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Sorption of Organic Pollutants Frequently Detected in Stormwater: 

Evaluation of Five Potential Sorbents 

Abstract 

Adsorption filtration is one of the most promising techniques for removal of 

dissolved, colloidal and particulate pollutants from stormwater. The aim of this 

study was to compare the capacity of five filter materials – cellulose, chitosan, 

chitosan-covered bark, pine bark, and polypropylene/polyethylene (PP/PE) fibres 

– to sorb organic pollutants frequently detected in stormwater, including 

polycyclic aromatic hydrocarbons (PAHs), alkylphenols and phthalates. In batch 

tests, synthetic stormwater spiked with a mixture of the organic compounds was 

contacted with the materials for up to 24 h. The compounds were then liquid-

liquid extracted and analyzed using GC-MS. Cellulose and chitosan showed very 

low sorption capacity for the organic contaminants, whereas > 70% of the initial 

concentration of most tested compounds was removed using PP/PE fibres, and > 

80% with pine bark and chitosan-covered bark. The highest adsorption capacity 

was found for PAHs (up to 44 µg/g) using PP/PE fibres and bark. For all tested 

compounds, maximum sorption was approached within 30 min using these 

materials. Future research using natural stormwater should investigate the effect 

of colloidal transport of pollutants through PP/PE fibres and pine bark and the 

ability of these materials to sorb other pollutants, including metals.   

Keywords: adsorption filter; priority pollutants; stormwater treatment; waste 

materials; wood-based media 
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Introduction 

Urban stormwater is a major sink for pollutants emitted from non-point sources in the 

environment, including traffic-related emissions, weathering and leaching of building 

materials, and activities such as commerce and construction. Stormwater has been found 

to contain organic pollutants, including combustion by-products such as polycyclic 

aromatic hydrocarbons (PAH), and industrial chemicals e.g. polychlorinated biphenyls 

(PCB), polybrominated diphenyl ethers (PBDE), alkylphenols and phthalates, at levels 

that often exceed national and international environmental quality standards [1-5]. 

Treatment of stormwater is an important step to achieve the objectives for water quality 

set for example in the European Water Framework Directive. Many organic compounds 

detected in stormwater are hydrophobic (octanol-water partition coefficient log Kow > 3, 

e.g. dibutyl phthalate 4.6; PAH16 3.4–6.8; nonylphenol 4.5 [6-8]). In theory, these 

compounds should bind to particles and be removed, e.g. through sedimentation or 

filtration. However, previous studies [3, 9] have shown that the hydrophobic pollutants 

are found also in the dissolved phase in contaminated water. In addition, organic 

pollutants may attach to colloids such as dissolved organic carbon including humic 

acids in natural and contaminated waters, and hence remain dispersed in the water 

column [10-12]. Filters with adsorbing media have the potential to remove dissolved, 

colloidal and particle-bound organic contaminants and metals from stormwater. 

Treatment of stormwater using adsorption filters for metal removal has proven 

successful for a variety of low-cost media, including minerals e.g. zeolite, spinel and 

perlite [13-17]; coal-based materials such as anthracite and lignite [13, 14]; industrial 

waste products such as fly ash, blast furnace slag and chitosan [13, 18, 19]; and plant-

based products e.g. pine bark, wood chips and compost [14, 15, 18]. Research on low-

cost adsorbents for organic stormwater pollutants is, however, still in its infancy with 
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few published reports. Boving and Neary [20] used aspen wood filters to remove PAHs 

in a pilot-scale stormwater field test. The average removal of PAHs over 9 weeks 

ranged from 19% to 36%, and was correlated with molecular weight. Ray et al. [21] 

showed that hardwood mulch was efficient for removing dissolved naphthalene, 

fluoranthene and butyl benzyl phthalate (removal ≥ 77% of initial concentration, 

approximately 50–400 µg/L). Two minerals and three wood-based materials were 

previously tested as potential sorbents for PAHs, alkylphenols and phthalates [22]. The 

minerals vermiculite and perlite exhibited insignificant removal whereas the wood-

based materials retained ≥ 80% of the initial concentration (10–300 μg/L) of organic 

compounds. These results imply that wood-based media are efficient for sorbing 

hydrophobic organic compounds from stormwater, likely through partition to 

hydrophobic sites on the media [20, 22].  

The aim of the present study was to compare the adsorption capacity of five 

filter media – cellulose, polypropylene/polyethylene fibres, chitosan, chitosan-covered 

pine bark, and non-modified pine bark – for organic pollutants frequently detected in 

stormwater. Materials were selected based on cost and abundance, potential for reuse or 

recycling, water permeability and potential to sorb both hydrophobic organic 

compounds and metal ions. This study is part of a larger project aiming at identifying 

materials that have high potential use in filters for treatment of stormwater 

contaminated with both metals and organic pollutants. Selected materials have reported 

effective adsorption of metals, see e.g. [18, 19, 23].  

