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A Tighter Upper Bound on the Capacity of the Nondispersive
Optical Fiber Channel

Kamran Keykhosravi, Giuseppe Durisi, and Erik Agrell

Department of Electrical Engineering, Chalmers University of Technology, kamrank@chalmers.se

Abstract An upper bound on the capacity of the nondispersive optical fiber channel is presented. This
bound, which is valid for arbitrary launch powers, confines the capacity within a much narrower range
compared to what the previously known upper bound provided.

Introduction

Due to the ever-increasing data demand caused
by emerging bandwidth-hungry services, such as
internet-of-thing applications and cloud comput-
ing, current optical systems are reaching their lim-
its and a capacity crunch is imminent. To utilize
the existing optical networks more effectively, it
is necessary to study the capacity of the fiber-
optical channel. Many lower bounds on capac-
ity are available1; most of them rely on the the-
ory of mismatched decoding. All the available
lower bounds on the capacity of the dispersive
and nonlinear fiber-optical channel saturate or fall
to zero in the high-power regime. However, the
only known upper bound2 increases to infinity
with power.

The capacity analysis of the fiber-optical chan-
nel governed by the nonlinear Schrödinger (NLS)
equation is, in general, cumbersome because the
input–output relation is given implicitly through
a partial differential equation. For the case of
nondispersive fiber-optical systems, however, the
discrete-time channel between the samples of the
transmitted and the received signals can be de-
scribed by a conditional probability distribution
function (pdf) that is known in a closed form3–5.
By studying this conditional pdf, multiple lower
bounds on the per-sample capacity have been
obtained3,4. However, the only known nonasymp-
totic upper bound on the capacity of the nondis-
persive NLS channel is too loose to provide any
insight about the tightness of these lower bounds
at medium and high powers.

In this paper, we present a nonasymptotic up-
per bound on the per-sample capacity of the
nondispersive NLS channel using techniques
similar to those employed in6,7. We evaluate the
upper bound for a 5000-km nondispersive NLS
channel with distributed amplification, whose pa-
rameters can be found in Table 1, and compare

it with the known lower bounds. The results are
shown in Figure 1: a significant improvement can
be observed compared to the previously known
upper bound.

Channel Model
The nondispersive NLS channel with ideal dis-
tributed amplification can be modeled by the NLS
equation by setting the dispersion to zero, which
results in the partial differential equation

∂a(z, t)

∂z
− jγ|a(z, t)|2a(z, t) = n(z, t). (1)

Here, a(z, t) is the baseband optical signal at time
t and location z, the nonlinear coefficient is de-
noted by γ, and n(z, t) is a complex Gaussian
noise process with autocorrelation

E[n(z, t)n∗(z′, t′)] = N0δWN
(t− t′)δ(z − z′). (2)

In (2), we used δ(·) to denote the Dirac delta func-
tion and δWN

(x) = WN sinc(WNx), where WN is
the noise bandwidth. The noise power spectral
density is N0 = nsphνα. A list of all parame-
ters is provided in Table 1. We denote the total
noise variance of the samples at the receiver by
PN = 2WNN0L where L is the fiber length. The
discrete-time channel between the samples of the
transmitted signal a(0, t) and the received signal
a(L, t) can be described by the following condi-
tional pdf in the polar coordinate system:5

fr,θ|r0,θ0
(r, θ|r0, θ0) =

fr|r0(r | r0)

2π

+
1

π

∞∑
m=1

Cm(r, r0)ejm(θ−θ0). (3)

Here, r and θ are the amplitude and the phase of
the received signal and r0 and θ0 are those of the
transmitted one. The conditional pdf fr|r0(r | r0)

of r given r0 as well as the Fourier coefficients



Tab. 1: System parameters and their description

Symbol Value Meaning
nsp 1 Emission factor
hν 1.28 · 10−19 J Photon energy
α 0.2 dB/km Fiber attenuation
γ 1.27 (W km)−1 Nonlinear coefficient
WN 32 GHz Noise bandwidth
PN −27.2 dBm Total noise variance

Cm(r, r0) can be found in5.
The discrete-time NLS channel can also be de-

scribed by the split-step Fourier method,8 accord-
ing to which (1) is approximated by a cascade of
K subchannels. Specifically, let x0 denote the
channel input. The channel output xK is obtained
by iterating

xk+1 = xke
jLγ|xk|2/K + nk+1 (4)

where nk+1 ∼ CN (0, PN/K) for k =

0, 1, . . . ,K − 1. The output xK of the split-
step Fourier method approximates accurately the
samples of a(L, t) when K → ∞, i.e., when the
step size vanishes.

Since the channel (3) is memoryless, its ca-
pacity, C (in bits per channel use), can be eval-
uated by calculating the maximum of the mutual
information between the channel input and out-
put, I(r,θ; r0,θ0), over all the distributions that
satisfy the power constraint E[r20] ≤ P . Next, we
list some known bounds on C and then propose a
novel upper bound.

