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Abstract: Reduction of inertia in electricity networks due to high penetration level of renewable
energy sources will require wind turbines to participate in frequency regulation via Active Power
Control. The performance of frequency regulation and protection system depends strongly on
the performance of network frequency estimation. Fast frequency variations and uncertainties
associated with unknown harmonics and measurement noise in the network signals are the
main obstacles to performance improvement of frequency estimation with classical zero crossing
method, which is widely used in industry. The same uncertainties introduce challenges in model
based frequency estimation. These challenges are addressed in this paper within the framework
of multiple model with harmonic regressor.
Additional challenges associated with computational complexity of matrix inversion algorithms
and accuracy of inversion of ill-conditioned matrices in the multiple model are also discussed
in the paper. New high order algorithms with reduced computational complexity are presented.
Instability mechanism is discovered in Newton-Schulz and Neumann matrix inversion techniques
in finite precision implementation environment. A new stepwise splitting method is proposed
for elimination of instability and for performance improvement of matrix inversion algorithms
in the multiple model. All the results are confirmed by simulations.
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1. INTRODUCTION

High penetration level of (1) renewable energy sources,
(2) power electronics, (3) advanced transmission systems,
and (4) higher nonlinear loads and new types of loads in
future electricity networks will (a) essentially reduce grid
inertia and (b) introduce significant distortions in voltage
and current signals.
These distortions will result in fast deviations from fun-
damental frequency, appearance of additional harmonics
and hence in reduction of efficiency of equipment, power
losses, heating, increased noise levels and others.
Frequency regulation, enabled via active power control of
wind turbines, load-side control and others will play an
important role in future electricity networks for perfor-
mance improvement. Notice that reliable frequency mea-
surement is necessary for high performance network con-
trol as well as for system protection. Errors in frequency
measurements will result in erroneous control action and
even in frequency oscillations. This paper addresses a very
important issue of accuracy improvement of frequency
estimation algorithms in the presence of harmonics and
noise (electrical noise, measurement noise and others) in
future electricity networks. A brief overview of existing
frequency estimation methods is given below.

1.1 Existing Frequency Estimation Methods and Further
Developments

Zero crossing detection and calculation of the number of
cycles that occur in a predetermined time interval is a
direct, simple and widely used methodology for frequency
detection, see Friedman (1994). However, the disturbances
associated with harmonics and noise, which will appear
around zero crossing points of the signals in future electric-
ity networks deteriorate accuracy of the grid frequency es-
timation via classical zero crossing method. Modifications
of zero crossing method (described for example in Stotsky
(2016), see also references therein) aiming for improvement
of estimation accuracy are all based on more accurate
detection of zero crossing points. These methods require
additional signal processing techniques, which introduce
delays. The delays are significant for noise contaminated
signals with a large number of harmonics and introduce
significant limitations in the performance of modified zero
crossing methods in the case of fast frequency tracking.
Future frequency estimation algorithms should be model
based, that allows complete reconstruction of the fre-
quency contents of the signals for high performance fre-
quency estimation.
A number of interesting surveys on model based frequency
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estimation is available in the literature, see for example
Quinn et al. (2013) and references therein. Promising
multi-harmonic frequency estimators are based on opti-
mization techniques, which maximize periodogram as a
function of frequency, see Walker (1971) or minimize the
error sum of squares with respect to unknown quantities,
such as frequencies, phase shifts and coefficients. The best
model matching provides the most accurate estimates.
However, a number of extremum seeking algorithms, which
are often realized as iterative search procedures can be
ineffective due to local extrema and restricted region of
attraction, which in turn are present due to a highly
nonlinear nature of the problem. Computational complex-
ity is an additional problem associated with the search
procedures.
These difficulties can be avoided by applying multiple
model approach (see for example Sakakura et al. (2016) for
recent developments in general multiple model method),
where the set of models is defined and each model is
associated with different fundamental frequency. Residual
error, which is associated with this set can be presented
as a function of frequency and the frequency, which cor-
responds to the minimal value of residual error is the
true frequency. Moreover, minimal residual error is also
associated with the variance of the measurement noise.
All the residual errors can be calculated simultaneously,
using parallel calculations, which essentially reduce execu-
tion time of the algorithm.
A simple and computationally efficient minimum seeking
algorithm, realized as the interval reduction method is
developed in Section 2 for fast and accurate calculation
of the minimal value of the residual error and high perfor-
mance estimation of the frequency and the variance of the
measurement noise.
On the other hand, application of the multiple model
(which consists of a large number of models) requires sig-
nificant computational efforts, especially for a large num-
ber of harmonics. This introduces numerical challenges
in finite precision implementation environment associated
with inversion of information matrices of a large size and
condition number (for fast varying frequency).
In other words the development of new matrix inversion
algorithms with reduced computational complexity and
improved robustness is required. These algorithms are
presented in Section 3 and Section 5.

