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Abstract
Natural geomaterials are anisotropic and will always have a degree of uncertainty due
to the geological and loading history. In today’s engineering practice, however, design
calculations are restricted by one deterministic analysis. This leads to characteristic values
to be picked on the ‘safe side’ and thus to overly conservative, hence costly, designs with
an unknown degree of uncertainty. An alternative method to approach the problem, as
adopted in this Thesis, is to use a probabilistic method that includes the spatial variability
in soil properties in the analysis. In this case the Random Finite Element Method is used
for the first time with a realistic constitutive model for the soil. As a result rather than
varying an arbitrary undrained shear strength property the pre-consolidation pressure is
varied. This, for the first time, leads to a RFEM method where stiffness and strength,
which are stress path dependent, emerge from the spatial variation in pre-consolidation
pressure. Furthermore the appraoch is benchmarked against a well documented test
site where an old railway embankment on soft soil which was brought to failure. The
spatial variation is estimated by transformed Gaussian fields using kriging interpolation
and analyzed by 500 Monte Carlo simulations within a Finite Element framework. The
results show that spatial variation of apparent preconsolidation pressure influence the
embankment stability with up to 10 %. The research also highlights the uncertainties due
to sample locations and its influence on the results.

Jord är ett anisotropiskt material med spatial variation. Enligt nuvarande geoteknisk di-
mensionerings praxis, representeras jordmaterialparametrar av karaktäristiska värden och
beräknas med en enda deterministisk analys. Detta leder till val av karaktäristiska vär-
den på den "säkra sidan" och således till dyra och konservativa dimensioneringar med en
ouppskattbar andel osäkerhet. En av anledningarna till denna förenkling är beräkningska-
pacitet, men på senare år har denna ökat avseendevärt vilket möjliggör för metodik med
flera simuleringar, så kallad probabilistisk analys, där parameter osäkerhet kan uppskattas.
I detta examensarbete evalueras en probabilistisk modell av Perniö skredexperimentet, en
järnvägsbank på lera lastat till brott, mot fältmätningar. Studien påvisar osäkerheterna i
brottslast, brottstyp samt deformationer, orsakat av den spatial variation av förkonsolider-
ingstryck. Variationen är uppskattad med transformerade Gaussiska fält från kriging in-
terpolation och beräkningarna utförda genom 500 Monte Carlo simuleringar av Finita Ele-
mentmetoden. Resultatet visar att den spatial variation av förkonsolideringstryck påverkar
järnvägsbankens stabilitet med upp till 10%. Forskningen belyser även osäkerheter orsakat
av provtagningens placering utifrån resultatet.

Keywords: Embankment stability, Reliability, Kriging interpolation, Monte-Carlo simula-
tions, Probabilistic model, RFEM, Soft clay, Python.
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Terminology descriptions

Descriptions of frequent used terminology:

Deterministic model refers to a tool for estimating the a potential outcome in which no
randomness is involved. A deterministic model will thus always produce the same
output from a given starting condition or initial state.

Probabilistic model or stochastic model, refers to a tool for estimating probability dis-
tributions of potential outcomes by allowing for random variation in one or more
inputs over time. The random variation is usually based on fluctuations observed in
data.

Reliability the degree to which the result of a measurement, calculation, or specification
can be depended on to be accurate.

Aleatoric uncertainty or Natural variability, refers to the randomness of natural processes
created by its temporal and spatial variability.

Epistemic uncertainty or Knowledge uncertainty, refers to the uncertainty due to lack of
knowledge or understanding of the site.

Bias The amount of inaccuracy in a measurement or calcualtion

Variability The amount of imprecision in a measurement or calcualtion
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1 Introduction

1.1 Introduction

Natural geomaterials are anisotropic and will always have a degree of uncertainty due
to the geological and loading history. As a result it is explicitly stated in the current
geotechnical Eurocode EN 1997-1:2004 (2004) that this variation has to be accounted for.
In today’s engineering practice, however, design calculations are restricted by one deter-
ministic analysis. This leads to characteristic values to be picked on the ‘safe side’ and
thus to overly conservative, hence costly, designs with an unknown degree of uncertainty.
Hence, an increasing research community argues that geotechnical design methods should
adapt such that uncertainties due to soil variations is properly incorporated (Phoon and
Retief, 2016; Hicks and Jommi, 2014; Bakhtiari, 2011; Griffiths and Fenton, 2007; Baecher
and Christian, 2003; Peschl and Schweiger, 2003; Alén, 1998; Larsson et al., 2005; Van-
marcke, 1977). One of those alternative approaches is to use a probabilistic model, which
estimates the uncertainty through the probability of failure. Through this approach, the
variation of parameters can be modelled and uncertainties assessed in a more quantitative
manner then compared to the deterministic models used today.

The Random Finite Element Method (RFEM), is a probabilistic model which takes
spatial variation in account by an certain parameter using random field theory (Fenton
and Griffiths, 2008). It is one of many available probabilistic methods, but the use of
these in practice have so far been sparse. In a special issue on this topic in the journal
Géotechnique, Hicks (2005) argues that it may be due to a understandable reluctance to
change long-established working methods, as well as for the demanding computational
effort required in addition none of these methods have been properly validated for a field
case. Nonetheless, in recent years scientific progress and computer speed has increased
substantially. This enables the necessary step towards a more reliability-based philosophy.

1.2 Background

In Scandinavia, a considerable amount of infrastructure is constructed on embankments
on soft soils. Stability assessment of these embankments are usually preformed with tra-
ditional limit equilibrium methods. But these methods give inaccurate results, since they
do not account for; sequential loading, structural elements, non-elliptic failure surfaces
and the complex stress-strain behaviour in soft soils Matthews et al. (2014). Hence, it
is shown that the Finite Element Method (FEM) gives a more accurate result in more
complex cases. But the precision due to spatial or temporal parameter variation and soil
model uncertainty still is not accounted for. As a result improved Ultimate Limit State
(ULS) methods for embankment stability are still needed.

In Finland, a full-scale embankment failure test was conducted in 2009 (Lehtonen et al.,
2015). The test site, from now on referred to as the Perniö test embankment, aimed to
provide more data for research on improving calculation methods on embankment stability.
In an existing study by Mansikkamäki (2015) the performance of different soil models
incorporated in FEM were benchmarked using analysis of the Perniö embankment. The
results showed that advanced anisotropic soft soil models, such as S-CLAY1S, showed
overall better accuracy in estimating pre-failure behavior, such as deformations and pore
pressures. But did not outperform any of the simpler models in terms of the ULS failure
load. This indicates that the effect of parameter uncertainty do to natural variation could
still be a significant contributor to the uncertainty in ULS analysis.

CHALMERS, Master’s Thesis 1



Introduction

1.3 Aims & objectives
The aim is to study the uncertainties of: embankment failure load, pre-failure dis-

placements and failure mode due to the spatial variation of the apparent preconsolidation
pressure is studied. Both Deterministic and probabilistic models are benchmarked against
a well documented field case with ample data on the soil properties and the monitored
mechanisms in during the failure test. This leads to the following objectives:

- Use of the Random Finite Element Method (RFEM) with a realistic non-linear soil
model for soft soils where the strength emerges as function of stress path

- Benchmark the RFEM against a well documented field case on embankment failure
- Develop the necessary numerical tools for probabilistic interpretation of laboratory

data
- Create a probabilistic front end for a commercially available deterministic FE soft-

ware package (PLAXIS).

1.4 Thesis outline
Including this introduction, the thesis includes five chapters, three appendices and a

reference list.
Theory Gives a necessary theoretical review regarding: uncertainties, previous research

and probabilistic methods in geotechnics and random field theory.
Methods Proposes the methodology of the study and assumptions for the random field

generation of the deterministic and probabilistic datasets used in the analysis. Fi-
nally, the numerical model is described with all corresponding parts used to compute
failure load, failure mechanism and pre-failure deformations.

Results Presents the study finding from both the deterministic and probabilistic model.
All results are compare to field observations from the failure test.