The current study focuses on seven organic pollutants frequently detected in 

stormwater – three PAHs (fluorene [FL], anthracene [ANT] and pyrene [PYR]), two 

alkylphenols (4-nonyl- [NP] and 4-t-octylphenol [OP]) and two phthalates (dibutyl 

[DBP] and di(2-ethylhexyl) phthalate [DEHP]). Laboratory batch tests using synthetic 

http://www.tandfonline.com/doi/full/10.1080/09593330.2017.1354924
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stormwater were performed to study the adsorption kinetics and the adsorption 

capacities of these materials at equilibrium. 

Materials and Methods 

Sorbents 

Five materials were selected for analysis; cellulose pellets (by-product from the pulp 

and paper industry), fibres made from polypropylene (PP) and polyethylene (PE) (waste 

product from the plastics industry), chitosan (the deacetylated form of chitin, a 

polysaccharide found in the exoskeletons of crustaceans, provided by BioLog, 

Germany), chitosan-covered pine bark (BioLog, Germany) and non-modified pine bark 

(Ecobark, Nyman Consulting, Sweden) (Figure 1). All media are commercially 

available and have, according to available information from manufacturers, previously 

been used for sorption of metals, oils, acids or solvents. Both barks are hydrophobic and 

resist wetting up to 2 h of soaking. The pure pine bark was sieved to the desired particle 

size (0.6–2 mm), washed and dried at 105°C before use. Cellulose expands considerably 

in water and chitosan tends to become gelatinous in certain water solutions. Therefore, 

chitosan flakes, chitosan-covered bark and cellulose pellets were not washed. The 

chitosan-covered bark was sieved (0.6–2 mm) before use. The PP/PE is made up of up 

very thin fibres, up to 200 mm in length and susceptible to wetting.  
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Figure 1. Materials used in the adsorption tests, shown before sieving (from left to 

right): non-modified pine bark, chitosan-covered pine bark, chitosan, 

polypropylene/polyethylene fibres, and cellulose. 

 

The organic content of the materials was determined by percentage weight lost 

on ignition (LOI) at 550°C [24]. The conductivity (Radiometer Copenhagen CDM3 

Conductivity meter) and pH (Oakton pH/mV/°C meter, pH 11 Series) were measured 

with demineralized water, according to Agriculture Canada approved methods (84-003 

and 84-001, respectively) [24]. The specific surface area was determined by the BET 

nitrogen adsorption method, using a FlowSorb II 2300 surface analyzer (Micromeritics).  

Analytical Standards 

Standards of 4-nonlyphenol (85% content of para-isomers), fluorene, anthracene, 

pyrene, dibutyl phthalate and di(2-ethylhexyl) phthalate were purchased from Sigma–

Aldrich and 4-t-octylphenol from Fluka. Stock standard solutions of the organic 

compounds and internal standards – 9-chloroanthracene and phenanthrene-d10 (both 

from Sigma–Aldrich) – were prepared in toluene (Caledon Laboratories Ltd.) to final 

concentration approximately 5,000 ng/µL. Working standards, used to spike the water 

samples, were diluted in acetone (Fisher Scientific) to final concentration approximately 

100 ng/µL.  

http://www.tandfonline.com/doi/full/10.1080/09593330.2017.1354924
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Leaching of Dissolved Organic Carbon and Organic Pollutants from Raw 

Materials 

One gram of each material (0.1 g of the cellulose, due to its expansion in water) was 

mixed, using an end-over-end tumbler, with 50 mL ultrapure water for 24 h at room 

temperature (20 ± 2°C). The samples were filtered through 0.45 µm cellulose nitrate 

filters (Millipore) and analyzed for leached dissolved organic carbon (DOC) using a 

Lachat Instrument IL 500 TOC analyzer. For analysis of leached organic compounds 

(FL, ANT, PYR, NP, OP, DBP and DEHP) from media, 3 g of each material (0.3 g 

cellulose) was mixed with 150 mL ultrapure water for 24 h.    

Adsorption Tests 

Adsorption was studied through batch tests with synthetic stormwater containing 

dissolved organic material, here humic acids (HAs), spiked with a mixture of organic 

compounds. The sample composition is a simplification of natural conditions where 

pollutants coexist and where dissolved organic material can affect the solubility, and 

therefore the adsorption, of organic pollutants and metals [25, 26]. A HA stock solution 

was prepared by dissolving Fluka humic acid in ultrapure water (see Björklund and Li 

[22] for details). The samples (150 mL ultrapure water) were spiked with the HA stock 

to 20 mg DOC/L final concentration, typical of what is found in natural stormwater 

samples [27], and the pH was adjusted to 7. The samples were thereafter spiked at five 

different concentrations (10, 50, 100, 200, 300 μg/L) with a mixture of all seven organic 

compounds (FL, ANT, PYR, NP, OP, DBP and DEHP). 1.0 g of each material (0.10 g 

of cellulose due to its expansion in water) was then added to the spiked solution and 

shaken, using an end-over-end rotator at room temperature (20 ± 2°C), for 24 h. 

