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Liquid speciation is important for reliable process design and optimization of gas-liquid absorption process. Liquid-phase
speciation methods are currently available, although they involve tedious and time-consuming laboratory work. Raman
spectroscopy is well suited for in situ monitoring of aqueous chemical reactions. Here, we report on the development of a method
for speciation of the CO2-NH3-H2O equilibrium using Raman spectroscopy and PLS-Rmodeling.The quantificationmethodology
presented here offers a novel approach to provide rapid and reliable predictions of the carbon distribution of the CO2-NH3-H2O
system, which may be used for process control and optimization. Validation of the reported speciation method which is based on
independent, known,NH3-CO2-H2Osolutions shows estimated prediction uncertainties for carbonate, bicarbonate, and carbamate
of 6.45mmol/kg H2O, 34.39mmol/kg H2O, and 100.9mmol/kg H2O, respectively.

1. Introduction

The rapid increase in the level of CO2 in the earth’s atmo-
sphere is recognized as the single most important environ-
mental challenge facing our global society [1]. All climate
change mitigation plans rely on carbon dioxide capture and
storage as a near-term “immediate response” technology [2].
Despite the various global CO2 capture research and devel-
opment initiatives, the well-established gas-liquid absorption
process is expected to be the technology of choice for
early, large-scale deployment [3], with the chilled ammonia
process (CAP) [4] being one of the currently demonstrated
technologies.

Out of several postcombustion techniques available to
capture CO2 from coal power plants, amine solutions have
been commonly tested and used.The disadvantages of amine
technology are that it requires large amount of energy in the
stripping process and has thermal and oxidative degradation
and corrosion problems [5]. Ammonia technology is an alter-
native to overcome these drawbacks. This process requires

less energy for stripping and the heat of reaction is much
lower than amine process.There is lessmaintenance cost than
amine process as there are no degradation or corrosion issues.
CO2 reacted ammonia can be used to produce fertilizer.
The process of CO2 capture by ammonia can be twofold
depending on the temperature of CO2 absorption. If the
absorption is performed under 2–10∘C, which is called the
chilled ammonia process, there can be precipitations of
ammonium carbonate compounds while if the absorption is
increased to 25–40∘C, the precipitation problem is eliminated
[6].

If chemical speciation data could be generated concomi-
tant with the determination of the physical and chemical
solvent properties, the development and accuracy of the
thermodynamic process model would be greatly facilitated.
Improvement and optimization of commercial processes
that target needed cost reductions require access to rig-
orous thermodynamic models that build on liquid-phase
speciation data. Such data are currently acquired through
tedious and time-consuming laboratory work. The standard
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wet chemistry titration to determine liquid phase is the
most popular method. This method takes time and errors
can be propagated during sampling, chemical preparation,
weighing, and titration [7]. Various analytical techniques can
be used to determine the species present in CO2 reacted
ammonia solution. 13C nuclear magnetic resonance (NMR)
spectroscopy has been used [8] to determine ionic species in
a range of ammonia concentration from 0.69 to 8.95mol/L
and CO2 loading (total CO2 moles/initial solvent moles)
concentrations from 0.33 to 0.72. Fourier transform infrared
spectroscopy (FT-IR) and X-ray diffraction (XRD) were
used to qualitatively distinguish ammonium bicarbonate
from ammonium carbonate and ammonium carbamate,
while CHN elemental analysis and near-infrared (NIR) spec-
troscopywere used to quantify ammoniumbicarbonate based
on multivariate regression methods as reported in [9]. Wen
and Brooker [10], Zhao et al. [11], andKim et al. [12] suggested
methods to determine carbon species in CO2-NH3-H2O
system based on factor analysis where they assumed that the
corresponding Raman intensities were directly related to the
concentrations of species.

This work reports on a method that combines Raman
spectroscopy and partial least-squares regression (PLS-R) for
in situ solvent speciation in the chilled ammonia process
and which does not rely on calibration by an independent
analysis method [13], for example, NMR. It describes the
development, validation, and application of the method
for determination of the liquid phase composition of the
NH3-CO2-H2O system, while comparisons of the speciation
results obtained here and those from established CO2-NH3-
H2O thermodynamic equilibrium models are described in a
separate publication [14].

In the thermodynamic modeling of the CO2-NH3-H2O
system, a vapor-liquid equilibrium (VLE) is assumed to exist
for water, ammonia, and CO2. The liquid phase can be
described by reactions (1)–(5). The chemical composition of
aqueous ammonia solution is described by

NH3 +H2O 󴀘󴀯 NH4+ +OH− (1)

The reactions of dissolved CO2 in aqueous ammonia solution
are given by reactions (2)–(5). Within the present system,
CO2 is bound as the anion species of carbonate [CO3

2−],
bicarbonate [HCO3

−], and carbamate [NH2COO−].

