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Thermodynamic systems can be defined as composed by many identical interacting subsystems. Here it is
shown how the dynamics of relaxation toward equilibrium of a thermodynamic system is closely related to the
symmetry group of the Hamiltonian of the subsystems of which it is composed. The transitions between states
driven by the interactions between identical subsystems correspond to elements of the root system associated to
the symmetry group of their Hamiltonian. This imposes constraints on the relaxation dynamics of the complete
thermodynamic system, which allow formulating its evolution toward equilibrium as a system of linear differential
equations in which the variables are the thermodynamic forces of the system. The trajectory of a thermodynamic
system in the space of thermodynamic forces corresponds to the negative gradient of a potential function, which
depends on the symmetry group of the Hamiltonian of the individual interacting subsystems.
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I. INTRODUCTION

Nonequilibrium thermodynamics is still open to contro-
versy and different interpretations [1]. General principles
describing the relaxation of a system toward thermodynamic
equilibrium or the steady states of a system that is kept away
from equilibrium due to its constant exchange of matter or
energy with its environment, have been searched with variable
success. Prigogine [2] and Ziegler [3] proposed, respectively,
minimal and maximal entropy production rates characterizing
steady states, the first one related to global entropy production
under certain boundary conditions and the second one being
local [4]. Other authors [5] have proposed generalizations far
away from the equilibrium to Onsager’s relations between ther-
modynamic fluxes and forces. In previous works, we argued
that Onsager’s reciprocity relations are equivalent to a principle
of steepest entropy increase [6,7]. The same conclusions had
been previously reached by Beretta [8–10] by introducing a
dissipative term in Schrödinger’s equation. Other authors have
also explained the irreversible relaxation of thermodynamic
systems toward equilibrium by modifying Schrödinger’s equa-
tion [11–14]. In fact, the apparent contradiction between the
second principle of thermodynamics and the time reversibility
of Schrödinger’s equation can be explained based on the theory
of quantum measurement (the projection of a wave function
on an eigenvector of the operator associated to a measured
observable) and von Neumann’s entropy definition. Indeed,
while von Neumann’s entropy does not change over time when
the system evolves following Schrödinger’s equation, it can
change if the system is projected on one eigenvector of some
observable with an associated operator that does not commute
with the Hamiltonian. A recent explanation following these
lines can be found in Ref. [15]. Fermi’s golden rule [16]
describing transitions between states (different eigenvalues of
a Hamiltonian) as a result of a perturbation, uses implicitly
the theory of quantum measurement to explain the observed
transitions.
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In this work, we present the derivation of a general master
equation describing the relaxation of an isolated system toward
equilibrium. A thermodynamic system is defined as being
composed of identical subsystems that interact weakly be-
tween each other (which allows using Fermi’s golden rule [16]
to describe the transitions between states of each subsystem).
The only initial assumptions used in the derivation are Fermi’s
golden rule and the definition of the entropy production rate
as the product of thermodynamic fluxes and forces [7], which
allows us to define a nonequilibrium statistical distribution
(Appendix E) without any of the extra assumptions frequently
used, such as the maximization of the information entropy
[17,18]. Thermodynamic fluxes are defined as the variation
rates of certain observables, which are associated to quantum
operators that commute with the Hamiltonian of the individual
subsystems.

The results in this paper are very wide but not completely
general, because we are treating the case of isolated systems
formed by identical subsystems with the same symmetries.
This would not cover, for instance, the approach to equilibrium
between isotropic fluids and crystalline solids or liquid crystals
etc., which involve the interactions between systems with
different symmetries. However, the present formalism is
expected to be generalized also to these more general situations
(in particular, the relaxation of systems in contact with an
isothermal bath), and to clarify the influence of the different
symmetries on the coefficients describing the respective energy
exchange among such different degrees of freedom, in the light
of Appendix A to the paper. However, this would require a full
paper and will be done in the future.

In this article, we show how the symmetries of the
Hamiltonian of the individual subsystems impose stringent
rules on the allowed transitions between states and their
relative rates. The states in which each subsystem can be found
are defined by its energy level (each energy level corresponds
to a representation of the symmetry group of the Hamiltonian)
and a vector of weights, which are eigenvalues of a subset of
generators of the symmetry group (the Cartan subalgebra). It
is proven that the only allowed transitions between states (in
a system formed by indistinguishable subsystems) correspond
to elements of the root system associated to the Hamiltonian’s
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symmetry group. All these properties allow describing the
trajectory of the system in the space of thermodynamic forces,
by a system of linear differential equations whose coefficients
can be obtained from the Hamiltonian’s symmetry group and
the interaction potential between pairs of subsystems.

II. FORMALISM

A. Transitions between states in a system of many identical
weakly interacting subsystems

We consider a system formed by a number s of identical
subsystems (for example, a container filled with s molecules
of a certain chemical compound). To be as general as possible,
the subsystems could be large groups of particles or molecules
that form a Gibbs ensemble. The only necessary criteria for
these subsystems is that they are identical to each other. Each
subsystem i is characterized by a Hamiltonian operator hi ; as
all the subsystems are identical, their different Hamiltonians
have the same form and they only differ on the variables that
they act on (the position and momentum coordinates of the
components of each subsystem). We will use the following
notation for the eigenvectors of the Hamiltonian hi : |ik〉, so
that

hi |ik〉 = εk|ik〉. (1)

In Eq. (1), εk is a real eigenvalue of hi . As the Hamiltonians
of the different subsystems have the same form, the values εk

are the same for each subsystem and therefore do not depend
on i. The different eigenvalues εk correspond to the different
energy levels in which a subsystem can be observed and the
set of eigenvectors {|ik〉} forms an orthonormal basis of the
Hilbert space Hi that contains all the possible wave functions
ψ(i) describing the state of the subsystem i:

ψ(i) =
∑

k

cik|ik〉. (2)

The wave functions describing the whole system are
elements of the Hilbert space HS , resulting from the tensor
product of the Hilbert spaces Hi :

HS =
s∏

i=1

Hi. (3)

An orthonormal basis of the space HS is formed by the
tensor products of the elements of the bases of Hi . We will
denote the elements of this basis as

|σ 〉 = ∣∣1k1

〉∣∣2k2

〉
. . .