Samples were then centrifuged at 2000 rpm for 10 min, and those containing bark were 

http://www.tandfonline.com/doi/full/10.1080/09593330.2017.1354924
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also sieved through a stainless steel mesh (No. 100). The samples (150 mL HA solution, 

20 mg DOC/L, 1.0 g material) for adsorption kinetics tests were spiked to 100 µg/L 

with a mixture of the seven organic compounds and shaken for 10, 20, 30, 60 and 120 

min before centrifugation and sieving. For each set of tests, a matrix blank and a matrix 

spike were prepared, following the above procedures, to determine contamination and 

loss of analytes, respectively. All samples were prepared in duplicate.  

Adsorption of humic acids to the materials was tested by adding 1.0 g material 

to 50 mL HA-solution (initial concentration approximately 15 mg DOC/L). The 

samples were shaken with an end-over-end tumbler at room temperature (20 ± 2°C) for 

24 h, filtered through 0.45 µm cellulose nitrate filters and analyzed for remaining DOC 

concentrations. All samples were prepared in triplicates. 

Sample Extraction and Analysis 

All organic compounds left in the water phase after adsorption were simultaneously 

liquid-liquid extracted with 3×25 mL dichloromethane (Fisher Scientific). The extracts 

were evaporated using a rotary evaporator and then further concentrated under a stream 

of N2. The samples were reconstituted with 1.0 mL toluene and internal standards (9-

chloroanthracene and phenanthrene-d10, final concentration 100 µg/L) were added 

before analysis using a 6890 HP/Agilent gas chromatograph (30 m×0.25 mm I.D. DB-5 

column from J&W Scientific, Folsom, USA) with a 6890 series injector and a 

quadrupole 5973 mass selective detector from Agilent Technologies, Wilmington, USA. 

A detailed description of the GC-MS procedure, as well as all chemicals used for the 

extraction and analysis, was provided by Björklund and Li [22].  

http://www.tandfonline.com/doi/full/10.1080/09593330.2017.1354924
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Data Analysis 

The program IBM SPSS Statistics 22 was employed to perform independent samples t-

tests.  

The concentrations of organic compounds left in solution after sorption were 

used to calculate the percentage retention (R, %) of organic compounds, also called 

removal efficiency: 

𝑅 (%) =
(𝐶0 − 𝐶𝑒)

𝐶0
× 100 

where C0 is the initial concentration (µg/L) of the organic compounds in the 

sample solution; Ce is residual concentration in solution at equilibrium (µg/L), assumed 

to be reached after 24 h contact time. 

 

The adsorption capacity at equilibrium, qe (µg/g), was calculated using: 

𝑞𝑒 = 𝑉 ×
𝐶0 − 𝐶𝑒

𝑚
 

where C0 and Ce are the initial and equilibrium concentrations (µg/L), 

respectively; V is the volume of the solution (L) and m is the weight of the adsorbent 

(g). 

 

Linearized forms of both the Freundlich and the Langmuir models were used to 

study the adsorption isotherms of PP/PE fibres, pine bark and chitosan-covered bark.  

log 𝑞𝑒 = log 𝐾𝐹 +  
1

𝑛
log 𝐶𝑒 (Freundlich) 

http://www.tandfonline.com/doi/full/10.1080/09593330.2017.1354924
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1

𝑞𝑒
=  

1

𝑞𝑚𝑎𝑥
+ 

1

𝐾𝐿 × 𝑞𝑚𝑎𝑥
 ×  

1

𝐶𝑒
 (Langmuir) 

where qe is the amount of analytes adsorbed onto adsorbent at equilibrium 

(µg/g); Ce is the equilibrium concentration of analytes remaining in solution (µg/L); KF 

((µg/g)(L/µg)1/n), n and KL (L/µg) are adsorption-system-specific constants; and qmax is 

the maximum adsorption capacity (µg/g). The isotherm constants are evaluated from 

linear plots of the equations. 