CO2(aq) +H2O 󴀘󴀯 H+ +HCO3
− (2)

HCO3
− 󴀘󴀯 H+ + CO32− (3)

CO2(aq) + 2NH3 󴀘󴀯 NH4+ + NH2COO− (4)

NH4
+ +NH2COO− +H2O
󴀘󴀯 NH4+ +HCO3

− +NH3 (5)

During CO2 absorption by the aqueous NH3 solution,
reactions (1)–(5) will equilibrate according to the CO2 con-
centration, pressure, and temperature; the carbon distribu-
tion in the solvent is given by the concentrations of the
anions in reactions (2)–(5). In addition to these reactions

and depending on the reaction conditions, various other
compounds may precipitate, such as ammonium bicarbonate
(NH4HCO3), ammonium carbonate [(NH4)2CO3], ammo-
nium carbamate (NH4NH2CO2), and ammonium sesquicar-
bonate [(NH4)2CO3⋅NH4HCO3]. Even though the precipita-
tion is promoted by low temperature, the high water content
in the solvent reduces much of this possibility.

Spectroscopy, Raman spectroscopy in particular, is well
known for in situ monitoring of the chemical reactions
of aqueous solutions [16, 17]. The water molecule shows
only weak Raman scattering; hence Raman spectroscopy has
potential advantage over IR spectroscopy [18] for aqueous
phase analysis such as required for the aqueous chilled
ammonia CO2 capture solvent. The Raman band envelopes
of aqueous solutions of ammonium carbonate, ammonium
bicarbonate, and ammonium carbamate have been identified
and analyzed [10] and form the basis for the previously
reported speciation studies of the CO2-NH3-H2O system [11,
12]. However, evaluation of the Raman spectra in these pre-
vious studies was based on univariate, single-band analysis.
The use of superior multivariate partial least-squares regres-
sion (PLS-R) [19] methods, which exploit the multivariate
information in the spectra, has, to the best of our knowledge,
not been reported previously. Furthermore, the method
developed in the present study is not limited to laboratory
applications but can also be used to monitor continuously
a reactive process, which presents an opportunity for its
implementation as an on-line process analytical technology
(PAT) [20] in carbon capture plants for optimization and
efficient operation.

2. Materials and Methods

The development of the Raman spectroscopy-based method
for speciation of the CO2-NH3-H2O system is based on PLS-
R analysis of a series of samples of known composition. The
procedure involves

(1) preparation of aqueous solutions that contain
known concentrations of [CO3

2−], [HCO3
−], and

[NH2COO−]: one set of solutions was prepared for
PLS-R model calibration and a second independent
set of solutions was used for validation;

(2) determination of the Raman spectrum of each sample
solution;

(3) preprocessing of the Raman spectra by cropping each
spectrum to cover the range 450–2300 cm−1, with
subsequent elimination of the inconsistently varying
baseline from spectrum-to-spectrum and centering
of each wavelength by subtraction of the mean;

(4) calibration of the PLS-R models for the anionic
species [CO3

2−], [HCO3
−], and [NH2COO−] using

the Raman spectra of the solutions prepared for
model calibration in the previous step (Step (3));

(5) validation of the PLS-R models using the Raman
spectra of the solutions prepared formodel validation
in Step (3).
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Figure 1: 𝑋-𝑌 data and models in the PLS-R modeling approach [15]. The parameters that emanate from PLS-R calibration include 𝑃 (𝑋
loadings);𝑊 (𝑋 loading weights); 𝑇 (𝑋 scores); 𝑈 (𝑌 scores); and 𝑄 (𝑌 loadings). 𝐸 and 𝐹 are the residuals for𝑋 and 𝑌, respectively.

The procedures required to achieve reliable speciation using
the proposed method are described in the following sections.

2.1. Raman Spectroscopy. The Raman phenomenon is based
on quantized vibrational changes that are associated with
electromagnetic radiation absorption. An important advan-
tage of Raman spectroscopy over infrared spectroscopy is
that the water molecule shows very weak Raman scattering,
whereas, in infrared spectroscopy, the water molecule shows
strong absorption across an important part of the infrared
spectrum.

The Raman instrument used in the investigations
reported in the present paper was the RXN2 portable
multichannel Raman spectrometer (Kaiser Optical Systems
Inc.). Four fiber optic probes can be connected and utilized
through an automatic sequential scanning system that is
integrated into the instrument. The specifications of the
RXN2 Raman spectrometer are listed in Table 1.

Raman spectra of aqueous solutions can be acquired
using either a noncontact probe optic, whereby the sample
solutions are not in direct contact with the probe optic, or
an immersion probe optic, whereby the sample solution is in
direct contact with the probe optic. The Raman spectra were
acquired using a short-focus (200𝜇m), sapphire window,
Hastelloy immersion probe (Kaiser Optical Systems Inc.).

