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Abstract:  The mutual information (MI) of multidimensional multispigedistributions in
arbitrary dimensions in the presence of additive white Gamsnoise is derived. We show
for instance that 2-D distributions have higher Ml than 44i2ein a range of signal-to-noise
ratios.

OCIS codes: 060.4080, 060.4510, 060.0060.

1. Introduction

The choice of modulation formats plays a key role in meethmgdemands of future communication systems as it
impacts spectral efficiency, power efficiency, and compyeionstellations ilN dimensions-D) are of interest as
they can provide increased spectral and power efficien€hlesdimensions that can be exploited in multidimensional
constellations are time, frequency (wavelength), spaber(itores or fiber modes) and polarizations. For channels
where the noise has rotationally invariant statistics stinely of rotationally invariant constellations is of greserest.
The multidimensional Gaussian distribution is the mostigmmn such distribution, and it is capacity-achieving over th
additive white Gaussian noise (AWGN) channel under an gegpawer constraint [1]. However, more practical input
distributions assume being discrete in amplitude, butksiping rotational invariance, i.e., continuous and enmif
in phase (where “phase” may be interpreted in a multidineradisense). Such distributions are caltadltisphere
distributionsin N-D (or multiring distributionsin 2-D) and are of great interest for developing practicastellations.
Several papers have considered the properties of multdistgbutions for a wide range of channels under average
and/or peak power constraints for AWGN [2-4] as well as fa tionlinear fiber channel [5-8]. In this paper, we
present a low-complexity analytical expression for calting the mutual information of ad-D multisphere distribu-
tion of arbitraryN for the AWGN channel [9]. We present the information ratearfious multidimensional multisphere
distributions and show a case wher®2nultiring constellations can exceed the correspondifigdistribution.

2. System Model and Mutual Information

We consider a discrete-time AWGN chaniiek X + N, whereX is anN-D real input vector antil is anN-D normally
distributed noise vector with mean 0 and variao@e= No/2 per real dimension.

The mutual information between input and output is given ©¢;Y) = h(Y) — h(Y|X) [1], where the differential
entropies are

()=~ [ fr@)log fvy)dy  and  h(Y|X)=h(N)= > log,2rea? &

The maximum mutual information under an average power cainstis the AWGN channel capacitg =
N/2log, (14 2SNR/N), where SNR= E[||X||2]/No with || - | denoting the norm. We furthermore define the SNR
per 4 dimensions as 4-D SNR (4/N)SNR.

We consider the case where the input veatas distributed according to aN-D multisphere distribution (e.g., see
Fig. 1), where the probabilities and radii of each hyperspherelébfromk = 1,... K are px ands;, respectively.
Under this assumption, and by denoting witfx the distribution of the magnitude of input vectér the mutual
information betweeiX andY in bits perN dimensions is given by [9]

f(F)

o ) 2 N
I(X;Y)z—'/o fﬁ(r)logzﬁjdr+logzm—EIOQZZe, (2)
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Fig. 1: A visual representation of a 3-D mul-
tisphere distribution composed of four hyper-Fig. 2: Achievable rates in bits per symbol in 4-D uskgd mul-
spheres. tisphere distributions, fa = 2 and 4 and for a different number
of hypersphereK = {1,4,16}, plotted as functions of 4-D SNR.

where
FN/Z

K P2 &
fa(F) = k; PkX (Fa %) ;o X(F§= F71 exp(—%) Inj2-1(F9) 3)
andly(u) is thevth order modified Bessel function of the first kind. Note tieN-dimensional integral oifi(Y) in
Eq. (1) has been reduced tosmgle integral in EqQ. (2), enabling fast computation of the maximum informatiorerat
or constrained capacity, of multisphere distributionsisTepresents a considerable reduction in complexity asid fa
evaluation of how much information these constellations carry. For the case whebeis distributed according to
anN-D multisphere distribution withk uniformly spaced hyperspheres and equal probabilitiebygersphere, then

I R [ 12SNR

As a further special case, settilg= 1 andN = 2 in Egs. @) and @) gives the constrained capacity of constant-
amplitude constellations, i.e., purely phase-modulattsimission schemes, in the presence of AWGN (e.g., see [10]

3. Mutual Information of Multisphere Distributions

We evaluate the mutual information by substituting Egsatd @) into (2) and by numerically evaluating the resulting
expression for a uniform distribution & N-D hyperspheres. Note that transmission of a sequence dfcgrim time
in single-mode fibers uses 4-D (4 real dimensions) for eachbsy. Figure2 shows the mutual information as a
function of the 4-D SNR, the ratio between energy per fouratisions andNp, for a 4-D signal composed of two
independent 2-DN = 2) signals (e.g., one in each polarization state) and aesidd (N = 4) signal (e.g. a symbol
using both polarizations) for a different number of hypbeseK = {1,4,16}. An increased number of hyperspheres
allows approaching the AWGN capacity more closely sincg filleup the space more uniformly. It is interesting to
note that forK = 16 the mutual information of two 2-D constellations excetascase of a single 4-D constellation
for an 4-D SNR up te~35 dB (see inset of Fig). This is a range of relevance to fiber capacity estimati¢n [6
Multidimensional single-hypersphere distributions demaf interest as they provide potential advantages in non-
linear transmission [11]. Figuré shows the mutual information of a single hypersphere up t¢r&3) dimensions
normalized to 4-D. The Gaussian 4-D distribution is showa asference. In one dimension, a sphere is represented
by 2 points (binary) and the mutual information saturated tits/symbol at high 4-D SNR. As the dimensionality
of the hypersphere increases, the AWGN capacity is appeabebry closely for 4-D SNR in the range ef10-30
dB with a relatively low dimensionality. The case of a 4-Dtdiution (two polarizations) for different numbers of
hyperspheres is shown in Fid. It is interesting to note that increasing the number of hgpleeres allows getting
closer to the AWGN capacity up t©€30-dB 4-D SNR but at a relatively slow rate (see inset of B)gThis suggests
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Fig. 4: Mutual information versus 4-D SNR for vari-

ous numbers of 4-DN = 4, hyperspheres, witlK =

{1,2,4,8,16}.

Fig. 3: Mutual information versus 4-D SNR of a hyper-
sphereK = 1, with dimension& = {1,2,4,8,16,32}.

that increasing the number of dimensions of a distributi@y e a more attractive way to approach capacity than the
number of hyperspheres.

4. Conclusions

A simplified expression allowing for the fast computatiorted mutual information of aN-D multisphere distribution
is derived in the presence of additive white Gaussian nbigexploiting the rotationally invariant properties of the
noise and the distribution itself. Results of constraingplacities for different multisphere distributions aregemted
giving insights for the design of highly efficient modulatiformats, in particular of 2-D versus 4-D constellations.
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