Conclusions Reviews the main findings and gives some recommendations for future re-
search.

Appedices, I-III Provides additions information regarding the Perniö test site.

2 CHALMERS, Master’s Thesis



2 Theory
This chapter aims to introduce readers unfamiliar to the probabilistic methodology used in
this thesis. If confident, it is possible to skip this chapter and come back later if necessary.
The chapter consists of following three sections:
Section 1: Reliability Based Design, describes different sources of uncertainty and the

concepts of Reliability Based Design together with an review of previous research in
the field.

Section 2: Probability, aims to refresh the readers memory on the subject of statistics and
probability theory.

Section 3: Geostaistics, gives an summary of the geostatistics and random fields.

2.1 Reliability Based Design
Reliability - means to what degree a measurements or calculation can be accurate. This

"degree" also called precision, as illustrated in Figure 2.1. In statistics, the accuracy is
called bias and precision is referred to as variability.

Figure 2.1: The reliability of measurements or evaluated results to a reference value
is measured in precision and accuracy, figure created by Pekaje (2017)

One deterministic analysis generates one result, when compared to a reference value, the
accuracy can be evaluated. But not the precision. By Reliability Based Design (RBD),
both the accuracy and precision of a analysis is possible to measured. In geotechnics, this
precision in calculations are often linked to different types of uncertainties.

2.1.1 Sources of Uncertainty in Geotechnics

In Figure 2.2, the three main sources of uncertainties in geotechnics are illustrated
(Baecher and Christian, 2003; Vanmarcke, 1977).

The first source of uncertainty is the natural variation or Aleatoric uncertainty. The
inherent randomness of nature in both time (temporal variability) and location (spatial
variability). In soils, it is caused by the natural variation in soil composition and stress
history. It is estimated by studying statistical patterns, such as trends and fluctuations,
in observed data. This uncertainty is possible to model using mathematical formulations.

The second source of uncertainty is the knowledge uncertainty or Epistemic uncertainty.
Referring to uncertainty due to lack of information, caused by insufficient measurements
or understanding. This uncertainty can be further divided into three underlying subcat-
egories. Namely, the uncertainty in: study site, soil model and model parameters. The

CHALMERS, Master’s Thesis 3



Theory

Risk Analysis

Knowledge
Uncertainty

Natural
Uncertainty

Operational
Uncertainty

Temporal Variation

Spatial Variation

Study site

Soil model

Parameters

Human error

Disturbed samples

Mechanical faults

Figure 2.2: Sources of uncertainties in risk analysis after (Baecher and Christian,
2003).

study site, is for example, the lack of information due to restricted numbers of samples or
tests on site; measurement errors, due to instrumentation accuracy and systematic mea-
surement errors (bias in testing method) or unrepresentative samples. Model uncertainty
is referring to how well the mathematical models is describing a real physical behavior. In
geotechnics, this could be the approximations made by a soil models to real soil behaviour.
Finally, the last subcategory refers to parameter evaluation. The statistical uncertainty in
data handling and parameter estimation. For example, inconsistency on site or measured
data and statistical assumption.

The third source of uncertainty, is due to imperfections in measurements caused by the
"human error". A example of this is sample disturbance. But also faults in construction
or machinery. This source of uncertainty is in most cases the main source of damage
according to Blaut (1982) in Schuppener and Heibaum (2011).

This thesis primarily deals with the first type of uncertainty, the inherent natural vari-
ability. It can be modelled using random field theory but before going deeper into the-
oretical aspects, a short summery is given of pioneering work in the field together with
some probabilistic methods.

2.1.2 Earlier Research

In 1971 was the international conference Application of Statistics and Probability in
Soils and Structural Engineering held in Hong Kong, an pioneering "milestone" according
to Rétháti (1988). This since from this conference described a large number of statistical
working methods regarding soil variation. In the following years more progress was made
regarding spatial risk analysis and spatial variations. In the work by Vanmarcke (1977) the
concepts of spatial variation and methodology through random field theory by autocorre-
lation is presented. It can be seen as starting point in this specific field. Another notable
study on spatial variation is Soulié et al. (1990) where the spatial variation of undrained
shear strength on a clay deposit was estimated using ordinary kriging interpolation.

There is a great number of contributors to to field of today. But, Baecher and Christian
(2003); Fenton and Griffiths (2008) is considered the two state-of-the-art books in RBD
in geotechnics.

4 CHALMERS, Master’s Thesis



Theory

2.1.3 Probabilistic Models

A stochastic or probabilistic model is used to estimate approximately what will hap-
pen. The word stochastic comes from the Greek stokhastikos meaning "aim at or guess"
(Kobayashi et al., 2012).

Before a soil model can be made, a site investigation has to be performed. With enough
in-situ field tests the parameter can be estimated with statistics. The soil samples gives
additional information, a signal of sorts, regarding the spatial variation of these values.
When a proper site investigation have been carried out, calculation can be performed.

In Figure 2.3 a comparison between a deterministic and probabilistic models are given.
A deterministic model uses one single characteristic value for the calculation and generates
one single result, in stability problems for example an Factor of Safety (FOS). Probabilistic
models can be divided into two types: models with and without consideration of spatial
variation. Without consideration of spatial variability, are models sometimes also referred
to as simple probabilistic models since only the statistics (mean and variance) of samples
are considered but not the spatial variation. Examples of such models are the First and
Second Order Reliability Method (FORM/SORM) (Baecher and Christian, 2003) . With
consideration of spatial variability are models also referred to as advanced probabilistic
models. One example is RFEM which takes in accounts of both the statistics and the
spatial variation thorough random field theory (Fenton and Griffiths, 2008).

Field test
Observation

Probabilistic Approach

With Spatial Variation

Characteristic value

Simulations

● Lab tests
● CPTU

FOS

Statistic

Mean: μ
Variance: σ2

.

..
.

Reliability

No Spatial Variation

Simulations

Reliability

. ..

Drilling rig

Reference Soil Deterministic Approach

Figure 2.3: Comparison between: one deterministic analysis and two probabilistic
analysis with and without spatial variation taken in account

In this thesis, spatial variability is taken in account by an RFEM model. In order use
the RFEM for analysis, a random field has to be created, something not familiar to all
engineers. However, before elementary knowledge of some statistics is needed and will
hence be described in the next section.
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2.2 Probability

The term probability refers to the chance of an Event A to happen. The probability of
event A is denoted P (A) and is any number satisfying 0 ≤ P (A) ≤ 1.

2.2.1 Discrete Random Variables

A discrete Random variable (RV) usually denoted X only take discrete values (x1, x2, . . . )
for instance 5, 6 or 7. The RV is generally defined as a real-valued random function X(ω)
that generates a outcome or elements ω from its sample space Ω. The RV is described by
Equation 2.1 and illustrated in Figure 2.4.

X(ω) = ω Ω = [ω1, . . . , ωN ] A = [ω : condition] (2.1)

ω1

ω2

ω3

X(ω1)

X(ω2)

X(ω3) A

Figure 2.4: A random variable X(ω) with three random samples.

fx(x) is call the probability mass function (PMF) for a discrete variables. The PMF
contains the probability for any element in RV sample space. It is used to calculate the
probability for P(A) for any event A such that

P (A) =
∑
A

fx(x) x ∈ A 1 =
∑

x

fx(x) (2.2)

Example: Let the RV X be a normal dice. X have six possible outcomes from the samples
space Ω = [1, 2, 3, 4, 5, 6]. One RV simulation or one dice roll X(ω), generates one
random sample ω. What is the probability for P (A) = 6? The solution is simply:

P (A) =
1
n

n∑
i=1

fx(x)xi =
1
6

N∑
i=1

1 =
1
6 (2.3)

2.2.2 Continuous Random Variables

For a continuous random variable X, the PMF is integrated over its sample space turns
to the probability density function PDF, denoted as

PDF (x) = fx(x) (2.4)

The probability of the event A is written as,

PDF (A) =
∫

A
fx(x)dx x ∈ A (2.5)
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The PDF over the entire domain is always equal to one,∫ ∞

−∞
PDF (x)dx = 1 (2.6)

A RV sample space is can be described by the cumulative distribution function CDF
denoted Fx(x). The CDF can be defined as the area under the PDF.

