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Abstract: The mutual information (MI) of multidimensional multisphere distributions in
arbitrary dimensions in the presence of additive white Gaussian noise is derived. We show
for instance that 2-D distributions have higher MI than 4-D ones in a range of signal-to-noise
ratios.

OCIS codes: 060.4080, 060.4510, 060.0060.

1. Introduction

The choice of modulation formats plays a key role in meeting the demands of future communication systems as it
impacts spectral efficiency, power efficiency, and complexity. Constellations inN dimensions (N-D) are of interest as
they can provide increased spectral and power efficiencies.The dimensions that can be exploited in multidimensional
constellations are time, frequency (wavelength), space (fiber cores or fiber modes) and polarizations. For channels
where the noise has rotationally invariant statistics, thestudy of rotationally invariant constellations is of greatinterest.
The multidimensional Gaussian distribution is the most common such distribution, and it is capacity-achieving over the
additive white Gaussian noise (AWGN) channel under an average power constraint [1]. However, more practical input
distributions assume being discrete in amplitude, but still keeping rotational invariance, i.e., continuous and uniform
in phase (where “phase” may be interpreted in a multidimensional sense). Such distributions are calledmultisphere
distributions in N-D (or multiring distributions in 2-D) and are of great interest for developing practical constellations.

Several papers have considered the properties of multiringdistributions for a wide range of channels under average
and/or peak power constraints for AWGN [2–4] as well as for the nonlinear fiber channel [5–8]. In this paper, we
present a low-complexity analytical expression for calculating the mutual information of anN-D multisphere distribu-
tion of arbitraryN for the AWGN channel [9]. We present the information rate of various multidimensional multisphere
distributions and show a case where 2-D multiring constellations can exceed the corresponding 4-D distribution.

2. System Model and Mutual Information

We consider a discrete-time AWGN channelY =X+N, whereX is anN-D real input vector andN is anN-D normally
distributed noise vector with mean 0 and varianceσ2 = N0/2 per real dimension.

The mutual information between input and output is given byI(X;Y) = h(Y)− h(Y|X) [1], where the differential
entropies are

h(Y) =−
∫

fY(y) log2 fY(y)dy and h(Y|X) = h(N) =
N
2

log22πeσ2 . (1)

The maximum mutual information under an average power constraint is the AWGN channel capacityC =
N/2 log2 (1+2SNR/N), where SNR= E[‖X‖2]/N0 with ‖ · ‖ denoting the norm. We furthermore define the SNR
per 4 dimensions as 4-D SNR= (4/N)SNR.

We consider the case where the input vectorX is distributed according to anN-D multisphere distribution (e.g., see
Fig. 1), where the probabilities and radii of each hypersphere labeled fromk = 1, . . . ,K are pk andsk, respectively.
Under this assumption, and by denoting withf‖X‖ the distribution of the magnitude of input vectorX, the mutual
information betweenX andY in bits perN dimensions is given by [9]

I(X;Y) =−

∫ ∞

0
fR̃(r̃) log2

fR̃(r̃)
r̃N−1 dr̃+ log2

2
Γ(N/2)

−
N
2

log22e , (2)



Fig. 1: A visual representation of a 3-D mul-
tisphere distribution composed of four hyper-
spheres.
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Fig. 2: Achievable rates in bits per symbol in 4-D usingN-D mul-
tisphere distributions, forN = 2 and 4 and for a different number
of hyperspheresK = {1,4,16}, plotted as functions of 4-D SNR.

where

fR̃(r̃) =
K

∑
k=1

pkχ
(

r̃,
sk

σ

)

, χ(r̃, s̃) =
r̃N/2

s̃N/2−1
exp

(

−
r̃2+ s̃2

2

)

IN/2−1(r̃s̃) , (3)

andIν(u) is theνth order modified Bessel function of the first kind. Note that theN-dimensional integral ofh(Y) in
Eq. (1) has been reduced to asingle integral in Eq. (2), enabling fast computation of the maximum information rate,
or constrained capacity, of multisphere distributions. This represents a considerable reduction in complexity and fast
evaluation of how much information these constellations can carry. For the case whereX is distributed according to
anN-D multisphere distribution withK uniformly spaced hyperspheres and equal probabilities perhypersphere, then

fR̃(r̃) =
1
K

K

∑
k=1

χ(r̃,k∆) where ∆ =

√

12SNR
2K2+3K+1

. (4)

As a further special case, settingK = 1 andN = 2 in Eqs. (2) and (3) gives the constrained capacity of constant-
amplitude constellations, i.e., purely phase-modulated transmission schemes, in the presence of AWGN (e.g., see [10]).

