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Drift instabilities in a field reversed configuration are studied under conditions of magneto-inertial

fusion (MIF). Specifically, the collisional effect is taken into account because of high-density plas-

mas in MIF where the drift wave frequency is smaller than the electron-ion collision frequency.

Dispersion relations are based on the two fluid equations including the collisional terms; mean-

while, the electromagnetic effect is also considered due to high b values (b is the ratio of plasma

pressure to magnetic pressure). It is found that in the limit of low b, the behavior of instabilities

described by the dispersion relations in the present paper would become like drift instabilities in

tokamaks, where b� 0.1. Therefore, in the MIF case, electromagnetic drift instabilities could be

driven by electron-ion collisions due to the charge separation effect. The collisions also bring the

phase difference between the perturbed density and the potential perturbation, which is significant

for the particle transport. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4985079]

I. INTRODUCTION

In contrast to the traditional approaches to fusion energy

including the magnetic fusion energy (MFE)1 and the inertial

confinement fusion (ICF),2 the magneto-inertial fusion

(MIF)3,4 is viewed as a new “intermediate” way to fusion

energy because the density regime and time scale of MIF are

intermediate between MFE and ICF. In the MIF scheme, an

appropriate magnetic field should be embedded in a plasma

target, and the field reversed configuration (FRC)5 is one

candidate magnetic configuration. The FRC is an elongated

compact torus (CT) with predominantly poloidal fields and

zero toroidal fields (Fig. 1). The magnetic surface of FRC is

robust and closed, so that the topology of the magnetic field

can be retained during implosion and the separatrix can insu-

late the fuel from the imploding wall or “pusher”. Due to the

limitation of the present driver capability, the FRC plasma

target must satisfy some conditions in different phases.6

Table I shows typical values of various parameters for a

dense FRC. In order to improve the confinement of the FRC

target and satisfy the requirement for MIF, it is necessary to

understand the transport mechanism.

To some extent, the FRC transport is unique due to the

very high b and the magnetic field nulls. The value of b0

averaged over the plasma volume is about 0.5–0.9,7 where

b0 ¼ 2l0p=B2
e is the ratio of plasma pressure to the external

magnetic field pressure. The understanding of FRC transport

has advanced considerably in the past 30 years; particle,8,9

magnetic flux, and energy confinement10 are well identified

as anomalous; in other words, certain instabilities induce the

turbulence which causes the anomalous transport in FRCs. In

the beginning, the lower hybrid drift (LHD) instability,11

which is electrostatic (dB ¼ 0) and flute like (kk ¼ 0) with

wave numbers k � 1=qe, was considered as the most linearly

instable and studied in a lot of works.12–15 Specifically, the

electromagnetic LHDI was investigated by using a simple

two-fluid theory in Refs. 16 and 17, and this analysis was

extended by adding collisions and the non-local effect18 in

order to explain the anomalous resistivity in the magnetic

reconnection experiment19 (MRX) where a Harris equilib-

rium is applied, which is significantly different from the

FRC equilibrium.5,10 However, fluctuation measurements in

FRC experiments20,21 did not verify LHD transport theories.

Then, it was proved that LHD waves decay strongly into

lower wave-number modes22 which usually stay in the low-

frequency drift wave regime. This indicates that other insta-

bilities should be considered. Then, electron temperature

gradient (ETG) driven electromagnetic modes were studied

in Ref. 23. ETG instability parameters at Ln � qi are as fol-

lows: k > 1=qe and c � Xci (Ln is the density gradient scale

length, qe is the electron gyroradii, and c is the growth rate).

Note that small parallel wave number kk 6¼ 0 is needed for

this instability which propagates in the direction opposite to

the LHD.

So far, drift instabilities have been proposed to be

responsible for the anomalous transport in FRCs. Note that

drift instabilities mentioned in this paper are in the low-

frequency range (x� Xci), rather than in the lower hybrid

frequency range. Both the kinetic theory7,14 and fluid treat-

ment24,25 are used to address the electromagnetic drift insta-

bilities. In addition, the gyrokinetic particle simulation of

turbulent transport in FRC is presented in Ref. 8. Low-

frequency drift dissipative modes are studied in Ref. 14

where both the temperature and the magnetic field are uni-

form, and the Krook model is used to introduce the effect of

collisions; however, the condition �ei � Xci is needed which

is not justified in the parameter regime of MIF. In Ref. 7, the

dispersion equation is based on the set of Vlasov-Maxwell

equations taking into account the nonadiabatic response of
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both ions and electrons; however, the collisional effect is not

included. In Ref. 25, a two-fluid theory is used to obtain the

dispersion relation and estimate the transport coefficient in

the high-density case relevant to MIF. Although the high col-

lisionality is considered in Ref. 25, there are no collisional

terms in fluid equations, or the collisional effect is not stud-

ied in detail.

