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Abstract—Matched filtering and sampling, which is
known to be the optimal receiver for the linear additive
white Gaussian noise channel, is in general suboptimal
for a nonlinear medium. Nonetheless, it is commonly
used in fiber-optical communication systems with non-
linear distortion. In this paper, a novel demodulation
scheme is proposed for a two-user memoryless interfer-
ence channel, with a type of nonlinear crosstalk that
occurs in wavelength-multiplexed optical transmission.
We show by simulations that by using this demodula-
tion scheme, unlike matched filtering and sampling, the
symbol error rate decreases to zero in the high-power
regime.

I. Introduction
Coherent transmission over the fiber-optical channel

is impacted by several impairments, primarily the Kerr
nonlinearity. Due to the dependence of the optical fiber
refractive index on signal intensity, the nonlinear Kerr
effect causes a phase shift that depends on the amplitude
of the transmitted signal itself. It plays a significant role at
high transmit powers and critically limits the achievable
data rates. The demodulation and detection mechanisms
at an optical coherent receiver have been adopted from
the wireless communication realm where channel nonlin-
earities are nonexistent, resulting in suboptimal solutions.

In today’s optical networks, roughly one hundred
wavelength-division-multiplex (WDM) signals copropa-
gate in a standard single-mode fiber. The Kerr nonlinearity
gives rise to crosstalk between the WDM channels. The
signal phase is modulated in each WDM channel with
its own amplitude as well as with the intensity of its
neighboring channels. The former effect is referred to as
self-phase modulation (SPM) and the latter as cross-phase
modulation (XPM). Four-wave-mixing is another impor-
tant nonlinear impairment that limits the performance of
WDM systems [1, Sec. 8.5].

Due to the complicated interplay between the linear
chromatic dispersion, the nonlinear Kerr effect, and the
additive amplification noise, the capacity of the point-
to-point optical fiber is still undisclosed. To compensate
for the nonlinear interference, many solutions have been
proposed, both in the electrical and in the optical realms
[2, Ch. 4]. Digital back-propagation [3] at the receiver
and signal predistortion at the transmitter [4] are well-
known impairment compensation methods that use digital
signal processing. Optical solutions include soliton-based

communication [5] and optical phase conjugation (see for
example [6]). The performance of WDM systems can be
improved by exploiting the temporal correlation of the
nonlinear interference to mitigate the effects of XPM via
an adaptive linear equalization (see for example [7]).

A large variety of simplified channel models have been
considered in the literature (see [8]). Neglecting dispersion,
modeling nonlinearity as a perturbation, and neglecting
signal-noise interaction are among the central simplifying
assumptions (see [9], [10], and [11] for examples). The
study of simplified models can lead to an approximation
of the channel behavior in certain power regimes as well
as pave the way for further analysis on more realistic
channels.

It is shown in [12] for a perturbative WDM model
that the capacity region is hardly affected by the non-
linear inter-channel crosstalk if the information of all the
channels is available at the receiver and the nonlinearity
is weak. However, if joint detection is not possible, the
capacity is extremely limited by the nonlinear crosstalk
for the same model [12]. In [13] and [14] the capacity of a
two-user simplified WDM system is studied as the input
power goes to infinity. It is shown that the pre-log capacity
1 can be achieved for both channels.

Matched filtering and sampling are used in all of the
aforementioned works to obtain a discrete-time model
from a continuous channel. However, as mentioned before,
this is suboptimal for the nonlinear optical channel. Here
we study, by evaluating the symbol error rate (SER),
the performance of a new demodulation scheme over a
simplified two-user interference channel with nonlinear
WDM crosstalk.

Contribution: In this paper, we study a pair of
continuous-time WDM channels at practical power levels.
First, we consider the conventional matched filtering and
sampling method, which serves as a benchmark. Second,
we modify this scheme by compensating for the SPM.
Third, we propose a demodulation method tailored for the
channel models under study, which mitigates the effects
of both SPM and XPM. To compare the performance
of the three demodulation algorithms, we evaluate the
SER through Monte Carlo simulation. The simulation
results show that while the performance of the first two
methods degrades by increasing the input power beyond
an optimal point, the SER for the third demodulation



scheme decreases to zero in the high-power regime.

II. Channel Model
The signal propagation through an optical fiber can be

modeled with the nonlinear Schrödinger (NLS) equation
[15, Eq. 2.6.18] which accounts for the effects of chromatic
dispersion and Kerr nonlinearity. Two types of amplifica-
tion are used in the optical systems to compensate for the
signal loss, namely, lumped and distributed amplification.
While the latter amplifies the signal continuously through
the fiber, the former does so only at the end of each fiber
span. Here, we focus on lumped amplification. Amplifiers
boost the signal power at the expense of adding noise.

