂rj

+
∂uj
∂ri

)
(4.18)
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4.4. The strain tensor

or in matrix notation
ε = 1

2

(
LL−1

0 +
(
L−1

0
)T

(L)T
)

(4.19)

However, if no rotations are present there is no reason to favour one strain tensor
over another and the strain tensor can be computed as the Biot strain tensor

ε =
(
LL0

−1 − 1
)
= (L − L0) L0

−1 (4.20)

This is the natural generalisation of the engineering strain in Equation (4.8) to
three dimensional objects.
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5
Electronic structure calculations

The present thesis uses so called first principles or ab initio methods to compute
relevant quantities. At the core of first principles calculations is the absence of
experimentally fitted parameters. All derived and computed quantities should
be obtained ab initio, i.e. from the fundamental description of the nature, the
Schrödinger equation. The full time-independent Schrödinger equation in its most
compact form reads

HΨ(x,R) = EΨ(x,R) (5.1)

where H is the Hamiltonian, Ψ is the (multi-particle) wavefunction, E is the energy
eigenvalues, R are the positions of the ions and x the position and spin of the elec-
trons. Almost all ab initio calculations rely on the separation of the full Hamiltonian
into one electronic Hamiltonian and one ionic Hamiltonian. The justification for
this is the almost instantaneous electronic response to an ionic displacement due to
the much lower mass of the electrons. The instantaneous response implies that, as
far as electron degrees of freedom are concerned, the ionic position can be treated
parametrically. This is called the Born-Oppenheimer or Adiabatic Approximation.

After a justification of the adiabatic approximation, the present chapter gives an
overview of the methods used for solving the electronic structure problem [69–76].
The ionic motion is treated in Chapter 6.
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Chapter 5. Electronic structure calculations

5.1 Adiabatic Approximation
For a multi-particle system the full Hamiltonian1 reads

H = −
N∑
i=1

∇2
i

2
−

K∑
k=1

∇2
k

2Mk

+
1

2

N∑
i,j=1
i̸=j

1

|ri − rj|

−
K∑
k=1

N∑
i=1

Zk

|ri − Rk|
+

1

2

K∑
k,k′=1
k ̸=k′

ZkZk′

|Rk − Rk′|

(5.2)

where upper case denotes ionic and lower case electronic quantities. The terms
represent in order, the kinetic energy for the electrons and nuclei (with mass Mk),
the interaction between electrons, between electrons and nuclei and between the
nuclei.

With the electronic Hamiltonian in the adiabatic approximation defined as

Hel =
∑
i

[
−∇2

i

2
+ Vext(ri)

]
+

1

2

∑
i̸=j

1

|ri − rj|
(5.3)

where
Vext(ri) = −

∑
k

Zk

|ri − Rk|
(5.4)

is the external potential caused by the ions, the Schrödinger equation for the elec-
trons with the ions at positions R can be written

HelψR (r) = εRψR (r) (5.5)

The solution to the electronic Hamiltonian will be discussed in this chapter.
The remaining terms in the full Hamiltonian in Equation (5.2) form in the ionic

Hamiltonian
Hion = −

∑
k

∇2
k

2Mk

+ V (R) (5.6)

where V (R) is the potential created by the combination of the repulsive ionic
potential and the chemical bonding from the electrons. This is treated in Section 6.

Even when applying the adiabatic approximation the multi-electron Schrödinger
equation in Equation (5.5) is quite intractable. Several methods for solving the
electronic structure problem have been utilised over the years [74, 75]. The intu-
itively most accessible is perhaps the Hartree-Fock (HF) approximation. The HF

1In atomic units in which ℏ = e = me = 1/(4πε0) = 1.
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5.2. The Hartree-Fock approximation

approximation is also the foundation for understanding notions such as the Hartree
potential, self-interaction error and exact exchange, which is used in hybrid func-
tionals in DFT. In addition, many conclusions and technical aspects carry over to
DFT.

5.2 The Hartree-Fock approximation
A first approximation to the electronic structure problem can be made by approx-
imating the full wave function with the product of single particle wave functions
Ψ(x1,x2, ...xN) = ψ1(x1)ψ2(x2)...ψN(xN), where ψi are one particle wave functions
and xi = xi(ri, σi) denotes the position ri and the spin σi. This is sometimes
referred to as the Hartree approximation. However, this does not respect the anti-
symmetry of the wave function required by permutation symmetry for fermions.
This can be accounted for in the shape of a Slater determinant

Ψ(x1x2...xN) =
1√
N

∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) · · · ψN(x1)
ψ1(x2) ψ2(x2) · · · ψN(x2)

... ... . . . ...
ψ1(xN) ψ2(xN) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣ (5.7)

where the ψi(xj) is the atomic orbital of atom i at position rj with spin σj. The
introduction of spin here is necessary since the total wave function consists of both
a spatial and a spin part. In order for the total wavefunction to be anti-symmetric,
as required for fermions, the contributions from both spin and spatial parts need to
be considered. When the spin part is symmetric the spatial wavefunction must be
corrected for the self-interaction error with the inclusion of exchange as discussed
below.

The single particle wave functions are optimised using the variational principle.
By the variational principle the expectation value of the Hamiltonian is always
higher than the true ground state energy

E0 ≤
⟨Ψ|H |Ψ⟩
⟨Ψ|Ψ⟩

(5.8)

for any wave function Ψ, with equality for the true ground state |Ψ0⟩. The ground
state is obtained by minimising the energy with respect to the wavefunction Ψ
subject to the constraint∫

drn(r) =
∫

dr
N∑
i=1

ni(r) =
∫

dr
N∑
i=1

∑
σ

|ψi(r, σ)|2 = N (5.9)

27



Chapter 5. Electronic structure calculations

where n(r) is the electron density and N is the number of electrons. The Hartree-
Fock (HF) equation for the single particle state ψi then becomes[

−1

2
∇2 + Vext(r)

]
ψi(x) +

N∑
j=1

∫
dx′|ψj(x′)|2 1

|r − r′|ψi(x)

−
N∑
j=1

∫
dx′ψ∗

j (x′)
1

|r − r′|ψi(x′)ψj(x) = εiψi(x)
(5.10)

The total energy in the HF approximation is obtained as

EHF =− 1

2

∑
i

∫
ψ∗
i (r)∇2ψi(r)dr +

∫
Vext(r)n(r)dr + EH + Ex

(5.11)

or in terms of the eigenvalues as

EHF =
∑
i

εi − EH − Ex (5.12)

The first two terms in Equation (5.11) are the kinetic energy and the energy from
the external potential from by the nuclei. The third term

EH =
1

2

∫∫
n(r′)n(r)
|r − r′| dr′dr (5.13)

is called the Hartree energy and contains the interaction from the average charge
distribution caused by all the electrons. The Hartree term introduces an interaction
between an electron and the electron density of the crystal, which in turn contains
the electron itself. The electron thus interacts with itself. This causes the so called
self-interaction error. The fourth term

Ex = −1

2

N∑
j=1

δσi,σj

∫
dr dr′ ψ∗

i (r)ψ∗
j (r′)

1

|r − r′|ψi(r′)ψj(r) (5.14)

is the non-local exchange term and is the result of the anti-symmetry of the wave
function. The exchange term, which is non-zero only if the spin are parallel, removes
the self-interaction. HF is thus (one-particle) self-interaction free. However, the
true wavefunction is not a single particle theory and HF is not many-particle self-
interaction free, as will be discussed below.

The difference between the Hartree and the Hartree-Fock approximations is the
inclusion of exchange which removes the self-interaction caused by the Hartree
term. Still, HF is an approximation and by definition the difference between the
true many-particle ground state energy and the HF energy is called correlation [77].
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5.3 The Hohenberg-Kohn Theorems
The great advantage of the HF Equation (5.10) is that theN -multiparticle Schrödinger
equation has been reduced to N non-interacting single state equations. The great
disadvantages are that correlation has been left out, that the exchange term is
non-local and that information about all single particle wave functions has to be
stored. However, the problem can be reformulated with the electron density as
the fundamental variable. This possibility of using the density as a fundamental
variable had been explored [74–76], first by Thomas [78], Fermi [79] and Dirac [80]
and also extensively in the special case of the homogeneous electron gas before
Hohenberg and Kohn [81] proved in two famous theorems that

1. the external potential Vext and thus the full Hamiltonian is uniquely deter-
mined by the ground state density n0(r)

2. there exists a functional E[n, Vext] for any external potential Vext such that
the electron density n(r) that minimises this functional will be the exact
ground state density.

In short this means that there exists a functional of the electron density only, for any
external potential, which solves the problem exactly, not only including exchange
but also correlation. Furthermore, it uses the electron density as the fundamental
variable.

The functional is defined by Hohenberg and Kohn as

FHK [n] = ⟨Ψ|T + Vee |Ψ⟩ (5.15)

where T is the kinetic energy and Vee electron-electron interaction of the full inter-
acting system. The corresponding energy functional

EHK [n] = F [n] +

∫
dr Vext(r)n(r) (5.16)

satisfies the variational principle, i.e. is assumes it minimum at the value for the
correct electron density n(r) subject to the constraint∫

n(r)dr = N (5.17)

Unfortunately, the Hohenberg-Kohn theorems give no explicit expression for
this functional. While the last term in Equation (5.16) is easily computed, the
Hohenberg-Kohn functional FHK [n], containing the kinetic energy and the electron-
electron interaction of the full interacting system, remains unknown.
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5.4 The Kohn-Sham Approach
Despite the theoretical beauty of the Hohenberg-Kohn theorems they provide no
recipe for how to make use of these theorems. An ansatz was proposed by Kohn
and Sham [82] in which the full interacting many-body system is replaced by an
auxiliary system of independent particles. The ansatz relies heavily on the first
Hohenberg-Kohn theorem which can be regarded as the inverse relation to the
Schrödinger equation. While the Schrödinger equation uniquely determines the
wave functions and thus the electron density for a given external potential the first
Hohenberg-Kohn theorem proves that the inverse relation also holds.