2.2. Partial Least-Squares Regression Modeling. PLS-R is an
empirical data-driven modeling approach that requires both
representative input data (𝑋) and output data (𝑌). A detailed
description of PLS-R and validation can be found in literature
[15, 19, 21]. In this study PLS-R is used in combination with
Raman spectroscopy. The 𝑋 matrix contains Raman spectra
that represent different concentrations and the 𝑌 vector
contains known reference concentrations from the sample

Table 1: Specifications of the RXN2 Raman spectrometer.

Name Description
Excitation laser
wavelength (nm) 785

Spectral range (cm−1) 100–3425
Spectral resolution
(cm−1) 4

Operating temperature
range (∘C) 15–30

Number of channels 4
Laser type Invictus� NIR diode laser

Spectrograph f/1.8 Holographic imaging
spectrograph

Grating Holographic transmission grating
Detector TE cooled, 1024 CCD Detector
Multichannel scanning 4-Channel sequential operation
Cal-Check� Automatic analyzer monitor

Auto-Cal� Automated calibration of axis and laser
wavelength

Immersion probe optic 200 𝜇m (short
focus)/Hastelloy/sapphire window

preparation step. All models reported in this article are
validated based on independent test data (test set validation)
[21].

The concentration range spanned by 𝑋 and 𝑌 should
reflect the concentrations to be predicted. The overall aim
of PLS-R is to model simultaneously the multivariate input
data (𝑋) and the output response (𝑌) (Figure 1). PLS-R avoids
many of the problems associated with the traditionalmultiple
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linear regression (MLR) and principal component regression
(PCR) [15] methods. PLS-R is advantageous in cases where
the 𝑋 matrix contains collinear data. Colinearity is in most
cases unavoidable in spectroscopy, as there are significantly
more variables (waveshifts) than samples (observations).
When the number of variables is significantly higher than the
number of samples, colinearity is guaranteed.When collinear
data are used, MLR fails or becomes unstable. Although
PCR can deal with colinearity, it has other issues related
to the way in which the 𝑋-matrix is decomposed without
utilizing information on 𝑌, often leading to models with a
higher number of components than the PLS-R case. Another
advantage of applying PLS-R is that the feature parameters
that emerge from themodel calibration stage, that is,𝑋 scores
(𝑇), 𝑋 loadings (𝑃), 𝑋 loading weights (𝑊), and 𝑌 scores
(𝑈), can be plotted and interpreted to support the calibration
procedure (see Figure 1).

An important aspect of PLS-R modeling is model vali-
dation [21], which is important to determine the complexity
of the model. The correct complexity of a PLS-R model is
defined as the optimal number of PLS components, which can
only be determined by proper validation of the model using
an independent dataset that is acquired and used exclusively
for this purpose. To determine the optimal number of
components in a PLS-R model, a criterion based on the so-
called root mean square error of prediction (RMSEP) [15] is
calculated and minimized. RMSEP is based on predictions of𝑌, for example, concentrations from the validation dataset.
Using several models with different numbers of components,
the predictions are compared to the reference values of 𝑌
in the RMSEP calculation. The model that has the optimal
number of components is defined as the one that ends upwith
the lowest RMSEP value.TheRMSEP values are derived using
(6):

RMSEP = √∑𝐼𝑖=1 (ypredicted − yreference)2𝐼 , (6)

where ypredicted is the predicted value from the PLS-R model,
which is compared to the reference value yreference. The sum
of the squared prediction errors is divided by 𝐼, which is the
number of samples in the validation dataset.

2.3. Preparation of the Calibration and Validation Samples.
The ranges of concentrations, expressed in moles of each
anion per kilogram of H2O (molality), of the calibration and
validation set were predetermined to reflect the concentra-
tions expected in samples that would in the future be sub-
jected to the developed speciation method. The calibration
and validation sets covered the same concentration range.
Analytical grade chemicals and Milli-Q water (18.2MΩ⋅cm)
were used to prepare the samples. The ammonia solu-
tion (25wt%) was supplied by Merck KGaA (Darmstadt,
Germany). Sodium hydrogen bicarbonate (99.7%), sodium
carbonate (99.9%), and ammonium carbamate (98%) were
supplied by Sigma-Aldrich (Steinheim, Germany). All chem-
icals were used as received. All solutions were prepared gravi-
metrically using a Mettler Toledo balance (±0.1mg). Forty

solutions of each of Na2CO3, NaHCO3, and NH4NH2CO2,
spanning the concentration ranges of 0–0.7mol/kg H2O,
0–0.96mol/kg H2O, and 0–2.56mol/kg H2O, respectively,
were prepared for calibration and validation purposes.