CDF (x) = Fx(x) =
∫

x
Fx(x)dx (2.7)

As the CDF increases it approaches 1 from 0,

Fx(−∞) = 0 Fx(∞) = 1 (2.8)

The probability of x in the interval (x1, x2) is computed accordingly,

PDF (a ≤ x ≤ b) =
∫ a

b
fx(x)dx = CDF (b) − CDF (a) (2.9)

∫ b
a fx(x)dx

PDF

a b

pd
f.n

or
m

CDF

b a

cd
f.n

or
m

f x
(x
)

x

F
x
(x
)

x

0

1

Figure 2.5: Probability Density Function (left) and Cumulative distribution function
(right) of a normal distribution.

2.2.3 Moments of a Distribution: Mean and Variance

To fit random variables to field data it is necessary to describe the data statistically.
This is done by a statistical measurement called moments. Through moments a RV can
be fitted approximately. The two most common measures are the central tendency (1:st
moment) and variability the (2:nd moment). The univariate moment of degree k is defined
as:

Mk =
1
N

N∑
i=1

[xi − E(x)]k = E[x − E(x)]k (2.10)

Where N is the total number of elements and E(X) refers to expected value of X, for
k = 1 the mean is equal the expected value hence often denoted as E(x) = µx.

The first moment, defines the central tendency of the distributions. It is measured in
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mean (expected value) or median. For discrete and continuous distributions the mean is
denoted as µx respectively and defined as:

M1 =
1
N

N∑
i=1

xi = µx = E(X) if X is discrete (2.11)

M1 =
∫ ∞

−∞
xf(x) = µx = E(X) if X is continuous (2.12)

the sample mean x̄ is using a subset n from N, and defined as

x̄ =
1
n

n∑
i=1

xi (2.13)

The median is sometimes used over mean for robustness, since the mean is more sensitive
for extreme values in the distributions. The median is defined as the point which divides
the distribution in the middle.

The second moment, variability, is a measure of the distributions spread. The variance
is denoted as σ2

x and defined by

M2 =
1
N

N∑
i=1

(x − µx)
2f(x)x = E[(X − µx)

2] = σ2
x = V ar(x) (2.14)

M2 =
∫ ∞

−∞
(x − µx)

2f(x) = E[(X − µx)
2] = σ2

x = V ar(x) (2.15)

The standard deviation σ is equal to the square root of the variance σ =
√

V ar(X).
Standard deviation is also used for a measurement of spread. But is influences by the
distribution mean. A normalized measure of variation is the coefficient of variation v
which represents the ratio between the standard deviation and the mean.

v =
σ

µ
(2.16)

2.2.4 Covariance and Correlation

Two random variables might influence each other, in so called Covariance (CoV). The
covariance is central for random field theory, which is explained later in section 2.3. One
typical example of covariance in geotechnical engineering is between the soil parameter
shear strength c and friction angle φ. The variation between these two are correlated such
that a low value of c effects the probability of φ to also be low.

The relationship between the covariance of two random variables X and Y and their
joint probability distribution fxy(x, y), is defined as

Cov(X, Y ) = E[(X − µx)(Y − µy)]

=
∑

x

∑
y

(x − µx)(y − µy)fxy(x, y)

=
∫ ∞

−∞

∫ ∞

−∞
(x − µx)(y − µy)fxy(x, y)dxdy

(2.17)

In Figure 2.6, two random variables X and Y are shown with the covariance in-between
them marked in orange. The covariance of two variables X and Y can also be computed
with the known mean of µx and µy as following
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P (X)

P (Y )

X Y

P
x

,y
(X

,Y
)

Figure 2.6: Figure of two random variables X and Y and their bivariate probability
density function fxy(x, y)

Cov(X, Y ) = E(XY ) − E(X)E(Y ) = E(XY ) − µxµy (2.18)

Statistical correlation means that two variables may showing causal dependence by
each other. One measurement for correlation between X and Y is the Pearson correlation
coefficient ρxy and is defined as

ρ =
COV (XY )√

V ar(X)V ar(Y )
=

COV (XY )√
V ar(X)V ar(Y )

(2.19)

Lets assume that for some observed values y is depend on a single variable x. One way
to test this hypothesis is by a linear regression model.

2.2.5 Linear Regression Model

Observe the measured data in Figure 2.7. The hypothesis is that observed data points
are correlated such that yi is dependent on xi and follow a hypothetical trend line. By
regression the measurements is approximate by simple linear or polynomial regression
model defined as:
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y = α + β1x + ε y = α + β1x + β2x2 + ε (2.20)

where y is the target variable, or the dependent variable; x the explanatory variable or
the independent variable; α, β the regression parameters (intercept and slope) and ε the
random error or residual.

Measured data

a)

Model fitting

b)

Final model

c)

Figure 2.7: An example of fitting a simple linear regression model to measured data:
a) observed data points , b) Fitted linear model with min(RSS) residual distance in
black and c) shows the final model with a 95% confidence interval boundries.

The fit the parameters α, β is by least squares; the methods minimizes the total area
made by the distance from the line to the measured point in square, we call this area the
Residual Sum of Squeres (RSS) and define it as:

RSS = S(α, β) =
n∑

i=1
(yi − α − βx)2 =

n∑
i=1

ε2 (2.21)

It’s important to understand that the parameters α, β are optimized in such way that
it minimizes the RSS, the residual distance are illustrated in figure 2.7b).

2.2.6 Spatial Interpolation

Spatial data is any value at a specific point in space given by coordinates in 2D (x, y)
or 3D (x, y, z). Spatial interpolation techniques is used to predict a unsampled point Z∗

between two or more data points. Interpolation techniques can be divided into two groups,
local and global techniques (Laaha, 2016).

Local techniques estimates the unsampled point by only take in account of data points
closest to it. Examples of such techniques are: linear interpolation, triangulations and the
nearest neighbor method. Global techniques on the other hand uses all the data for the
value prediction, examples of such techniques are: Inverse Distance Weighting (IDW) and
Kriging interpolation.

All techniques uses weights for prediction. A weight is a real-value λ ∈ [0, 1] given to a
data point Zα to predict the value of an estimate Z∗. Let n be the number of spatial data
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points; the interpolation of Z∗ is then the sum of local or global data points Zα times each
weight λα.

Z∗ =
n∑

α=1
λαZα (2.22)

A important condition for the weights is that they are unbiased. This means that λα

is equal to the estimate λ∗ at any data point, denoted as E(Z∗
α) = E(Zα), which in turn

also means that sum of the weights
∑n

α=1 λα is equal to 1, such that over or undershooting
i restricted.

Local Global

b) c)a)

?
dα λα

Z∗

Zα

Zα+1 Z∗

Figure 2.8: Illustration of 2D interpolation; where a) shows the unsampled point Z∗

being estimated by both local b) and global c) interpolation; where Zα is the measured
data point and dα its distance from Z∗.

Figure 2.8 shows spatial data and examples of local and global interpolation techniques.
Weights are usually calculated as a function of either distance or area between the data
points Zα and the unsampled point Z∗. A simple local interpolation technique such as
triangulations, gives the weights λ to the data points Zα based only on the distance
between it and the unsampled point Z and Z∗, let us denote this distance dα, see figure
2.8. The weights is given by the relative linear distance, λ = dα/

∑
dα. Clearly, this is

not a optimal method since it does note take in account all the sampled data. Over and
down-shooting also arise when points are clustered.

An alternative method is to use regression technique over the domain of study and
estimate both the predicted value and the uncertainty.