3. Mutual Information of Multisphere Distributions

We evaluate the mutual information by substituting Eqs. (3) and (4) into (2) and by numerically evaluating the resulting
expression for a uniform distribution ofK N-D hyperspheres. Note that transmission of a sequence of symbols in time
in single-mode fibers uses 4-D (4 real dimensions) for each symbol. Figure2 shows the mutual information as a
function of the 4-D SNR, the ratio between energy per four dimensions andN0, for a 4-D signal composed of two
independent 2-D (N = 2) signals (e.g., one in each polarization state) and a single 4-D (N = 4) signal (e.g. a symbol
using both polarizations) for a different number of hyperspheresK = {1,4,16}. An increased number of hyperspheres
allows approaching the AWGN capacity more closely since they fill up the space more uniformly. It is interesting to
note that forK = 16 the mutual information of two 2-D constellations exceedsthe case of a single 4-D constellation
for an 4-D SNR up to∼35 dB (see inset of Fig.2). This is a range of relevance to fiber capacity estimation [6].

Multidimensional single-hypersphere distributions are also of interest as they provide potential advantages in non-
linear transmission [11]. Figure3 shows the mutual information of a single hypersphere up to 32(real) dimensions
normalized to 4-D. The Gaussian 4-D distribution is shown asa reference. In one dimension, a sphere is represented
by 2 points (binary) and the mutual information saturates to4 bits/symbol at high 4-D SNR. As the dimensionality
of the hypersphere increases, the AWGN capacity is approached very closely for 4-D SNR in the range of∼10-30
dB with a relatively low dimensionality. The case of a 4-D distribution (two polarizations) for different numbers of
hyperspheres is shown in Fig.4. It is interesting to note that increasing the number of hyperspheres allows getting
closer to the AWGN capacity up to∼30-dB 4-D SNR but at a relatively slow rate (see inset of Fig.4). This suggests



Fig. 3: Mutual information versus 4-D SNR of a hyper-
sphere,K = 1, with dimensionsN = {1,2,4,8,16,32}.

Fig. 4: Mutual information versus 4-D SNR for vari-
ous numbers of 4-D,N = 4, hyperspheres, withK =
{1,2,4,8,16}.

that increasing the number of dimensions of a distribution may be a more attractive way to approach capacity than the
number of hyperspheres.

4. Conclusions
A simplified expression allowing for the fast computation ofthe mutual information of anN-D multisphere distribution
is derived in the presence of additive white Gaussian noise,by exploiting the rotationally invariant properties of the
noise and the distribution itself. Results of constrained capacities for different multisphere distributions are presented
giving insights for the design of highly efficient modulation formats, in particular of 2-D versus 4-D constellations.

5. Acknowledgments
This work was supported by the Swedish Foundation for Strategic Research under Grant RE07-0026, the Ericsson
Research Foundation, the Friends of Chalmers Foundation, and the Royal Society of Arts and Sciences in Gothenburg.
The authors would like to thank G. J. Foschini and R. W. Tkach for their support.

References

1. C. E. Shannon, “A mathematical theory of communication,”Bell Syst. Tech. J., vol. 27, pp. 379–423 and 623–
656, 1948.

2. S. Shamai and I. Bar-David, “The capacity of average and peak-power-limited quadrature Gaussian channels,”
IEEE Trans. Inf. Theory, vol. 41, no. 4, pp. 1060–1071, July 1995.

3. T. H. Chan, S. Hranilovic, and F. R. Kschischang, “Capacity-achieving probability measure for conditionally
Gaussian channels with bounded inputs,”IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 2073–2088, June 2005.
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