∣∣sks

〉
. (4)

The symbol σ designates an s-tuple k1k2 . . . ks of indexes
that correspond to eigenvectors of hi . Now we can define Nk

as the number of times the index k is repeated in the s-tuple
σ , or in other words, the number of subsystems in the state k.

Our thermodynamic system has been defined as formed
by identical subsystems, which makes them fundamentally
indistinguishable from each other. In this case, the wave
function describing the whole system has to be symmetric
with respect to the permutation of two subsystems. Even if the
system is composed of fermions, we can define the subsystems
as pairs of fermions; therefore, we can assume symmetric wave

functions without loss of generality. Symmetric normalized
wave functions will take the following form:

|S〉 =
√∏

k Nk!

s!

∑
p(σ )

|p(σ )〉, (5)

where p(σ ) is a permutation of the indexes in the s-tuple σ .
The Hamiltonian of the whole system, including the

interactions between identical subsystems, will take the form

Ĥ =
∑

i

hi +
∑
i,j

1

2
V̂ij = Ĥ0 + V̂ . (6)

For weak interactions between the subsystems, the transi-
tion frequency between two states can be described by Fermi’s
golden rule:

WS0→Sf
= 2π

h̄
〈Sf |V̂ |S0〉2δ

(
ESf

− ES0

)
. (7)

As shown in Appendix A [Eq. (A5)], the frequency of
transitions involving changes in the state of more than two
subsystems simultaneously is equal to zero. As the subsys-
tems are undistinguishable, there is no difference between a
situation in which a subsystem in the state r transits to state r ′
and a subsystem in state l transits to state l′ or a subsystem in
state r transits to state l′ and a subsystem in state l transits to
state r ′. Therefore, we can just talk about lr → l′r ′ transitions,
whose frequency is equal to

Trl→r ′l′ =
(∏

k Nk

s!

)2

�rl→r ′l′NrNl(Nr ′ + 1)(Nl′ + 1), (8)

where

�rl→r ′l′ = �r ′l′→rl = 2π

h̄
〈l′; r ′|V̂ij |r; l〉2δ(εr ′ + εl′ − εr − εl),

(9)

|r; l〉 = 1√
2

(|ir〉|jl〉 + |il〉|jr〉).

From now on the indexes identifying the subsystems (i, j )
will not be used. The energy of each state is referred as ε in
Eq. (9).

Equation (8) is derived in Appendix B, and in Appendix D
it is also shown that it leads to a Bose-Einstein equilibrium
distribution.

B. Symmetries and states of a quantum system

In this section, we remind some general facts about the
description of a quantum system in terms of its symmetries,
which are textbook material [19]. So far, the eigenstates of
the Hamiltonian hi have been described using the indexes r

and l. In fact, these eigenstates can be described in terms of
the symmetry group of the Hamiltonian. The symmetry group
of hi is a Lie group whose generators form a Lie algebra
and commute with the Hamiltonian hi . Among the generators
of the symmetry group it is possible to choose a maximal
subset of generators that commute with each other (the Cartan
sub-algebra). The elements of the Cartan subalgebra will be
noted as Âi :

[Âi,Âj ] = 0. (10)
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The operators in the Cartan algebra have the same eigen-
vectors, as they commute with each other. The rest of the
generators of the Lie algebra, which do not commute with
the elements of the Cartan algebra, can be chosen to be
eigenvectors of the elements of the Cartan algebra under
the operation of commutation. They satisfy the following
commutation relations:

[Âi,Ê�α] = αiÊ�α. (11)

The vector �α contains the eigenvalues of each element of
the Cartan algebra and it is referred to as a root vector. The
root vectors are defined by the symmetry of the system.

Each energy level of the Hamiltonian hi is a subspace of the
Hilbert space Hi with as many dimensions as the degeneracy
of the energy level. It is possible to choose an orthonormal
basis of this subspace, in which each of its members is an
eigenvector of the operators in the Cartan subalgebra. The
corresponding eigenvalues form a so-called weight vector �μ,
which can be used to indicate each state within an energy level.
The subspace corresponding to an energy level is a G-module
of a representation of the symmetry group of the Hamiltonian.
Each energy level corresponds to a group representation and
can be denoted by the vector �M , which is equal to the highest
weight vector within the energy level. Therefore, each state of
the system can be identified by the pair of vectors �μ and �M .
The operators that form the Lie algebra transform the states of
the system as follows:

Âi | �μ �M〉 = μi | �μ �M〉, (12)

Ê�α| �μ �M〉 = U�α, �μ|( �μ + �α) �M〉. (13)

The operator Ê�α is a ladder operator that displaces the
vector of weights �μ by adding to it the root vector �α. Starting
from �μ it is possible to operate with Ê�α p times until one of the
weights μi reaches its maximal value Mi (or minimal value
−Mi) for the considered energy level. Once this limit has been
reached, the operator Ê�α will transform the final state in a zero
value:

Ê�α|( �μ + p�α) �M〉 = 0. (14)

The coefficients U�α, �μ depend on �μ, �α, and p in the following
way:

U�α, �μ =
√

1

2
�α2p

(
2 �μ · �α
�α · �α + p + 1

)
. (15)

The maximal number of times in which it is possible to
apply the operator Ê−�α on the state �μ is equal to

q = 2 �μ · �α
�α · �α + p. (16)

We point out two useful relations (derived from the previous
two equations) to be used later:

(U�α,( �μ−�α))
2 − (U�α, �μ)2 = �μ · �α, (17)

U�α, �μ = U−�α,( �μ+�α). (18)

As the coefficients depend on the integer p, which itself
depends on the representation, strictly speaking we should
also introduce the index �M in the notation U�α, �μ �M .