Bounds on the Channel Capacity

Since the conditional pdf describing the channel
law is known, lower bounds on the per-sample ca-
pacity of the nondispersive NLS channel can be
computed by fixing the input distribution and eval-
uating the resulting mutual information via numer-
ical integration. Yousefi et al.3 obtained a lower
bound by considering a multiple-ring input con-
stellation and by optimizing radius and probabil-
ity of each ring under a power constraint. How-
ever, optimizing this distribution is computation-
ally expensive and becomes impractical at high
powers. Next, three lower bounds are presented.
Afterwards we shall review the only known upper
bound, and then introduce our novel upper bound.

Lower Bound 1: This bound relies on a
circularly-symmetric input distribution with half-
Gaussian amplitude profile3 , i.e,

fr0(r0) =
√

2/(πP ) exp
(
−r20/(2P )

)
. (5)

It was shown that this lower bound is tight when
the SNR goes to infinity3.

Lower Bound 2: This lower bound, which has
not been evaluated for this channel previously,
is obtained by considering a circularly-symmetric
Gaussian input distribution, which is capacity-
achieving in the absence of nonlinearity. This
lower bound is tight in the low-power regime
where the nonlinearity is weak.

Lower Bound 3: Turitsyn et al.4 developed a
lower bound on the per-sample capacity that can
be calculated for any input power by means of nu-
merical integration. This bound can be achieved
by a noncoherent receiver; indeed, only the statis-
tics of the output’s amplitude was used in its
derivation.

Previous Upper Bound: The capacity of a dis-
persive discrete-time NLS channel is no larger
than log(1 + SNR) (bits per channel use).2 This
bounds holds also in the nondispersive case.

New Upper Bound: We show that the capacity
of the nondispersive NLS channel (1) is upper-
bounded as

C ≤ min
λ>0, α>0

{
α log

(
P + PN

α

)
+ log(πΓ(α))

+ λ+ max
r0>0
{gλ,α(r0, P )}

}
(6)

where

gλ,α(r0, P ) = (α log e− λ)
r20 + PN
P + PN

− h(r | r0 = r0) + (1− 2α)E[log(r) | r0 = r0]

− h(θ | r, r0 = r0,θ0 = 0). (7)

Here, h(· | ·) is the conditional differential entropy
function. The term h(r | r0 = r0) can be com-
puted numerically using fr|r0(r | r0). Further-
more, h(θ | r, r0 = r0,θ0 = 0) can be computed
numerically using (3) and Bayes’ theorem to find
fθ|r,r0,θ0

(θ|r, r0, θ0).
The proof of (6) relies on a dual formula for

channel capacity9; furthermore, a Gamma distri-
bution with parameters α > 0 and β = (P+PN )/α

is chosen as auxiliary pdf of the random variable
r2 to upper-bound the output’s differential entropy.
The method of Lagrange multipliers is used to re-
place the maximization over the set of input dis-
tributions satisfying the power constraint, with a
maximization over r0 ≥ 0. Also, the symmetry
of the channel with respect to the input phase θ0
(see (3)) is exploited to avoid an optimization over



the phase of the input signal.

Numerical Example
We evaluate our novel capacity upper bound
and the available upper and lower bounds for a
nondispersive 5000-km fiber-optical system with
ideal distributed amplification. The channel pa-
rameters can be found in Table 1. Figure 1 de-
picts the previous and new upper bounds together
with the three lower bounds on the capacity, de-
scribed in the previous section. We see that, in
the low-power regime, the per-sample capacity of
the nondispersive NLS channel is close to that of
the AWGN channel (previous upper bound). This
is expected, because the nonlinearity is weak at
low powers. One can also observe that lower
bound 2 is tighter than lower bound 1 at low pow-
ers, as expected (see the magnified figure).

Figure 1 suggests that the slope of capacity
start decreasing at moderate powers. This can
be explained as follows. We see from (4) that,
at each step, the signal experiences a nonlinear
phase shift proportional to its amplitude square.
This phase distortion is a nonlinear function of
both the transmitted signal and the noise, and in-
creases with the input power. This means that,
as the power increases, the amount of informa-
tion that can be conveyed through the phase of
the transmitted signal decreases, which deter-
mines a reduction in the slope of capacity. The
effects of the phase noise becomes noticeable at
about 0 dBm. At high powers (around 30 dBm),
the phase of the received samples converges to
a uniform distribution over [0, 2π) and becomes
essentially independent of the transmitted signal.
This means that information can be conveyed
only through the input’s amplitude. This is con-
firmed by the fact that capacity seems to grow
with the same slope as that of lower bound 3,
which relies on noncoherent detection.

Conclusion
A nonasymptotic upper bound on the capacity of
the nondispersive fiber-optical channel was intro-
duced. We evaluated the upper bound together
with two known lower bounds3,4. We also eval-
uated the previously known upper bound and a
lower bound that is tight at low powers. A com-
parison between these bounds illustrates that the
proposed upper bound confines the capacity to a
much narrower range than the previously known
one. Future work may involve a comparison be-
tween the proposed upper bound and the tighter
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Fig. 1: The proposed upper bound on the capacity of the
nondispersive optical fiber channel together with previously

known bounds. The capacity is confined to the shaded
region.

lower bounds obtainable by optimizing multiple-
ring constellations3,6.
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