The selection of concentration range for calibration and
validation range is important especially when the model
is used for analyzing future samples. Three factors were
considered during this selection which are the solubility of
the chemicals, expected species concentrations, and Raman
instrument performance. As reported in [22], solubility of
Na2CO3 is 0.7 g at 0∘C and 1.25 g at 10∘C per kg H2O.
NaHCO3 solubility in water is 0.69 g at 0∘C and 0.815 g at
10∘C per kg H2O. Ammonium carbamate is freely soluble in
water. Holmes et al. [8] report a comparison of equilibrium
measurements of ionic system in CO2-NH3-H2O systems
for different initial concentrations of CO2 loading. The
comparison is based on his experimental work on 13C NMR
measurements with three thermodynamic models of Pitzer
model [23], NRTL model [24], and TIDES model [25]. This
comparison gives an indication of expected species concen-
tration for a given CO2 loading and NH3 concentration. For
the demonstration of the proposed method in this study,
different samples prepared using 5wt% ammonia in the CO2
loading range from 0 to 0.6mol CO2/mol NH3 were used
and the expected species concentration reasonably falls in the
calibration and validation range based on the reported work
by Holmes et al. [8]. The limitation of the Raman instrument
was also considered when selecting the concentration range.
An overview of the sample solutions used for the calibration
and validation of the PLS-R models, including the respective
concentrations, can be found in Appendix.

2.4. Acquisition of Raman Spectra. The Raman spectra were
measured with the Kaiser RXN2 Raman spectrometer using
a laser power of 400mW and a total exposure time of 60
seconds with six scans of 10 seconds each being applied to
achieve a good signal-to-noise ratio. Tomaintain a consistent
temperature in the spectrometer, the instrument was stabi-
lized for 30 minutes before each measurement series. The
short-focus immersion optic was fitted onto the fiber optic
probe head and cleaned with acetone. The immersion probe
was then positioned vertically using a stand, with the optical
window facing down. A glass container that contained the
sample solution was positioned under the immersion optic,
which was then carefully immersed in the solution. The tip
of the optic was positioned in the center of the solution,
approximately 20mm from the bottom of the glass container.
The sample and probe optic were protected from external
light sources (such as fluorescent light) using aluminum foil.
The Raman spectrum was obtained by initiating a scan in
the instrument software. In the intervals between sample
measurements, the probe was cleaned in acetone to avoid
cross-contamination of sample solutions.

2.5. Preprocessing of Raman Spectra. Figure 2 presents an
example of the preprocessing of the Raman spectra (cal-
ibration and validation samples for bicarbonate). During
preprocessing, all the Raman spectra were cropped so as to
cover the range of 450–2300 cm−1, since wavelengths outside
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Figure 2: Preprocessing steps of the calibration and validation Raman spectra of bicarbonate. (a) Raw spectra for the range of 100–3325 cm−1.
(b) Spectra cropped to cover the range of 450–2300 cm−1. (c) Spectra baseline corrected using theWhittaker filter (lambda = 100; 𝑃 = 0.001).
(d) Mean-centered spectra for PLS-R model calibration.

this range were not useful for the PLS-R analysis. Figures
2(a) and 2(b) show the bicarbonate spectra before and after
cropping, respectively. In this range, the Raman spectra show
an inconsistent baseline, which is particularly evident at the
highest Raman shifts (above 2000 cm−1). Raman spectra with
variable baselines often generate regression models that have
a higher number of components than is necessary, since
the model also needs to model the baseline drift. To ensure
a less complex model, a baseline correction is performed
to decrease or remove the baseline drift in each Raman
spectrum. Several baseline correction methods are available
[26]. Spectroscopic data from a Raman spectrometer can
be decomposed into three parts: (1) the analytical signal;
(2) the baseline; and (3) noise. Noise was not a problem
in the present study, whereas the baseline required some
attention. The goal of all the baseline correction methods is
to estimate the baseline in order to remove it.TheMATLAB�
2012b software (MathWorks Inc.) in combination with PLS
Toolbox 7.31 (Eigenvector Research Inc.) was used to find a
suitable baseline correction in the present case. The lowest
RMSEP was gained using the Whittaker filtering method
[27] included in PLS Toolbox 7.31, which preserves the
original shape of the signal part of the Raman spectrum.The
Whittaker filter was applied with the following parameters:
lambda = 100 and 𝑃 = 0.001. The lambda parameter
defines how much curvature is allowed, while the 𝑃 param-
eter holds information about asymmetry in the spectra.
Figure 2(c) shows the Raman spectra of bicarbonate after

baseline correction using the Whittaker filter. Finally, the
spectra were centered by subtracting the mean from each
variable (waveshift) in the Raman spectra. Centering [19] is
applied prior to PLS-R calibration to avoid the need for an
additional PLS-component to describe the mean of the data,
whichwould entail amore complexmodel. Figure 2(d) shows
the data after mean-centering. To summarize, the spectra
were cropped to lie within the range of 450–2300 cm−1,
the baseline was corrected using the Whittaker filter with
lambda value of 100 and 𝑃 value of 0.001, and the spectra
were centered on the mean prior to calibration of the PLS-
R models of the three species (carbonate, bicarbonate, and
carbamate).