C. Symmetry properties of two identical quantum systems

To describe the relaxation of a thermodynamic system, we
are interested in computing the expressions 〈l′; r ′|V̂ij |r; l〉 that
appear in Eq. (9). To achieve this goal, it is necessary to find
the generators of the symmetry group of a combination of two
indistinguishable systems. As both systems are fundamentally
indistinguishable, the symmetry operations should act identi-
cally on both; therefore, the symmetry group of the combined
system is the same as the symmetry group of a single system.
The generators of the symmetry group are just the sums of the
generators acting on each individual system:

Âi = Â1
i + Â2

i , (19)

Ê�α = Ê1
�α + Ê2

�α. (20)

The super indexes indicate each of the two subsystems on
which the operators act. The operators transform the states of
the combined system, defined in Eq. (10), in the following
way:

Âi | �μ1 �M1; �μ2 �M2〉 = (μi1 + μi2)| �μ1 �M1; �μ2 �M2〉, (21)

Ê�α| �μ1 �M1; �μ2 �M2〉 = U�α, �μ1 �M1
|( �μ1 + �α) �M1; �μ2 �M2〉

+U�α, �μ2 �M2
| �μ1 �M1; ( �μ2 + �α) �M2〉. (22)

We aim to find a basis of states of the combined system
whose components are transformed by the operators in
Eqs. (19) and (20) in the same way as in Eqs. (12) and (13).
The components of this new basis, characterized by the weight
vectors �μ, are linear combinations of all the states of the
combined system that satisfy the condition �μ = �μ1 + �μ2:

| �μ �M〉 =
∑
�μ1

C( �M, �μ, �μ1)| �μ1 �M1; ( �μ − �μ1) �M2〉. (23)

The coefficients C( �M, �μ, �μ1) are the so-called Clebsch-
Gordan coefficients and the summation runs along all the
values of �μ1 for which there exist a �μ2 that satisfies �μ =
�μ1 + �μ2.

The vectors | �μ1 �M1; ( �μ − �μ1) �M2〉 form an orthonormal
basis, which imposes the following condition:

〈( �μ′ − �μ′
1) �M ′

2; �μ′
1

�M ′
1| �μ1 �M1; ( �μ − �μ1) �M2〉

= δ �M1 �M ′
1
δ �M2 �M ′

2
δ �μ �μ′δ �μ1 �μ′

1
. (24)

From this property, we obtain a definition of the Clebsch-
Gordan coefficients:

C( �M, �μ, �μ1) = 〈( �μ − �μ1) �M2; �μ1 �M1| �μ �M〉. (25)

The vectors | �μ �M〉 also form an orthonormal basis:

〈 �μ′ �M ′| �μ �M〉 = δ �M �M ′δ �μ �μ′ . (26)

This condition, combined with the definition of the Clebsch-
Gordan coefficients in Eq. (25), leads to the following
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expression for the components of the old basis in terms of
the new one:

| �μ1 �M1; ( �μ − �μ1) �M2〉 =
∑

�M
C( �M, �μ, �μ1)| �μ �M〉. (27)

From Eqs. (26), (25), and (27) it is possible to obtain the fol-
lowing relationship between the Clebsch-Gordan coefficients:∑

�M
C( �M, �μ, �μ1)C( �M, �μ, �μ′

1) = δ �μ1 �μ′
1
. (28)

Operating on the vector | �μ �M〉 with a ladder operator, and
using Eq. (23) to expand the obtained vector |( �μ + �α) �M〉, we
obtain the expression

Ê�α| �μ �M〉= U�α, �μ �M
∑
�μ1

C( �M, �μ + �α, �μ1)| �μ1 �M1; ( �μ + �α − �μ1)〉.

(29)
On the other hand, first expanding the vector | �μ �M〉 and then

applying the operator,

Ê�α| �μ �M〉 =
∑
�μ1

C( �M, �μ, �μ1)
(
U�α, �μ1 �M1

|( �μ1 + �α) �M1; �μ2 �M2〉

+U�α, �μ2 �M2
| �μ1 �M1; ( �μ2 + �α) �M2〉

)
. (30)

Comparing Eqs. (29) and (30) and using the orthogonality
condition between the vectors, it is possible to derive the
following relation:

U�α, �μ �MC( �M, �μ + �α, �μ1) = U�α, �μ2 �M2
C( �M, �μ, �μ1)

+U�α,( �μ1−�α) �M1
C( �M, �μ, �μ1 − �α).

(31)

D. Symmetry of energy conserving interactions

Fermi’s golden rule imposes the condition of energy
conservation for a nonzero transition rate between states.
The operator that describes the energy interaction between
two subsystems V̂12 does not commute with the Hamiltonian
h12 = h1 + h2; however, it is possible to define an operator
V̂ ′

12 that satisfies the following condition:

〈l′; r ′|V̂ ′
12|r; l〉 = 〈l′; r ′|V̂12|r; l〉δ(εr ′l′ − εrl). (32)

This new operator commutes with h12 and could be
expressed as a linear combination of the generators of its
symmetry group:

V̂ ′
12 =

∑
i

κiÂi +
∑

�α
κ�αÊ�α. (33)

From the previous definition and the condition set in
Eq. (32), we obtain

〈 �μ′ �M ′|V̂12| �μ �M〉 = κ�αU�α, �μ �Mδ �M �M ′δ( �μ+�α) �μ′ . (34)

This means that the only allowed transitions are those
satisfying the condition �μ′ = �μ + �α, for any of the roots of
the system. Using Eqs. (27) and (34), we obtain the following

equality:

〈 �μ′
1

�M ′
1; ( �μ′ − �μ′

1) �M ′
2|V̂12| �μ1 �M1; ( �μ − �μ1) �M2〉

= κ�α
∑

�M
U�α, �μ �MC( �M, �μ + �α, �μ′

1)C( �M, �μ, �μ1). (35)