2.3 Geostatistics
Kriging: " A collection of generalized linear regression techniques for minimizing an esti-

mation variance defined from a prior model for a covariance" (Olea, 1991, p.41)
The kriging method, named by Matheron after Krige, optimizes the interpolation by us-

ing linear regression on the unsampled point Z∗ (Wackernagel, 2003). From the regression
technique the method gives both an estimate and variance in the point of consideration.
The estimate on the unsampled point Z∗ is defined as

Z∗(x) =
n∑

α=1
λαZ(xα) =

n∑
α=1

λαγ(x − xα) (2.23)

Where γ is the semivariance function or variogram is central in kriging interpolation. It
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defines the covariance between the unexampled value and estimate depending on distance.
These two values are refers to as the start or head value xi and the end or head value yi.
The semi-variogram value for N samples, considering one lag h is defined as:

γ(h) =
1

2N(h)

N(h)∑
i=1

(xi − yi)
2 (2.24)

where; N , is the number of pairs, xi, the start or tail value of the pair i and the end or
head value.

Figure 2.9 shows the correlation parameters of the spatial structure in relationship to
the variogram. The correlation parameters are the following: the priori variance or nugget
value C0. Which is the variance do to experimental error or other causes in the evaluation
of sample values. The constant variance value or Sill value C and the distance a until the
variogram reaches a constant variance refers to as the range or correlation length.

Range: a

Sill: C

Nugget: C0

Se
m

i-v
ar

ia
nc

e:
γ
(h
)

distance: h

Figure 2.9: Definitions of the correlation parameters in the variogram

One way to explain why the semivariogram is used is by the considering the two signals
in Figure 2.10. They have the same statistics, mean and variance, but are clearly different.
A new statistical term is needed in order to distinguish them, the correlation length, which
is defined through the variogram.

Signal 1

Signal 2

xi(z)

yi(z)

lag : h

Figure 2.10: Two signals: with and without spatial correlation

In Figure 2.11, the signal semivariograms are shown. These are generated from evaluat-
ing the semi-variance value from all possible distance lag pairs. In the figure, the variogram
vales are marked with circles. Signal 1 show low semivariance on short distances, compared
to Signal 2 which shows constant high semivariance values on all distances. The conclusion
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from this image is that Signal 1 is spatially correlated within a distance, while Signal 2 is
show no sign of correlation. The distance where sampels are correlated is referred to as
range, correlation length or scale of fluctuation denoted a or θ.

Signal 1

Corr. length: θ

se
m

i-v
ar

ia
nc

e:
γ

Signal 2

Lag distance: h

Random structure

se
m

iv
ar

ia
nc

e:
γ

Figure 2.11: Two variograms to corresponding signal: showing spatial correlation and
a random structure

In order to simulate a Gaussian random field a theoretical correlation model is fitted to
the empirical data. When simulating a random field, the degree of anisotropy ξ is often
used (Fenton and Griffiths, 2008). Figure 2.12 shows the influence of ξ on the random
field simulation. It is defined a the ratio between the horizontal and vertical correlation
length denoted

ξ =
θh

θv
(2.25)

ξ = 1 ξ = 2 ξ = 5 ξ = 10

Isotropic Anisotropic

Figure 2.12: The influence of different degrees of anisotropy on the Gaussian random
field
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3 Methods
3.1 Outline
The method outline can be described in four stages as illustrated in Figure 3.1.

Stage 1: In the first stage, the geology of the Perniö test embankment is described to-
gether with selected soil models and corresponding parameters. From samples the
initial OCR data is statistically evaluated and checked for fulfilling the criteria of
normality and stationarity, which is necessary for the subsequent kriging interpola-
tion.

Stage 2: In this stage, anisotropic kriging interpolation is performed by a theoretical
variogram model fitting to estimated pair values on site. The interpolation is done
using the geoR library in R which generates two rasters; one with the variance of
the OCR and one with the estimate. These two raster are then used to simulate the
RFEM raster in the next stage.

Stage 3: The two kriging rasters are used to generate three deterministic rasters; one
maximum, minimum and estimate raster and 500 RFEM rasters. The deterministic
and probabilistic rasters are used in the next stage as input for the FEM analysis.

Stage 4: In the last stage, each deterministic and RFEM raster for the embankment are
calculated by FEM in PLAXIS 2D. A Python script parses the RFEM raster to the
PLAXIS code for Monte Carlo simulations that calculate embankment failure load
and pre-failure deformations. These results are exported and saved for further post
processing.

Initial borehole data

Variance

Estimate

Generation of
Random fields using 
the geoR library 

Assumption of 
Heteroscedasticity allows 
simulation of  gaussian 
raster fields

Nsim

for : Nsim

RFEM Raster datasetKriging interpolation

Stage 1

Stage 2 Stage 3

Stage 4 Monte Carlo simulations

Figure 3.1: Figure of the method procedure in four stages

In the following sections, the methodology is further elaborated. The first stage in the
procedure is to characterise Perniö test site and summarise the initial borehole data.
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3.2 Study Site

3.2.1 Perniö Test Embankment

In October 2009, a full-scale embankment failure test was conducted on an old railway
embankment, located close to the city of Perniö in South West Finland (Lehtonen et al.,
2015). A map of the geographic location together with more maps of the site is found in
Appendix A.

The test embankment was built on initiative of Tampere University of Technology and
the Finnish Transport Agency, simulating a fully loaded train, bringing the embankment
to failure. The failure test procedure was conducted by loading the carts on top of the
embankment, which failed by an undrained creep rupture mechanisms 28 hours after the
87 kPa load step. For a complete description of the test is referred to (Lehtonen et al.,
2015; Lethonen, 2011).

A train coming to a standstill on the embankment was
simulated by gradually filling modified shipping containers
with sand. The containers rested on four steel frameworks
that simulated four typical 12 m long two-bogey rail cars
(Fig. 7). Each car had a stack of 2þ2 containers. The tops of
all containers and floors of the top containers were removed
so as to be able to fill them without having to add the top row
during the test. The frameworks distributed the load to
the embankment by wayof I-beams resting on the tracks. The

beams were positioned so that they realistically matched a
typical Finnish train axle configuration.

IN SITU INSTRUMENTATION
The two primary purposes of the in situ instrumentation

were to collect data regarding the soil response during
loading and failure, and to test the suitability of various in
situ sensor systems for monitoring embankment stability

Each car consisted of
2+2 shipping containers
Stacked containers were 
modified so that they were
open from top to bottom

2·00 m
2·00 m

12·00 m

(a)

(b)

Containers gradually
filled with sand

Longitudinal beams
2 × HE300B

Transverse beams (axles)
4 × HE220B

4·00 m

Fig. 7. (a) Test site and containers before loading; (b) container layout used to simulate train car loading pattern

Car 1

Excavated ditch

Car 3

A
AN

10 m

Prism
Settlement tube and pressure transducer
Inclinometer
Slip indicator tube/surveying point
Piezometer
Earth pressure transducer

Car 4Car 2

13
39

I4

I5

I6

41

43

Fig. 8. In situ instrumentation layout at the Perniö test site. Piezometers, inclinometers and settlement transducers, the data from which are
presented in Fig. 11, are shown using black symbols

FULL-SCALE EMBANKMENT FAILURE TEST UNDER SIMULATED TRAIN LOADING 965

Downloaded by [ TAMPERE UNIVERSITY OF TECHNOLOGY LIBRARY] on [03/01/17]. Copyright © ICE Publishing, all rights reserved.

Figure 3.2: Perniö test embankment with the placement of loading carts and measur-
ing instrumentation before the test procedure (Lehtonen et al., 2015)

Figure 3.2 shows the Perniö test embankment; to the left, the loading carts position;
and to the right, the excavated ditch to steer the failure direction. In-between, inclinome-
ters are installed to measure pre-failure displacements and failure mode. A map of all
instrumentation locations is shown in Appendix B whereas all relevant measurements for
this study are described further in Section 3.5.
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3.2.2 Site Conditions

Figure 3.3 shows the cross-section of study together with the soil profile. The section
is 30 m wide and 8 m in height. The initial ground surface is at approximately + 8.2
m elevation and the ground water level in the area is located at 1.5 m below the soil
surface (Lehtonen et al., 2015). Boreholes 44 and 43 are used to evaluate soil layering and
properties for the site.