2.6. PLS-R Modeling of Carbonate, Bicarbonate, and Carba-
mate. Individual models for carbonate, bicarbonate, and
carbamate were calibrated based on the obtained Raman
spectra of aqueous solutions that contained known concen-
trations in the ranges of 0–0.7mol/kg, 0–0.96mol/kg, and
0–2.56mol/kg, respectively. Since the aim was to develop
PLS-R models that could be used for speciation of a real
CO2-NH3-H2O system, a selection of variables (waveshifts)
to be included in each model was carried out. The waveshifts
to be included in the model of each respective anion were
chosen based on backward selection, whereby only the
wavelengths related to ammonia and the other two CO2
anion species were omitted. In themodel for the prediction of
carbonate, the Ramanwavelengths associated with ammonia,
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Table 2: Vibrational assignments of (NH4)2CO3, NH4HCO3, andH2NCOONH4 aqueous solutions, and omitted frequencies in the respective
PLS-R models. Adapted from the data of Wen and Brooker [10].

Frequency [cm−1] Assignment Omitted frequencies for the PLS-R anion model
Carbonate Bicarbonate Carbamate

3390 Antisymmetric N-H stretch of NH3 X X X
3310 Symmetric N-H stretch of NH3 X X X
3220 Fermi resonance with N-H symmetry stretch of NH3 X X X
3050 Symmetric N-H stretch of NH4

+ X X X
2850 A combination of fundamentals of NH4

+ X X X
1690 NH2 deformation of NH4

+ X X X
1645 Antisymmetric deformation of NH3 X
1630 C-O antisymmetric stretch of HCO3

− X
1550 Antisymmetric CO2 stretch of H2NCOO− X
1436, 1380 CO antisymmetric stretch of CO3

2− X, X X, X X, X
1430 Antisymmetric NH2 deformation of NH4

+ X X X
1405 Symmetric CO2 stretch of H2NCOO− X X X
1360 CO symmetric stretch of HCO3

− X X
1302 C-OH bend of HCO3

− X X X
1120 CN stretch of H2NCOO− X X X
1065 CO symmetric stretch of CO3

2− X X
1034 NH2 wag of H2NCOO− X X
1017 C-OH stretch of HCO3

− X X X
680 CO2 antisymmetric deformation of CO3

2− X X X
640 (OH)-CO bend of HCO3

− X X X
570 Torsion about CO2 skeleton of H2NCOO− X X X

bicarbonate, and carbamate were omitted. The wavelength
ranges used in the modeling of bicarbonate analysis were
selected based on the same principle, while the carbamate
model was based on a more limited range of wavelengths.
Since PLS-R modeling of carbamate is more challenging
than modeling of the other two species, forward selection
was used to define the wavelength ranges in this model.
Fine-tuning of the wavelength selection was made based on
prediction results, in which the model with a combination of
variables that resulted in the lowest prediction uncertainty
was used. The carbonate, bicarbonate, and carbamate
models were based on the respective frequency ranges of[450–520, 750–950, 1062–1100, 1140–1200, 1520–1650 and
1760–2300] cm−1; [450–520, 750–950, 1140–1200, 1350–1390,
1520–1650 and 1760–2300] cm−1; and [1033–1043] cm−1.
Table 2 lists the frequencies omitted from each PLS-R anion
model.

The PLS-R models for carbonate, bicarbonate, and car-
bamate were all based on 20 calibration spectra, in addition
to the 20 independent spectra that were used exclusively for
the validation. Figure 3 shows the spectra used to calibrate
and validate the carbonate, bicarbonate, and carbamate pre-
diction models.

Dissolution of carbonate in water will lead to the follow-
ing equilibrium state as given in reaction (7).

CO3
2− +H2O 󴀘󴀯 OH− +HCO3

− (7)

However, given the detection limit of the Raman spec-
trometer, only the carbonate band was observed. Therefore,
this reaction was neglected in the carbonate PLS-R model
development. However, in the cases of bicarbonate disso-
lution, reaction (8) and for carbamate dissolution reactions
(7)–(13) were observed.