Equation (31) can be used to transform the summation in
Eq. (35) as follows:∑

�M
U�α, �μ �MC( �M, �μ + �α, �μ′

1)C( �M, �μ, �μ1)

= U�α, �μ2 �M2

∑
�M

C( �M, �μ, �μ′
1)C( �M, �μ, �μ1)

+U�α,( �μ′
1−�α) �M1

∑
�M

C( �M, �μ, �μ′
1 − �α)C( �M, �μ, �μ1). (36)

Using Eq. (28) we obtain the final expression:

〈 �μ′
1

�M ′
1; ( �μ′ − �μ′

1) �M ′
2|V̂12| �μ1 �M1; ( �μ − �μ1) �M2〉

= κ�α
(
U�α, �μ2 �M2

δ �μ1 �μ′
1
+ U�α,( �μ′

1−�α) �M1
δ �μ1( �μ′

1−�α)
)
. (37)

This means that only transitions satisfying (for any root of
the system) �μ′

1 = �μ1 + �α or �μ′
1 = �μ1 are allowed. The second

condition is equivalent to �μ′
2 = �μ2 + �α, as the condition �μ′ =

�μ + �α must also be satisfied. Therefore, for nondistinguishable
subsystems, each elementary transition involves the change of
a single subsystem by one of the roots of the root system
that characterized the symmetry group of its Hamiltonian.
The transition is driven by a second subsystem that remains
unchanged.

To keep the condition of microscopic irreversibility,

〈 �μ′
1

�M ′
1; ( �μ′ − �μ′

1) �M ′
2|V̂12| �μ1 �M1; ( �μ − �μ1) �M2〉

= 〈�μ1 �M1; ( �μ − �μ1) �M2|V̂12| �μ′
1

�M ′
1; ( �μ′ − �μ′

1) �M ′
2〉. (38)

The following condition should be satisfied:

κ�αU�α, �μ = κ−�αU−�α,( �μ+�α). (39)

Taking Eq. (18) into account, this is equivalent to

κ�α = κ−�α. (40)

This comes from the fact that the operators Ê�α are not
Hermitian, but Ê�α and Ê−�α are Hermitian adjoint and therefore
their sum is Hermitian. So, in order for the operator V̂ ′

12 to be
Hermitian, the operators Ê�α and Ê−�α should appear multiplied
by the same coefficient in Eq. (33).

E. Relaxation dynamics of a nonequilibrium system

Using the previously mentioned results, the transition rate
from a state �μ �M to a state ( �μ + �α) �M can be obtained from
Eqs. (8) and (37):

T �μ �M→( �μ+�α) �M = 
2�N �μ �M (N( �μ+�α) �M + 1)κ2
�αU 2

�α, �μ �M. (41)

The coefficient 
 is the factor that appears in Eq. (8):


 =
∏

�μ �M N �μ �M
s!

. (42)

The product in Eq. (42) goes through all the states of the
system. The coefficient � accounts for the interactions with
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all the other subsystems and takes the form

� = 2π

h̄

∑
�μ �M

N �μ �M (N �μ �M + 1). (43)

In Appendix E, we show that if we define the thermo-
dynamic fluxes of the system as the variation rates of the
observables associated with quantum operators that belong to
the Cartan subalgebra of the Hamiltonian’s symmetry group,
the following relation between thermodynamic forces and
occupation numbers can be established:

ln
N �μ �M (1 + N( �μ+�α) �M )

N( �μ+�α) �M (1 + N �μ �M )
= 1

kB

∑
i

Xiαi. (44)

The notation in Eq. (44) has been changed from
Appendix E, in order to fit our description in terms of weights
and roots. The coefficients Xi are each of the thermodynamic
forces of the system.

Equation (44) allows us to obtain the net transition rate
from a state �μ �M to a state ( �μ + �α) �M after subtracting the
transitions in the opposite sense:

T �μ �M→( �μ+�α) �M − T( �μ+�α) �M→�μ �M

= 
2�
(

1 − e
− 1

kB

∑
i

Xiαi
)
N �μ �M (N( �μ+�α) �M + 1) κ2

�αU 2
�α, �μ �M.

(45)

Now we are going to compute the rate of change of the
occupation number N �μ �M :

dN �μ �M
dt

=
∑

k

(
T( �μ−�αk ) �M→�μ �M − T �μ �M→( �μ−�αk ) �M

− T �μ �M→( �μ+�αk ) �M + T( �μ+�αk ) �M→�μ �M
)
. (46)

The summation is extended to all the members of the root
system (each of them labeled by a different value of the
subindex k), excluding the root −�αk if �αk is already included.

As it is shown in Appendix E, the occupation number
N �μ �M can be expressed using the following equation (using
the current notation in terms of group representations), using
the subindex r instead of �μ �M to simplify the expression:

Nr = 1

e
−α+βε �M− 1

kB

∑
i

Xiμi − 1
. (47)

Assuming the values of αi are small, we can make an
approximation that will simplify our analysis remarkably:

N( �μ−�α) �M (N �μ �M + 1) ≈ N �μ �M (N( �μ+�α) �M + 1)

≈ N �μ �M (N �μ �M + 1). (48)

Equations (17), (45), and (48) allow rewriting Eq. (46) in a
very compact way:

dNr

dt
=

∑
k


2�
(

1 − e
− 1

kB

∑
i

Xiαki
)
Nr

× (Nr + 1)κ2
�αk

(∑
i

μriαki

)
. (49)

If we assume that the changes of the occupation numbers
are driven by changes in the thermodynamic forces of the
system, we can obtain the previous derivative directly from
Eq. (47):

dNr

dt
= 1

kB

Nr (Nr + 1)
∑

i

μri

dXi

dt
. (50)

Comparing the two previous equations, we obtain differ-
ential equations describing the relaxation dynamics of the
system:

dXi

dt
= 
2�kB

∑
k

(
1 − e

− 1
kB

∑
j

Xj αkj
)
κ�αk

2αki . (51)

Equation (51) is not based in any assumption about the
proximity of the system to thermodynamic equilibrium and
provides a general solution to the problem of the relaxation
dynamics of thermodynamic systems.