Cross-section: A-A
A

A

-10 -5 0 5 10 15 20

0

5

10

15

Horizontal distance: m

El
ev

at
io

n:
m

Embankment

Old fill Excavated ditchDry crust

Clay
Varved silty clay

Sand/Moraine

43
44

Load

Figure 3.3: The cross-section of study at Perniö test embankment, together with
subsoil layers and the position of borehole 43 and 44.

3.2.3 Constitutive Soil Models and Parameters

From Borehole 44 and 43, samples are collected for further laboratory testing which in
turn are used to evaluate the model parameters. For the full site investigation map, see
Appendix B. A summary of characteristic constitutive soil models and parameters, for all
six layers in the soil profile, are summarised in Table 3.1.

1: The embankment, consists of sand and gravel with a thickness of 1 m (Lehtonen
et al., 2015). The saturated unit weight is assumed to be γsat = 19kN/m3. A
Mohr-Coulomb model with the stiffness of E′ = 40kPa was used together with a
effective friction angle of φ′ = 30 and cohesion of 5 kPa for improving numerical
convergence.

2: The old fill, has the same charismatics as the embankment but is 1.5 m in thickness
and a stiffness of E′ = 30kPa.

3: The crust, consists of 0.6-0.9 m weathered clay and a unit weigh of γsat = 18kN/m3.
A hardening soil model set for the layer with typical stiffness parameters: Eref

50
′ =
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25kPa and Eref
ur

′ = 75kPa to fit overconsolidated clay crust. The cohesion was
estimated to be 70 kPa.

4: The clay, which is the layer this Thesis will focus on, consists of 3.5- 4.5 m of
normally consolidated soft clay. The saturated unit weight is γsat = 15kN/m3. The
soft soil model was used with the stiffness parameters of λ∗ = 0.2 and κ∗ = 0.0015,
evaluated according the procedure presented in Gras et al. (2017).

5: The varved silty clay, is approximately 1.5 m thick and consists of soft clay with
inclusions of silt. The soft soil model is also used for this layer, but with slightly
stiffer parameters compared to the main clay layer λ∗ = 0.2 and κ∗ = 0.0015.

6: The Sand/Moraine, is located at bottom and consists of densely packed glaciers
moraine with and is estimated to be 3-4 m thick before bedrock.

Table 3.1: Material model parameters set for subsoil layers

Layers Embankment Sand/Fill Crust Clay Varved Clay Sand/Moraine Unit

General

Material model Model Mohr-Coulomb Mohr-Coulomb Hardening soil Soft Soil Soft Soil Mohr-Coulomb
Drainage type Type Drained Drained Drained Undr. (A) Undr. (A) Drained
Soil unit weight above
phreatic level

γunsat 16 16 15 14 14 16 kN/m3

Soil unit weight below
phreatic level

γsat 19 19 18 15 16 19 kN/m3

Inital void ratio einit 0.5 0.5 0.5 2.2 2.2 0.5 -

Parameters

Secant stiffness Eref
50 - - 25 - - - kN/m2

Tangent stiffness Eoed
50 - - 25 - - - kN/m2

Unloading stiffness Eref
ur - - 75 - - - kN/m2

Power of stresslevel
dependency

m - - 0.5 - - - -

Stiffness E
′ 40 30 - - - 20 kN/m2

Poissin’s ratio ν 0.3 0.3 - - - 0.3 kN/m2

Mod. compression
index

λ∗ - - - 0.2 0.15 - -

Mod. swelling index κ∗ - - - 0.015 0.02 - -
Effective cohesion c

′
ref 5 5 70 1 1 1 kN/m2

Effective friction angle φ 35 33 30 30 30 36 ◦

Dilatancy angle ψ 0 0 0 0 0 0 ◦

Advanced: Set to
default

Yes Yes Yes Yes Yes Yes -

Groundwater

Data set USDA USDA USDA USDA USDA USDA
Model Van Genuchten Van Genuchten Van Genuchten Van Genuchten Van Genuchten Van Genuchten
Soil type Sand Sand Clay Clay Silty clay Sand
<2µm 4 4 70 70 13 4 %
2µm - 50 µm 4 4 13 13 13 4 %
50µm - 2 mm 92 92 17 17 17 92 %
Set to default Yes Yes Yes Yes Yes Yes -
Horizontal permeability kx 7.1 7.1 0.047 0.047 0.004 7.1 m/day
Vertical permeability ky 7.1 7.1 0.047 0.047 0.004 7.1 m/day

Initial

K0 determination - Automatic Automatic Automatic Automatic Automatic Automatic
Overconsolidaion ratio OCR 1 1 2 Raster 1.4 1.4 -
Preoverburden pressure POP - - - - - - kN/m2
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3.2.4 Spatial Variation of OCR

All parameters are pre-defined except the spatial variation of apparent preconsolidation
pressure, which in this Thesis is estimated by a random field. The apparent preconsoli-
dation pressure, σp, is often expressed by the over consolidaion ration OCR, which is the
ratio between the σp and the in-situ effective vertical stress, σ′

v:

OCR =
σp

σ′
v

(3.1)

In Figure 3.4 the spatial variation of estimated OCR is illustrated with corresponding
boreholes. A total of 17 samples was taken from the two borehole close to the embankment;
8 samples from borehole 43 and 9 samples from borehole 44. The OCR values from
borehole 43 indicates a slightly more over consolidated clay compared to 44. Possibly due
to the old embankment effecting this location.

Spatial variation: Overconsolidation Ratio (OCR)
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Figure 3.4: The spatial variation of OCR in borehole 43 and 44 on site and the
estimation of OCR as the ratio of in-situ effective vertical stress, σ′

v, preconsolidaion
pressure, σp.
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The OCR was estimated through σ′
v and σp as illustrated in Figure 3.4. The σp, is

evaluated from 17 oedometer test. and for σ′
v following condition are assumed: a ground

water level, at +7 m elevation; ground level,at +8.2 m and soil unit weights, above of
γsat = 17 kN/m3 and γsat = 15 kN/m3, below and above 7m elevation.

Figure 3.4 shows that the OCR for the clay is ranging widely between 1 and 2, making the
selection of a single characteristic value hard. The OCR distribution is close to normally
distributed, with the global mean, µ = 1.3; and standard deviation of, σ = 0.3. All sample
with estimated values are summarized in table in Appendix C.

Before performing kriging interpolation, the OCR data has to fulfill two necessary cri-
teria; namely normality, meaning that the data is normally distributed; and stationarity,
refering to the first and the second moment is constant all over the data domain. The data
is found to be both normally distributed, as illustrated in the QQ-plot in Figure 3.5, and
stationary, giving no signs of significant trends. Fulfilling these two criteria, it is possible
to perform kriging interpolation on the OCR data.

3.3 Kriging Interpolation
The kriging interpolation is performed using the R library package "GeoR" provided by

Ribeiro and Diggle (2016). The spatial correlation of the OCR data is estimated using
the semi-variogram, denoted as

γ(h) =
1

2N(h)

N(h)∑
i=1

(xi − yi)
2 (3.2)

where; N , is the number of pairs, xi, the start or tail value of the pair i and; yi, the end
or head value.
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Figure 3.5: Normallity check of OCR Data through a QQ-plot and omnidirectional
variogram of OCR data showing the exponential model fit.

In Figure 3.5, the resulting semi-variogram values ,γ(h) are plotted in a omnidirectional
variogram. These values are binned (red), where the bin µ and σ is fitted with a expo-
nential semi-variogram model (blue). The exponential model is defined by the covariance
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parameters: range a and a positive variance contribution value or sill value C.

γ(h) = C(1 − e−3h/a) (3.3)

In this thesis, the covariance parameters used for the fitted exponential variogram model
is a range of a = 4.5 and sill of C = 0.15.

The scale of fluctuation θ, is defined as the range of distance wherein measurements
are correlated. Based on the relationship provided by Vanmarcke (1984), the scale of
fluctuations can be estimated from the exponential model range a.