The great benefit of the auxiliary system is twofold; firstly, it reduces the full
problem of N interacting particles to N single particle systems, secondly, it sepa-
rates out the kinetic energy term and the long-range Hartree term in such a way
that the remaining exchange-correlation (xc) term can be approximated reasonably
well by local or nearly local functionals of the density.

It should be stressed that the Kohn-Sham approach is not an approximation. In
theory the Kohn-Sham approach would be exact if only the exchange-correlation
functional were known. However, for practical calculations approximations to the
unknown exchange-correlation functional must be introduced.

5.5 The Kohn-Sham equations
Kohn-Sham, in a manner analogous to the Hartree-Fock approximation, proposed
a separation of the two first terms into tree terms; a kinetic energy term of a
non-interacting single particle Ts[n(r)], a Hartree term EH [n(r)] and an exchange-
correlation term Exc. The Hohenberg-Kohn energy functional in Equation (5.16)
in the Kohn-Sham ansatz then becomes

EKS[n] = Ts[n(r)] + EH [n(r)] + Exc[n(r)] +
∫

dr Vext(r)n(r) (5.18)

A variation of this expression with respect to the single particle wave functions
ψi(r) subject to the constraint in Equation (5.17) leads to[

−1

2
∇2 +

∫
n(r′)
|r − r′|dr′ + Vxc(r) + Vext(r)

]
ψi(r) = εiψi(r) (5.19)

where
Vxc(r) =

δExc[n(r)]
δn(r) (5.20)

The total energy of the system is

EKS =
∑
i

εi − EH [n(r)] + Exc[n(r)]−
∫

drVxc[n(r)]n(r) (5.21)
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Although the Kohn-Sham anzats Equation (5.19) is similar to the Hartree-Fock
Equation (5.10) the main difference is, apart from that correlation is now included
albeit not known, that the Hamiltonian now depends on the density and not the
one-particle wavefunctions.

5.6 Approximations to the Exchange-Correlation
Functional

Up to this point the Density Functional Theory is exact, save for the adiabatic
approximation, but since the xc-functional in Equation (5.20) is unknown it has
to be approximated in some way. The Kohn-Sham approach of separating the
Hohenberg-Kohn functional FHK in a kinetic energy, a long range Hartree term
and an exchange-correlation (xc) functional Exc has the advantage that the xc-
functional is rather small compared to the kinetic and the Hartree energies and
may be approximated reasonably well as a local or nearly local functional of the
particle density at the point r. The accuracy of any DFT-calculation relies on the
approximations of the xc-functional. Over the years an abundance of different xc-
functional approximations have been proposed [74,83], but still today the original
functional proposed by Kohn-Sham, the local density approximation, is competitive
in certain areas.

5.6.1 Local Density Approximation
The local density approximation (LDA) is perhaps the least sophisticated xc-func-
tional. It is based upon the assumption that the electronic structure in solids to
a good approximation can be described by the homogeneous electron gas [82]. In
this limit the exchange and correlation for a homogeneous electron gas is local, i.e.
depends only on the electron density at each point, and can be given an analytical
expression, although the coefficients must be computed using quantum Monte Carlo
techniques [77, 84–86]. The total xc-functional in the local density approximation
can then be written as

Exc[n(r)] =
∫

drn(r) εxc (n(r)) (5.22)

where εxc (n(r)) is the energy density per electron at a point r.
This approximation is remarkably accurate for many solids and was a contribut-

ing factor to the great success of the density functional theory. In particular the
LDA predicts e.g. bond lengths in solids with close to homogeneous electron den-
sity to within a few percent. However, the LDA fails in molecules where the density
varies rapidly.
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5.6.2 Generalised Gradient Approximation
The general success of the LDA has inspired the development of various Gener-
alised Gradient Approximations (GGA) with the explicit aim of accounting for the
inhomogeneous electron density found in real material. The natural extension of
the LDA is to include not only the (local) density at a point r but also (semi-local)
gradients of the density εxc = εxc (n(r),∇n(r)). The presence of gradients in the
functional expression have given this class of functionals its name. Several various
forms have been proposed and although derived in different manners the GGA:s
give similar improvements over LDA. Among the most famous are the GGA pro-
posed by Perdew and Wang (PW91) [85] and Perdew, Burke and Ernzerhof [87,88]
(PBE) of which the latter has been used in both Paper I and Paper II.

5.6.3 Hybrid functionals
DFT suffers from the well known self-interaction problem [77] caused by the Hartree
potential, as mentioned in Section 5.2. In the absence of exact exchange this self in-
teraction is not removed. Self interaction leads to a deviation from piecewise linear-
ity of the xc-functional, a theoretically known property of the exact xc-functional,
and delocalisation of the electrons.

It was mentioned originally by Kohn and Sham that the inclusion of exact ex-
change (EX), i.e. exchange computed using the Hartree-Fock method, should im-
prove the results compared to LDA since, although correlation is approximated,
at least exchange is included exactly. As Kohn and Sham point out this may be
regarded as a Hartree-Fock method corrected for correlation.

The expected improvement over local and semi-local xc-functionals have inspired
a number of functionals incorporating EX. However, although the inclusion of exact
exchange is supposed to remove the self-interaction this is not the case. While the
Hartree-Fock method is one-electron self-interaction-free it is not many-electron
self-interaction-free and thus over-compensates the self-interaction [53]. Therefore,
in general, EX is not incorporated in the way that was proposed by Kohn and
Sham but by mixing a fraction of EX with the DFT exchange

Exc = EDFT
xc + α

(
EHF

x − EDFT
x

)
(5.23)

One popular choice based on theoretical arguments is the mixing proposed by
Perdew, Ernzerhof and Burke (PBE0) [89], which mixes the exchange and correla-
tion from the GGA-PBE with 25% EX.

A computationally more efficient functional is the range separated hybrid func-
tional proposed by Heyd, Scuseria and Ernzerhof (HSE) [90, 91] which splits the
terms in the PBE0 into short- and long-range components, with EX only included
within the region defined by the parameter ω and the long range exchange given
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by the semi-local PBE exchange.

EHSE
xc = aEHF,SR

x (ω) + (1− α)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c (5.24)

The adjustable parameter ω, determines the extent of the short-range interactions,
with ω = 0 is equivalent to PBE0 and ω → ∞ to PBE. The ω must be small
enough to agree with PBE0, but large enough to increase performance. There
are two standard choices of ω. The first published article (HSE03) [90] stated a
value of ω = 0.15¼ a−1

0 = 0.3 Å−1. However, this was not the value actually
used in the article and later an erratum was published [91] with stated a value of
ω = 0.2 Å−1. The latter functional, which goes under the name HSE06, has been
used in Paper II.

5.6.4 DFT+U – “poor man’s hybrid”
Calculations of exact exchange is computationally very demanding and sometimes
the desired properties can be obtained with simpler methods. While hybrids are
necessary for correcting the underestimated band-gap in a DFT calculation, the
bandstructure within occupied bands can be improved by less computationally
demanding schemes such as the DFT+U method [53, 92–94].

As opposed to the rather delocalised s and p states, the d and f states are rather
localised and are not well described by LDA or GGA, which favour fractional
occupancies. By adding a Hubbard-like on-site repulsion term to the semicore d
(of f) states, fractional occupancies are penalised and the total energy is written
[53]

EDFT+U
tot [ρ(r)] = EDFT

tot [ρ(r)] +
∑
t

U

2

(∑
α,σ

nt,σ
α,α −

∑
α,β,σ

nt,σ
α,βn

t,σ
β,α

)
(5.25)

where nt,σ
α,α are the occupation matrices involving orbitals α and β for site t and

spin channel σ.
The value of the U parameter is not transferable and has to be determined from

case to case. Different possible approaches for determining the U parameter are
possible, e.g. to produce the correct bandgap or the correct position of the d-band
[95]. In the spirit of first principles it is desirable to determine the value of U
without relying on experimental observations. In Paper II we choose to fit the
U parameter to the piecewise linearity constraint of the xc-functional, i.e. that
the energy increases linearly when filling the defect level, which is a theoretically
known property of the true xc-functional [96].
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5.7 Implementation in periodic solids
The presence of a differential operator in the Shrödinger equation Hamiltonian has
caused a wide variety of approaches concerning the practical implementation. One
of the most important aspects is how to represent the trial wavefunction solutions.
A common approach is to expand the wavefunction in a complete set of basis
functions, e.g. in a linear combination of atomic orbitals, which is rather natural
in the representation of isolated molecules.

In solids with periodic boundary conditions the natural basis function is the
plane wave due to its intrinsic periodicity. In a planewave basis an important
implementation aspect is how to represent the core and the core electrons. A
proper description of the core, where the wavefunctions oscillate rapidly, requires a
very large number of plane waves. The all-electron potentials are not well suited for
a planewave basis set, but by constructing an effective potential the core electrons,
which do not participate in chemical bonding, can be treated together with the
nuclei in a pseudopotential. The resulting system will exhibit a much smoother
potential requiring significantly fewer planewave basis functions. With the PAW
method the all-electron properties can still be obtained.

Since VASP, which is the code used throughout this thesis, is a planewave PAW
code, these aspects will be given attention in the following sections.