Actually, in MIF relevant parameters, the electron-ion

collision frequency is larger than ion cyclotron frequency,

i.e., �ei > Xci, because of the high density. So that the effect

of collisions should be investigated carefully. Meanwhile,

the electromagnetic effect may be important due to high b.

In this work, the effect of collisions on electromagnetic drift

instabilities will be studied.

This paper is organized as follows. Section II derives the

dispersion relation of drift waves by using two fluid equa-

tions including collisional terms. In Sec. III, we present and

discuss the results obtained from the numerical solution of

the dispersion relation. At last, the conclusions (Sec. IV) are

given.

II. PHYSICAL MODEL

In the derivations, the local Cartesian coordinate is

applied: all gradients are parallel or antiparallel to the x-axis

(directed from the plasma core to edge regions), the equilib-

rium magnetic field lines are along the z-axis, and the y-axis

is perpendicular to both x and z. We also assumed that the

modes propagate in the y-z plane, and the space and time

dependence of the perturbed variables is given by

exp½iðkyyþ kkz� xtÞ�. The objective is to obtain a disper-

sion relation of drift waves including the effects of colli-

sions, perturbed magnetic field, field line curvature, and

transversal nonuniformity of the magnetic field.

A. Ion equations

1. Ion continuity equation

@ni

@t
þr � niv�i þ nivE þ nivpi þ nivpið Þ ¼ 0: (1)

E cross B drift velocity is given by

vE ¼ E� b̂=B ¼ b̂ � ðr/þ @A=@tÞ=B (2)

when the electromagnetic effect is included, the perturbed

field can be defined as follows: electric field is E
¼ �r/� @A=@t and magnetic field is B ¼ r� A, where

/ represents the perturbed scalar electric potential and A is

the perturbed vector potential. The Coulomb gauge r � A
¼ 0 is used.

The ion diamagnetic drift is

v�i ¼
b̂ �rpi

ZieniB
¼ b̂ �rpi

ZieniB0

1�
dB==
B0

� �
; (3)

where dBk is the parallel component of the perturbed mag-

netic field, B0 represents the background magnetic field, b̂
¼ B=B is the unit vector along the magnetic field line.

The polarization drift velocity is

vpi ¼
dE

dt

�
BXið Þ; (4)

where Xi ¼ ZieB=mi is the ion cyclotron frequency.

The ion drift due to the off-diagonal elements of the

stress tensor p$ i is

vpi ¼
b̂ �rp$

ZieniB
: (5)

The equations for the divergence of the drifts are26

r � d niv�ið Þ ¼
1

Ti
vDi � rdpi þ

l0ni

B2
0

v�i � rd pi þ peð Þ; (6)

r � d nivpi þ nivpið Þ 	 �inik
2
yq

2
s Zi x� x�iTð Þ

e/
Te
; (7)

where ion gyro-radius qs ¼ cs=Xi, ion sound speed

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
, x�iT ¼ x�ið1þ giÞ, the ion diamagnetic drift

frequency x�i ¼ �kyTijrnij=ðZieniBÞ, Zi is the ion charge

number, and gi is the ratio of the density gradient scale

length to the temperature gradient scale length gi 
 Ln=LTi

TABLE I. Parameters of a typical MIF target (FRC) in different states. State 1 and State 2 correspond to the initial and intermediate stages of the implosion,

respectively. State 3 presents a late stage (near the stagnation point). Here, the parameters include density n, temperature T, magnetic field B, separatrix radius

rs, length of separatrix ls, electron-ion collision frequency �ei, cyclotron frequency of electrons and ions Xce and Xci, thermal gyroradii of ions qi, and the ion

mean free path ki.

n (m�3) T (eV) B (T) rs (cm) ls(cm) �ei (s�1) Xce (s�1) Xci (s�1) qi (cm) ki (cm)

State 1 1023 0.3 � 103 2 2.5 15 6.96 � 108 3.52 � 1011 9.65 � 107 0.12 1.04

State 2 1025 1 � 103 20 0.75 4.5 1.10 � 1010 3.52 � 1012 9.65 � 108 0.023 0.121

State 3 1027 5 � 103 200 0.25 1.5 9.92 � 1010 3.52 � 1013 9.65 � 109 5.1 � 10�3 0.0299

