Rebirth of The Arch
Controlling clarity of direction and movements by semi-circle arches intersecting level

Challenging the economy driven hidden structure architecture for the lost qualities of structural space

Master Thesis Portfolio
Chalmers School of Architecture
Spring 2017
MPARC

Zhiyu Lu

Examiner: Jonas Lundberg
Tutour: Kengo Skorick
<table>
<thead>
<tr>
<th>CONTENT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>01</td>
</tr>
<tr>
<td>Discourse</td>
<td>02</td>
</tr>
<tr>
<td>Reference</td>
<td>03-05</td>
</tr>
<tr>
<td>Base architecture system</td>
<td>06-07</td>
</tr>
<tr>
<td>Mechanical study</td>
<td>08-10</td>
</tr>
<tr>
<td>Prototype study</td>
<td>11-25</td>
</tr>
<tr>
<td>Site identification</td>
<td>26-34</td>
</tr>
<tr>
<td>Organisation system</td>
<td>35</td>
</tr>
<tr>
<td>Formation design</td>
<td>36-39</td>
</tr>
<tr>
<td>Proposal</td>
<td>40-45</td>
</tr>
<tr>
<td>Reference</td>
<td>46</td>
</tr>
<tr>
<td>Contact</td>
<td>47</td>
</tr>
</tbody>
</table>
ABSTRACT

In ancient Rome, the arch plays a major role as an organizer of the space and as a means for expression. This is originally a constructive moment when structure has both a technological as well as spacial and expressive purpose. With the advent of modernism, the structure has virtually been emptied of any meaning except the purely technical, and eventually, the structure is hidden under other ornamental components. Thus, in this master thesis, the arch is going to challenge the economy driven hidden structure architecture for the lost qualities of structural space.

The purpose of master thesis is by doing the mechanical property study and reference study to refine semi-circle arches and find the relationship between people’s movement, clarity of direction, duration of stay and organization of arch. By analysing the logic of network and centers in Musee du Louvre, the logic of controlling people’s focused move and non-focused move has been found.

The relevant methods of this master thesis will be literature and case studies about the history and development of arch. Hang chain models will show the difference of semi-circle arch and parabolic arch on forces inside of them and also clarify the function of side mass. 3D models and physical models test the spacial qualities.

The result of this master thesis will be a market on the bridge at Slottesberget. By apply the logic of controlling people’s focused move and non-focused move, the system of network that contains centers, main paths and cells are created on the site. The perpendicular multi-intersecting arches are applied at centers for people to gather. The intersecting arches are applied at the main paths for people to get shortcuts and quick pass. The independent arches are applied at the cells to create non-focused move and provide space for market activities. The floor is designed as a landscape to create the circulation gradient and encourage people move freely on vertical direction.
1 BACKGROUND

1.1 Relevant field
1 BACKGROUND

1.2.1 Reference project

Christ Church - Carlos Mijares

This christ church is designed by Mexico architect - Carlos Mijares for one of the oldest zones of Las Lomas.

As his most recent work, the enormous interior space is generated by double arches. At their juncture, splayed vaults provide vertical light in the form of a cross upon the alter.

The second space is composed by smaller half arches. These half arches structurally work as flying buttress supporting the main structure. Meanwhile, these arches also become multiple curtains which transform daylight into something diffused and profound.

Interior scene of christ church shows that it is a structure dominate space. The double arches cross with each other and sketch the outline of interior space. Half arches hold the main structure and diffuse the daylight.
1.2.2 Reference literature

CARLOS MIJARES: TIEMPO OTRAS CONSTRUCCIONE
This book records Carlos Mijares entire career life. It not only shows all the projects of this Mexico architect, but also try to search the root of Carlos’s creation. From this book, the reader can get through the logic of structure and space that is hidden behind his project.

On Span and Space: Exploring structure in architecture
This book provides readers with a better understanding of the relationship between structure and architecture. It offers a well-founded aesthetic theory to support the understanding and evaluation of a structure’s form and design, examining concepts and viewpoints from both engineering and architecture.
The reason why I choose Zaha Hadid’s the Heydar Aliyev Cultural Center as a problematic precedence is because this project represents a certain type of architecture which is seen as a technical problem solver. After spending tons and tons of material, money and time, the building decides to hide the structure. Zaha Hadid pursues volume and figure in this project and decides to sacrifice the relationship between space and structure. Therefore, I think this project is a problematic precedence.
The Christ Church contains five parts - entrance aisle, enclosure walls, main structure, roof and light well. Arches as the main structure system have both structural and spacial roles. The structure as the space-defining elements creates space with strong sense of centrality, isolation and calm.