5.7.1 Plane waves
Consider a lattice with the periodicity R. The effective potential is then also
periodic with the same periodicity veff(r) = veff(R + r). In such a periodic lattice
Bloch’s theorem states that a one-electron wavefunction can be written as

ψk(r) = uk(r)eik·r (5.26)

where uk(r) is a function with the periodicity of the lattice. Like any periodic
function it can be expanded in a Fourier series

uk(r) =
∑
m

ck,meiGm·r (5.27)

where Gm is a reciprocal lattice vector. The one-particle wave function can now
be written

ψk(r) =
(∑

m

ck,meiGm·r

)
eik·r =

∑
m

ck,mei(k+Gm)·r (5.28)

If the effective potential is local it can also be expand in a similar way

veff(r) =
∑
m

veff(Gm)eiGm·r (5.29)
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Substituting these expressions back into the Kohn-Sham Equation (5.19),(
−1

2
∇2 + veff (r)

)
ψk(r) = εkψk(r) (5.30)

a reciprocal space equation for the coefficients ck,m can be obtained as
1

2
|k + Gm|2 ck,m +

∑
m′

veff (Gm − Gm′) ck,m = εkck,m (5.31)

The original Kohn-Sham differential equation has now been rewritten as a matrix
equation, one for each value of k, where the matrix Hamiltonian is

Hm,m′(k) = 1

2
|k + Gm|2 δm,m′ + veff (Gm − Gm′) (5.32)

The problems are that there are infinitely many k-points to consider and that the
Hamiltonian matrix in principle is of infinite dimension. In practise both these
infinities can be handled by considering only a finite number of k-points and recip-
rocal lattice vectors G.

5.7.2 Finite sampling
It follows from Bloch’s theorem (Equation (5.26)) that if ψk is a solution, then
so is ψk+G. The solutions can therefore be restricted to the primitive reciprocal
unit cell, called the Brillouin zone. However, there is still an uncountably infinite
number of k-points to consider. This is handled through discrete sampling of the
Brillouin zone. In this thesis the common method of Monkhorst and Pack [97] has
been used. The method selects Ni k-points along each reciprocal lattice vector b
according to the scheme

uni
=

2ni −Ni − 1

2Ni

ni ∈ [1, Ni] (5.33)

kn1,n2,n3 = u(1)ni
b1 + u(2)ni

b2 + u(3)ni
b3 (5.34)

Due to symmetry in the crystal this can be reduced even further, to the irreducible
Brillouin zone, and in practise, especially for crystals of high symmetry, only a few
k-points will suffice to determine the electron density in the entire crystal.

The infinite sum over m′ and thus the dimension of the Hamiltonian matrix can
be truncated at a cut-off energy 1

2
|k + G|2 < Ecut. This introduces a small error

and Ecut has to be chosen judiciously taking both accuracy and computational
cost into account. Usually, the energy cut-off is taken as a value beyond which
accuracy increases only marginally when increasing the cut-off energy. The exact
value of Ecut will depend on how the core electrons are treated. By using the
pseudopotential method Ecut can be reduced greatly.
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5.7.3 Pseudopotentials and PAW
A problem with plane wave basis sets is that rapidly varying functions, such as
the wave functions close to heavy nuclei, require a very high cut-off energy in or-
der to be well represented. One solution to this is the pseudopotential method in
which the potential in the core region, i.e. the nucleus and the innermost electrons,
are replaced by a different potential [98]. The argument for this is that the core
electrons do not take part in and are to a large degree unaffected by chemical
bonding. Among the requirements on psudopotentials are that they should repro-
duce the true potential and electron density of the all-electron problem outside the
core region as well as energy eigenvalues and be smooth enough that a low Ecut is
possible.

Although the pseudopotentials are smoother than the original all-electron poten-
tials they can be made even smoother by relaxing the norm-conserving condition. A
norm-conserving pseudopotential generates pseudo wavefunctions which obey the
usual orthogonality relation of wavefunctions. By relaxing the norm-conserving
constraint it is possible to formulate ultrasoft pseudopotentials [99, 100], which
reach the goal of accuracy while being much smoother and thus requiring decid-
edly smaller cut-off energy.

The ultrasoft pseudopotential method was given a firm theoretical footing by
the works of Blöchl [101] and Kresse and Joubert [102] in the Projector Augmented
Wave (PAW) method. The PAW method prescribes a linear mapping T which
projects the pseudo wavefunctions inside the core regions onto the true all-electron
wave functions. The PAW is therefore effectively an all-electron method giving
access to the core electron states while still preserving all the benefits of a plane
wave pseudopotential. In practise however, the frozen-core approximation is usually
applied, in which the core states are not updated. This approximation usually leads
to sufficient accuracy [103].
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6
Vibrational motion

With the electronic structure problem formally solved it is time to turn to the
vibrational motion of the ions. As discussed in Section 3.3 the free energy for the
vibrational motion can be rather easily obtained if just the vibrational frequencies
are known. The frequencies can be obtained by diagonalising the ionic Hamiltonian
in Equation (5.6), which is obtained after applying the adiabatic approximation.

Although it is possible to write down a formal expression for the potential V (R)
in Equation (5.6), it is customary to expand the potential in a Taylor series. In the
harmonic approximation the potential is expanded to second order. The second
order term is a matrix, which can computed using first principle methods, and can
be diagonalised to yield the eigenmodes and eigenfrequencies for the vibrational
motion. These eigenmodes are collective lattice vibrations called phonons which
oscillate in a harmonic potential for which the quantum mechanical solutions are
known.

It is instructive to start the discussion about lattice vibrations with a one dimen-
sional diatomic chain as many of the conclusions can be carried over to the three
dimensional case while at the same time being more transparent [66, 69].

6.1 One-dimensional diatomic chain
Assume a periodic chain of atoms of types A and B, with masses M1 and M2

separated a distance a/2, where a is the period of the chain, and connected with
springs with spring constant c (see Figure 6.1). Denote the deviation from the
equilibrium position by un and vn for the atoms A and B respectively in unit cell
n. By Hooke’s law the atom A in unit cell n will then experience a restoring force
equal to F = c(vn − un) + c(vn−1 − un) = (−2un + vn−1 + vn)c, and analogously
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a

M1 M2

vnun

Figure 6.1: One-dimensional diatomic chain

for atom type B. By applying Newtons second law for both atom types we get two
coupled differential equations{

M1ün = (−2un + vn−1 + vn)c

M2v̈n = (−2vn + un + un+1)c
(6.1)

The right hand side of Equation (6.1) is the one dimensional equivalent of what
will later be called the Force Constant (FC) matrix, times the displacement vector.
A general form of solution to a second order differential equation is

un(t) =
1√
M1

ũne−iωt; vn(t) =
1√
M2

ṽne−iωt (6.2)

which reduces the Equation (6.1) to{
−ω2ũn = − 2c

M1
ũn +

c√
M1M2

ṽn−1 +
c√

M1M2
ṽn

−ω2ṽn = − 2c
M2
ṽn +

c√
M1M2

ũn +
c√

M1M2
ũn+1

(6.3)

By assuming plane wave like solutions we can introduce a phase factor dependence

ũn = Ueiqxn ; ṽn = V eiqxn (6.4)

where xn is the position of the atoms in unit cell n. This can be written as xn = na
and xn = (n+1/2)a for atoms A and B respectively. Equation (6.1) is now reduced
to {

−ω2U = − 2c
M1
U + c√

M1M2
e+iqa/2V + c√

M1M2
e−iqa/2V

−ω2V = − 2c
M2
V + c√

M1M2
e+iqa/2U + c√

M1M2
e−iqa/2U

(6.5)
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This can now be written as an eigenvalue problem in matrix notation
ω2
q±eq± = D (q) eq± (6.6)

Here eq± = (U±, V±)
T are the eigenvectors and

D(q) =

[
2c
M1

− 2c√
M1M2

cos
(
qa
2

)
− 2c√

M1M2
cos
(
qa
2

)
2c
M2

]
(6.7)

is called the Dynamical matrix. This eigenvalue problem can now be solved to yield
the eigenfrequencies and eigenmodes of the vibration. As with any 2 × 2 matrix
there are two solutions

ω2
± =

c

M1M2

[
(M1 +M2)±

√
(M1 +M2)

2 − 4M1M2 sin2
(qa
2

)]
(6.8)

In this case the solutions are non-degenerate and non-negative. The solutions
are illustrated in Figure 6.2 as functions of q. It is already apparent, due to
the periodicity of the cosine function, that the only region of interest is the first
Brillouin zone, i.e. when |q| ⩽ π

a
. The formal expression for the eigenvector

e± = (U±, V±)
T is

U±

V±
=
c (1 + e−iqa)

2c− ω2
±M1

(6.9)

It should be stressed that no assumption has yet been made as to the direction
of the displacements un and vn. If the displacement is along the direction of prop-
agation the mode is called longitudinal. The two perpendicular modes are called
transversal. The different modes will in general have different coupling constants
c in Equation (6.6).

6.1.1 High symmetry points
Two limiting cases are of particular interest, the limits when qa → 0 and when
qa → π. The first case, the zone centre where q = 0 is called the Γ-point. This is
true also in higher dimensions. The solutions near the Γ-point are

ω2
Γ = 2c

(
1

M1

+
1

M2

)
(optical mode) (6.10)

ω2
Γ =

1

2

c

M1 +M2

q2a2 (acoustic mode) (6.11)

We note immediately that there are two distinct types of solutions to Equation (6.6),
one optic and one acoustic mode separated by a bandgap. The eigenvector (Equa-
tion (6.9)) for the optical mode is reduced to

U

V
= −M2

M1

(6.12)
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π/a

[

2c
(

1
M1

+ 1
M2

)]1/2

(2c/M2)1/2

(2c/M1)1/2

Optical branch

Acoustical
branch

M1 > M2

ω

q

Figure 6.2: One-dimensional diatomic chain dispersion relation

which shows that, at the Γ point, the atoms vibrate against one another with the
centre of mass fixed. For the acoustic mode, the ratio is 1 and the atoms vibrate
in phase and with the same amplitude. This infinite wavelength limit is equivalent
to a pure translation of the lattice.