Linearizing the term between brackets (which for many
systems is feasible even far from equilibrium, given the small
values of αi), we would obtain the following system of linear
differential equations:

dXi

dt
= −
2�

∑
j

(∑
k

αkj κ�αk

2αki

)
Xj . (52)

This means that the trajectory toward equilibrium of the
system, in the space of thermodynamic forces, follows the
negative gradient of the function:

F = 1

2

∑
ij

(∑
k

αkj κ�αk

2αki

)
XiXj . (53)

The parameters 
 and � are dependent on the thermody-
namic forces of the system and reach a minimum at equilibrium
(their derivatives with respect to the thermodynamic forces
become zero at equilibrium).

The thermodynamic fluxes (total rates of change of non-
conserved observables, as discussed in Appendix E) can be
expressed as follows (for any observable associated to the
operators in the Cartan algebra):

Jf = d〈μf 〉
dt

, (54)

in which

〈μf 〉 =
∑

r

μrf Nr . (55)

Equation (54) can be expanded as

Jf =
∑

i

(
∂〈μf 〉
∂Xi

)
dXi

dt
. (56)

We can define the matrix A as follows:

A =
∑

k

κ�αk

2(�αk ⊗ �αk). (57)

Combining the previous definition with Eqs. (52) and (56),
the thermodynamic fluxes can be rewritten as

Jf = −
2�
∑

i

(
∂〈μf 〉
∂Xi

) ∑
j

AijXj . (58)
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Taking the partial derivative of the flux Jf with respect to
the force Xl , we obtain(

∂Jf

∂Xl

)
= −

∑
i

∂

∂Xl

[

2�

(
∂〈μf 〉
∂Xi

)] ∑
j

AijXj

−
∑

i


2�

(
∂〈μf 〉
∂Xi

)
Ail. (59)

If we compute the derivative in equilibrium, with all the
thermodynamic forces equal to zero, the first term in Eq. (59)
disappears. On the other hand, deriving Eq. (47), we can obtain
the following expression:(

∂Nr

∂Xi

)
= 1

kB

Nr (Nr + 1)μri. (60)

Combining Eqs. (55) and (60), the following equation is
obtained: (

∂〈μf 〉
∂Xl

)
= 1

kB

∑
r

Nr (Nr + 1)μrlμrf . (61)

If the occupation numbers follow the equilibrium distribu-
tion, they depend only on the energy level (and each energy
level corresponds to a representation of the symmetry group).
Using again the subindex �M to label energy levels and using
the subindex r to label different states within the same energy
level, we could rewrite Eq. (61) for the particular case of
proximity to equilibrium:(

∂〈μf 〉
∂Xl

)
�X=�0

= 1

kB

∑
�M

N �M (N �M + 1)
∑
r∈ �M

μrlμrf . (62)

Now we remark that for every weight vector �μr in a
representation �M , the weight vector −�μr also belongs to the
same representation. This fact makes that the summation in
Eq. (62) becomes zero except for l = f . Therefore, Eq. (59)
in equilibrium, takes the form(

∂Jf

∂Xl

)
�X=�0

= −
2�

(
∂〈μf 〉
∂Xf

)
�X=�0

Af l. (63)

Finally, considering that the set of observables {μi} are the
eigenvalues of the operators forming the Cartan subalgebra
defined in Eq. (10) and that the only properties required for
these operators are that they commute with the Hamiltonian
of the subsystems and between each other, each observable
could be multiplied by an arbitrary constant without loss of
generality. The observables can be chosen so that the following
condition is satisfied:(

∂〈μf 〉
∂Xf

)
�X=�0

= 1

kB

∀f. (64)

Boltzmann’s constant has been introduced to keep consis-
tent the units. With this choice of observables, Eq. (63) gives
us an expression for Onsager’s coefficients, which are indeed
symmetric, given the fact that the matrix A is symmetric:

Lf l = −
2�

kB

Af l. (65)

III. DISCUSSION

The strong constraints imposed by the symmetries of the
Hamiltonian hi on the allowed transitions and their relative
rates allowed us to obtain Eq. (52), whose coefficients can
be calculated from the symmetries of the Hamiltonian hi

and the form of the interaction potential between subsystems.
Equation (52) fully describes the relaxation toward equilibrium
of a thermodynamic system composed by identical subsystems
(and these subsystems can be chosen to be as complex as we
want without changing the general conclusions). The thermo-
dynamic fluxes (rates of change of macroscopic observables)
can be computed using Eq. (55). Equation (53) shows that there
is indeed a potential whose negative gradient determines the
trajectory of the system and whose minimal value corresponds
to a state of maximal entropy. However, the particular shape
of this potential depends on the system being studied and its
symmetries.

Nonequilibrium steady states, resulting from externally
imposed constraints on the thermodynamic forces, could be
obtained by minimizing the potential F subject to these
constraints.

Equation (65) shows a relation between Onsager’s coeffi-
cients and the structure of the symmetry group of the system
(which determines the matrix A); this allows both predicting
the coefficients ab initio based on the interaction potential
between subsystems or using experimentally measured coef-
ficients (in the proximity of equilibrium), to obtain matrix A
and use it to model the relaxation of the system also arbitrarily
far from equilibrium, by using Eqs. (51) and (52).

APPENDIX A: TRANSITIONS BETWEEN STATES
FOR DISTINGUISHABLE SUBSYSTEMS

In this section, we are going to assume that the subsystems
are distinguishable between each other, and therefore the wave
function |σ 〉 is different from the function |p(σ )〉, where p(σ )
is a permutation of the indexes in the s-tuple σ . As it will be
shown later, the consideration of distinguishable subsystems
will lead us to the derivation of Boltzmann’s distribution, while
the assumption of nondistinguishable systems will lead to the
Bose-Einsten distribution. When considering nonequilibrium
thermodynamics, we will see that the two approaches lead to
different dynamic properties of the system.