 

Commonly used kinetic models to evaluate the adsorption rate are the Lagergren 

pseudo-first-order adsorption rate equation and the pseudo-second order equation [28, 

29]: 

log(𝑞𝑒 − 𝑞𝑡) = log  𝑞𝑒 −
𝑘1

2.303
𝑡(pseudo-first-order) 

𝑡

𝑞𝑡
=

1

𝑘2𝑞𝑒
2 +

1

𝑞𝑒
𝑡 (pseudo-second order) 

where qe and qt are the amounts of adsorbed analytes (µg/g) onto adsorbent at 

equilibrium and at time t (min), respectively; k1 (1/min) is the rate constant for first-

order sorption; k2 (g/(µg min)) is the rate constant of second-order sorption. The best 

fitting model was determined by plotting log(qe−qt) vs t and (t/qt) vs t and comparing 

corresponding linear regression correlation coefficients for each compound. Based on 

the t/q vs t plot, the intercept and the slope were used to calculate the rate constant k2 

and the equilibrium adsorption qe for the pseudo-second-order model.  

http://www.tandfonline.com/doi/full/10.1080/09593330.2017.1354924
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Results and Discussion 

Characteristics of the Materials 

Cellulose and pine bark exhibited very low BET surface areas (Table 1). Unfortunately, 

BET could not be measured for chitosan and chitosan-covered bark due to instrument 

failure. Reported surface areas for chitosan are of the same magnitude as cellulose and 

bark [30]. Surface areas of high-capacity adsorbents, such as activated carbon, are 

typically in the 200–1200 m2/g range [31]. The comparatively low leaching of DOC 

from cellulose, but high conductivity, is possibly due to the presence of ionizable 

moieties such as carboxyl and hydroxyl groups and high ash content (13 %, Table 1). 

The acidic pH’s of the bark materials are due to leaching of humic and fulvic acids [32], 

and thus associated with the leaching of DOC (Table 1). 

 

Table 1. Characteristics of sorbents. 

Materials 

BET surface 

area (m2/g) 

Organic 

matter (%) pH 

Conductivity 

(µS/cm) 

Leached 

DOC (mg/L) 

Pine bark 1.4 99 3.9 37 95 

Chitosan-covered bark Not analyzed 99 3.9 50 190 

Chitosan Not analyzed 99 8.0 72 11 

PP/PE fibre Not detected 91 9.3 22 2.0 

Cellulose 1.1 87 8.1 131 20 

 

 

Leaching of Organic Compounds from Materials 

None of the tested materials desorbed organic compounds (FL, ANT, PYR, NP, OP, 

DBP and DEHP) in detectable amounts. The exception was chitosan, which exhibited 

substantial contamination of DBP (approximately 50 µg/L). Contamination with DBP 

was not detected in samples with chitosan-covered bark. However, background 

http://www.tandfonline.com/doi/full/10.1080/09593330.2017.1354924
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contamination (< 4 µg/L) with the two phthalates DBP and DEHP could be detected in 

most samples.  

Adsorption and Leaching of DOC from Materials 

Only chitosan was able to adsorb humic acids (approximately 0.2 mg/g). The amino-

group of chitosan is positively charged at pH’s lower than its pKa, which lies between 

6.3 and 6.5. The HA solution was adjusted to pH = 7 before adsorption tests began. 

Adding chitosan to the solution is likely to increase pH even more (Table 1); thus the 

chitosan surface was assumed to be neutral during the tests. Other studies have shown 

that significant amounts of HA are adsorbed onto chitosan under acidic pH conditions 

[33, 34]: due to attractive forces between the protonated chitosan amino-group and 

carboxyl or phenolic groups on the humic acid macromolecules, organic complexes 

may be formed. Humic acid adsorption onto chitosan is notably reduced at pH > pKa 

[33, 34], as is the case in the current study. Cellulose and barks exhibit negative surface 

charge [35], as do humic acids at neutral pH. Hence limited adsorption of HA occurs. 

Adsorption of HA onto chitosan-covered bark may occur, but is masked by the release 

of DOC from the bark moiety.   

Pine bark and chitosan-covered bark desorbed DOC up to almost 100 and 200 

mg/L (Table 1), respectively, exceeding levels found in natural stormwater (typically 

20–30 mg/L). The other materials desorbed DOC to a much lower degree (< 20 mg/L). 

The wood-based materials may leach DOC in the form of e.g. lignin, humic and fulvic 

acids. Genç-Fuhrman et al. [13] considered pine bark to be unsuitable for adsorption of 

metals in stormwater, because of the possible transportation of metals with organic 

acids from the bark. Kalmykova et al. [26] showed that DOC leaching from a peat 

column fed with a metal solution correlated significantly with leached metal 

http://www.tandfonline.com/doi/full/10.1080/09593330.2017.1354924


Preprint. Accepted manuscript available online: 

http://www.tandfonline.com/doi/full/10.1080/09593330.2017.1354924  

 

13 

 

concentrations in the initial stage of the experiment. Leaching was partly attributed to 

colloidal metal–organic complexes formed with easily-soluble organic matter from the 

peat, e.g. humic and fulvic acids. However, in the Kalmykova et al. [26] studies, 

leaching of both metals and DOC decreased quickly. Therefore, DOC leaching from 

peat is assumed to not affect the performance of the material, e.g. when used in filters, 

in a longer perspective. Bark is expected to behave in a similar way to peat; after 

washing the bark with several batches of water, reduced leaching of DOC was observed. 