The zone boundary, where q = π/a is another special or high symmetry point.
The points have different designations in different symmetries. In 1D, the zone
boundary point usually isn’t given a name, but for convenience it will henceforth
be denoted X in analogy with the point (1,0,0) in a 3D simple cubic lattice (see
Figure 2.1b). The eigenfrequencies at the zone boundary are

ω2
X =

2c

M2

(optical mode) (6.13)

ω2
X =

2c

M1

(acoustic mode) (6.14)

The eigenvectors become e+ = (0, 1) and e− = (1, 0) for the optical and acoustic
modes respectively. This means that in the optic mode only the lighter atoms move
and in the acoustic only the heavier.

Since the displacement of atom A in unit cell n is

un =
1√
M1

Uei(qan−ωt) (6.15)
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we can express the displacement of the atom in the neighbouring unit cell as

un+1 =
1√
M1

Uei(qa(n+1)−ωt)

=
1√
M1

Ueiqaei(qan−ωt)

= uneiqa

(6.16)

and analogously for the B atom. Thus, at the Γ-point where q = 0 all atoms of
the same type move in the same direction, while at the Brillouin zone boundary
where q = π/a and eiqa = −1 the atoms in neighbouring unitcells move in opposite
directions.

6.1.2 Limiting cases I. Identical masses
The bandgap between the two branches at the zone boundary depends on the
difference between the masses. In the limiting case when the masses M1 = M2

are equal the bandgap closes. This is because the atoms are now identical and the
primitive unit cell is only half that of the unit cell in Figure 6.1. As a consequence
the Brillouin zone is extended to 2π

a
. The point at q = π/a is no longer a zone

boundary point and the two different branches are in fact only one branch. The
points on the optical branch should be unfolded to the region between q = π/a and
q = 2π/a such that the Γ-point ends up on q = 2π/a.

6.1.3 Limiting cases II. Localised vibrations
In the limit when M2/M1 → 0 the dispersion of the optical branch goes to zeros
and the eigenfrequency becomes independent of q. The motion of one particular
atom in one particular unit cell is thus independent of the motion of the atoms in
neighbouring unit cells. The eigenvectors will, in this limit, become the same at the
Γ point and at the zone boundary, e+ = (0, 1). Thus the amplitude of the heavier
atom will be negligible in comparison and the motion of the lighter is independent
of q-value. In other words, the motion of one light atom is independent of the
motion of any other atom in the lattice. Such a mode is called localised. The unit
cell can be treated as if it were an isolated molecule with no periodicity. In this
case only the Γ point has to be considered.

6.1.4 Application in oxyhydrides
The one-dimensional diatomic chain is used qualitatively in the study of the oxy-
hydride BaTiO3 in Paper II. The hydrogen vibrational modes are very localised
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and it is possible to treat all ions as immobile, except for the oxygen and hydrogen
ions along the O-Ti-H-Ti chain, with the hydrogen ion the lighter with mass M2

and the oxygen ion the heavier with mass M1. The oxyhydride barium titanate
is illustrated in Figure 2.4. In the mode of higher frequency the displacements
are along the chain in a longitudinal manner and in mode of lower frequency the
mode is two fold degenerate and perpendicular to the direction of the chain in a
transverse manner. These three modes are seen as optical modes with very little
dispersion in Figure 6.3. The effective mass for oxygen in atomic mass units is 83
for the longitudinal mode and 426 for the transverse modes, in both cases much
than larger 16, the atomic mass for oxygen, which shows that the approximation of
a one-dimensional diatomic chain in the limit of infinite mass for one of the atoms
holds.

6.2 Phonons as lattice modes
In reality the atomic motion in a solid occur in three dimensions and the above
model, albeit instructive and intuitive, needs to be generalised [66, 69–71].

The potential energy in a periodic solid, V (R), is a function of the positions
R of all atoms in the crystal. Under the assumptions that the deviations from
equilibrium are small the potential energy can be written as an expansion with
respect to the displacements dRniα. Furthermore, a local minimum is characterised
by the first derivative being zero. By keeping only second order terms in what is
called the harmonic approximation the potential can be written

V ({R}) = V ({R0}) +
1

2

∑
niα,mjβ

∂2V ({R0})
∂Rniα∂Rmjβ

dRniαdRmjβ (6.17)

where V ({R0}) = E0 is the equilibrium energy and is a function of the equilibrium
positions {R0} of all atoms. This is just an additive constant and we will choose
the energy scale in the following such that E0 = 0. The indices i, j indicate sum
over atoms in the unit cell, n,m indicate sum over unit cells and α, β the sum over
cartesian directions.

With the notation for the displacements u = dR the nuclear Hamiltonian from
Equation (5.6) can now be written (in the adiabatic approximation)

Hn =
∑
niα

p2niα
2Mi

+
1

2

∑
niα,mjβ

Fniα,mjβuniαumjβ (6.18)

The matrix Fniα,mjβ is called the Force Constant (FC) Matrix. Due to the the
commutativity of the derivatives it is immediately obvious that the FC-matrix is
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symmetric. The equations of motion become

Miüniα = −
∑
mjβ

Fniα.mjβumjβ (6.19)

By assuming wavelike solutions a general form of solution is of the form

uniα(t) =
1√
Mi

ũniαe−iωt (6.20)

Inserting this Equation (6.19) can be written

ω2ũniα =
∑
mjβ

1√
MiMj

Fniα.mjβũmjβ (6.21)

Let us now introduce a new matrix, which is a real space representation of the
dynamical matrix1

D̃niα,mjβ =
1√
MiMj

Fniα.mjβ (6.22)

and has the dimension 3 × N ×M , where N is the number of atoms in the unit
cell, M is the number of unit cells in the system and 3 is the dimensionality of the
three dimensional space.

6.2.1 q-space
In an (infinite) periodic solid it is convenient to introduce the q-space2 represen-
tation, the Dynamical Matrix. Since the energy cannot depend on the absolute
positions of cells n and m, only on their relative position R = Rn − Rm we have

D̃niα,mjβ =
1√
MiMj

Fniα,mjβ = D̃iα,jβ(Rn − Rm) (6.23)

By virtue of Bloch’s theorem we can set the R-dependence as a phase and write

ũniα = eiαeiq·Rn (6.24)

which gives the eigenvalue problem as

ω2eiα =
∑
mjβ

D̃iα,jβ(Rn − Rm)e−iq·(Rn−Rm)ejβ (6.25)

1The literature is not completely consistent in the notation. Sometimes the FC-matrix is
defined weighted with the masses, what is here called the real space dynamical matrix (cf. Equa-
tion 6.22), sometimes the opposite. Another name for the FC-matrix is the Hessian matrix

2The reciprocal space is customarily called k-space, but we will here use the notation q-space
for the phonon motion in order not to confuse it with the electronic structure k-space.
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Chapter 6. Vibrational motion

With the definition

Diα,jβ(q) =
∑

R
D̃iα,jβ(R)e−iq·R =

∑
n

e−iq·Rn
1√
MiMj

∂2V

∂uniα∂u0jβ
(6.26)

we now get the eigenvalue problem

ω2eiα =
∑
j,β

Diα,jβ(q)ejβ (6.27)

or in matrix notation
ω2

qseqs = D(q)eqs (6.28)
where the index s denotes the 3×N solutions at each q-point. The original problem
of diagonalising a 3 × N ×M matrix (where M in principle is infinite) has now
been reduced to diagonalising K matrices (one for each value of q) of size 3×N .

6.2.2 Atomic displacements
Once the eigenvectors are found the displacement of ion i at lattice vector Rn will
be given by

unis(q, t) =
1√
Mi

eiqsei(q·Rn−ωst) (6.29)

where eiqs is the set of d components of the eigenvector solutions to Equation (6.28)
that denote the displacement of ion i at frequency ωqs in d dimensions. The
full eigenmode of a particular frequency ωqs is given by the sum over i. The
most general displacement of ions is the superposition of all linearly independent
elementary solutions and can be written as

uni(t) =
1√
Mi

∑
s,q

(
csqeiqseiq·Rneiωt + c∗sqe∗

iqse−iq·Rne−iωt) (6.30)

where the arbitrary (complex) constants csq are the analogue to the amplitude.
By writing Qsq(t) =

√
N
(
csqeiωsqt + c∗sqe−iωsqt

)
it is possible to show [69,70] that

the ionic Hamiltonian in (6.18) can be written as

H =
1

2

∑
qs
PqsP

∗
qs + ωqs

2QqsQ
∗
qs (6.31)

where Pqs(t) = Q̇qs(t) and the asterisk denotes the hermitian conjugate. This
formally diagonalises the Hamiltonian and is identical to a set of independent
harmonic oscillators with frequencies ωqs, where Qqs and Pqs are the generalised
positions and momenta respectively of collective motions. Each vibrational mode
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6.2. Phonons as lattice modes

can be represented as a quantum mechanical quasi-particle called phonon. We can
now write the vibrational free energy calculated in Section 3.3 for a periodic solid
as

Fvib =
∑
qs

(
ℏωqs

2
+ kBT ln

(
1− e−βℏωqs

))
= E0 + kBT

∑
qs

ln
(
1− e−βℏωqs

)
(6.32)

where E0 is the zero point energy.