FIG. 1. Anatomy of a FRC and the

local coordinate frame of calculations

for drift waves.
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¼ nijrTij=ðTijrnijÞ. Compared with the electrostatic case

in Ref. 26, the second term on the right-hand side of Eq. (6)

is introduced due to the electromagnetic effect. Equation

(7) indicates the finite Larmor radius (FLR) effect which is

included through combining the polarization drift with the

stress tensor drift, resulting in the cancelation of the con-

vective diamagnetic part of the polarization drift.26

After linearizing Eq. (1), we get the density perturbation

xDi �xþ bt

2
x�iT

� �
dni

ni
þ x�e �xDe � k2

yq
2
s Zi x�x�iTð Þ

h i
� e/

Te
� x�e �xDe � k2

yq
2
s Zi x�x�iTð Þ

h i
x

eAy

Teky

þ xDi þ
bi

2
x�iT

� �
dTi

Ti
þ be

2
x�iT

dTe

Te
¼ 0; (8)

where the local beta parameter bt ¼ 2l0ðpi þ peÞ=B2
0 is the

sum of ion pressure ratio bi and electron pressure ratio be.

The ion magnetic drift frequency can be presented as

xDi ¼ x�i
Ln

Ls
� Ln

LB

� �
; (9)

where LB ¼ B=jrBj is the scale of the magnetic field gradi-

ent and 1=Ls is the curvature of the magnetic field. Note that

the gradient of magnetic field is opposite to the density gra-

dient in FRCs.

2. Ion energy balance equation

3

2
ni

@

@t
þ vi � r

� �
Ti þ niTir � vi ¼ �r � q�i

¼ 5

2
ni v�i � vDið Þ � rTi; (10)

where the diamagnetic heat flow q�i ¼ 5
2

niTi

miXi
b̂ �rTiÞ
�

, note

that we just keep the reactive term comparing the heat flow

in Braginskii equations. When the continuity equation is

used, the first convective diamagnetic part of r � q�i cancels

with other convective diamagnetic terms, and the linearized

temperature perturbation is now

2

3
x

dni

ni
þ x�e gi �

2

3

� �
e/
Te
� x�e gi �

2

3

� �
x

eAy

kyTe

� x� 5

3
xDi

� �
dTi

Ti
¼ 0: (11)

B. Electron equations

Parallel electron motion gives

me
@

@t
þ v � r

� �
v==e ¼ eb̂ � r/þ @A=@tð Þ � eb̂ � v�e � dBð Þ

� 1

ne
Rei �

1

ne
b̂ � rpe; (12)

where Rei ¼ J==me�ei=1:96e is the momentum gained by

electrons through collisions with ions in which the parallel

current J== 	 J==e ¼ �enedv==e. Then, ignoring electron iner-

tia, we have

k==
e/
Te
� k==x�eT

eAy

kyTe
þ x�eT � xð Þ

eA==
Te
þ i

me�ei

1:96Te
dv==e

� k==
dne

ne
� k==

dTe

Te
¼ 0; (13)

where �ei is the electron-ion collision frequency.

Along the field lines, electrons are assumed to be iso-

thermal; thus,

ðB0 þ dBÞ � rðTe0 þ dTeÞ ¼ 0 (14)

and after linearizing Eq. (14), one has

gex�e
eA==
k==Te

� gex�e
eAy

kyTe
� dTe

Te
¼ 0: (15)

Then, linearizing the electron continuity equation

@ne

@t
þr � ne vE þ v�e þ v==eð Þ½ � ¼ 0 (16)

one gets

�xþ xDe þ
bt

2
x�eT

� �
dne

ne
þ x�e � xDeð Þ

e/
Te

� x�e � xDeð Þx
eAy

kyTe
þ xDe þ

be

2
x�eT

� �
dTe

Te

þ bi

2
x�eT

dTi

Ti
þ k==dv==e ¼ 0: (17)

Here, it is seen that the ion temperature perturbation has

an influence on the electron density response because of high

beta. Although the electron-ion collision frequency is very

high, it is still much less than the electron cyclotron fre-

quency. Thus, the effect of collisions on the electron perpen-

dicular motion could be neglected.

C. Ampere’s law

r� ðr � AÞ ¼ loJ: (18)

For the parallel component �r2A== ¼ loJ== 	 �loenedv==e,

with the assumption k? � kk we have

dv==e þ k2
?q

2
s v2

A

eA==
Te
¼ 0; (19)

where Alfven speed vA ¼ B=
ffiffiffiffiffiffiffiffiffiffiffiffi
l0nmi
p

.