2. MULTIPLE MODEL ESTIMATION

2.1 Description of the Minimal Residual Method

Suppose that a measured signal yk can be presented in the
following form

yk = φT
k θ∗ + ξk (1)

where θ∗ is the vector of unknown constant parameters
and φk is unknown harmonic regressor presented in the
following form:

φT
k = [cos(q0k) sin(q0k) cos(2q0k)

sin(2q0k) ... cos(hq0k) sin(hq0k)] (2)

where q0 is unknown fundamental frequency of network
(for example q0 = 50 Hertz), h is unknown number of

harmonics, and ξk is a zero mean white Gaussian noise,
k = 1, 2, ... is the step number. The system has four
unknown quantities : 1) the fundamental frequency of
network q0, 2) the number of harmonics h, 3) the vector
of parameters θ∗, and 4) the variance of the measurement
noise. It is assumed that the upper bound h of the number
of harmonics is known and h ≤ h. The algorithm for
frequency and parameter estimation can be presented in
the following steps, which are executed in each step k.
Step 1: Estimation for the Initial Set of Frequencies.Define
the frequency interval as the following vector of size r:

f1 = [ q̂11 q̂12 q̂13 ... q̂1(r−1) q̂1r] (3)

where the frequencies q̂1i, i = 1, ..., r, r ≥ 3 are presented
in increasing order. The frequency interval should cover
unknown fundamental frequency of the system q0.
Substep 1: Estimation of the Variance. The regressor
vector φ̂i is introduced for each frequency q̂1i as follows:

φ̂T
i = [cos(q̂1ik) sin(q̂1ik) cos(2q̂1ik)

sin(2q̂1ik) ... cos(hq̂1ik) sin(hq̂1ik)] (4)

forming a multiple model of the regressor with the fre-
quencies corresponding to the components of the vector
(3). Notice that the size of the model of each regressor (4)
is larger than or equal to the size of unknown regressor (2)
since h ≤ h.
Multiple model of the signal (1) with adjustable parame-
ters θi is presented in the following form:

ŷi = φ̂T
i θi (5)

The signal yk is approximated by the multiple model ŷi
for each frequency corresponding to the components of
the vector (3) in the least squares sense in each step k
of a moving window of a size w.
The frequency estimation algorithm is based on minimiza-
tion of the following error Ei with respect to argument i,
which corresponds to the certain frequency in the multiple
model (5):

Ei =

p=k∑
p=k−(w−1)

(ŷpi − yp)
2 (6)

for a fixed step k, where k ≥ w.
The least squares solution for estimation of the parameter
vector θi can be written as follows:

Aiθi = bi (7)

Ai =

p=k∑
p=k−(w−1)

φ̂pi φ̂
T
pi (8)

bi =

p=k∑
p=k−(w−1)