6.2.3 Bandspectrum
The vibrational properties of a periodic system are given by its eigenfrequencies,
found by diagonalising the Dynamical matrix at each respective q-point in the first
Brillouin zone. However, illustrating this in a figure is not as straight forward as
in the one-dimensional case in Figure 6.2 since q is a three-dimensional vector. It
it therefore necessary to plot the vibrational frequencies only at selected points of
high symmetry in the Brillouin zone and along the path that connects them in a
bandspectrum. As an example of a bandspectrum Figure 6.3 shows the bandspectra
of pristine cubic BaTiO3 and SrTiO3 along the high symmetry paths illustrated in
Figure 2.1b as well as the bandspectrum of the oxyhydride BaTiO3−xHx in a 40
atom simulation cell.

6.2.4 Density of State
Often, it is not necessary to illustrate the full vibrational spectrum. Rather, it is
sufficient or even desirable to present only a the density of state (DOS).

The density of state is a convenient measure of the number of phonons in the
interval [ω, ω + dω] independent of the q-vector. Formally this can be written as

g(ω) =
∑
sq
δ (ω − ωqs) (6.33)

By integrating the DOS

n(ω) =

ω∫
0

g(ω′)dω′ (6.34)

the number of modes with frequencies below or equal to ω is obtained. By inte-
grating over all frequencies the total number of 3N modes is obtained, where N is
the number of atoms in the unit cell.
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Figure 6.3: Illustration the bandspectrum (left) and PDOS (right) of (a) pris-
tine cubic BaTiO3 (top), (b) pristine cubic SrTiO3 (middle) and (c) oxyhydride
BaTiO3−xHx (bottom).
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6.2. Phonons as lattice modes

The DOS is useful in the thermodynamic limit of an infinite crystal where the
sum over q in e.g. Equation (6.32) approaches an integral. Using the identity∑

sq
f(q) =

∑
s

Ωc

(2π)3

∫
BZ

dqf(q) =
∫
D(ω)f(ω)dω (6.35)

where Ωc is the volume of the unit cell, the free energy can be written as

Fvib =
∑
qs

(
ℏωqs

2
+ kBT ln

(
1− e−βℏωqs

))
=
∑
s

Ωc

(2π)3

∫
BZ

dq
(
ℏωqs

2
+ kBT ln

(
1− e−βℏωqs

))
=

∫
D(ω)

(
ℏω
2

+ kBT ln
(
1− e−βℏωqs

))
dω

(6.36)

In computer simulations it is possible to separate the contribution from different
elements. The partial density of states (PDOS) is the density of state caused by
the motion of atom i

di(ω) =
∑
sq

|eiqs|2 δ (ω − ωqs) (6.37)

If the atom i does not participate in the mode at frequency ωqs, the corresponding
eigenvector eiqs will be the zero vector and the partial density of state at this
frequency is zero. As an example Figure 6.3 shows the PDOS of pristine cubic
BaTiO3 and SrTiO3 as well as the PDOS of the oxyhydride BaTiO3−xHx in a 40
atom simulation cell. The correspondence between the bandspectrum and density
of state is clearly seen.

In e.g. a neutron scattering experiment it is not the eigenvector that is measured
but the displacement of the atoms in a vibrational mode. The displacement is
inversely proportional to the square root of the masses (cf. Equation (6.29)) and
lighter atoms will cause a stronger signal. Therefore, it is sometime appropriate to
present the mass weighted projected density of state

wi(ω) =
1

Mi

di(ω) =
1

Mi

∑
sq

|eiqs|2 δ (ω − ωqs) =
∑
sq

|unis(q)|2 δ (ω − ωqs) (6.38)

6.2.5 Limiting case. Localised modes.
Despite the collective nature of phonons, there are cases where only a few atoms
take part in a certain mode. These modes are called local or localised modes [104].
Localised modes were discussed briefly in Section 6.1.3 in the special case for the
one-dimensional diatomic chain. A localised mode is a phonon mode concentrated
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in a region of space and in which only a few atoms participate in the vibration
while the rest of the lattice remains at rest. The eigenvector for such a mode will
be non-zero only for a few elements which typically are much lighter than all the
others and will to a good approximation form a sub-matrix in a block diagonal
dynamical matrix. The dynamical matrix in Equation (6.26) can thus be obtained
as a limiting case of Mj → ∞ for all j ̸= i, where i is the lighter atom. If a mode
is local most elements in will be zero and the dynamical matrix Diα,jβ(q) will span
a relatively small space.

A local mode is typically also rather q-point independent, and there is no need
to go to reciprocal space. The vibrational mode is well enough represented at the
Γ-point by the Force Constant matrix Fniα,mjβ. By the argument above only a part
of the FC-martix needs to be computed in order to describe the vibrational mode
[104, 105].

One such local mode is the hydrogen mode in BaTiO3−xHx which is shown in
Figure 6.3c. A 3× 3 Force Constant sub-martix can be constructed by displacing
only the hydrogen ion in three directions. By diagonalising only the non-zero sub-
martix the hydrogen vibrational frequencies and eigenmodes can be obtained.

6.2.6 Lattice stability
Although the dynamical matrix is Hermitian and as a consequence has only real
eigenvalues, there is nothing preventing the existence of negative eigenvalues. Since
the eigenvalue is the square of the frequency the existence of imaginary frequencies
has to be addressed.

Assume that there is an eigenvalue ω2
qs = −γ < 0. Then ω = i

√
γ will be a

purely imaginary number and the displacement (cf. Equations (6.15)and (6.29))
will behave as e±γt. Any disturbance will grow exponentially and the crystal is not
stable. This corresponds to a negative spring constant c in the one dimensional
case. The force is not restoring but repelling and the larger the displacement the
larger the repelling force.

Since it is a requirement that all vibrational frequencies be positive it is thus
the formal criterion of lattice stability is that the matrix of second order deriva-
tives, the Hessian matrix, is positive definite. The presence of imaginary modes
indicate that the investigated structure at {R0}, although at a stationary point as
assumed in Equation (6.17), is not at an energy minimum but at a saddle point
[106]. The imaginary frequencies indicate that a lower energy structure can be
found by displacing the atoms in the crystal along the eigenvector associated with
the imaginary frequency.

One example of a lattice instability is mentioned in Paper II. Barium titanate
in its high temperature phase is cubic perovskite. However, in a phonon calculation
BaTiO3 exhibits imaginary modes. This indicates that cubic BaTiO3 is not stable
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at 0 K, and experimentally there is indeed a phase transition away from cubic
perovskite already at 120◦C.

Since the cubic phase is stable at some temperature it should in principle be
possible to stabilize the crystal by minimising not the energy but the free energy
at the relevant temperature. By computing the vibrational entropy, and the free
energy, at various lattice constants it is possible to obtain the free energy poten-
tial instead of only the internal energy. The technique is commonly referred to as
the quasi harmonic approximation [63, 64]. The quasi harmonic approximation is
based on the assumption that the harmonic approximation holds at every value
of the lattice constant, which is treated as an adjustable parameter. Within the
quasi harmonic approximation it is possible to compute, among other things, the
thermal lattice expansion, which is out of reach within the harmonic approxima-
tion. However, also the quasi harmonic approximation fails ultimately when the
temperature increases and the displacements away from equilibrium become too
large and higher order terms need to be included in the potential energy expansion
in Equation (6.17) [107].

As an example, Figure 6.3 shows the bandspectra of pristine cubic BaTiO3 and
SrTiO3 along the high symmetry points illustrated in Figure 2.1b. The phase transi-
tion of BTO mentioned in Section 2.3 above is clearly seen as imaginary frequencies
(on the negative y-axis) at the Γ-point, but also along the entire paths connecting
Γ, M and X. STO also exhibits this imaginary frequency at the gamma point
showing that STO also, in principle, could be prone to a ferroelectric transition
[108]. However, in practise STO does not exhibit the ferroelectric phase transition
of BTO [19] because of the R-mode instability which makes the TiO6 octahedra
in STO tilt into an anti-ferroelectric phase described in Section 2.3. BTO on the
other hand is not prone to the anti-ferroelectric transitions of STO due to the lack
of imaginary frequencies at the R-point.

6.3 Computational aspects
In order to solve the eigenvalue problem Equation (6.28) the quantity to be com-
puted is the dynamical matrix, reprinted here for convenience.

Diα,jβ(q) =
∑
n

e−iq·Rn
1√
MiMj

∂2V

∂uniα∂u0jβ
(6.26)

Even though the original problem of diagonalising a 3 × N × M matrix (where
M in principle is infinite) now has been reduced to diagonalising K matrices (one
for each value of q) of size 3 × N , the calculation of the dynamical matrix in
Equation (6.28) is still immense. If the crystal is infinite the number of q-vectors
is in principle also infinite. However, it turns out that a judiciously chosen finite
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number of q-points, e.g. using a Monkhorst-Pack [97] grid, works well enough. The
symmetry of the lattice further reduces the number of q-points at which a matrix
has to be diagonalised to the irreducible Brillouin zone. The principle is the same
as for the electronic structure in Section 5.7.2.

Not only are the number of q-vectors infinite, in an infinite crystal the sum over
unit cells, n, is also infinite. Fortunately acceptable accuracy can often be obtained
with a finite number of unit cells n, i.e. Rn is limited the period of a supercell of
modest size.