θ =
2
3a (3.4)

The vertical scale of fluctuation, θv, refers to the correlation length in the vertical
direction. The range a is derived from the variogram seen in Figure 3.5. It is in vertical
direction since the variogram parameter a is fitted to the points in the range of 0 to 5
m, corresponding to only vertical pairs. Given the value a = 4.5, the vertical scale of
fluctuation is simply θv = 3m.

The horizontal scale of fluctuation, θh, could not be estimate from the variogram in the
same manner. this due to lack of horizontal pairs with different separation distances and
more borehole data is required to evaluate θh from the variogram properly.

A different way to estimate θh is by the degree of anisotropy, ξ, which is the ratio
between the horizontal and vertical scale of fluctuation, defined as

ξ =
θh

θv
(3.5)

Knowing, θv and ξ , would make it possible to derive θh. For this thesis, a reasonable ξ
was adopted from another study site with similar conditions.

In the study by Soulié et al. (1990), the correlation ranges for undrained shear strength,
Su, was estimated to 3 m and 10 m. Resulting in the degree of anisotropy of ξ = 10. Since
there is a relationship between Su and σp, and hence also OCR, similar spatial variation
are assumed for the Perniö site. When adopting the degree of anisotropy of ξ = 10 and
knowing θv = 3, it results in θh = 30.

Table 3.2 summerises the covariance parameters a and C, to the fitted exponential
variogram model γ(h) and the anisotropic conditions, ξ = 10, used for simulating the
kriging random fields.

Table 3.2: Summary of Perniö variogram parameters

Exponential varigram model
Parameters Symbol Value Unit
Vertical Range of correlation a 4.5 m
Sill value C 0.15 -
Degree of Anisotropy ξ 10 -
Vertical Scale of Fluctuation θv 3 m
Horizontal Scale of Fluctuation θh 30 m
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3.3.1 Homogeneous Random Field

The first kriging model is a homogeneous random field, assuming the same correlation
length in all directions, i.e ξ = 1.

Homogeneous field: Overconsolidation Ratio (OCR)

Estimation E OCR

0

5

10

15

El
ev

at
io

n:
m

1.00

1.30

1.60

1.90

43
44

Variance Var OCR

-10 -5 0 5 10 15 20

0

5

10

15

Horizontal distance: m

El
ev

at
io

n:
m

0.00

0.10

0.15

0.20

43
44

Figure 3.6: Figure of two homogenous random fields ξ = 1: illustrating the OCR
estimation (top) and variance (bottom) over the domain of study

In Figure 3.6, the estimate and variance of OCR is simulated by a homogeneous random
field exhibiting the same amount of variation in all directions. The theoretical exponential
variogram model infuses the variation of OCR in both the estimate and variance raster.
Consider the estimation raster; the values within the correlation distance, θv = θh =
4.5, are influenced by the measured OCR value. Further away, the value increases and
ultimately, at set the correlation distance of 4.5 m, converges to global OCR mean µ = 1.3.
The uncertainty or variance is influenced in a similar way. The variance is smaller closer
to the measured OCR values and increases by the distance.

The homogeneous model predicts the OCR for homogeneous conditions. But, as men-
tioned earlier: clays are to some degree anisotropic and variate differently by direction.
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3.3.2 Anisotropic Random Field

The second kriging model is a anisotropic random field with different correlation length
depending on direction, a 10 times difference is assumed, ξ = 10.

Anisotropic field: Overconsolidation Ratio (OCR)
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Figure 3.7: Figure of two anisotropic random fields, where ξ = 10: illustrating the
OCR estimation (top) and variance (bottom) over the domain of study

The estimate and variance of OCR is first simulated a homogeneous random field, in
order to simulate a degree of heterogeneity of ξ = 10, the fields are transformed in the
horizontal direction by the same degree, generating this anisotropic raster. In Figure 3.7,
the estimate and variance show in this case a difference in the variation depending on
direction imposed by the degree heterogeneity.

In this thesis, the anisotropic OCR model was used for the FEM calculation of: embank-
ment failure load and displacements. From these rasters, both deterministic and stochastic
datasets are created for the analysis, these are further explained in the following section.
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3.4 Spatial Estimation of OCR Used for Analysis
In this section, the OCR input for deterministic and probabilistic analysis are described.

The anisotropic model from the kriging interpolation is used, but due to software limi-
tations, it is necessary to down-scale the raster to the resolution of 60 × 12, which is
equivalent to 0.5 × 0.5 meters in real size.

Figure 3.8 illustrates the down-scaled estimate of OCR, EOCR, and standard deviation,
σOCR. Compared to Figure 3.7, it is possible see the effects due to lower resolution.
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Figure 3.8: The down-scaled anisotropic random fields

3.4.1 Deterministic analysis

Since one single deterministic analysis only generates one result, it is not possible to
estimate the uncertainty in parameters by one single analysis. However, by taking a
lower and higher bound of the uncertain parameter, and perform a sensitivity analysis,
corresponding results will indicate a range of the parameter uncertainty. Having the
anisotropic kriging model, it is possible to perform a sensitivity analysis with spatial
variation taken in account.

Min MaxEstimated

EOCR- σOCR EOCR+ σOCR EOCR 

1.5 1.8 2.121.281.0

OCR

Figure 3.9: OCR datasets used for the determinsistic analysis

In Figure 3.9, the three datasets for the deterministic analysis are illustrated: a minimum
value raster, mean or estimated raster, and maximum raster. The calculation of each raster
are as follows: Min = EOCR − σOCR , Max = EOCR + σOCR and Estimate = EOCR. It
is important to notice that values of OCR < 1 is adjusted to OCR = 1.

The three determinstic rasters may give the range of the uncertainty, but not give the
probability, for this more simulations are needed in a so called probabilistic approach.
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3.4.2 Probabilistic analysis

The dataset for the probabilistic model is assumes stationarity over the domain. Giving
the stationary condition, a total of 500 RFEM rasters are simulated by implementing each
cell independently with a normally distributed random number, generated according to
N(EOCR(x, y), σOCR(x, y)), where the EOCR and σOCR are the parameters illustrated in
Figure 3.8 .

RFEM Field: 500 simulations of Overconsolidation Ratio (OCR)

OCR

N(EOCR(x, y), σOCR(x, y))

-10 -5 0 5 10 15 20

0

5

10

15

Horizontal distance: m

El
ev

at
io

n:
m

1

1.3

1.7

2.0

2.3

Figure 3.10: A RFEM field of size 60 × 12 masked to the clay layer of study

Figure 3.10 shows a RFEM raster simulation. Note that it is possible to see the influence
of EOCR by the higher value of OCR below the embankment and also the variance σOCR

generating a scatter of variation over the domain.
By 500 simulations, 500 possible scenarios are created from the spatial probability of

the variogram. In the last stage, the presented OCR dataset are calculated using Monte
Carlo simulations in within an finite element framework.

3.5 Numerical model

In order to calculate the embankment failure load, deformations and failure mechanism,
a numerical FEM model is created using PLAXIS 2D.

In Figure 3.11, the numerical model is illustrated. The model is 30 m long and 8 m of
height, the boundary conditions are fixed at bottom and horizontally fixed on the sides.
The mesh is made from 3826 elements and 30913 nodes, refined around three inclinometers
used for the benchmarking of displacements, and also along a potential failure line. A
uniform load, Q, is placed on top of a 2.5 m wide stiff plate assigned stiffness parameters:
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EA = 5 × 106 kN/m and EI = 8500 kNm2/m, which is equivalent to a concrete slab of
thickness 0.15 m.

Numerical FEM model: boundaries and placements of inclinometers

30 m

8 m

2.5 m Total fixities

Horizontal fixities

Mesh nodeStiff plate

Uniform load

I1 I2 I3
Inclinometers

Figure 3.11: Geometry and bound conditions of the numerical model with inclinome-
ters used for benchmarking

Each simulation with an OCR raster set generates a embankment failure load and
deformation. The implementation of spatial variation raster into PLAXIS is made through
remote scripting using Python. The script is based on previous work by Akbas (2015) but
improved in order to take in account of spatial variation. The script generates the model
by first defining the geometry. Then, cutting out raster-size cells from the geometry and
assign these with a unique material model corresponding to the OCR value given by the
kriging raster. Lastly, calculations phases are set up according to the procedure of the
Perniö test embankment before analysis. For more details regarding geometry and material
models see Appendix XXX.