Hence colloidal transport of organic compounds with DOC from the material itself is 

expected to be limited, except during the filter start-up phase.   

In another study, Kalmykova et al. [10] showed that humic colloids and thereto 

attached organic contaminants are not efficiently adsorbed by peat filters. Since humics 

contain both non-polar and polar surface groups, many organic compounds are expected 

to attach to humic colloids. The Kalmykova et al. studies [10, 26] indicate that if metals 

and organic pollutants are attached to humic colloids in water, the colloids may 

negatively affect the pollutants’ adsorption onto e.g. wood-based media, which, similar 

to peat, exhibit the same surface charge as the humics. It is concluded that although 

leaching of DOC from barks is not assumed to affect the performance of the material in 

the long run, organic compounds attached to naturally occurring humic colloids in the 

water phase may exhibit limited adsorption onto bark.  

Removal of Organic Compounds 

Cellulose and Chitosan 

Chitosan was able to adsorb the most hydrophobic PAH, i.e. pyrene, and nonylphenol, 

but none of the other compounds tested (Figure 2). Low removal was expected for all 

compounds, due to the material’s low hydrophobicity. However, another study found 

http://www.tandfonline.com/doi/full/10.1080/09593330.2017.1354924
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that PAHs may indeed adsorb to chitosan; higher molecular weight, hence higher 

hydrophobicity, of the compound generally results in more favourable adsorption onto 

chitosan [36]. In addition, Lang et al. [37] found that nonylphenol may adsorb to 

chitosan through non-polar van der Waals forces. Contamination of DBP from the 

material disguised any adsorption that might have taken place.  

The efficiency of cellulose in removing the organic contaminants was very low 

(Figure 2). In fact, there was no significant difference in retention of compounds in 

contact with cellulose (mean [M] = 76, standard deviation [SD] = 16) and compound 

losses during extraction and analysis (M = 82, SD = 18), t(14) = 0.69, p = .500 

(independent samples t-test). The low adsorption capacity of cellulose for organic 

contaminants was expected due to its polarity and negative surface charge, which 

promote sorption of cations [35]. Cellulose may undergo chemical modification, for 

example through chemical grafting, to enhance the adsorptivity towards organic 

compounds [38]. However, both cellulose and chitosan may serve as efficient sorbents 

of metals in stormwater because of their potential to attract cations [19, 39]. 

Due to the generally low removal of organic compounds using cellulose and 

chitosan, these materials were excluded from further testing.  
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Figure 2. Retention (average of five tested concentrations) of fluorene (FL), anthracene 

(ANT), pyrene (PYR), octylphenol (OP), nonylphenol (OP), dibutyl (DBP) and di(2-

ethylhexyl) phthalate (DEHP) after 24 h contact with cellulose and chitosan. Error bars 

indicate standard error of retention.  

 

PP/PE Fibres, Pine Bark and Chitosan-Covered Bark 

In general, over 70% of the initial concentration of all tested compounds was removed 

using PP/PE fibres, with the exception of OP (46%), and over 80% was removed using 

pine bark and chitosan-covered bark, with the exception of DEHP (50 and < 2%, 

respectively). The water solubility of DEHP is very low (approximately 3×10-3 mg/L 

[7]), and emulsion formation may occur during sample shaking. Hence inconsistent 

results are possible and the DEHP results should be interpreted with caution. The 
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removed amount of organic compounds was either positively correlated with initial 

concentrations or constant over the spiked concentration range (10–300 µg/L). The 

PAHs were removed to the highest degree (92–97%) by PP/PE fibres and both barks. 

The average removal of NP and DBP exceeded 80% using both barks, while the average 

removal of these compounds using PP/PE was around 10% lower.  

The PP/PE fibres and pine bark exhibited linear adsorption capacity for several 

of the compounds in the concentration range tested (Figure 3). It has been suggested 

that linear isotherms indicate that partitioning is taking place between the organic 

compound and organic sites on the adsorbent [40, 41]. Higher concentrations of the 

organic compounds (> 300 µg/L) could not be tested due to their limited water 

solubility (1.3–19 mg/L for compounds except DEHP and PYR < 0.08 mg/L [7]). Pine 

bark and PP/PE fibres showed similar adsorption capacities for PAHs: approximately 

1.4–44 µg/g, the highest capacity corresponding to the highest spike level (Figure 3 a–

c). Pine bark demonstrated the highest adsorption capacities for alkylphenols (1.3–41 

and 0.9–42 µg/g for OP and NP, respectively) and DBP (1.1–41 µg/g) (Figure 3 d–f). 