φ̂pi yp (9)

where the matrix Ai is an information matrix (see Stotsky
(2010),(2015) where the properties of this matrix are
discussed for systems with harmonic regressor), and the
parameter vector θi satisfies (7). The parameter vector
can be calculated with high accuracy in the finite precision
implementation environment using high order algorithms,
described in Section 3 and Section 5.
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FIG 1. Estimation of the frequency in two steps. The following
set of frequencies is selected in the first step of estimation
[48.5 49 50 50.5 51] Hertz. This set covers actual frequency
of 49.5 Hertz. Each point in this set is plotted with a star
sign of a blue color. The frequency of 49.5382 Hertz was
determined after the first step of estimation as an argument
corresponding to minimal value of parabola plotted with a
blue line. The frequency of 49.5382 Hertz is used as a central
point a new set of frequencies with the range, which is reduced
compared to the range of initial set. The following set of
frequencies was determined in the second step of estimation
[ 48.9132 49 49.2257 49.5382 49.8507 50 50.1632] Hertz, where
the frequencies 49 and 50 Hertz were transferred from the initial
interval. Each point in this set (excepting the frequencies of 49
and 50 Hertz) is plotted with a round sign of a red color. The
frequency of 49.5079 Hertz was determined in the second step of
estimation in the same way. Minimal value of parabola plotted
with a red line corresponds to the actual value of the variance
of measurement noise, which is equal to 0.005.

Finally, the variance Vi of the measurement noise ξk,
associated with the multiple model is defined as follows
:

Vi =
Ei

w − 2h− 1
(10)

Substep 2: Calculation of the Frequency via Minimization
of the Variance. The model for Vi is defined as follows:

V̂ = aq2 + bq + c (11)

where q is the frequency and a, b and c are the coefficients
calculated using least squares method to provide the
best fit of Vi over the frequency interval f1. Estimated
frequency is defined as

q1 = − b

2a
(12)

which corresponds to the minimal value of V̂ , which is also
an estimate of the variance of measurement noise ξk.
The frequency q1 is used as the central point for interval,
which should be chosen in the next step.
Notice that the initial frequency interval (3) should be
sufficiently large in order to cover unknown frequency.
However, inaccuracies in calculations of the variances Vi

for each model, especially in the points located close to the
boundaries result in a biased estimate of the frequency.

Therefore the frequency interval should be reduced in
the next step of estimation for the sake of accuracy
improvement.
Step 2: Estimation for Updated Set of Frequencies. Define
updated frequency interval as the following vector of size
r:

f2 = [ q̂21 q̂22 ... q1 ... q̂2(r−1) q̂2r] (13)

where the range of the frequency interval defined by f2 in
(13) is reduced with respect to the range of the frequency
interval defined by f1 in (3) , i.e. (q̂2r − q̂21) <<< (q̂1r −
q̂11).
Notice that the frequencies from the interval f1 can be
included in the interval f2 (if they fit to this interval),
which improves curve fitting accuracy without additional
computational effort. The substeps 1 and 2 are repeated
for this new set of frequencies (13) resulting in updated
estimate of the frequency q2, which is used as central point
for interval defined in the next step.
Reduction of the range of the interval in each step en-
sures the convergence of estimated frequency qz, where
z = 1, 2, ... to its true value q0 as the step number increases
and the range of the interval reaches its minimal value.
This algorithm is the fast convergent algorithm due to
the model based minimization of the variance in each
step and few steps are required only for estimation of the
fundamental frequency with a very high accuracy. Notice
that two steps is usually sufficient for accurate estimation
of the frequency.
The algorithm of minimization of the variance and estima-
tion of the frequency in two steps is illustrated in Figure 1.
Notice that any overtones, including half harmonics can be
included in the model (4) provided that these overtones are
present in the signal (1). Inclusion of additional number
of overtones increases the size of the regressor vector. This
size together with the window size w can be reduced using
the stepwise regression method of subsequent inclusion of
the harmonics/overtones in the regressor, see for example
Stotsky (2009).
Algorithm with multiple model provides significant im-
provement of frequency estimation performance compared
to classical zero crossing algorithm, see Figure 2.
However, multiple model algorithm requires significant
computational efforts in each step associated with inver-
sion of a number of information matrices. Moreover, reduc-
tion of the window size is required for accurate tracking of
fast varying frequency, that introduces ill-conditioning in
information matrices.
The next Section describes new high order matrix inver-
sion algorithms with reduced computational complexity,
and Section 5 includes new robust inversion algorithms
for ill-conditioned matrices.