The functions |σ 〉 are eigenvectors of the operator Ĥ0 =∑s
i=1 hi . In the absence of interactions between the subsystems

this operator would be the Hamiltonian of the whole system,
and if this system is initially observed in the state |σ0〉, then
it will always be observed in the same state and there would
not be entropy change. If there are interactions between the
subsystems, then the Hamiltonian of the whole system will
include an extra term accounting for these interactions:

Ĥ =
∑

i

hi +
∑
i,j

1

2
V̂ij = Ĥ0 + V̂ . (A1)

The functions |σ 〉 are not eigenvectors of the complete
Hamiltonian of the system, and it is therefore possible to
observe the system in a state |σ0〉 and, after a certain time
t , observe it in a different state |σf 〉 with possibly different
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entropy. If we assume the interactions between subsystems
to be weak in comparison to the interactions within each
subsystem, we can obtain an expression for the probability
of this event in the same way as Fermi’s golden rule is derived.

According to Fermi’s golden rule [11,12], the frequency
of observed transitions per unit of time between two states is
described by the expression

Wσ0→σf
= 2π

h̄
〈σf |V̂ |σ0〉2δ

(
Eσf

− Eσ0

)
. (A2)

The parameters Eσ0 and Eσf
are the corresponding eigen-

values of the operator Ĥ0 and δ is Dirac’s function.
We remind that the functions |σ0〉 and |σf 〉 take the form of

Eq. (4). We will use the following notation:

|σ0〉 = ∣∣1k0
1

〉∣∣2k0
2

〉
. . .

∣∣sk0
s

〉
, (A3)

|σf 〉 = ∣∣1k1
f

〉∣∣2k2
f

〉
. . .

∣∣sks
f

〉
. (A4)

The coefficients 〈σf |V̂ |σ0〉 can be computed as follows:

〈σf |V̂ |σ0〉= 1

2

∑
i,j

⎛
⎝〈

iki
f

∣∣〈j
k

f

j

∣∣V̂ij

∣∣jk0
j

〉∣∣ik0
i

〉 ∏
u �=i,j

〈
u

k
f
u

∣∣uk0
u

〉⎞⎠.

(A5)

Note that if k
f
u �= k0

u, then 〈uku
f |uku

0〉 = 0.
This means that if three or more subsystems differ between

the initial and final state, all the terms in the summation are zero
and no transitions between both states are observed. In other
words, the observed transitions involve the change of at most
two subsystems, and they are driven by the interaction between
these two subsystems. We can therefore use the following
notation for the transition frequencies:

Wσ0→σf
= W(k0

i ,k
0
j )→(kf

i ,k
f

j )

= 2π

h̄

〈
i
k

f

i

∣∣〈j
k

f

j

∣∣V̂ij

∣∣jkj
0

〉∣∣iki
0

〉2
δ
(
Eσf

− Eσ0

)
. (A6)

The presence of the function δ of Dirac also imposes the
following energy-conservation condition:

εk0
i
+ εk0

j
= ε

k
f

i
+ ε

k
f

j
, (A7)

or

�εi = −�εj . (A8)

Note that as the subsystems have been chosen to be
identical, the form of the operators V̂ij is the same, and only
the variables on which they act change. So, we can, in general,
write

W(k0
i ,k

0
j )→(kf

i ,k
f

j ) = W(r→r ′,l→l′). (A9)

This just means that the transitions in which a subsystem
I in the state ki

0 = r passes to a state ki
f = r ′ and a second

subsystem j in the state kj
0 = l passes to the state kj

f = l′,
occur with the same frequency independently of which are the
subsystems I and j .

Now, if we have a system with Nr subsystems in the state
r and Nl subsystems in the state l. The total frequency of

(r → r ′,l → l′) transitions will be

T(r→r ′,l→l′) = NrNlW(r→r ′,l→l′). (A10)

APPENDIX B: TRANSITIONS BETWEEN STATES
FOR NONDISTINGUISHABLE SUBSYSTEMS

In this case, the wave function describing the whole system
has to be symmetric with respect to the permutation of two
subsystems. Even if the system is composed of fermions, we
can define the subsystems as pairs of fermions; therefore,
we can assume symmetric wave functions without loss of
generality. Symmetric normalized wave functions will take
the following form:

|S〉 =
√∏

k Nk!

s!

∑
p(σ )

|p(σ )〉. (B1)

The transition frequency between two states will be as
described before:

WS0→Sf
= 2π

h̄
〈Sf |V̂ |S0〉2δ

(
ESf

− ES0

)
. (B2)

In this case,

〈Sf |V̂ |S0〉 =
√∏

k Nkf

s!

√∏
k Nk0

s!

∑
p(σf ),p(σ0)

〈p(σf )|V̂ |p(σ0)〉.

(B3)
In the same way as in Appendix A [Eq. (A5)], we can

see that if more than two subsystems change between the
initial and final states, the transition frequency between these
states becomes zero. If the change between states involves a
subsystem in the state r transiting to state r ′ and a subsystem
in state l transiting to state l′, the summation in Eq. (B3) takes
the form ∑

p(σf ),p(σ0)

〈p(σf )|V̂ |p(σ0)〉

= NrNl(�(r→r ′,l→l′) + �(r→l′,l→r ′)), (B4)

where

�(r→r ′,l→l′) = 〈ir ′ |〈jl′ |V̂ij |jl〉|ir〉. (B5)

The value of this expression does not depend on the
particular subsystems I and j but only on the states between
which the transitions occur. Equation (B5) accounts for all
the possible combinations of subsystems in states r and l,
respectively. As the subsystems are now undistinguishable,
there is no difference between a situation in which a subsystem
in the state r transits to state r ′ and a subsystem in state l

transits to state l′ or a subsystem in state r transits to state l′
and a subsystem in state l transits to state r ′. That’s why both
situations are grouped in Eq. (B4). In order to simplify the
expression, we will use the following: notation:

�(r→r ′,l→l′) + �(r→l′,l→r ′) = �rl→r ′l′ . (B6)

The parameter �rl→r ′l′ can be redefined in a more compact
way as follows:

�rl→r ′l′ = 〈l′; r ′|V̂ij |r; l〉, (B7)
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where

|r; l〉 = 1√
2

(|ir〉|jl〉 + |il〉|jr〉). (B8)

To simplify Eq. (21), we have to notice the following
relations: Nrf = Nr0 − 1; Nlf = Nl0 − 1; Nr ′f = Nr ′0 + 1;
Nl′f = Nl′0 + 1. For k �= r,l,r’,l’Nkf = Nk0. This allows us
to rewrite Eq. (B3) in the following way:

〈Sf |V̂ |S0〉 =
∏

k Nk0

s!

√
Nr0Nl0(Nr ′0 + 1)(Nl′0 + 1)�rl→r ′l′ .

(B9)
Finally, we can obtain the transition frequency between

states as

WS0→Sf
= 2π

h̄

(∏
k Nk0

s!

)2

Nr0Nl0(Nr ′0 + 1)

× (Nl′0 + 1)�2
rl→r ′l′δ

(
ESf

− ES0

)
. (B10)

In this case, as the subsystems are indistinguishable, the
states are just defined by the numbers of subsystems in each
state; therefore, this value is identical to the frequency of lr →
l′r ′ transitions. Therefore, for nondistinguishable subsystems,
the equivalent of Eq. (A10) is just

Trl→r ′l′ = 2π

h̄

(∏
k Nk0

s!

)2

Nr0Nl0(Nr ′0 + 1)

× (Nl′0 + 1)�2
rl→r ′l′δ

(
ESf

− ES0

)
. (B11)

From now on we will drop the subzero indexes and assume
that we are always referring to the occupation numbers of the
current state of the system. In a more compact way we can
rewrite the previous equation using the following notation:

�rl→r ′l′ = �r ′l′→rl = 2π

h̄
�2

rl→r ′l′δ
(
ESf

− ES0

)
, (B12)

Trl→r ′l′ =
(∏

k Nk

s!

)2

�rl→r ′l′NrNl(Nr ′ +1)(Nl′ +1). (B13)

APPENDIX C: EQUILIBRIUM CONDITION
FOR DISTINGUISHABLE SUBSYSTEMS

AND BOLTZMANN’S DISTRIBUTION

Now we will analyze in which conditions the frequency of
each transition (r → r ′,l → l′) is equal to the frequency of
its opposite transition (r ′ → r,l′ → l), which implies that the
numbers of subsystems in any state do not change (in average)
over time. The equilibrium condition can be expressed as
follows:

T(r→r ′,l→l′) = T(r ′→r,l′→l). (C1)

From Eq. (A6), we see that by definition,

W(r→r ′,l→l′) = W(r ′→r,l′→l). (C2)

Equation (C2) is just an expression for the property of
microscopic reversibility.

The equilibrium condition then becomes just equivalent to

NrNl = Nr ′Nl′ , (C3)

or

Nr

Nr ′
= Nl′

Nl

. (C4)

By taking logarithms, we can just rewrite the equilibrium
condition as follows:

� ln Nr = −� ln Nl, (C5)

where

� ln Nr = ln Nr ′ − ln Nr. (C6)

If all the possible transitions between states satisfy Eq. (C5),
the system is in equilibrium.

As it is stated in Eq. (A7), all the observable transitions
between states satisfy also the energy conservation condition:

�εr = −�εl. (C7)

Equations (C5) and (C7) imply that, in equilibrium, the dif-
ference between the energy levels of two states is proportional
to the difference between the logarithms of the numbers of
subsystems in these states. This implies that there is a linear
relation between the logarithm of the number of subsystems
in a particular state and the energy of this state:

ln Nr = α − βεr∀r, (C8)

or

Nr = exp(α) exp(−βεr ). (C9)

The values of the parameters α and β are fixed by
specifying the total number of subsystems and the total
energy of the system (the sum of the observed eigenvalues
of the Hamiltonians of each subsystem). This is identical to
Boltzmann’s distribution:

exp (α) = s

Z
β = 1

kBT
. (C10)

The variable s is the total number of subsystems and Z the
partition function of the system.

As it is well known, Boltzmann’s equation results from
maximizing the entropy of a system by keeping the total energy
constrained; therefore, we have just shown that the state of
equilibrium (the numbers of subsystems in any state do not
change over time) is equivalent to a state of maximal entropy.

APPENDIX D: EQUILIBRIUM CONDITION FOR
NONDISTINGUISHABLE SUBSYSTEMS
AND BOSE-EINSTEIN DISTRIBUTION

In the same way as we did for the case of distinguishable
subsystems, we set as equilibrium condition the equality
between the frequencies of transitions lr → l′r ′ and l′r ′ → lr .
It is very important to remark that this second frequency is
not the frequency of transitions back from Sf to S0 (which
would be the same as the previous one) but the frequency
of transitions from S0 to a state different from S0 and Sf

in which two subsystems in the states r ′ and l′ have been
substituted by two subsystems in states r and l. Equation (B13)
reveals that the equilibrium condition implies that for all
the allowed transitions (satisfying the energy conservation
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condition) the following relation has to be satisfied for every
energy conserving transition:

NrNl(Nr ′ + 1)(Nl′ + 1) = Nr ′Nl′ (Nr + 1)(Nl + 1). (D1)

Using the same notation as in Eq. (C6), we can rewrite the
previous expression as

� ln
Nr

Nr + 1
= −� ln

Nl

Nl + 1
. (D2)

This leads us to the following relation:

ln
Nr

Nr + 1
= α − βεr∀r, (D3)

or alternatively,

Nr = 1

e−α+βεr − 1
. (D4)

This corresponds to Bose-Einstein’s distribution and the
value of α is adjusted so that the total number of subsystems
is equal to the sum of the numbers of subsystems in each state.