HCO3
− 󴀘󴀯 H+ + CO32− (8)

CO3
2−
(aq) +NH4+(aq) 󴀘󴀯 HCO3

−
(aq) +NH3(aq) (9)

NH3 +H2O 󴀘󴀯 NH4+ +OH− (10)

NH4
+ 󴀘󴀯 H+ +NH3 (11)

HCO3
−
(aq) +NH3(aq) 󴀘󴀯 H2NCOO−(aq) +H2O (12)

H2NCOO−(aq) +H2O 󴀘󴀯 CO32−(aq) +NH4+(aq) (13)

Thus, the quantitative PLS-R models were developed accord-
ing to the following steps:

(1) Calibrate and validate the carbonate model.
(2) Predict carbonate in the bicarbonate calibration and

validation datasets, and correct the bicarbonate refer-
ences accordingly.

(3) Calibrate and validate the bicarbonate model based
on the corrected dataset obtained in Step (2).
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Figure 3: Raman spectra used in the PLS-R model calibration and validation. (a) Raman spectra of carbonate; (b) Raman spectra of
bicarbonate; (c) Raman spectra of carbamate.

(4) Apply the carbonate model from Step (1) and bicar-
bonate model from Step (3) to predict carbonate
and bicarbonate in the carbamate calibration and
validation datasets.

(5) Correct the carbamate references in the calibration
and validation datasets based on the predictions of
carbonate and bicarbonate made in Step (4).

(6) Calibrate and validate the carbamate model.

All the PLS-R models developed in the present study were
developed using theUnscrambler X ver. 10.3 software. Finally,
the speciation method was demonstrated based on realistic
aqueous solutions that contained 5wt% ammonia loaded
with CO2. Since reference concentrations for carbonate,
bicarbonate, and carbamate are not available for these
datasets, the prediction results were assessed based on the
calculated prediction uncertainties provided by Unscrambler
X ver. 10.3.

3. Results and Discussion

The calibration and validation results for each of the respec-
tive PLS-Rmodels for carbonate, bicarbonate, and carbamate
are presented in the respective subsections below. Outliers
were detected in the validation and calibration sets for
carbonate using the 𝑡1 − 𝑢1 scatter plots (data not shown).
An outlier may result from an air bubble sticking to the
sapphire window in the tip of the probe optic or from the

probe optic being inserted so far down into the solution that
the measurement is influenced by the glass container.

3.1. PLS-R Validation Results for Carbonate, Bicarbonate, and
Carbamate. Figures 4–6 show the validation results for the
PLS-R models of carbonate, bicarbonate, and carbamate,
respectively. The results include plots of the scores (𝑡1 − 𝑡2),
regression coefficients (𝐵), residual validation variances, and
predicted concentrations versus the reference concentrations.
The score plots are used to visualize how the calibration
spectra compare to the validation spectra. The regression
coefficients show the weight that each wavelength is assigned
in the prediction.The residual validation variance plot shows
the size of the residual for models with an increasing number
of components. The predicted versus measured plots show
how the predicted concentrations from the validation dataset
in comparisonwith the references calculated from the sample
preparation stage. Prediction performance is evaluated from
an interpretation of the statistical parameters of merit, which
include 𝑟2, RMSEP, and the slope of the regression line.

For the carbonate series, one outlier, identified according
to the definition provided previously [19], was removed
from the validation dataset. No outliers were detected in the
calibration dataset.The outlier was not considered thereafter.
Figure 4 shows selected plots from the calibration and valida-
tion of the PLS-R model for carbonate. In bicarbonate series
no outliers were detected in the calibration and validation
datasets. Figure 5 shows selected plots from the calibration
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Figure 4: PLS-R model for carbonate. (a) Score plot of PLS components 1 versus 2 showing the calibration samples and validation samples.
(b) Regression coefficients based on a one-component PLS-R model. (c) The residual validation variance shows that one PLS-component
is optimal. (d) Predicted carbonate concentrations based on the one-component PLS-R model versus the reference concentrations obtained
from the solute ion preparation stage.

Table 3: PLS-R modeling of carbonate, bicarbonate, and carbamate.

Model Carbonate model Bicarbonate model Carbamate model

Wavelength ranges
included [cm−1]

450–520, 750–950,
1062–1100, 1140–1200,

1520–1650 and 1760–2300

450–520, 750–950,
1140–1200, 1350–1390,

1520–1650 and 1760–2300
1033–1043

Slope 0.9898 0.9636 1.0246𝑟2 0.9995 0.9932 0.9968
RMSEP [mmol/kg] 4.3 24.1 49.9
Number of
components 1 1 1

Number of outliers 1 (in the validation set) 0 0

and validation of the PLS-R model for bicarbonate. For
carbamate series also no outliers were detected in the cali-
bration or validation datasets. Figure 6 shows selected plots
from the calibration and validation of the PLS-R model for
carbamate.

The wavelength ranges used in the PLS-R models for
the predictions of carbonate, bicarbonate, and carbamate
are presented in Table 3. Some variables (waveshifts) with
regression coefficients close to zero were also included, as

it was found that the prediction uncertainties were slightly
improved when these wavelengths were included. The values
for the slope, 𝑟2, RMSEP, the number of PLS components, and
outliers in all three models are listed in Table 3.