In the perpendicular direction, the perturbed current is

given by
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dJ? ¼ Zieniv�i � enev�e

¼ b̂ �r dpi þ dpeð Þ
B0

� b̂ �r pi þ peð Þ
B0

dB==
B0

(20)

so that the perpendicular component of Eq. (18) yields

kyAy þ COE � k==A== ¼ 0; (21)

where COE ¼ �ðikx � bt

2Lpt
Þ= bt

2Lpt
, the total pressure gradient

scale length is Lpt ¼ �pt=ð@pt=@xÞ, and pt ¼ pi þ pe.

However, with the assumption that the modes propagate in

the y-z plane, COE should be equal to 1.

D. Dispersion relation

From Eqs. (8), (11), (13), (15), (17), (19), and (21), one

can obtain the set of linear algebraic equations of variables

dn; /; Ay; dTi; dTe; Ak; and dvke . Here, we have used the

neutrality condition, i.e., dn ¼ dne ¼ dni. After the equa-

tions are normalized by x�e, the matrix of this system

becomes

en

Zis
þx̂þbt

2

1þgi

Zis
�
�

1�en�k2
yq

2
s Zi x̂þ1þgi

Zis

� �� �
1�en�k2

yq
2
s Zi x̂þ1þgi

Zis

� ��
x̂

en

Zis
þbi

2

1þgi

Zis
be

2

1þgi

Zis
0 0

2

3
x̂ gi�

2

3
� gi�

2

3

� �
x̂ � x̂þ5

3

en

Zis

� �
0 0 0

k==Ln �k==Ln k==Lnð1þgeÞ 0 k==Ln �ð1þge�x̂Þkyqs �i
me�eicsLn

1:96Te

0 0 �gekkLn 0 �k==Ln gekyqs 0

�x̂þenþ
bt

2
ð1þgeÞ 1�en �ð1�enÞx̂

bið1þgeÞ
2

enþ
beð1þgeÞ

2
0

k==Ln

kyqs

0 0 0 0 0 k2
?q2

s

v2
A

c2
s

1

0 0 kyqs

Ln

qs

0 0 COE �k==Ln
qs

Ln
0

																																			

																																			

dn

n

e/
Te

Ay

B0Ln

dTi

Ti

dTe

Te

A==
B0qs

dv==e

cs

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

¼0;

(22)

where en ¼ xDe=x�e ¼ Ln=Ls � Ln=LB indicates the effects of curvature and gradient of the magnetic field, s ¼ Te=Ti is the

ratio of electron temperature to ion temperature, and x̂ ¼ x=x�e represents normalized mode frequency which is complex.

When the determination of system (22) equals zero, we could obtain the dispersion equation and the dependencies xðk?; k==Þ.

III. RESULTS AND DISCUSSION

A. Analytical

In the parameter range of drift waves, usually we assume k== � k?. Therefore, as mentioned above the wave vector along

the x-axis is neglected, i.e., COE¼ 1. In the MIF case, note that v2
A=c2

s � 2=be � 1, Dei � 0:1, and kyqs � 1. Thus, after the

diagonalization of determination of system (22), the perturbed electron density response is

dne

ne
¼

1� enð Þ iDeikyqs

v2
A

c2
s

� 1� x̂ð Þ
" #

þ ge en þ
be 1þ geð Þ

2

� �
þ gi �

2

3

� �
bi 1þ geð Þ

2 x̂ þ 5

3

en

Zis

� � iDeikyqs

v2
A

c2
s

� 1� x̂ð Þ
" #

x̂ � bt

2
1þ geð Þ � en

� �
iDeikyqs

v2
A

c2
s

� 1� x̂ð Þ
" #

þ ge en þ
be 1þ geð Þ

2

� �
� 2x̂

3

bi 1þ geð Þ

2 x̂ þ 5

3

en

Zis

� � iDeikyqs

v2
A

c2
s

� 1� x̂ð Þ
" # e/

Te
;

(23)

where the terms including bi represent the contribution from

ions, which are introduced when the ion temperature pertur-

bation in the electron continuity equation is substituted. The

normalized collisionality Dei appears in the imaginary part,

so that it causes the phase difference between the perturbed

density and the electrostatic potential perturbation, which is

critical for the transport caused by drift instabilities. It is

easy to confirm that Eq. (23) gives a Boltzmann distribution

in the limit of infinite collisionality.