As all the degenerate states of a certain energy level have
the same occupation numbers, the total number of subsystems
in a certain energy level is just

Nε = gε

e−α+βε − 1
. (D5)

The parameter gε is the number of states in the correspond-
ing energy level.

This distribution, as it is well known, corresponds to the
maximization at constant energy and particle number (in our
case number of subsystems) of the entropy of a system of
nondistinguishable particles (subsystems), which is defined as

S = kB ln
∏
ε

(gε + Nε − 1)!

(gε − 1)!Nε!
. (D6)

APPENDIX E: STATISTICS OF
NONEQUILIBRIUM SYSTEMS

The content of this Appendix has been largely presented in
Ref. [6].

We start by defining thermodynamic fluxes as time deriva-
tives of certain nonconserved observables:

dφf

dt
= Jf . (E1)

In this article, we are going to restrict ourselves to
observables associated to quantum operators �̂f that commute
with the Hamiltonian Ĥ0:

[Ĥ0,�̂f ] = 0. (E2)

If this was not the case, the time evolution of the observable
would be due also in part driven by Ĥ0 and not only by the
interactions between subsystems and the transitions between
states that we describe in Eqs. (A10) and (B13). This also
means that each state corresponding to an eigenvector of
Ĥ0 has a well-defined value of the observables φf and any
transition between eigenvectors is associated to a well-defined
increment of the observables φf .

We are going to proceed in the same way as previously, by
describing the cases of distinguishable and nondistinguishable
subsystems.

1. Distinguishable subsystems

A transition (r → r ′,l → l′) is associated to the following
entropy change (directly derived from Boltzmann’s definition
of entropy):

�S(r→r ′,l→l′) = kB ln
NrNl

(Nr ′ + 1)(Nl′ + 1)
. (E3)

For large values of the occupation numbers, we can simplify
as

�S(r→r ′,l→l′) ≈ kB ln
NrNl

Nr ′Nl′
. (E4)

The entropy increase rate can be obtained as a function of
all the transition rates:

dS

dt
= kB

∑
r,r ′,l,l′

T(r→r ′,l→l′) ln
NrNl

Nr ′Nl′
. (E5)

On the other hand, using a description in terms of
thermodynamic fluxes and forces, the entropy production rate
will be

dS

dt
=

∑
f

Xf Jf . (E6)

If we rewrite the thermodynamic fluxes as functions of the
transitions between states, we obtain

Jf =
∑

r,r ′,l,l′
T(r→r ′,l→l′)�φf (r→r ′,l→l′). (E7)

Combining the two previous equations we obtain

dS

dt
=

∑
f

Xf

∑
r,r ′,l,l′

T(r→r ′,l→l′)�φf (r→r ′,l→l′)

=
∑

r,r ′,l,l′
T(r→r ′,l→l′)

∑
f

Xf �φf (r→r ′,l→l′). (E8)

Comparing Eqs. (E5) and (E8), we can infer that in a
thermodynamic system not in equilibrium and characterized
by a set of thermodynamic forces, the following equality is
satisfied:

ln
NrNl

Nr ′Nl′
= 1

kB

∑
f

Xf �φf (r→r ′,l→l′). (E9)

For the previous equation to be satisfied in all the possible
transitions, the occupation numbers of the different states
should follow the following distribution:

Nr = e
α−βεr+ 1

kB

∑
f

Xf φf r

. (E10)

2. Nondistinguishable subsystems

In this case, the entropy results from the number of ways in
which a certain number of nondistinguishable subsystems can
be arranged within different boxes containing sets of g states.
In Eq. (D6), each of these boxes corresponds to an energy
level, that’s why the index ε has been used. Here we define
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the boxes as sets of states with the same energy and the same
values of the other observables φf used to describe the system.
For this reason, we use the more general index λ:

S = kB ln
∏
λ

(gλ + Nλ − 1)!

(gλ − 1)!Nλ!
. (E11)

Now let’s consider the transition rl → r ′l′ in which the
states r,r ′,l, and l′ belong to the boxes ρ,ρ ′,λ, and λ′,
respectively. Using Eq. (E11), we can compute the entropy
change associated to this transition:

�Srl→r ′l′

= kB ln
Nρ(gρ ′ + Nρ ′ )Nλ(gλ′ + Nλ′)

(Nρ ′ + 1)(gρ + Nρ − 1)(Nλ′ +1)(gλ + Nλ − 1)
.

(E12)

For large occupation numbers, we can simplify as

�Srl→r ′l′ ≈ kB ln
Nρ(gρ ′ + Nρ ′ )Nλ(gλ′ + Nλ′)

Nρ ′ (gρ + Nρ)Nλ′(gλ + Nλ)
. (E13)

If all the states within each box have the same occupation
numbers, we can write

Nλ = gλNl. (E14)

Doing this substitution for each of the states involved in the
transition, we obtain

�Srl→r ′l′ ≈ kB ln
Nr (1 + Nr ′ )Nl(1 + Nl′ )

Nr ′ (1 + Nr )Nl′ (1 + Nl)
. (E15)

Now we just need to proceed in an identical way as we
did for the case of distinguishable subsystems to obtain the
identity:

ln
Nr (1 + Nr ′ )Nl(1 + Nl′ )

Nr ′ (1 + Nr )Nl′(1 + Nl)
= 1

kB

∑
f

Xf �φf (rl→r ′l′). (E16)

As in the case of distinguishable subsystems, for the
previous equation to be satisfied in all the possible transitions,
the distribution of the occupation numbers of each state should
follow the equation

Nr = 1

e
−α+βεr− 1

kB

∑
f

Xf φf r − 1

. (E17)
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