Multivariate analysis has been proven to overcome many
challenges in univariatemethod. Univariatemethod is simple
and samples for calibration can be prepared using one chem-
ical when there are no interferences from other constituents.
There are many instances when the property of interest
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Figure 5: PLS-R model for bicarbonate. (a) Score plot of PLS components 1 versus 2 showing the calibration samples and validation samples.
(b) Regression coefficients based on a one-component PLS-R model. (c) The residual validation variance shows that one PLS-component is
optimal. (d) Predicted bicarbonate concentrations based on the one-component PLS-R model versus the reference concentrations obtained
from the solution preparation stage.

cannot be described by one peak. According to Table 2,
vibrational modes assigned to carbonate, bicarbonate, and
carbamate fall closer to each other in the finger print area
from 1000 to 1420 cm−1. The NH3-CO2-H2O system consists
of several equilibrium reactions and the compositions of
carbonate, bicarbonate, and carbamate are influenced by the
concentrations of each other. It can be seen from the calibra-
tion spectrum that there are completely visible, independent
nicely shaped peak assigned to each other; however this may
be not true when it comes to the real CO2 loaded ammonia
system. Two scenarios of misuse of the multivariate regres-
sion in spectroscopic applications have been explained by
Esbensen et al. [28]. They are assigning individual peaks for
regressionwhich are identified by the preprocessed data or by
regression coefficients.The regression coefficients are used to
calculate the response value from the X-measurements. The
size of the coefficients gives an indication of which variables
have an important impact on the response variables. Assign-
ing wavelengths selected during calibration development for
regression must be done with caution because more than one
wavelengths are associated with the functional group to some
degree [28]. Many factors including scatter effect affect the

wavelength position and only by using a wavelength region
can the robustness of the calibration model be increased.

The score plots shown in Figures 4–6 reveal that the
calibration and validation datasets in all three cases span the
same score space, which indicates similarity of the datasets.
The most important wavelengths are those with regres-
sion coefficients that show the largest deviation from zero.
The regression coefficients listed in Figure 4 (carbonate),
Figure 5 (bicarbonate), and Figure 6 (carbamate) show that
the most important wavelength ranges are 1060–1070 cm−1,
1350–1380 cm−1, and 1033–1043 cm−1, respectively. In all three
models, only a small contribution is gained fromwavelengths
outside these ranges. The residual validation variance plot
shows that one-component PLS-R is sufficient for all three
models. The slope of the regression line is 0.96–1.02 and the𝑟2 is 0.0.993–0.999, which is close to the optimal value of 1.0.
The average prediction errors, that is, RMSEP values, for car-
bonate, bicarbonate, and carbamate, were 4.3mmol/kg H2O,
24.1mmol/kg H2O, and 49.9mmol/kg H2O, respectively.

3.2. Demonstration of the Method. The proposed speciation
method was demonstrated using aqueous solutions of 5 wt%
ammonia loaded with CO2. Since reference concentrations
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Figure 6: PLS-R model for carbamate. (a) Score plot of PLS components 1 versus 2 showing the calibration samples (filled circles) and
validation samples (open circles). (b) Regression coefficients based on a one-component PLS-R model. (c) The residual validation variance
shows that one PLS-component is optimal. (d) Predicted carbamate concentrations based on the one-component PLS-R model versus the
reference concentrations obtained from the solution preparation stage.

of carbonate, bicarbonate, and carbamate were not available,
the prediction performance level of each model was assessed
based on the calculated prediction uncertainties, as defined
previously [29]. The demonstration dataset was based on
14 solutions with different loadings (mole-ratio CO2/NH3)
of CO2, which were measured three times (42 samples in
total). The solvent CO2 loading is one of the primary process
parameters in the operation of systems for the chemical
absorption of CO2.

Figure 7 shows the predicted concentrations of the mea-
sured species. The average prediction uncertainties for car-
bonate, bicarbonate, and carbamate were 6.45mmol/kg H2O,
34.39mmol/kg H2O, and 100.9mmol/kg H2O, respectively.
Overall, the predictions of the sample solutions with corre-
sponding uncertainties give a satisfactory outcome regarding
speciation of all the anions. The last three predictions for
carbamate shown in Figure 7(c) reveal greater uncertainties
than those noted for the other predictions. This is due to
either the precipitation of solids or the presence of a slightly
higher concentration of ammonia in this sample. While a
precipitate was not visible in this sample, the conditions
were close to those for which precipitation is expected. Thus,
the influence of precipitation could not be ruled out. In
the accompanying report [14], the method presented here is

compared to the experimental data of the same samples with
the precipitation-titration method, with good agreement.
In the present study, the difference observed between the
demonstration dataset and the carbamate calibration is that
even though all the same species are present, the CO2 loading
differs (see reactions (12) and (13)). In the demonstration
dataset, the amounts of ammonia and water are roughly
constant, and the amount of CO2 increases continuously with
increasing sample number. In the demonstration dataset, the
CO2 loading is increased from 0 to 0.6. Thus, the present
method can relate the CO2 loading to the liquid carbon
distribution through reactions (2)–(5).