In Figure 3.12, the test procedure of Perniö embankment according the loading scheme
presented in (Lehtonen et al., 2015) and corresponding model phases are presented. The
phases simulate the test procedure which was conducted by loading the containers on
the top of the embankment gradually with sand. During the first three hours a load
of 21 kPa was created. At t=3:20 the experiment was halted overnight. The experiment
resumed next morning at t=16:45 and loaded with approximately 5.5 kPa/h until reaching
maximum load (87 kPa) at t=28:04.

In Table 3.3, model phases are summarized. The phases can be divided into two groups:
Before the experiment (Phase 1-4) and after (Phase 5-). Before the test, the site was
constructed; first, the initial ground level is modelled; then, the ditch is excavated and the
new embankment built; and finally, there is a consolidation phase of 5 days before the test
loading procedures. The test procedure is modelled by a loading phase from 0 to 24 kPa
in one single step, then the embankment is consolidate for 12 hours. The second loading
stage is again by 11 steps from 24 to 79 kPa. The step-wise increment is used for the
evaluation of failure mechanism which will be explained further later. If the embankment
have not failed by phase 18, the loading continues until failure.
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Incremental loading of embankment

Phase 1-4
Phase 5: Loading 24 kPa

Phase 6: Consolidation 12 h

Phase 7-18: Loading 24 to 87 kPa
24 to 87 kPa

Failure load: 87 kPa
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Figure 3.12: Measure loading procedure and model phases for Perniö test embankment

Table 3.3: PLAXIS phases

Calculation phases
Name Description

phase 1 initial phase groundlevel at +8 m
phase 2 excavation of ditch
phase 3 new embankment
phase 4 consolidation 5 days
phase 5 loading Q = 24 kPa
phase 6 consolidation 0.5 days
phase 7-18 loading Q = 24 + 5.7 × i kPa*
phase 19 loading until failure Q = QF ailure

When Embankment fails, Mstage < 1
safty phase determine failure mechanism
* i current phase

3.5.1 Estimation of Failure load, deformations and failure mechanism

For each simulation: failure load, deformations and failure mechanism are evaluated
from last phase. The failure load is calculated using Mstage and phase load, Q, such that

Failure load: F = Mstage ∗ Q (3.6)

At failure the horizontal and total displacements are also saved. In order to estiamte the
failure mode, a PLAXIS "safety phase" (strength reduction phase) is added onto the last
stabile phase. For example, if phase 10 fails, a safety phase is added after phase 9. From
the safety phase the total displacements are used to estimate size of the failure mass. The
failure mass is defined as the area containing all nodes with a total displacements value
larger then the 10th percentile. The area is estimated through a Riemann sum with 100
segments over the domain.
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The embankment is analysed in terms of: embankment displacements and failure load
using both a deterministic and probabilistic model. The deterministic models refers to the
three FE simulations corresponding to the OCR raster input (min, estimated and max)
described in Section 3.4.1. The probabilistic model refers to the 500 RFEM simulations
corresponding to the OCR raster dataset described in Section 3.4.2.

In Figure 4.1, one deterministic result of pre-failure horizontal displacements and failure
mechanism, determined by the estimated OCR raster, EOCR, is shown. The displacements
Ux, are in the range of 0 to 27 mm, and largest in the underlying clay layer on the bottom
right side of the embankment. These are compared to data from inclinometers I1,I2 and
I3. The embankment failure mode is also shown. The failure load is 89 kN for EOCR,
creating a rotational mass movement with a total area of 51 m2.

In the following Sections, the results of: displacements, failure load and failure mecha-
nism, will be further elaborated for all models.

Horizontal displacements: at pre-failure
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Figure 4.1: Horizontal displacements and failure mechanism for the Perniö test em-
bankment from the deterministic analysis of EOCR
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4.1 Horizontal displacements
In Figure 4.2, observed horizontal displacements from inclinometers I1, I2 and I3 are

compared to the deterministic and probabilistic analyses. The observed values, (black
lines) are all from the time of the ultimate load step at t=28:00 until embankment failure
(solid black line) at t=29:55. The results in the Figure show that modelled displacements
are the largest closer to the embankment at I1 and decreasing with distance in I3. The
results of both models agree well with the observed displacements at t=29:35. But due to
the undrained creep failure and the use an of the soft soil model that does not incorporate
creep the embankment exhibited larger displacements then predicted by the model.

When comparing the results from the deterministic and probabilistic model, it shows
that the deterministic model did not capture the uncertainty range as well as the prob-
abilistic model. The variation in displacements for the probabilistic model are closer to
the measured data and vary in the range of 10 to 40 mm. The inclination of all lines,
however, show similar shape compared to the observed values, which indicate that model
deformations are realistically mobilised.

Bencharking: horizontal displacements on inclinomter measurements
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Figure 4.2: Benchmarking of horizontal displacements from deterministic and proba-
bilistic analyses in inclinometer observations
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4.2 Embankment Failure load
In Figure 4.3, the probabilistic failure load is compared to the deterministic results

(solid black line) and the observed failure load (dashed black line) at Fobs = 86 kN . The
probabilistic failure load distribution is shown in the histogram and the corresponding
probability can be estimated from the cumulative distribution function (CDF). Note that
the failure load is ranging from 70 to 105 kPa and is not normally distributed. In the
histogram two groups are seen; one around 83 kPa, and the other at 97 kPa. Generally,
this is a sign of different failure modes, but for this case it is most likely a sign of bias in
raster cell size.

The three deterministic model results are summarised in Table 4.1, and correspond to
the OCR raster layers: minimum, estimated and maximum. The minimum OCR raster,
minOCR, resulted the lowest failure load, Fmin = 81.3 kN , and the maximum OCR raster,
maxOCR , in the maximum failure load, Fmax = 99.0 kN . This is expected since a low
OCR also gives the soil low shear strength. The analysis with the most likely OCR for the
embankment, the estimated OCR raster EOCR , fails at Fest. = 88.6 kN and is the closest
by all deterministic analyses to real observed value, Fobs = 86 kN .

Failure load: 500 RFEM simulations of Overconsolidation Ratio (OCR)
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Figure 4.3: Benchmarking of Perniö embankment failure load: Probabilistic approach
compared to the deterministic analyses and observed value.

Table 4.1: Summary of deterministic results in Perniö embankment failure load .

Deterministic analysis
Results min estimated max Unit
Failure load: F 81.3 88.6 99.0 kN
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The deterministic results give a reasonable indication of the range of failure load uncer-
tainty, by incorporating around 80% of all RFEM simulations. The difference in failure
load between the deterministic min and max and the estimate, are not the same, but the
probability for both models are: CDF (min) ≈ 0.1 and CDF (max) ≈ 0.9. This shows
that some sign of causality due to probability.

In Figure 4.4, the probabilistic failure load is compared to the work by (Mansikkamäki,
2015) on deterministic analysis using various material models. The observed value Fobs =
86 kN is indicated with the black dashed line and the probabilistic RFEM results statistics
is illustrated by the red boxplot. Note that the majority of deterministic FEM results are
within the minimum and maximum range of the RFEM analysis. This shows the magni-
tude of uncertainty due to parameter variation and the hardship in justifiably comparing
material models using one single deterministic analysis.

Benchmarking: determinsitic analysis and 500 RFEM simulations.
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Figure 4.4: Benchmarking of Perniö embankment failure load: Probabilistic approach
compared to the deterministic analyses and observed value.

4.3 Failure mechanism

In Figure 4.5, the failure mode of 500 RFEM probabilistic simulations are compared to
the field observations presented in Lehtonen et al. (2015). Note that the simulated results
(red) are close to the approximated band of shearing, but does not completely reach the
same depth. The simulated results exhibit a small variation which increases with depth,
but all results show a similar shape. The mass area is also estimated for all simulations,
ranging from 48 - 50 m2 (cross-sectional surface area). A low value of mass area indicates a
smaller scale on the failure. However, the differences in resulting areas are not sufficiently
large to be different failure mechanism as illustrated in the Figure. Which indicates that
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the spatial variation of apparent preconsolidation pressure shows no effect on failure mode
for the Perniö test embankment.