The PP/PE fibres adsorbed DEHP to the highest degree (0.6–42 µg/g), while its 

adsorption capacities for OP (0.6–27 µg/g), NP (1.1–37 µg/g) and DBP (0.9–37 µg/g) 

were lower than for bark (Figure 3 d–g). However, no significant difference in 

adsorption capacity was found between the PP/PE fibres and pine bark (independent 

samples t-test, p > .005 for all spike levels), indicating that neither of these two 

materials was generally better able to adsorb all compounds tested.  
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Figure 3. Adsorption capacity (qe) as a function of equilibrium concentration (Ce, 24 h 

adsorption) of (a) fluorene; (b) anthracene; (c) pyrene; (d) octylphenol; (e) 

nonylphenol; (f) DBP and; (g) DEHP using pine bark, PP/PE fibres and chitosan-

covered pine bark.  

 

Boving and Zhang [20] presented similar capacities for adsorption of FL, ANT 

and PYR onto aspen wood (up to 12 µg/g, maximum initial concentration 50 µg/L). 

Furthermore, adsorption capacities up to 70 µg/g for FL and benzyl butyl phthalate were 
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reported by Ray et al. [21] using hardwood mulch (maximum initial concentration 

approximately 400 µg/L). As a comparison, adsorption capacities in the mg/g-range 

have been reported for PAHs, phthalates and alkylphenols onto activated carbon [42-

44]. In previous studies, the adsorption capacities of three wood-based materials – a 

heat-treated pine bark; Zugol pine bark, which is the raw material for the chitosan-

covered bark used in the current study; and sawdust treated with polytetrafluoroethylene 

– were tested in adsorption batch studies [22]. The adsorption capacities of these three 

materials reached 38–45 μg/g for the same organic compounds at Ci = 300 µg/L, i.e. 

very similar to the capacities of the pure pine bark tested in the current study.  

The adsorption isotherms for chitosan-covered bark did not follow a linear tread, 

fluctuating more than for the pure pine bark (Figure 3 a–g). Chitosan-covered bark was 

able to adsorb significantly lower masses of the organic compounds than pure pine bark 

(independent samples t-test, p > .005 for all spike levels). The adsorption capacity of 

chitosan-covered bark varied from < 1 µg/g at the lowest spike level (NP and DEHP 

were not adsorbed at Ci = 10 µg/L) to 27–29 µg/g at the highest spike level (Figure 3 a–

g). The exception is DEHP which was not efficiently adsorbed at any tested 

concentration level (qe ≤ 12 µg/g).  

Chitosan exhibited low adsorption of the organic compounds (Figure 2) and 

chitosan-covered bark exhibited fluctuating adsorption isotherm results (Figure 3). It is 

assumed that the chitosan coverage of the bark plays a fundamental role in the 

adsorption capacity of the material. Chitosan is sprayed onto the bark, and uneven 

coverage is likely to occur. Consequently, bark particles covered with more or less 

chitosan will exhibit varying adsorption capacities. Chitosan-covered bark has the 

potential to adsorb both hydrophobic organic compounds, on the hydrophobic areas of 

the bark surface, and metals on the chitosan surface [19]. This material should be tested 
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on a larger scale, i.e. not batch adsorption tests using small portions of the material, to 

avoid bias due to the varying degree of chitosan-coverage.  

Based on the coefficients of determination for the linearized plots of model 

equations (Table 2), the Langmuir adsorption model was better than the Freundlich 

model to describe experimental data for most compounds’ sorption onto PP/PE fibres 

and bark. For chitosan-covered bark, only DBP and PYR adsorption could be efficiently 

explained by the Langmuir model. However, most compounds exhibited negative qmax-

values, indicating that the Langmuir model cannot adequately explain the adsorption 

process. In addition, adsorption of DEHP onto PP/PE fibres and FL, NP, ANT and 

DEHP onto chitosan-covered bark could not be predicted well by any of the isotherm 

models.  
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Table 2. Coefficient of determination (R2) and Freundlich and Langmuir isotherm 

parameters for adsorption of organic compounds onto PP/PE fibres, pine bark and 

chitosan-covered bark.   

  PP/PE fibres Pine bark Chitosan-covered bark 
 Freundlich model parameters 
 R2 na KF

a R2 n KF R2 n KF 

FLb 0.997 0.90 1.5 0.995 1.0 2.7 0.392 1.9 1.8 

OP 0.980 0.79 0.27 0.984 1.0 2.8 0.648 1.1 0.95 

NP 0.993 0.84 0.57 0.992 1.0 2.7 0.492 0.32 3.1∙10-2 

ANT 0.987 0.78 2.0 0.851 1.2 3.2 0.542 1.2 1.9 

DBP 0.971 0.72 0.4 0.983 1.0 2.8 0.872 0.70 0.45 

PYR 0.935 0.66 2.0 0.947 1.1 2.9 0.802 1.0 1.6 

DEHP 0.345 0.49 2.7 0.795 1.3 3.5 0.175 1.6 0.40 
 Langmuir model parameters 
 R2 qmax