3. HIGH ORDER ALGORITHMS

Positive definite and symmetric matrix A can be split
as follows (see for example Chen (2005) and references
therein):

A = S −D (14)

where S is a positive definite and symmetric matrix,
and D is a symmetric matrix. This splitting facilitates
calculation of the inverse of matrix A, which can be used
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FIG 2. The signal with time varying frequency and the second and
the fifth harmonic was processed for frequency estimation by
classical zero crossing algorithm, plotted with a black line and
algorithm with multiple model, plotted with a red line. Actual
frequency of the signal is plotted with a blue line.

as a preconditioner for high order algorithms that solve
the equation Aθ = b with respect to the parameter vector
θ, see Section 2.1.
Double-sided algorithm of order h = 1, 2, ... which can be
derived from the matrix inversion lemma or from splitting
(14) is presented as follows:

Gk = (S−1D)hGk−1(DS−1)h + {
2h−1∑
j=0

(S−1D)j}S−1 (15)

where Gk is an estimate of A−1, the spectral radius
ρ(S−1D) < 1, k = 1, 2, ..., and the matrix S is easy
invertible matrix (or the matrix whose inverse is known).
The matrix G0 is arbitrary and can be calculated via

Neumann series as follows: G0 = {
2h−1∑
j=0

(S−1D)j)}S−1

since the following relations hold:

h−1∑
j=0

(S−1D)j [S−1 + S−1DS−1](DS−1)j

= {
2h−1∑
j=0

(S−1D)j}S−1 = (I − (S−1D)2h)A−1

and G0 is close to A−1 for a sufficiently large h. No-

tice that the sum

h−1∑
j=0

(S−1D)j [S−1 + S−1DS−1](DS−1)j

is computationally efficient lower-order representation of

{
2h−1∑
j=0

(S−1D)j)}S−1, see Stotsky (2016).

Splitting (14) can also be written in the following form:

I − S−1A = S−1D (16)

where I is the identity matrix, and ρ(S−1D) < 1 for sym-
metric and positive definite matrices A and S, provided
that 2S − A is a positive definite matrix, which imposes
restriction on the choice of S and D, Horn et al. (1985).
Notice that the matrix S−1 can be used as a preconditioner
for high order algorithms described in Isaacson et al.
(1966) and Stotsky (2014), (2015) provided that 2S > A.
Algorithm (15) has the following error model:

Gk −A−1 = (S−1D)hk
{
G0 −A−1

}
(DS−1)hk (17)

The convergence rate increases with the order h, and it is
determined by the eigenvalues of the matrix S−1D.

4. INSTABILITY FOR ILL-CONDITIONED
MATRICES

Consider the following algorithm of order m = 2, 3, ...

Fk = I −Gk
A

α
, G0 = I (18)

Gk = {
m−1∑
d=0

F d
k−1} Gk−1 (19)

= Gk−1 + Fk−1 {
m−2∑
d=0

F d
k−1} Gk−1 (20)

where algorithm (20), described in Stotsky (2015) is lower
order realization of algorithm (19), described in Isaacson
et al. (1966). The algorithm provides an estimate of the
inverse of a positive definite and symmetric matrix A and

lim
k→∞

Gk

α
→ A−1 since Fk = Fmk

0 , where α = ∥A∥∞/2+ ϵ,

ϵ > 0 and ρ(F0) = ρ(I −A/α) < 1, k = 1, 2, 3, ... .
Algorithm (18) - (20) provides accurate estimate of the
inverse if computational accuracy is high. However, the
algorithm accumulates roundoff errors in finite precision
implementation environment. For example, minimal eigen-