Light well provide vertical light in the form of a cross upon the alter

Stepped roof indicates the geometry of interior space

Multiple half arches support the main structure and diffuse the direct sunlight

Double arches form the main structure and define the volume of interior space

Single direction arches create a strong sense of orientation in front of the entrance
2 REFERENCE ANALYSIS

2.2 Base architecture system

Structurally

- Double arch is reinforced and joint in the middle
- Multiple half arches support the main structure
- The overlaid semi-circle arches form the light well

Spatially

- Crossed double arches define the interior space
- Multiple half arches work as curtains and diffuse the daylight
- The spalyed vaults offer a solution to balance different geometries and provide direct sunlight for inner space
3.1 The mechanical property comparison between parabolic arch and semi-circle arch

Parabolic Arch
The force in the parabolic arch is uniformly distributed along the section of arch. There is only compression stress in the arch, thus the parabolic arch is the ideal figure for traditional materials such as stones and bricks to take full advantage of their capacity.

Semi-circle Arch
The semi-circle arch is mainly adopted by Romans. Different from parabolic arch, the force condition in semi-circular arch is much more complicated. Where the arch tends to bulge outside, bending stress appears. The tension stress will develop on the outside of arch and compression on the inside with a linear variation of magnitudes from one to the other across the arch thickness.
3 MECHANICAL ANALYSIS

3.2 Optimizing mechanical property

Solution 1
Built the arch with sufficient thickness

Solution 2
Compression interference from outside

Solution 3
Concrete and ribble changing the loading pattern

Solution 4
Thicken the bending parts

Solution 5
Tension interference from outside
3 MECHANICAL ANALYSIS

3.3 Horizontal thrust balance the bending forces and compression in semi-circle arch

The magnitude of bending forces is related to the displacement of semi-circle arch to funicular polygon. The largest bending force appears at the most bulging part, which means at that part it needs the largest horizontal thrust to balance the bending forces.

The reinforcement masonry produces a horizontal thrust that creates a balance between the bending forces and compression, and modifies the funicular polygon of the loads and brings the line of action of the internal forces back inside the section of the arch.

The reinforcement masonry plays a fundamental structural role in semi-circle arch, and its removal can cause the arch to collapse.
4.1 Isolated criteria

Element:
Structure system
- arches

Parameter:
Organisation of arches
- Angles
 - independent or intersecting

Agent:
People

Outcome:
Orientation
Centrality
Movement
Types of spaces

Summary:
Organisation (P) of arches (E) influence peoples' (A) feelings of orientation and movement (O).

<table>
<thead>
<tr>
<th>Organisation of arches</th>
<th>90°</th>
<th>60°</th>
<th>45°</th>
<th>30°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Arches</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>Intersecting Arches</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>Multi-Intersecting Arches</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
</tbody>
</table>
4 PROTOTYPE

4.2 Organisation of arches and the perception of centrality and orientation

Independent Arches

- Sense of orientation
- Intensity of centrality
4 PROTOTYPE

4.2 Organisation of arches and perception of centrality and orientation

Intersecting Arches
4 PROTOTYPE

4.2 Organisation of arches and perception of centrality and orientation

Multi-Intersecting Arches

90°

60°

45°

30°

= Sense of orientation

= Intensity of centrality
4 PROTOTYPE

4.2 Organisation of arches and perception of centrality and orientation

Intersecting Arches
4 PROTOTYPE

4.2 Organisation of arches and perception of centrality and orientation

Multi-Intersecting Arches

- Sense of orientation
- Intensity of centrality
4.2 Consequence of orientation and movement under new system

Scenario 1: Connecting intersecting arches from big angles to small angles

$\Phi_O = 2000mm \times n, n=1,2,3,4$

= Sense of orientation

= Intensity of centrality
4.2 Organisation of arches and perception of centrality and orientation

Scenario 2: Connecting multi-intersecting arches from big angles to small angles

= Sense of orientation

4 PROTOTYPE
4.2 Consequence of orientation and movement under new system

Scenario 3: Connecting arches from independent to multi-intersecting

= Intensity of centrality
4 PROTOTYPE

4.2 Organisation of arches and perception of centrality and orientation

Senario 4: Connecting arches from independent to multi-intersecting and also follow the sequence of movement

→ = Sense of orientation
Independent arch can not give enough support force to the center of floor slab, which means the slab have to bear the load itself.

The size and position of floor slab is dominated by the performance of arch, and the arches will always be the primary bearing system. Therefore the performance of arch is not only influence people's perception in the space, but also influence people's movement on the upper level.
4.5 The arch system between floor and arch wall

Developed from the floor system, a new system is introduced between floor and arch. These tiny arches dispense and transmit the strength. This system shows the ability of arch on different scale.
4.4 Refining arches based on the mechanical property and introduce the one third level

The mechanical stress inside of the single arches

Reduce the unnecessary part in arches

Introduce the small arches in order to make use of one third level

Mechanical performance diagram

One third level applies in different combination of arches
The arches work as the bearing system in the project and half arches work as stairs that connect the normal levels and one third levels. And the position of stairs is dominated by the performance of arches.