B. Numerical

In this work, we focus on the State 1 mentioned in Table

I, since it is unclear whether the drift instabilities have nega-

tive effects on a dense FRC performance before the
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compression. Here, all of the numerical results are obtained

in the case kk 	 0, gi ¼ ge ¼ 2; �n ¼ �0:875; s ¼ Zi ¼ 1,

and no FLR effects. Note that the value of g is very small in

the core of FRCs because of the flat temperature profile in

experiments; however, in the edge, the value of g could be 2

or more. As mentioned in Ref. 10, the turbulent modes were

not even unstable unless eta is �2 or more, in this sense drift

instabilities may grow up near the edge.

First, the influence of b0 is studied and the dependencies

of growth rates and real frequencies on perpendicular wave

number k? are shown in Fig. 2. Here, the collisions are

included. The value of k?qs corresponding to the maximal

growth rate increases with b0; however, the peak growth

rates rarely vary with b0. In the low-beta case (red line), the

maximal growth rate corresponds to k?qs � 0:5, which is

similar to the characteristic parameter in tokamaks. When

the beta is in the parameter regime of FRCs (0.5<b0<0.9),

the growth rate increases quickly, reaches a maximum at

k?qs � 10� 30, and decays slowly as k?qs increases fur-

ther. It indicates that the instabilities have a broad spectrum

which is close to ETG range. Usually, the maximum at

k?qs � 0:5 is still in the regime where the expansion of the

Bessel function is useful. Even in the regime of higher wave

numbers (k?qs � 1), our results also agree qualitatively

with the results in Ref. 7 where the set of Vlasov–Maxwell

equations is applied to derive the dispersion relation in FRCs

(a) (b)

FIG. 2. Dimensionless growth rates (left) and real frequencies (right) v.s. k?qs for different beta values.

(a) (b)

FIG. 3. Dimensionless growth rates (left) and real frequencies (right) v.s. k?qs for different collisionalities; here, b0 ¼ 0:76. The red solid curve is based on

the MIF parameters.
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and the maximal growth rate values correspond to

k?qs � 20.

For different collisionalities, the dispersion relations

xðk?Þ are shown in Fig. 3. It is seen that the wave number

corresponding to the peak growth rate becomes smaller as

the collisionality increases, and the real frequency is always

positive, which means that the modes propagate in the direc-

tion of electron diamagnetic drift. The results indicate that

the collisions may destabilize the instability. The drift modes

are almost stable at low collisionality but unstable under

MIF conditions.

In order to show the effect of collisions on drift instabil-

ities intuitively, we make a scan in collisionality (as shown

in Fig. 4), and other parameters are similar to Phase I in

Table I. It is shown that the growth rate almost reaches the

peak when the collisionality Dei lies in the regime of MIF

parameters where Dei is of the order of 10�1, and the real fre-

quency hardly varies with the collisionality. It indicates that

collisions have a destabilizing influence on drift waves under

conditions of MIF. The instability mechanism may be

explained in the way that the particle drifts of electrons and

ions in the plane perpendicular to magnetic field become dif-

ferent because an ion is much heavier than an electron. This

leads to charge separation effects; if a density perturbation

exists, the electrons are not able to instantly neutralize the

charge separation by moving along the magnetic field

because of electron-ion collisions. We also could see that the

growth rates tend to zero as the collisionality continues to

increase, and the electrons would tend to Boltzmann distrib-

uted in the limit of infinite collisionality.

IV. CONCLUSION

We have made the drift wave study under conditions of

MIF. At the same time, we have made the study of the effect

of collisions on drift instabilities both analytically and

numerically. Our model is based on the two fluid equations

including the collision terms, and the linear dispersion rela-

tion has been derived. By calculating the dispersion relations

for different values of beta numerically, it is found that the

model includes also the low-beta regime where the fastest

growth rate corresponds to k?qs � 0:5 like the typical case

of tokamak geometry. In the parameter regime of MIF, the

instabilities have a broad spectrum which is close to ETG

range at k?qs � 10� 30. By making a scan in collisionality,

we demonstrate the effect of collisions which could drive the

instabilities in the MIF case, because the electrons cannot

move along the magnetic field freely and the charge separa-

tion would not be neutralized instantly. In addition, since the

collision term is introduced in the electron parallel motion

equation, a finite (but small) kk is necessary for investigating

the collisional effect; otherwise, the set of Eqs. (13) and (15)

would become indeterminate. Important issues including

nonlocal effects, such as magnetic shear and flow shear,

need to be addressed further.
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