In the present thesis the matrix elements are obtained using phonopy [64] which
is a software implementation of the frozen phonon approach. In the frozen phonon
approach the motion of the i:th atom is frozen in at a finite displacement δ and
the forces on each ion are calculated from the relaxed electronic structure. This
works rather well if the displacements are small enough not to violate the harmonic
approximation but large enough for numerical accuracy. The forces are typically
given as the Hellmann-Feynman forces directly from an electronic structure calcu-
lation. The matrix elements can computed using finite differentiation and central
differences.

Fniα,0jβ =
∂2V (u)

∂uniα∂u0jβ
=

∂

∂uniα

(
∂V (u)
∂u0jβ

)
= −∂f0jβ(u)

∂uniα

≈ −f0jβ (u1, . . . , uniα +∆, . . . , u3N)− f0jβ (u1, . . . , uniα −∆, . . . , u3N)

2∆
(6.39)

6.3.1 Localised hydrogen modes
In Paper II the localised hydrogen modes for BaTiO3−xHx were obtained in a
slightly different, albeit mathematically equivalent, manner. Since the eigenmodes
could be deduced a priori from symmetry arguments, there was no need for comput-
ing the mixed derivatives. In addition, since the mode is very local and contained
only one atom any interaction between atoms could be neglected both within the
unitcell (with indices i, j) as well as between unitcells (with indices n,m). To stress
this independence these indices have been dropped below. The diagonal terms in
the FC sub-matrix

Fαα =
∂2V

∂u2α
(6.40)

were computed by fitting second order polynomials of type 1
2
mω2x2, where m is

the mass of the atom, ω the vibrational frequency and x the diaplacement away
from the equilibrium position, to the energy landscape obtained by displacing the
ions in both positive and negative directions along the eigenvectors as illustrated in
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Figure 6.4: Illustration of potential well mapping

Figure 6.4. In Paper II the method is called the one particle harmonic potential
(OPHP) method.
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7
Summary of appended articles

7.1 Paper I
In hydration of a solid state proton conductor the vacancies are filled with hydroxide
ions according to the reaction

H2O(g) + VO
•• + OO

× → 2(OHO
•) (7.1)

The hydrogen ion is rather loosely bound to the oxygen and is mobile as a positively
charged proton. The difference in ionic radius between the hydroxide ion and the
vacancy causes the material to expand during hydration. This volume difference is
investigated in Paper I for BaZrO3.

In Paper I we developed a strain tensor formalism which describes not only the
size, i.e. the ionic radius, but also the anisotropy induced by the defect. The trace
of the strain tensor is directly related to the volume of the defect from which an
ionic radius can be obtained. The strain tensor is general and applicable to any
point defect in any material describing not only the volume expansion but also the
anisotropy.

The strain tensor formalism is also applied to the defects involved in hydration of
BaZrO3 i.e. the proton and the oxygen vacancy, including some acceptor dopants
necessary for the formation of the vacancies. We conclude that the vacancy is
smaller than the oxygen host ion but more interestingly, also the hydroxide ion is
smaller than the oxygen ion. The cause of the chemical expansion during hydration
is not the large size of the proton, but the relatively small size of the vacancy.
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Chapter 7. Summary of appended articles

7.2 Paper II
In Paper II we investigate the substitutional hydrogen HO

• which can form in
BaTiO3 and consists of a negatively charged H− ion on an oxygen site. It is formed
from the reaction

1
2
H2(g) + O×

O → 1
2
O2(g) + H•

O + e′ (7.2)
and leads to n-type doping of the material. Doping into the initially empty Ti
3d band should according to band theory lead to a delocalised electron. However,
through coupling to phonons it can also lead to a polaron.

In order to localise an electron and form a polaron the DFT+U method is used
and we determine the U -parameter self-consistently through applying the piecewise
linearity constraint of the xc-functional. The exact value of the U -parameter is not
transferable between different systems and we find that the U -value, and therefore
also the lattice constant is different in a 2×2×2 supercell (U = 3.3) and a 3×3×3
supercell (U = 3.1). Polaron formation is found to be energetically favourable
(∆E = −57 meV) in the smaller supercell, but unfavourable (∆E = 124 meV) in
the larger indicating a concentration dependence for the polaron formation energy.

In order to determine the presence of polarons in oxyhydride BTO we note that
the vibrational properties of the hydride ion changes significantly when a bound
polaron is formed on the nearest neighbour titanium.

Because the HSE functional is known to produce more accurate vibrational fre-
quencies, the frequencies are determined using the HSE xc-functional and the One
Particle Potential method (also known as the Partial Hessian approach) which
requires fewer displacements and consequently fewer calculations, only one dis-
placement of the hydrogen atom in each of the three cartesian directions. This is
possible due to the very localised nature of the hydrogen vibrations.

We discriminate between the two possible electronic states, the delocalised band-
state and the localised polaron state, using inelastic neutron scattering. The agree-
ment between the calculated vibrational frequencies and the measured spectrum
leads to the conclusion that the conduction electrons in the measured sample are
predominantly delocalised, although polarons also seem to be present when the con-
centration of hydride ions is increased, which is in agreement with the calculated
polaron formation energies. Thereby, we also demonstrate that electronic defects
can be characterised through vibrational properties by inelastic neutron scattering
measurements.
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8
Summary and Outlook

In this thesis we have seen two examples of how first principles calculations can be
used to penetrate a material, provide information about the local environment and
how this affects macroscopic properties in a material.

In Paper I the chemical expansion, which is a difference in ionic volume between
two different types of defects, could be separated into the formation volume of the
two defects individually. Due to the charged nature of the defects this information
is not easily accessible through experiments. The agreement between the mea-
sured and calculated chemical expansion suggests that the computational results
are correct and that the chemical expansion can understood from the separation
into two individual effects. However, the agreement is not perfect and obviously
there are effects, neglected in the article, which do have an influence, such as finite
temperature and the quantum fluctuation of hydrogen.

In Paper II the oxyhydride barium titanate was investigated. The oxyhydride
BaTiO3 is still a rather recent discovery and many aspects remain to be under-
stood. For example whether yet further different types of hydrogen defects, such
as substitutional dihydrogen, i.e. a hydrogen molecule or two hydrogen ions, on any
type of site is possible, including the barium or titanium sites. Furthermore, pris-
tine BaTiO3 is white whereas oxyhydride BaTiO3 is blue. There have been some
attempts at explaining the blue colour, many of then including a bound polaron
next to an oxygen defect such as the substitutional hydride or the oxygen vacancy,
but a satisfactory explanation is yet to be provided. In addition, the elementary
diffusion step, and thus the hydride exchange mechanism as well as the apparent
thermodynamical instability needs further investigation.

55





Acknowledgments

There are some people without whom this thesis could not have been written.
Among these are my supervisor Göran Wahnström and co-supervisor Paul Erhart
as well as my college Anders Lindman who has also co-authored both appended
papers. I would also like to thank my collaborators Maths Karlsson and Carin
Österberg who have contributed with experimental expertise and my research group
at Materials and Surface Theory.

In addition I would like to thank people who have contributed with moral support
throughout this work; Adam Arvidsson and Emil Ljungskog for all fruitful lunch
discussions, my parents for all encouragement and my friends both at Chalmers
and outside.

Finally I would like to thank my wife, Sofia, and my son, Alfred, for being my
source of inspiration in life.

57





Bibliography

[1] K. Kreuer, Proton-Conducting Oxides, Annu. Rev. Mater. Res. 33, 333
(2003).

[2] R. H. Mitchell, Perovskites: Modern and Ancient (Almaz Press Thunder Bay,
Thunder Bay, Ontario, Canada, 2002).

[3] A. S. Bhalla, R. Guo, and R. Roy, The perovskite structure - a review of its
role in ceramic science and technology, Mater. Res. Innov. 4, 3 (2000).

[4] E. Wainer, High Titania Dielectrics, Trans. Electrochem. Soc. 89, 331 (1946).

[5] M. E. Lines and A. M. Glass, Principles and applications of ferroelectrics and
related materials (Oxford University Press, Oxford, Great Britain, 1977).

[6] B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics (Academic Press,
Berkeley Square House, Berkeley Square, London, 1971).

[7] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Giant
negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic
films, Phys. Rev. Lett. 71, 2331 (1993).

[8] Y. Moritomo, A. Asamitsu, H. Kuwahara, and Y. Tokura, Giant magnetore-
sistance of manganese oxides with a layered perovskite structure, Nature 380,
141 (1996).

[9] T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura, Large thermoelectric
response of metallic perovskites: Sr1−x Lax TiO3 (0<x<0.1), Phys. Rev. B
63, 113104 (2001).

[10] J. F. Schooley, W. R. Hosler, E. Ambler, J. H. Becker, M. L. Cohen, and
C. S. Koonce, Dependence of the Superconducting Transition Temperature on
Carrier Concentration in Semiconducting SrTiO3, Phys. Rev. Lett. 14, 305
(1965).

59



Bibliography

[11] D. Johnston, H. Prakash, W. Zachariasen, and R. Viswanathan, High tem-
perature superconductivity in the Li-Ti-O ternary system, Mater. Res. Bull.
8, 777 (1973).

[12] K. Funke, Solid State Ionics: from Michael Faraday to green energy—the
European dimension, Sci. Technol. Adv. Mater. 14, 043502 (2013).

[13] A. Wells, Structural Inorganic Chemistry (fifth edition) (Oxford University
Press, Oxford, Great Britain, 1987).

[14] V. M. Goldschmidt, Die Gesetze der Krystallochemie, Naturwissenschaften
14, 477 (1926).

[15] R. D. Shannon and IUCr, Revised effective ionic radii and systematic studies
of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect.
A 32, 751 (1976).