The diagram shows that stairs can develop in different directions between arches and also form the vertical circulation.
People’s sense of centrality and orientation is influenced by the performance of arches and their movement is also various depending on the arch performance based floor system.
The site in this project is at Slottsberget. In history, this place is an important port. And now, it is a wonderful leisure area. The diverse surrounding elements cause dynamic circulation in this area which gives the opportunity to utilize and integrate it in the project.
5 CONTEXT

5.2 History of Slottsberget

During 1700s, Gothenburg grew into a huge city. The port's importance grew and thanks to the Swedish East India Company, as well as exports of iron and wood, Gothenburg became a major trading and shipping town.

In 1800s, both industries and the trading houses expanded in Gothenburg. The city has been praised for having succeeded in developing the area where the ship building industries were located.

In the 20th century, the port needed to grow and this means expanding across the Göta River. The construction of Sannegårdshamnen began in 1908 and it was completed in 1914. Meanwhile, the engineering company Eriksbergs Mekaniska Verkstads AB was founded. During 1950 and 1960s, Eriksberg was the most profitable shipyard in the country.

In Slottsberget, there are many old houses with historical values which were built by shipyard workers from Lindholmen and Eriksbergs. And for many years it was the central harbour for the import of coal and coke.

However, with the shipyard crisis happened in 1970s, the industrial sections had faced a recession. And now this area is transformed into a popular residential area.
5.4 The overall conditions of Slottsberget

Overall Conditions
This diagram shows the general conditions of Slottsberget. It is not only a residential area but also a good place for people to spend the leisure time. People have the convenient access to this area by public transport. In this place, you can not only enjoy the view of port, Göta River, but also can get close to nature.
Topography
This diagram shows that the most area is quiet flat. The harbour is the lowest point in this area and on both sides of the harbour are small hills, and this causes a valley-like terrain.
Road System
In this area, the road system shows high diversity. It not only includes asphalt road for cars but also dirt road, bridge and wood walkway that only can be used by citizens and leisure people.
5 CONTEXT

5.7 The green space

Green Space
This diagram shows the green space in this area. The biggest one in this area is Sörhallsberget which is a developed green hill. On top of Sörhallsberget, people is not only can enjoy the nature but also have the best view of the port, Göta River and city center.
Leisure Space
This diagram shows that city managers use the space along the coast line and Sörhallsberget as leisure space. It allows people to enjoy the view and green nature in this area.
Activity Degree
This diagram shows that people mainly gathering along the coast line and at the public transport stops. However, although Sörhallsberget is located at the center of this activity area, it doesn’t attract people attention to make use of this developed green hill.
Housing Status
The building that existed in this area mainly were built in four stages. The old houses that have historical values were built by the shipyard workers in early 1900s. Then in 1960s, modern residential buildings began to built. And in 2004 more residential buildings were built along the harbour. In the following years, healthcare and commercial buildings appears in the outskirts of this area.
The project that is chosen as base organisation system is Musee Du Louvre. The diagram shows that the museum can be divided into four different zones - exterior, semi-exterior, interior and core. When people visit the museum, certain sequence happens. In each zone, there are joints that play important role in helping people finding their ways, and different types of paths are added to connect these zones. Some paths show the clear destination and direction, while others are quite confusing and people are easy to lost their way.
6.1 Cells, paths and joints

Point grid based on the site

Generate grid

Change grid direction
6 FORMATION DESIGN

6.1 Cells, paths and joints

Change the grid on x direction

Change the grid on y direction

Generate the non-uniform cells
6.1 Cells, paths and joints

Based on the size of cells to generate paths

Circles radius shows the size of joints

Polygon shaped joints insure the same distance from each paths to the center, and the joints are perpendicular with paths
6 FORMATION DESIGN

6.1 Cells, paths and joints

Generate the paths and edge line of joints

Arches’ intersecting level is based on the size of joints

Space in each cell is divided based on the size of cell
7 PROPOSAL

7.1 Section perspective
7.2 Boat view perspective
7.3 Interior rendering
7.4 Boat view perspective
7 PROPOSAL

7.5 Daily market floor plan
7 PROPOSAL

7.6 Book market floor plan
1) Moussavi, Farshid. (2009). The Function of Form

6) Sandaker, Bjørn Normann; Eggen, Arne Petter; Cruvellier, Mark R. (2011, 2nd ed.) The structural basis of architecture

7) Nilsson, Karl Robin. (2014). Getting the arch back into architecture

8) Santa María, Rodolfo; Palleroni, Sergio; Mijares, Carlos. (1989). Carlos Mijares: tiempo y otras construcciones

9 Contact

9.1 Contact

Zhiyu Lu
luzhiyu2015@gmail.com
46-0728517454