If the fiber loss and polarization drift are neglected, the
propagation of two single-polarization WDM fields with
nonoverlapping spectra through a single-mode fiber can be
described by a pair of coupled NLS equations [1, Eqs. 7.4.1
and 7.4.2]
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where Ak = Ak(z, t) is the complex envelope of the optical
field of channel k ∈ {1, 2} at time t and position z. The
constants γk, β2k, and d denote the nonlinear, dispersion,
and group velocity mismatch parameters, respectively.

In [13], a simplified two-user WDM system is studied
based on (1)–(2), where the effects of dispersion, group
velocity mismatch, and signal-noise interaction are ne-
glected. The continuous-time network model can be de-
scribed as [13, Eqs. (5) and (6)]

A1(L, t) = A1(0, t)ejη1(|A1(0,t)|2+2|A2(0,t)|2) +N1(t) (3)
A2(L, t) = A2(0, t)ejη2(|A2(0,t)|2+2|A1(0,t)|2) +N2(t). (4)

Here, L is the length of the fiber and Nk(t) denotes the
zero-mean white complex circularly symmetric Gaussian
noise added by the inline amplifiers with spectral density
N0 = 1/2nspanhνFG, where hν is the optical photon
energy, nspan is the number of amplification spans, T is the
symbol time, and F is the noise figure. Moreover, G is the
amplifier gain, which is equal to the signal attenuation in
one span, exp(αLspan), where α is the attenuation constant
and Lspan = L/nspan is the span length. The parameter ηk
quantifies the nonlinear interference. In this paper we take
into account the effect of fiber loss in the calculation of ηk
to obtain

ηk = nspanγkLeff. (5)

Here, Leff = (1− e−αLspan)/α is the effective length of one
fiber span [1, Eq. 4.1.6]. Due to the fiber loss, the signal
power and consequently the nonlinear distortion diminish
along propagation. Therefore, the effective length is less
than the actual fiber length, Lspan.

If we assume that perfect rectangular pulse shaping is
used in the modulator, one can use matched filtering and

sampling to obtain the following discrete-time network
model from (3)–(4)

Y1 = X1 exp
(
jη1
(
|X1|2 + 2|X2|2

))
+N1 (6)

Y2 = X2 exp
(
jη2
(
|X2|2 + 2|X1|2

))
+N2 (7)

where Nk is zero-mean Gaussian noise with variance PN =
N0/T . Ghozlan and Kramer show in [13], through a high-
power asymptotic analysis, that the capacity pre-log pair
(1,1) is achievable for the pair of channels (6)–(7). The
same authors extended this result in [14] to channels with
group velocity mismatch. Here, we focus on the continuous
channels (3)–(4) for a nonrectangular pulse shape in the
practical power regime. We note that in (3), (4), (6),
and (7) the first term in the exponent is due to SPM,
and the second term to XPM. It is assumed throughout
the paper that independent data is transmitted over each
channel and each receiver only has access to the output
of its own channel. Both wavelengths are assumed to
propagate through one point-to-point single mode fiber
whose parameters are known at both receivers.

III. Demodulation Schemes
In this section, we list three demodulation schemes for

the continuous-time network (3)–(4). Let the pulse shape
p(t) be a real function that is zero outside the interval
(0, T ]. Furthermore, define Ak(0, t) =

∑
i xk,ip(t− iT ) to

be the signal sent by the transmitter k, where xk,i indicates
the ith transmitted symbol.

The kth receiver first demodulates the signal Ak(L, t)
(e.g. by passing it through a filter) and then detects the
transmitted symbol. Throughout this paper, we assume
that the detector selects the closest symbol in Euclidean
distance to the demodulator output. Let ỹk,i be the output
of the demodulator and yk,i be the detected symbol at the
receiver. We present three demodulation schemes to obtain
ỹk,i from the received signal Ak(L, t).