3.3. Comparison of the Model with Literature. Three models
developed in this study have been used in the study of
VLE data of chilled ammonia system [14]. This study shows
the model predictability which has been compared with
two thermodynamic models of Darde et al. [6] and Que
and Chen [24] and experimental work carried out by Wen
and Brooker [10], Holmes et al. [8], Zhao et al. [11], and
Ahn et al. [30]. The composition analysis performed by
Zhao et al. [11] for CO2-NH3-H2O system is based on
univariate analysis of Raman measurements. They record
results for different initial ammonia concentrations in the
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Figure 7: Predicted concentrations [mol/kg] of (a) carbonate; (b) bicarbonate; and (c) carbamate.

range of 0.69mol/L to 2.10mol/L and CO2 concentration
range from 0.18 to 0.67mol/L. The work is related to low
concentrations of ammonia. The proposed method in this
study is independent of ammonia concentration and is based
on three calibration sets each with 20 measurements which
were followed by validation using independent data set
spanning in the calibration range for each species. Zhao’s
method includes calculating molar scattering intensity (J)
of each carbon species by preparation of series of solutions
of sodium carbonate and sodium bicarbonate to calculate
J of carbonate and bicarbonate while J of carbamate was
calculated by carbon conservation balance. Therefore the
molar scattering intensity of carbamate was dependent on
those of other 2 components.

4. Conclusion

A method for speciation of the CO2-NH3-H2O system is
proposed. The proposed method can be applied without the
need for additional analytical calibrationmethods. Speciation
is achieved based on a combination of Raman spectroscopy
and multivariate PLS-R modeling, wherein the so-called full
spectrum calibration method is applied to extract informa-
tion from the entire spectrum.The concentrations of carbon-
ate, bicarbonate, and carbamate were predicted with an aver-
age prediction error (RMSEP) as being 4.3mmol/kg H2O,
24.1mmol/kg H2O, and 49.9mmol/kg H2O, respectively.

For the method demonstration case, which lacked refer-
ence concentrations, the prediction uncertainties for car-
bonate, bicarbonate, and carbamate were 6.45mmol/kg
H2O, 34.39mmol/kg H2O, and 100.9mmol/kg H2O, respec-
tively.

Appendix

Concentrations of the Carbonate, Bicarbonate,
and Carbamate Species in the Solutions Used
for Model Calibration and Validation

See Table 4.
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Table 4: Overview of sample solutions reported as mol/kg H2O.

Sample number Carbonate [mol/kg H2O] Bicarbonate [mol/kg H2O] Carbamate [mol/kg H2O]
Calibration Validation Calibration Validation Calibration Validation(1) 0.00000 0.01974 0.00000 0.03441 0.00000 0.07923(2) 0.03840 0.05585 0.05671 0.05704 0.14939 0.14652(3) 0.07280 0.09137 0.10508 0.10159 0.29518 0.27757(4) 0.11073 0.12401 0.15180 0.15504 0.39826 0.40627(5) 0.14710 0.15777 0.20941 0.20138 0.53542 0.55145(6) 0.18544 0.19187 0.25647 0.25214 0.67098 0.67585(7) 0.22126 0.22658 0.30250 0.30090 0.80054 0.80525(8) 0.25856 0.26310 0.35346 0.35263 0.93483 0.94422(9) 0.29493 0.29814 0.40131 0.40289 1.08200 1.05871(10) 0.33113 0.33291 0.46320 0.45270 1.21012 1.21201(11) 0.36895 0.36560 0.49901 0.49946 1.33941 1.33618(12) 0.39913 0.40255 0.54737 0.54932 1.47757 1.47498(13) 0.44205 0.43683 0.59693 0.60006 1.61910 1.60257(14) 0.47772 0.47227 0.65191 0.65196 1.73472 1.73898(15) 0.51599 0.50607 0.70127 0.70248 1.87207 1.87232(16) 0.55162 0.54010 0.74870 0.75143 2.02088 2.01094(17) 0.59048 0.57554 0.79937 0.79809 2.12369 2.13626(18) 0.62521 0.61002 0.84721 0.84682 2.27083 2.28208(19) 0.66210 0.64656 0.90173 0.89758 2.41909 2.41723(20) 0.69948 0.68035 0.95353 0.94859 2.55658 2.44528
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