c KL
d R2 qmax KL R2 qmax KL 

FL 0.997 -45 -4.7∙10-2 1 -75 -2.1∙10-2 0.191 4.7 1.0 

OP 1 -19 -4.6∙10-3 1 -42 -1.9∙10-2 0.863 -27 -2.1∙10-2 

NP 1 -37 -9.6∙10-3 0.929 -2.0 -7.6∙10-2 0.016 5.3 -0.13 

ANT 0.998 -24 -0.15 0.969 -24 -0.13 0.714 -30 -9.5∙10-2 

DBP 0.999 -18 -1.2∙10-2 0.999 -14 -2.9∙10-3 0.984 -15 -1.8∙10-2 

PYR 0.997 -15 -0.21 0.994 2500 1.2∙10-3 0.964 120 2.5∙10-2 

DEHP 0.162 -3.7 -5.0∙10-2 0.943 46 3.1∙10-3 0.073 0.62 -9.0∙10-2 

a KF ((µg/g)(L/µg)1/n) and n are Freundlich model constants. 

b FL –  fluorene, ANT – anthracene, PYR – pyrene, OP – 4-t-octylphenol, NP – 4-nonylphenol, 

DBP – dibutyl phthalate, DEHP – di(2-ethylhexyl) phthalate.  

c qmax (µg/g) is the maximum adsorption capacity. 

d KL (L/µg) is the Langmuir constant. 

  

 

The Langmuir model assumes monolayer molecular adsorption and is said to 

better describe chemisorption, while the Freundlich model describes equilibrium on 

heterogeneous surfaces where monolayer and multilayer adsorption may occur [45, 46]. 

Chemisorption implies covalent, ionic and metallic bonds that are highly specific, 

whereas physisorption is attributed mainly to van der Waals forces. However, because 
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of the negative qmax-values for the Langmuir model (Table 2), the Langmuir isotherm is 

not appropriate and physisorption should not be ruled out.  

Polypropylene and polyethylene are non-polar polymers; adsorption of non-

polar PAHs is therefore likely to be higher than for alkylphenol and phthalates (Figure 

3), which have both hydrophobic hydrocarbon chains and hydrophilic hydroxyl and 

ester groups, respectively.  Wood consists of three major components – cellulose, 

hemicellulose and lignin – with significantly different surface chemistry, hence affinity 

to sorb organic compounds [47, 48]. Lignin provides many hydrophobic sites which 

may attract hydrophobic compounds. On the other hand, cellulose and hemicellulose 

contain hydroxyl and carboxylic groups which are not favourable for attracting 

hydrophobic compounds. In addition, these groups can produce strong hydrogen bonds 

with water, inhibiting sorption of PAHs [49]. Hence, it is concluded that the 

hydrophobic organic compounds tested in the current study are mainly attracted to the 

lignin part of the wood structure, and that cellulose is not involved in the sorption of 

these compounds. The limited adsorption onto cellulose was shown in Figure 2, as well 

as in other studies [41, 47]. The sorption capacity of wood-based media could be 

improved by modifying the material through extraction of inhibiting moieties such as 

cellulose [50], although this would involve higher material costs. 

Only slight differences in adsorption capacities were observed between PAHs 

and other tested compounds on pine bark. However, the higher adsorption of PAH 

compared to alkylphenols and phthalates may be due to the higher number of aromatic 

rings in the PAH molecules (2–4 rings in the PAHs’ structure; 1 ring in OP, NP, DBP 

and DEHP), leading to increased strength of π–π interactions [47, 50].  

A generally high removal of organic compounds with PP/PE fibres, pure pine-

bark and chitosan-covered bark was observed (70–97 %), with a few exceptions (DEHP 
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using both barks and OP using PP/PE). This indicates that, despite possible colloid-

formation, humic acids did not have a substantial negative effect on the adsorption of 

organic pollutants in this study. This is true even for the wood-based materials, which 

are not expected to adsorb humic colloids and thereto attached contaminants [10, 39]. 

Hence it is assumed that the organic compounds do not form HA-complexes to a high 

degree in these experiments. Low formation of HA–organic compounds complexes may 

be due to short contact time (≤ 24 h) between organic compounds and HAs [51], and 

abundance of hydrophobic sites on the wood-based materials and PP/PE, so that 

compound sorption to adsorbents is favoured.  

Kinetics 

Adsorption is a time-dependent process, so it is necessary to evaluate an optimal contact 

time between the organic compounds and the adsorbents for design and use, e.g. in 

filters. Cellulose and chitosan were not included in the kinetic tests due to their low 

adsorption capacities. In addition, chitosan-covered bark exhibited fluctuating results 

for the adsorption isotherms, and hence was not included in the kinetic tests.  