Figure 4.5: Comparing simulated RFEM failure modes to field observations presented
in Lehtonen et al. (2015).

4.4 The spatial effect of apparent preconsolidation pressure on failure load
In order to better understand how the variation of preconsolidion pressure effects the

stability of Perniö embankment, the simulations with the largest and lowest failure load,
Fmax and Fmin is compared in Figure 4.6. The figure show: in (a) and (b) the spatial vari-
ation of OCR the two cases. Where, (a) corresponds to the case of the lowest failure load
and (b) to the highest. By a visually examination, the two cases looks remarkably similar,
yet the OCR raster is the only difference affecting the failure load between them. However,
some locations are exposed for more stress during loading, note the contours in the image
corresponding to the total displacements. The value of apparent preconsolidation pressure
are most critical for those cells which exposed for more displacements.

To better compare (a) and (b) the difference between them, OCR Fmax - OCR Fmin,
is shown in (c). Red cells indicates the location of a positive difference, which means lower
OCR and shear strength.

Three things becomes evident: firstly, the OCR difference is not uniform, and variate
over the area with green and red indicates zones corresponding to areas of higher and lower
shear strength. Secondly, the location of the OCR is critical for the embankment stability.
Most of the cells show higher strength difference (green), but there is a critical area
appearing below the embankment in red, where stresses and strains also are the largest.
Thirdly, the critical area is in-between the location of borehole 43 and 44, emphasizing
that the spatial location of samples are critical in order to decrease the uncertainty in
failure load.
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(a) Spatial variation of OCR for maximal stability: Fmax = 105 kPa
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(b) Spatial variation of OCR for for minimal stability: Fmin = 70 kPa
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(c) OCR difference:
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Figure 4.6: The resulting OCR variation for: (a), the largest failure load Fmax; (b),
the smallest failure load Fmin ; and (c), the OCR difference between (a) and (b).
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5 Conclusions & Recommendations
The uncertainties of the inherent variability of preconsolidation pressure on the Perniö
test embankment was successfully modelled and compared with previous deterministic
investigations and field observations from the failure test. The main findings and recom-
mendations for future research are as follows:

C1 Even with the limitations of: an relative small number of simulations n = 500 and
coarse raster resolution, the RFEM model shows promising results in estimating the
uncertainty of the embankment failure load.

C2 The failure load is highly influenced by the spatial variation of consolidation pressure,
ranging approximately 10% from 72 to 107 kPa. This range highlights the limitations
of one single deterministic ULS analysis and its justification comparing performance
between different soil models by such an approach.

C3 The cumulative distribution function (CDF) of the failure load is not normally dis-
tributed. Most failures occur in two groups, perhaps due to bias in raster size. It
still is possible, however, to determine the probability of failure and a majority of
the failures occur between 82 and 98 kPa. This range is similar to the deterministic
max/min analysis. It is unclear if this finding is by chance, site specific or indicating
a general rule. If it is the latter, that can justify less computational greedy algorithm
in future research, such as for example a point estimate method.

C4 The most critical spatial location, regarding the uncertainty of preconsolidaion pres-
sure on failure load, is found to be below the embankment where the shear stresses
and strains are largest. Unfortunately, no samples were taken at this specific lo-
cation. In case of available measurements from that location, the uncertainties of
failure load due to spatial variation of preconsolidaion pressure would have signifi-
cantly decreased. This emphasizes the importance of not only taking a large numbers
of samples, but also the relevance in choosing the sampling location.

C5 Since the test embankment used for validation failed due to creep, the critical hor-
izontal displacement just before failure is hard to determine. It is found that the
resulting RFEM pre-failure horizontal displacements ranges from 10 to 40 mm. A
large range, but all results are considered realistic compared to observations. This,
again, indicates the uncertainties in calculating and trusting a single maximal limit
value of horizontal displacements before failure from deterministic analysis.

C6 One single failure mode is found for the embankment. A rotational failure, with a
cross-sectional surface area in plane-strain, ranging between 37 to 54 m2. In the
present analysis the failure mode and area is independent of failure load and spatial
variation of preconsolidation pressure.

C7 The 17 samples from the two boreholes, are insufficient to evaluate the spatial vari-
ation parameters θ and ξ of the site with high accuracy. This leads to an variogram
model bias which is not included in this Thesis.

R1 More research is needed in order to estimate the spatial variation parameters of
(soft) soil in a more reliable manner, together with the influence on stability due to
the number of samples on the Perniö test site.

R2 It would also be of interest to benchmark different constitutive models by a proba-
bilistic approach on the Perniö test site in order to determine the sensitivity of each
model for parameter variation.
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Appendix A Perniö test site location

A.1 Data availability
Measured site dataset accessed from the open databank at: http://urn.fi/urn:nbn:fi:csc-

kata20150507094517332534. Soil data from S2010 and S2009 was procvided by (Mataić,
2016).

A.2 Location maps
Perniö is located in south west Finland about 140 km west from Helsinki. The test site

is located on an old railway embankment on N 60.26945ř E 023.13171ř (WGS84) marked
with red circle on the map in figure A.1.

Perniö

30 km 300 km

Turku

Helsinki

Salo

E18

Figure A.1: Geographical location of Perniö testing site.

The test site surrounding is relatively flat, with agriculture lands, ranging from + 4
to + 8 meters above sea level. The test site can be studied on a local scale (1:8000) in
Appendix A, which includes three maps: a elevation map, with the geographic location of
the site in the center; a aerial map, with hill-shade to indicate the relief and finally a soil
map, illustrating the geology of the top soils. All maps were extracted from the Geological
Survey of Finlands (GTK) online database (GTK, 2017).

The Lithostratigraphic conditions on site are predominatly soft glacial marine clay of
variable thickness on top of moraine and bedrock formations (Lethonen, 2011). The con-
ditions are typical of south Finland, where the Baltic ice lake submerged the lands after
the glaciation retreated.
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Perniö test site location

A.3 Elevation map, scale 1:8000

II CHALMERS, Master’s Thesis



Perniö test site location

A.4 Aerial map, scale 1:8000
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A.5 Soil map, scale 1:8000
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Perniö Test data

Appendix B Perniö Test data

B.1 Site investigation Perniö

The site investigation map by Lethonen (2011).
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B.2 Instrument locations Perniö

The measuremnt instrumentation map by Lethonen (2011).
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Appendix C

Table C.1: Summary of borehole data used for the study at the Perniö test embank-
ment.

Borehole No 43/45.
Sample ID Borehole Type Elevation x σpre σ′

v OCR

5666 43 ODE 6,76 -2 35 21,6 1,61
5651 43 ODE 5,71 -2 55 26,8 2,05
5652 43 ODE 4,86 -2 43 31,1 1,38
5653 43 ODE 3,91 -2 48 35,9 1,33
5667 43 ODE 3,01 -2 51 40,3 1,26
5660 45 ODE 4,41 -2 47 33,3 1,40
5662 45 ODE 3,61 -2 46 37,3 1,23
5663 45 ODE 2,71 -2 51 41,8 1,21

Borehole No 44.
Sample ID Borehole Type Elevation x σpre σ′

v OCR

D57 44 CRS 2,30 8 45 43,9 1,02
5672k 44 ODE 5,56 8 48 27,6 1,73
5669 44 ODE 5,11 8 31 29,8 1,04
5641 44 ODE 5,36 8 30 28,6 1,04
5647 44 ODE 3,98 8 34 35,5 0,95
5668 44 ODE 3,12 8 50 39,8 1,25
5642 44 ODE 3,09 8 60 39,9 1,50
5643 44 ODE 2,24 8 50 44,2 1,13
5648 44 ODE 1,23 8 50 49,2 1,01
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