1) Matched filtering and sampling (MFS): This scheme is
the optimal demodulation method for the additive white
Gaussian noise (AWGN) channel. The received signal is
multiplied by the pulse shape and is integrated over time,
i.e.,

ỹmfs
k,i =

∫ ∞
−∞

Ak(L, t) · p(t− iT ) dt. (8)

2) Matched filtering and sampling with phase compen-
sation (MPC): Here, we modify the MFS method by
compensating for the phase rotation caused by SPM, i.e.,

ỹmpc
k,i = ỹmfs

k,i e
−jηk|ỹmfs

k,i |2 , (9)

where ỹmfs
k,i is the output of the MFS method. We note that

MPC is common in optical receivers [16].
3) Maximum Matching (MxM): Here, we propose a new

demodulation technique tailored for (3)–(4). Our method
is based on the following proposition, whose proof can be
found in [17, Thm. 2.1].



TABLE I: Channel parameters used in the simulation.

Parameter Symbol Value
Span length Lspan 85 km
Attenuation α 0.2 dB/km
Nonlinearity γ1 = γ2 1.27 (Wkm)−1

Symbol rate 1/T 32 Gbaud
Optical photon energy hν 1.28 · 10−19 J
Amplifier noise figure F 6 dB

Number of spans nspan 5

Proposition 1: Let f(t) be a positive continuous func-
tion on the interval [a, b] and let M(s) =

∫ b
a
f(t)ejsf(t) dt,

where s is a real number. Then max
s
|M(s)| =

∫ b
a
f(t) dt

and the maximum occurs if and only if s · f(t) does not
depend on t, i.e., either f(t) is a constant or s is zero.

Inspired by this theorem, we propose the following
demodulation method. Let

smax
k,i = argmax

s∈Bk

∣∣∣∣∣∣
∞∫
−∞

Ak(L, t) · p(t− iT )e−jηks(p(t−iT ))2
dt

∣∣∣∣∣∣ .
(10)

Here, the set Bk comprises all possible values that |xk,i|2+
2|xk̄,i|2 can take, where k̄ = 3 − k. The output of the
maximum matching demodulator is defined as

ỹmxm
k,i =

∞∫
−∞

Ak(L, t) · p(t− iT )e−jηks
max
k,i (p(t−iT ))2

dt. (11)

Now, we justify the proposed demodulator with the help
of Proposition 1. If noise is neglected, the right-hand side
of (10) can be rewritten as

argmax
s∈Bk

∣∣∣∣∣∣xk,i
∞∫
−∞

p2(t)ejηk(|xk,i|2+2|xk̄,i|2−s)p2(t) dt

∣∣∣∣∣∣ .(12)

By Proposition 1, s = |xk,i|2 + 2|xk̄,i|2 achieves the
maximum in (12). Conditional on smax

k,i = |xk,i|2 +2|xk̄,i|2,
the interference gets canceled in the integrand in (11) and
ỹmxm
k,i follows a Gaussian distribution with mean xk,i.

IV. Simulation Results
In this section, we evaluate the three demodulation

schemes listed in Section III by conducting Monte Carlo
simulation. We consider the transmission of 16-ary quadra-
ture amplitude modulation (QAM) data symbols for both
transmitters. The dispersion is assumed to be zero to all
orders. The channel parameters are presented in Table I.
The nonlinear coefficient can be calculated using (5) as
η1 = η2 = 135 W−1. The noise variance can be calculated
as PASE = 2 µW. We use 500 samples per symbol and a
truncated Gaussian pulse shape with a full width at half
maximum of T/2. The input power, P , is assumed to be
the same for both channels.

In Fig. 1, the distribution of the output of the three
demodulators described in Sec. III for two input powers
is depicted. With MFS and P = 0 dBm, in Fig. 1a,
each constellation point is mapped to three noisy spots,
each corresponding to one of the three possible values of
the XPM term, 2|x2,i|2. Moreover, because of SPM, these
three spots are rotated with an angle proportional to the
power of the constellation point.

At 10 dBm, with the MFS demodulation scheme as in
Fig. 1d, the nonlinearity distorts not only the phase of the
demodulator output, but also its amplitude. This observa-
tion can be explained as follows. Due to the nonlinearity,
the received signal, Ak(L, t), experiences a phase shift with
respect to its amplitude at any time instance, t. Since p(t)
is not rectangular, in the high-power regime, the phase of
Ak(L, t) changes rapidly during one time slot. This rapid
variation of the phase of the integrand in (8) scales down
the output of the MFS demodulator.

At 0 dBm with the MxM demodulator, it can be seen in
Fig. 1c that although, like with MFS and MPC, each con-
stellation point is mapped to three noisy spots, these spots
are close to each other and centered at the transmitted
point. As shown in Fig. 1f, in the high-power regime the
effects of nonlinearity is completely compensated by the
MxM demodulator and the output of the demodulator has
almost the same distribution as the linear AWGN channel.