value of the matrix
A

α
, where α = ∥A∥∞/2 + ϵ is too

close to zero for ill-conditioned matrices. Therefore the
spectral radius of I−A/α is too close to one, and roundoff
error in calculation of the scaling factor α have a serious
impact on the algorithm performance and may even re-
sult in numerical instability. The problem is illustrated in
Figure 3, where instability is present for matrix inversion
with limited computational accuracy. Subplots (a) and (b)
in Figure 3 show the spectral radius of the matrix Fk = I−
Gk

A

α
for algorithm (18)-(20) for ill-conditioned informa-

tion matrix A of the system with harmonic regressor with
three frequencies. All the variables in the algorithm (18)-
(20) are rounded to 2, ..., 5-digit accuracy. The spectral
radius as a function of a step number is plotted in Subplot
(a) for the third order algorithm, m = 3. The spectral
radius as a function of the order of the algorithm is plotted
in Subplot (b) for one step, k = 1, which corresponds to
Neumann series.
In addition to instability which occurs for two and three
digit accuracy there is even deterioration of the algorithm
performance for better computational accuracy, associated
with slower convergence and lower estimation accuracy.
Problems associated with instability and performance de-
terioration are usually more pronounced for Neumann
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FIG 3. Subplots (a) and (b) show the spectral radius of the error matrix Fk = I−Gk
A

α
for algorithm (18)-(20) for ill-conditioned information

matrix A of the system with harmonic regressor with three frequencies. All the variables in the algorithm are rounded to 2, ..., 5-digit
accuracy. The spectral radius as a function of a step number is plotted in Subplot (a) for the third order algorithm. The spectral radius
is equal to one on a white surface. The spectral radius as a function of the order of the algorithm is plotted in Subplot (b) for one step,
k = 1, which corresponds to Neumann series.

series of high order, see Subplot (b) in Figure 3 rather
than for Newton-Schulz algorithm, see Subplot (a) in the
same Figure. Therefore Neuman series of high order are
not implementable in finite precision environment due to
sensitivity to roundoff errors.
Robust inversion algorithms for positive definite ill-
conditioned matrices, which are suitable for implementa-
tion in finite precision environment should be designed.
The algorithms should provide the best possible accuracy
in the presence of roundoff errors.
New algorithms could be associated with Neuman series
and should be more robust with respect to roundoff er-
rors and error accumulation. Algorithm (18)-(20) should
be modified for better tolerance of the scaling factor α
with respect to roundoff errors. New robust algorithms
should also prevent error accumulation. The matrix can be
inverted by parts via application of a sequential procedure
(without error accumulation) with large stability margins
and the same inversion accuracy in each step.

5. STEPWISE SPLITTING METHOD

Suppose that a positive definite and symmetric matrix
initially split as follows, A = S1 − D1, where S1 is
a positive definite and symmetric matrix and D1 is a
symmetric matrix, where S−1

1 is known. Such splitting
occurs in recursive calculation of information matrix in
least-squares method for example. The matrix A can be
further recursively split as follows:

A = Si −Di (21)

βi = ||S−1
i Di||∞ + ε (22)

Si+1 = Si −
1

βi
Di (23)

Di+1 = Si+1 −A =
βi − 1

βi
Di (24)

||I − S−1
i Si+1||∞ =

||S−1
i Di||∞
βi

< 1 (25)