The adsorption of organic compounds occurred within 10 min in contact with 

PP/PE fibres (Figure 4 a). For pine bark, maximum sorption was not attained after 120 

min, but the differences in adsorption capacity at 30 min (Figure 4 b) and 24 h (Figure 3 

a–g) were generally only around 10%. A similar adsorption equilibrium process has 

been reported for other plant-based media, such as metals on mulch [52] and sawdust 

[28], and bisphenol A onto natural sorbents such as rice husk, sawdust and peat [53]. In 

addition, in previous studies of wood-based materials [22], the bulk adsorption of 

organic compounds occurred within 10 min contact with material. 
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Figure 4. Adsorption capacities (qt) of (a) PP/PE fibres and (b) pine bark as functions 

of time (t). 

  

 

Similar to results presented by such authors as Bulut and Tez [28] and Jang et al. 

[52] for metal adsorption onto sawdust and mulch, respectively, plotting the first-order 

kinetic model for pine bark indicates that this equation is only valid for certain 

compounds during the initial 0–30 min of the adsorption process. Even weaker 

agreement with the first-order equation was found for PP/PE fibres (Table 3). However, 

for the second-order kinetic model, R2 ≥ 0.99 for all compounds sorbing to PP/PE fibres 

and pine bark (Table 3), indicating that the pseudo-second-order model fits the 

adsorption process well in this study. The experimental and calculated qe-values for all 

compounds are in good agreement (Table 3), further supporting the pseudo-second-

order model for the adsorption kinetics in this study. The rate constants for PP/PE fibres 

(M = 0.41, SD = 0.53) are not significantly higher than for pine bark (M = 0.05, SD = 

0.04), t(14) = 1.93, p = .095.  

Table 3. Coefficient of determination (R2) for kinetic first- and second-order linear 

model plots, and second-order model parameters for adsorption on PP/PE fibres and 

pine bark.  
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 First order Second order 

 PP/PE fibres 
 R2 R2 k2

a qe, calcb qe, expc 

FLd 0.178 1.000 0.106 14.25 14.18 

ANT 0.450 1.000 0.230 14.62 14.60 

PYR n/ae 1.000 0.308 14.81 14.58 

OP n/a 0.999 0.083 6.56 6.15 

NP 0.016 0.999 0.102 10.82 11.11 

DBP 0.131 0.999 0.088 9.62 10.44 

DEHP n/a 1.000 1.582 14.51 14.24 
 Pine bark 

FL 0.996 1.000 0.042 13.33 13.82 

ANT 0.886 1.000 0.037 13.61 14.26 

PYR 0.988 1.000 0.020 14.31 14.23 

OP 0.969 1.000 0.030 12.12 13.04 

NP 0.700 1.000 0.064 11.89 13.50 

DBP 0.918 1.000 0.027 11.39 12.58 

DEHP 0.023 0.986 0.018 12.36 10.42 

a k2 (g/(µg min)) is the pseudo-second-order rate constant of adsorption.  

b qe calc (µg/g) is the calculated adsorption capacity at t = 24 h (assumed equilibrium). 

c qe, exp (µg/g) is the experimentally determined qe at t = 24 h. 

d FL –  fluorene, ANT – anthracene, PYR – pyrene, OP – 4-t-octylphenol, NP – 4-nonylphenol, 

DBP – dibutyl phthalate, DEHP – di(2-ethylhexyl) phthalate.  

e not applicable, due to qe = qt for some time points, its log could not be calculated and plotted. 

 

Conclusions 

The capacity of cellulose to adsorb organic compounds was negligible and chitosan 

adsorbed only the most hydrophobic compounds tested. In general, the batch adsorption 

tests indicate that pine bark and fibres of PP/PE have potential for use in filters for 

removal or hydrophobic organic compounds frequently detected in stormwater. These 

materials are inexpensive and abundant, show adequate sorption capacity (up to 44 

µg/g) and exhibit relatively fast removal (> 70% within 30 min) for the organic 

pollutants tested. Results from the current study and from a previous study of two 
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different types of pine bark [22], indicate that barks with different pre-treatment (none, 

heat) or provided by different manufacturers exhibit little or no difference in adsorption 

capacity for hydrophobic organic compounds.  

Further research should investigate whether the filter materials are effective in 

removing pollutants from natural stormwater, where many influencing factors, such as 

fluctuating pollutant concentrations, water flows, contact time, particle content and 

colloidal transport, can affect the adsorption capacity of the materials. For practical 

reasons, contact times less than 10 minutes were not tested in the current study. 

However, in operating stormwater filters, contact times can be expected to be shorter 

than 10 minutes. Currently, a filter pilot plant using three different filter materials, of 

which the tested pine bark is one, is in operation. The objective is to investigate the 

efficiency of selected sorption filters for the removal of dissolved and colloidal organic 

pollutants from road runoff, and to estimate the life-time of the materials before 

saturation occurs. Results from this pilot study will be published in the future. 
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