[16] L. A. Reznichenko, L. A. Shilkina, S. V. Titov, O. N. Razumovskaya, V. V.
Titov, and S. I. Shevtsov, Defect Structure of Alkaline-Earth, Cadmium, and
Lead Titanates, Inorg. Mater. 41, 492 (2005).

[17] A. M. Glazer, The classification of tilted octahedra in perovskites, Acta Crys-
tallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 28, 3384 (1972).

[18] A. M. Glazer, Simple ways of determining perovskite structures, Acta Crys-
tallogr. Sect. A 31, 756 (1975).

[19] N. A. Benedek and C. J. Fennie, Why Are There So Few Perovskite Ferro-
electrics?, J. Phys. Chem. C 117, 13339 (2013).

[20] S. B. Adler, Chemical Expansivity of Electrochemical Ceramics, J. Am. Ceram.
Soc. 84, 2117 (2001).

[21] A. K. E. Andersson, S. M. Selbach, C. S. Knee, and T. Grande, Chemical Ex-
pansion Due to Hydration of Proton-Conducting Perovskite Oxide Ceramics,
J. Am. Ceram. Soc. 97, 2654 (2014).

[22] F. G. Kinyanjui, S. T. Norberg, I. Ahmed, S. G. Eriksson, and S. Hull, In-
situ conductivity and hydration studies of proton conductors using neutron
powder diffraction, Solid State Ionics 225, 312 (2012).

[23] C. Hiraiwa, D. Han, A. Kuramitsu, A. Kuwabara, H. Takeuchi, M. Majima,
and T. Uda, Chemical Expansion and Change in Lattice Constant of Y-Doped
BaZrO3 by Hydration/Dehydration Reaction and Final Heat-Treating Tem-
perature, J. Am. Ceram. Soc. 96, 879 (2013).

60



Bibliography

[24] C. Chatzichristodoulou, P. Norby, P. V. Hendriksen, and M. B. Mogensen,
Size of oxide vacancies in fluorite and perovskite structured oxides, J. Elec-
troceramics 34, 100 (2014).

[25] D. Marrocchelli, S. R. Bishop, H. L. Tuller, and B. Yildiz, Understanding
Chemical Expansion in Non-Stoichiometric Oxides: Ceria and Zirconia Case
Studies, Adv. Funct. Mater. 22, 1958 (2012).

[26] D. Marrocchelli, S. R. Bishop, H. L. Tuller, G. W. Watson, B. Yildiz, P. A.
Madden, P. A. Madden, G. W. Watson, and E. D. Wachsman, Charge lo-
calization increases chemical expansion in cerium-based oxides, Phys. Chem.
Chem. Phys. 14, 12070 (2012).

[27] S. R. Bishop, K. L. Duncan, and E. D. Wachsman, Thermo-Chemical Expan-
sion in Strontium-Doped Lanthanum Cobalt Iron Oxide, J. Am. Ceram. Soc.
93, 4115 (2010).

[28] S. A. Centoni, B. Sadigh, G. H. Gilmer, T. J. Lenosky, T. Díaz de la Rubia,
and C. B. Musgrave, First-principles calculation of intrinsic defect formation
volumes in silicon, Phys. Rev. B 72, 195206 (2005).

[29] F. W. Poulsen, Speculations on the existence of hydride ions in proton con-
ducting oxides, Solid State Ionics 145, 387 (2001).

[30] T. Norby, M. Widerøe, R. Glöckner, and Y. Larring, Hydrogen in oxides,
Dalt. Trans. 0, 3012 (2004).

[31] R. M. Helps, N. H. Rees, and M. A. Hayward, Sr3Co2O4.33H0.84 : An Extended
Transition Metal Oxide-Hydride, Inorg. Chem. 49, 11062 (2010).

[32] Y.-D. Chuang, A. D. Gromko, D. S. Dessau, T. Kimura, Y. Tokura, C. J.
Kiely, S. J. Blundell, I. M. Marshall, and F. L. Pratt, Fermi Surface Nesting
and Nanoscale Fluctuating Charge/Orbital Ordering in Colossal Magnetore-
sistive Oxides, Science 292, 1509 (2001).

[33] Y. Kobayashi, O. J. Hernandez, T. Sakaguchi, T. Yajima, T. Roisnel, Y.
Tsujimoto, M. Morita, Y. Noda, Y. Mogami, A. Kitada, M. Ohkura, S.
Hosokawa, Z. Li, K. Hayashi, Y. Kusano, J. eun Kim, N. Tsuji, A. Fuji-
wara, Y. Matsushita, K. Yoshimura, K. Takegoshi, M. Inoue, M. Takano,
and H. Kageyama, An oxyhydride of BaTiO3 exhibiting hydride exchange
and electronic conductivity., Nat. Mater. 11, 507 (2012).

[34] T. Sakaguchi, Y. Kobayashi, T. Yajima, M. Ohkura, C. Tassel, F. Takeiri, S.
Mitsuoka, H. Ohkubo, T. Yamamoto, J. eun Kim, N. Tsuji, A. Fujihara, Y.

61



Bibliography

Matsushita, J. Hester, M. Avdeev, K. Ohoyama, and H. Kageyama, Oxyhy-
drides of (Ca,Sr,Ba)TiO3 Perovskite Solid Solutions, Inorg. Chem. 51, 11371
(2012).

[35] Y. Iwazaki, T. Suzuki, and S. Tsuneyuki, Negatively charged hydrogen at
oxygen-vacancy sites in BaTiO3: Density-functional calculation, J. Appl.
Phys. 108, 1 (2010).

[36] X. Liu, T. S. Bjorheim, and R. Haugsrud, Formation and migration of hydride
ions in BaTiO3−xHx oxyhydride, J. Mater. Chem. A 5, 1050 (2017).

[37] G. Bouilly, T. Yajima, T. Terashima, W. Yoshimune, K. Nakano, C. Tas-
sel, Y. Kususe, K. Fujita, K. Tanaka, T. Yamamoto, Y. Kobayashi, and
H. Kageyama, Electrical Properties of Epitaxial Thin Films of Oxyhydrides
ATiO3−xHx (A = Ba and Sr), Chem. Mater. 27, 6354 (2015).

[38] L. Landau and S. Pekar, Polaron effective mass, Zh Eksp Teor Fiz 18, 419
(1948).

[39] J. T. Devreese, Polarons, Encycl. Appl. Phys. 14, 383 (2000).

[40] H. Fröhlich, Electrons in lattice fields, Adv. Phys. 3, 325 (1954).

[41] R. P. Feynman, Slow Electrons in a Polar Crystal, Phys. Rev. 97, 660 (1955).

[42] R. P. Feynman, R. W. Hellwarth, C. K. Iddings, and P. M. Platzman, Mobility
of Slow Electrons in a Polar Crystal, Phys. Rev. 127, 1004 (1962).

[43] N. A. Deskins and M. Dupuis, Electron transport via polaron hopping in bulk
TiO2: A density functional theory characterization, Phys. Rev. B 75, 195212
(2007).

[44] A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C. G. Van de
Walle, Hybrid functional studies of the oxygen vacancy in TiO2, Phys. Rev.
B 81, 085212 (2010).

[45] A. Janotti, C. Franchini, J. B. Varley, G. Kresse, and C. G. Van de Walle,
Dual behavior of excess electrons in rutile TiO 2, Phys. status solidi - Rapid
Res. Lett. 7, 199 (2013).

[46] M. Setvin, C. Franchini, X. Hao, M. Schmid, A. Janotti, M. Kaltak, C. Van
de Walle, G. Kresse, and U. Diebold, A direct view at excess electrons in
TiO2 rutile and anatase, Phys. Rev. Lett. 113, 086402 (2014).

[47] S. Yang, A. T. Brant, N. C. Giles, and L. E. Halliburton, Intrinsic small
polarons in rutile TiO2, Phys. Rev. B 87, 125201 (2013).

62



Bibliography

[48] V. M. Khomenko, K. Langer, H. Rager, and A. Fett, Electronic absorption
by Ti3+ ions and electron delocalization in synthetic blue rutile, Phys. Chem.
Miner. 25, 338 (1998).

[49] R. Scharfschwerdt, A. Mazur, O. F. Schirmer, H. Hesse, and S. Mendricks,
Oxygen vacancies in BaTi O 3, Phys. Rev. B 54, 15284 (1996).

[50] M. Schrader, D. Mienert, T.-S. Oh, H.-I. Yoo, and K. D. Becker, An optical,
EPR and electrical conductivity study of blue barium titanate, BaTiO3−δ,
Solid State Sci. 10, 768 (2008).

[51] J. Maier, Physical chemistry of ionic materials: ions and electrons in solids
(John Wiley & Sons, West Sussex, England, 2004).

[52] S. Zhang and J. Northrup, Chemical potential dependence of defect formation
energies in GaAs: Application to Ga self-diffusion, Phys. Rev. Lett. 67, 2339
(1991).

[53] C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti,
and C. G. Van de Walle, First-principles calculations for point defects in
solids, Rev. Mod. Phys. 86, 253 (2014).

[54] S. Lany and A. Zunger, Assessment of correction methods for the band-gap
problem and for finite-size effects in supercell defect calculations: Case studies
for ZnO and GaAs, Phys. Rev. B 78, 235104 (2008).

[55] C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Electrostatic inter-
actions between charged defects in supercells, Phys. status solidi 248, 1067
(2011).

[56] H.-P. Komsa, T. T. Rantala, and A. Pasquarello, Finite-size supercell correc-
tion schemes for charged defect calculations, Phys. Rev. B 86, 045112 (2012).