A = Si+1 −Di+1 (26)

where ε is a small positive number, i = 1, 2, ...i∗, and
i = i + 1 while βi > 1, and the norm || · ||∞ is defined
as the maximum absolute row sum norm. Inverse of Si+1

is calculated in each step using algorithm (18)-(20) with
preconditioning matrix S−1

i (instead of I/α), which satis-
fies inequality (25).
The choice of βi in (22) guarantees convergence and ro-
bustness via the condition (25), and minimizes the number
of steps of the algorithm.
Algorithm is robust with respect to numerical inaccuracies,
associated with roundoff errors and error accumulation.
The spectral radius ρ(S−1

i Di) is the lower bound for max-
imum absolute row sum norm, defined in (22) guarantees
robustness with respect to errors in calculation of the scal-
ing factor βi. A proper choice of ε associated with a trade-
off between robustness and additional computational effort
is also a tool for robustness improvement.
Finally, stepwise accumulation of numerical errors is pre-
vented via proper calculation of Di+1 = Si+1 − A in (24)
taking into account that the matrix A should remain the
same in each step i.
Algorithm converges when βi, calculated in (22) is less
than one (or equal to one), and it is assigned to one
βi∗ = 1. The procedure converges to the following split-
ting:

A = Si∗ −Di∗ (27)

||I − S−1
i∗ A||∞ = ||S−1

i∗ Di∗||∞ < 1 (28)

which allows calculation of A−1 with preconditioning ma-
trix S−1

i∗ .
Splitting (21) - (26) facilitates calculation of the inverse
of matrix A, which can be used as a preconditioner for
algorithm (18)-(20).
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FIG 4. Comparison of two spectral radiuses as functions of the
order, where the spectral radius of the error matrix Fk = I −
Gk

A

α
for algorithm (18)-(20), k = 1, which corresponds to

Neumann series is plotted as a white surface. The spectral
radius of the error matrix Fk = I − GkA for the algorithm
(21) - (26), (27)-(28) is plotted with a blue surface. Matrix
inversion algorithm of the same order associated with Neumann
series is applied for inversion of the matrix Si in each step in
the algorithm (21) - (26), (27)-(28). All the variables in both
algorithm are rounded to 2, ..., 5-digit accuracy.

Comparison of two spectral radiuses as functions of the
order of the algorithms and digits of accuracy is plotted in
Figure 4. The spectral radius of the error matrix Fk = I−
Gk

A

α
for algorithm (18)-(20), k = 1, which corresponds to

Neumann series is plotted as a white surface. The spectral
radius of the error matrix Fk = I−GkA for the algorithm
(21) - (26), (27)-(28) is plotted with a blue surface. Matrix
inversion algorithm of the same order associated with
Neumann series is applied for inversion of the matrix Si in
each step in the algorithm (21) - (26), (27)-(28). All the
variables in both algorithm are rounded to 2, ..., 5-digit
accuracy.

6. CONCLUSION

Significant distortions associated with harmonics, noise
and fast changes of the fundamental frequency of volt-
age and current signals are expected in future electricity
networks. These disturbances will also appear around zero
crossing points of the signals, deteriorating accuracy of
the grid frequency estimation via classical zero crossing
method.
Future frequency estimation algorithms will be model
based (see Stotsky (2016) for detailed explanation), that
allows complete reconstruction of the frequency contents
of the signals and recovering fast frequency variations
from noise contaminated signals. Such algorithm, which is
based on multiple model with harmonic regressor and re-
quire minimum information about the frequency contents
of signals is described in Section 2.1. Simulation results
show significant improvement of estimation performance
compared to classical zero crossing method and its modi-
fications for frequency tracking.
It is also shown that instability associated with inversion
of ill-conditioned information matrices in multiple model

in finite precision implementation environment can be
eliminated and estimation accuracy can be improved with
stepwise splitting method.
Robustness of the multiple model approach with harmonic
regressor with respect to measurement noises and different
types of errors (modeling and roundoff errors and oth-
ers) together with possibilities for accuracy improvement
makes this approach more attractive in implementation
compared to the methods based on estimation of the
coefficients of difference equations, see for example Stotsky
(2012).
The multiple model approach with harmonic regressor can
be extended to the multi-frequency case, where the signal
contains multiple frequency components, which are not
related to each other. Accuracy of frequency estimation
can be improved in this case in many other applications.
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