In Fig. 2a, the SER Pr(y1,i 6= x1,i) for the three demod-
ulation schemes presented in Sec. III are depicted. The
SER for a linear additive white Gaussian noise (AWGN)
channel with the noise variance PASE is included for
comparison. The SER of the MFS demodulator is similar
to that of the AWGN channel at low powers where the
effects of the nonlinearity are weak and the channel can
be assumed linear. However, at moderate power when the
nonlinearity becomes substantial, the SER increases with
power. Eventually, all the information is lost due to the
nonlinear interference in the high-power regime.

Like MFS, the SER of MPC is close to the AWGN
channel at low power, has a minimum in the moderate
power regime, and increases to almost one at high power.
However, since the SPM is compensated for in MPC, it
outperforms MFS. The SERs at the optimal power for
MPC and MFS are 1.6 · 10−3 and 4 · 10−3, respectively.

As the other two methods, the SER for MxM follows
the AWGN channel when the input power is low. In
the moderate-power regime at about −7 dBm the error
probability increases as the effects of nonlinearity becomes
substantial. However, unlike the MFS and MPC, the SER
for MxM goes to zero at high power. When the input power
grows large, the contribution of the noise to the right-
hand side of (10) becomes minimal and the approximation
(12) becomes accurate. Therefore, the interference gets
canceled by the MxM demodulator and ỹmxm

k,i resembles
the output of an AWGN channel (see Fig. 1f).

There is a peak in the SER approximately at 3 dBm
which can be interpreted as follows. There are two sources
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Fig. 1: The output of the demodulator (clouds) for 16-QAM (stars) using three demodulation schemes at signal power
P = 0 dBm (a)–(c) and P = 10 dBm (d)–(f). Different colors are used to illustrate the scattering pattern of different
constellation points.

of error when MxM is deployed: the error in finding smax
k,i

and the detection error. In (10), if because of the noise

smax
k,i 6= |xk,i|2 + 2|xk̄,i|2, (13)

the outcome of the demodulator in (11) will not be cen-
tered at xk,i but at another point whose distance to xk,i
increases with the input power. (The same behavior can be
seen for MFS and MPC in Fig. 1.) Therefore the SER can
suddenly increase at a power where the aforementioned
center point exits the detection region of xk,i. However, the
SER goes to zero as the probability of the event described
in (13) vanishes when the input power increases.

To further elucidate the proposed scheme’s ability to
suppress SPM and XPM by interference cancellation, in
Fig. 2b, we evaluate Pr(smax

k,i 6= |xk,i|2 + 2|xk̄,i|2). As can
be seen, this probability decreases monotonically with the
input power. Therefore, the success rate of the interference

cancellation by the MxM demodulator converges to one
at high power. We also note that by using MxM, receiver
k, beside guessing xk,i, can also obtain an approximation
of |xk̄,i| by calculating

√
(smax
k,i − |ymxm

k,i |2)/2. Therefore,
one may exploit XPM to broadcast data over the network
under study. This result suggests that treating XPM as
noise in optical networks is suboptimal.

V. Discussion and Conclusion

A novel demodulation scheme, maximum matching, for
a two-user optical interference channel was proposed. The
matched filtering and sampling method with and without
phase compensation were also considered for comparison.
We showed via Monte Carlo simulation that for the max-
imum matching method, unlike the other two, the SER
goes to zero as the power grows large.
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Fig. 2: (a) Symbol error rate Pr(y1,i 6= x1,i) evaluated by Monte Carlo simulation for 16-QAM data transmission over the two-
user interference channel (3)–(4) for using matched filtering and sampling (MFS), matched filtering with phase compensation
(MPC), and maximum matching (MxM). Also, the SER for the AWGN channel is depicted. (b): The error probability of the
interference cancellation Pr(smax

k,i 6= |xk,i|2 + 2|xk̄,i|2), using the MxM demodulation scheme.

A continuous-time communication channel can be de-
scribed by a mapping whose range and domain have
infinite dimensionality. By fixing a demodulation scheme
we project the channel’s output into a two dimensional
complex number per each symbol interval. This mapping
may result in information loss if the demodulation method
has been selected poorly. It is well known that for the
AWGN channel, the output of the matched filtering and
sampling demodulator provides sufficient statistics [18,
Thm. 26.4.1]. Our results indicate that deploying the
matched filtering and sampling demodulator in nonlinear
optical communication systems is strictly suboptimal. Fu-
ture work should investigate the design of demodulation
schemes for more realistic optical channel models.
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