[57] NIST Computational Chemistry Comparison and Benchmark Database NIST
Standard Reference Database Number 101, Release 18, Editor: Russell D.
Johnson III, http://cccbdb.nist.gov.

[58] NIST JANAF thermochemical tables 1985, Editor: Malcolm W. Chase Jr,
http://kinetics.nist.gov/janaf.

[59] T. S. Bjørheim, M. Arrigoni, D. Gryaznov, E. Kotomin, and J. Maier, Ther-
modynamic properties of neutral and charged oxygen vacancies in BaZrO3

based on first principles phonon calculations., Phys. Chem. Chem. Phys. 17,
20765 (2015).

63



Bibliography

[60] S. Grieshammer, T. Zacherle, and M. Martin, Entropies of defect formation
in ceria from first principles, Phys. Chem. Chem. Phys. 15, 15935 (2013).

[61] P. Ágoston and K. Albe, Formation entropies of intrinsic point defects in
cubic In2O3 from first-principles density functional theory calculations, Phys.
Chem. Chem. Phys. 11, 3226 (2009).

[62] H. B. Huntington, G. A. Shirn, and E. S. Wajda, Calculation of the Entropies
of Lattice Defects, Phys. Rev. 99, 1085 (1955).

[63] A. Togo, L. Chaput, I. Tanaka, and G. Hug, First-principles phonon calcula-
tions of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2, Phys. Rev. B
81, 174301 (2010).

[64] A. Togo and I. Tanaka, First principles phonon calculations in materials
science, Scr. Mater. 108, 1 (2015).

[65] H. B. Callen, Thermodynamics (Wiley & Sons, New York, N.Y., 1960 (p.213-
219)), p. 213.

[66] C. Kittel, Introduction to Solid State Physics (eighth edition) (Wiley & Sons,
New York, N.Y., 2005 (p.73-75)).

[67] A. Nowic and B. Berry, Anelastic Relaxation in Crystalline Solids (Academic
Press, London, 1972).

[68] G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for
Engineering (Wiley, Chichester, New York, 2000 (chap. 2)).

[69] L. Kantorovich, Quantum Theory of the Solid State: An Introduction
(Springer Netherlands, Dordrecht, 2004).

[70] E. Kaxiras, Atomic end Electronic Structure of Solids (Cambridge University
Press, The Edinburgh Building, Cambridge, United Kingdom, 2003).

[71] N. Ashcroft and N. Mermin, Solid state physics (Brooks/Cole Cengage Learn-
ing, Belmont, Ca, USA, 1976).

[72] J. Thijssen, Computational Physics (Cambridge University Press, The Edin-
burgh Building, Cambridge, United Kingdom, 2007).

[73] R. Martin, Electronic Structure (Cambridge University Press, The Edinburgh
Building, Cambridge, United Kingdom, 2008).

[74] A. D. Becke, Perspective: Fifty years of density-functional theory in chemical
physics, J. Chem. Phys. 140, 18A301 (2014).

64



Bibliography

[75] R. O. Jones, Density functional theory: Its origins, rise to prominence, and
future, Rev. Mod. Phys. 87, 897 (2015).

[76] W. Kohn, Nobel Lecture: Electronic structure of matter—wave functions and
density functionals, Rev. Mod. Phys. 71, 1253 (1999).

[77] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional
approximations for many-electron systems, Phys. Rev. B 23, 5048 (1981).

[78] L. H. Thomas, The calculation of atomic fields, Math. Proc. Cambridge Phi-
los. Soc. 23, 542 (1927).

[79] E. Fermi, Un metodo statistico per la determinazione di alcune priorieta
dell’atome, Rend. Accad. Naz. Lincei 65, 602 (1927).

[80] P. Dirac, Note on exchange phenomena in the Thomas atom, Math. Proc.
Cambridge Philos. Soc. 26, 376 (1930).

[81] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136,
B864 (1964).

[82] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and
Correlation Effects, Phys. Rev. 140, A1133 (1965).

[83] M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, and K. A.
Lyssenko, Density functional theory is straying from the path toward the
exact functional, Science 355, 49 (2017).

[84] L. Hedin and B. I. Lundqvist, Explicit local exchange-correlation potentials,
J. Phys. C Solid State Phys. 4, 2064 (1971).

[85] J. P. Perdew and Y. Wang, Accurate and simple analytic representation of
the electron-gas correlation energy, Phys. Rev. B 45, 13244 (1992).

[86] D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a
Stochastic Method, Phys. Rev. Lett. 45, 566 (1980).

[87] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approxima-
tion Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[88] K. Burke, Perspective on density functional theory, J. Chem. Physics2 136,
150901 (2012).

[89] J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mixing exact ex-
change with density functional approximations, J. Chem. Phys. 105, 9982
(1996).

65



Bibliography

[90] J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a
screened Coulomb potential, J. Chem. Phys. 118, 8207 (2003).

[91] J. Heyd, G. E. Scuseria, and M. Ernzerhof, Erratum: “Hybrid functionals
based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)],
J. Chem. Phys. 124, 219906 (2006).

[92] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insu-
lators: Hubbard U instead of Stoner I, Phys. Rev. B 44, 943 (1991).

[93] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P.
Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide:
An LSDA+U study, Phys. Rev. B 57, 1505 (1998).

[94] A. Janotti, D. Segev, and C. G. Van de Walle, Effects of cation d states on the
structural and electronic properties of III-nitride and II-oxide wide-band-gap
semiconductors, Phys. Rev. B 74, 045202 (2006).

[95] P. Erhart, K. Albe, and A. Klein, First-principles study of intrinsic point
defects in ZnO: Role of band structure, volume relaxation, and finite-size
effects, Phys. Rev. B 73, 205203 (2006).

[96] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Density-Functional
Theory for Fractional Particle Number: Derivative Discontinuities of the
Energy, Phys. Rev. Lett. 49, 1691 (1982).

[97] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations,
Phys. Rev. B 13, 5188 (1976).

[98] W. E. Pickett, Pseudopotential methods in condensed matter applications,
Comput. Phys. Reports 9, 115 (1989).

[99] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue
formalism, Phys. Rev. B 41, 7892 (1990).

[100] P. E. Blöchl, Generalized separable potentials for electronic-structure calcula-
tions, Phys. Rev. B 41, 5414 (1990).

[101] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953
(1994).

[102] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector
augmented-wave method, Phys. Rev. B 59, 1758 (1999).

66



Bibliography

[103] A. Kiejna, G. Kresse, J. Rogal, A. De Sarkar, K. Reuter, and M. Scheffler,
Comparison of the full-potential and frozen-core approximation approaches to
density-functional calculations of surfaces, Phys. Rev. B 73, 035404 (2006).

[104] A. Ghysels, V. Van Speybroeck, E. Pauwels, S. Catak, B. R. Brooks, D. Van
Neck, and M. Waroquier, Comparative study of various normal mode analysis
techniques based on partial Hessians, J. Comput. Chem. 31, 994 (2009).

[105] H. Li and J. H. Jensen, Partial Hessian vibrational analysis: the localization
of the molecular vibrational energy and entropy, Theor. Chem. Acc. 107, 211
(2002).

[106] A. Togo and I. Tanaka, Evolution of crystal structures in metallic elements,
Phys. Rev. B 87, 184104 (2013).

[107] A. Togo, L. Chaput, and I. Tanaka, Distributions of phonon lifetimes in
Brillouin zones, Phys. Rev. B 91, 094306 (2015).

[108] W. Zhong and D. Vanderbilt, Effect of quantum fluctuations on structural
phase transitions in SrTiO3 and BaTiO3, Phys. Rev. B 53, 5047 (1996).

67





Paper I

Size and shape of oxygen vacancies and protons in acceptor-doped barium
zirconate
Erik Jedvik, Anders Lindman, Magnús Þór Benediktsson and Göran Wahnström
Solid State Ionics 275 (2015) 2-8





Paper II

Vibrational characterization of electronic defects in oxyhydride barium titanate
Erik Jedvik Granhed, Anders Lindman, Carin Österberg, Maths Karlsson and
Göran Wahnström
To be Submitted


	Introduction
	The perovskite structure
	Ideal crystal structure
	Distorted crystal structures
	Tilts and instabilities
	Point defects
	Hydration 
	The oxyhydride barium titanate
	Polaron as a quasi-particle

	Energy of point defect formation
	Formation energy
	Chemical potentials for the gas phases
	Vibrational free energy for the solid phases
	Effect of constant pressure vs constant volume

	Configurational entropy

	Chemical expansion
	A thermodynamics view on strain
	The defect induced strain tensor
	Strain in one dimension
	The strain tensor

	Electronic structure calculations
	Adiabatic Approximation
	The Hartree-Fock approximation
	The Hohenberg-Kohn Theorems
	The Kohn-Sham Approach
	The Kohn-Sham equations
	Approximations to the Exchange-Correlation Functional
	Local Density Approximation
	Generalised Gradient Approximation
	Hybrid functionals
	DFT+U – ``poor man’s hybrid''

	Implementation in periodic solids
	Plane waves
	Finite sampling 
	Pseudopotentials and PAW


	Vibrational motion
	One-dimensional diatomic chain
	High symmetry points
	Limiting cases I. Identical masses
	Limiting cases II. Localised vibrations 
	Application in oxyhydrides

	Phonons as lattice modes 
	q-space
	Atomic displacements
	Bandspectrum
	Density of State
	Limiting case. Localised modes.
	Lattice stability

	Computational aspects
	Localised hydrogen modes


	Summary of appended articles
	Paper I
	Paper II

	Summary and Outlook
	Acknowledgments
	Bibliography
	Papers I-II

