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Classification of epileptic seizures

Accelerometer based detection of hypermotor seizures
SOFIE WALLBERG

Department of Electrical Engineering

Chalmers University of Technology

Abstract

In order to provide objective data for physicians to evaluate, accelerometry can
be used to monitor movements of patients suffering from epilepsy. The focus of
this thesis is to evaluate data gathered at Sahlgrenska Academy with the purpose
to build models which detects nocturnal hypermotor seizures (HMS). This thesis
extends work from a previous study focused on detecting generalized tonic-clonic
seizures (GTCS), and the ultimate goal is to combine the results to create multi-
class classification algorithms to be implemented with wearable electronics. When
compared to GTCS, HMS commonly have a larger variability with varying motoric
responses and durations among the patients. To overcome the increased difficulty
of HMS detection, two major approaches are considered in this thesis. The general
approach where the classifiers are constructed using data from multiple patients and
the patient specific approach where models are created for each patient using their
individual data sets for both training and testing. A set of features from the previous
work is considered and extended to incorporate common features used in literature
regarding HMS detection. The feature space is used to train and evaluate the
classification methods logistic regression, k-nearest neighbors (KNN), support vector
machines (SVM), random forest and kernel density estimation (KDE). Additionally,
pre-processed accelerometer data is used to train artificial neural networks (ANN)
without first calculating features. It proved to be a difficult task to achieve perfect
accuracy using the current data set, the listed methods and the implemented feature
space. It was possible to achieve high sensitivity but at the cost of a large amount of
false positives. By visual inspection of the accelerometer data and video recodings a
set of subtle or atypical seizure could be identified. The results of the classification
showed that these seizures were difficult to detect as expected from the inspectation,
they were either too subtle or too atypical for accurate classification. Their similarity
to normal non-seizure movements are most likely affecting the performance in a
negative manner and several post-processing steps had to be considerd in order to
reduce the amount to be within acceptable limits. Furthermore, the feature space
was evaluated to find differences between GTCS and HMS, the results indicate that
there are considerable differences and the feature space could serve as a basis for
multi-class classification in future work.

Keywords: Machine learning, statistical analysis, epilepsy, hypermotor seizures,
HMS, nocturnal, accelerometry, classification.
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1

Introduction

Different types of epileptic seizures can be difficult to distinguish due to similar
symptoms and behavior. Due to the similarities and the current necessity to rely on
subjective information, misdiagnosis is common. In order to improve and simplify
diagnosis machine learning algorithms could be used to process objective motion
sensor data obtained from patients.

The work was performed in collaboration with RISE Acreo AB. Acreo is a partner in
a project which aims to develop wearable electronics which can be used to simplify
diagnosis and treatments of neurodegenerative diseases such as epilepsy. Besides
Acreo, the partners in the project are Swedish Foundation for Strategic Research
together with Sahlgrenska Academy at Gothenburg University, Swerea IVF, Swedish
School of Textiles and MedTech West. The wearable electronics can be developed
to measure motions and be used to collect data from patients outside clinical envi-
ronments. The data collected can give an insight in how day-to-day activities are
affected by epilepsy, how often the seizures occur and the character of the seizures.
Continuously collecting data will however result in an enormous amount of data
which is difficult for physicians to process. A successful implementation of machine
learning algorithms can serve as a tool to physicians by extracting relevant data and
help with reaching an accurate diagnosis. When treating the patients the wearable
electronics can be used to evaluate which effect the treatment has by considering
measured data rather than only relying on information given by the patients. Re-
ports given by patients can be unreliable while data from implementing wearable
electronics are expected to provide more objective data to be evaluated. Currently
most clinical research is focused on GTCS detection while other types of epilepsy
are less studied.

The Acreo project should however incorporate multi-class classification, ideally a
model should be constructed to accurately identify and differentiate three classes
of epileptic seizures; generalized tonic-clonic seizures (GTCS), psychogenic non-
epileptic seizures (PNES) and hypermotor seizures (HMS). These seizure classes
all have motor manifestations, enabling the possibility to evaluate accelerometer
data. This thesis is focused on detection of HMS, machine learning models have
been created to differentiate HMS from normal movements. The results and con-
clusions aquired will later be used in the Acreo project for multi-class classification
and detection.



1. Introduction

1.1 Purpose

The purpose of this thesis was to accurately identify and differentiate hypermo-
tor seizures (HMS) from normal non-seizure movements using accelerometry while
considering previous work done within the project. Ultimately the findings of this
thesis will be used in the Acreo project for multi-class classification implemented to
be used with wearable electronics.

1.2 Accelerometry

1.2.1 Human motion

Continuous evaluation of human motion is becoming more common, in most smart-
phones today there are health tracking possibilites such as pedometers. However,
human movement can provide more information besides the number of steps taken
each day. By evaluating movements it is possible to find indicators and evidence
for disabilites, diseases and disorders. Accelerometer devices with their small size
and low power consumption are ideal to record data continuously outside the clin-
ical environment. Such devices can provide objective information for physicians to
evaluate [1].

1.2.2 Measurements

The data is collected at a sample frequency of 50Hz using accelerometers, one placed
on each arm and in some cases one additional sensor placed on the torso. Given that
classification models are based on learning characteristics of data sets, the sensor
placed on the torso is neglected as it is not available for all seizures.

The patients are restricted to the hospital environment during video-EEG mon-
itoring and as a consequence the measurements are not collected during regular
day-to-day behavior. If a motoric manifestation is considered harmful the physi-
cians actively intervene and try to reduce the risk of physical harm. Clearly this
may have a large impact on the motion sensor data gathered, when the physicians
intervene to inhibit the motoric response some parts of the patients typical seizure
behavior might not be accurately measured. This is however not a problem unique
to the clinical setting, if the patient is monitored in the home environment the pa-
tient’s next of kin might intervene in a similar manner.

Each set of measurements have been initially verified and analyzed by physicians
and a log is provided which indicates seizure types and when the seizures occurs.
The log and the different systems used for measuring are not perfectly synchronized
and thus the motoric seizures must be identified in the accelerometer data. Since
the number of patients is small this can be done manually by evaluating the raw
data in proximity to the seizure time aquired from the log. In some cases when the
seizure were not easily identified, physicians and EEG were consulted to determine
the onset and duration.



1. Introduction

1.3 Epilepsy and seizures

Epilepsy is a disease where recurring seizures are caused by abnormal neuronal ac-
tivity in the brain. There are different types of epilepsy with varying symptoms
which roughly depend on where in the brain the electrical event originates and how
it spreads to other parts of the brain. There are a wide range of symptoms entirely
depending on which areas of the brain are affected, such as speech impairment, mus-
cle contraction and unprovoked feelings [2, 3].

In clinical research, seizures are defined in terms of EEG. However, since this thesis
is performed using accelerometer data the focus is on motoric manifestations only.
Seizure onset, duration and other variables used in the thesis are entirely referring to
the motoric response and not the electrical activity in the brain. The motor onset
is typically not coincident with the onset determined by EEG, there is a certain
latency before the electric activity results in motor symptoms.

Using accelerometry to detect epilepsy have previously been used with promising
results. Both GTCS and HMS have motor components which can be measured using
accelerometers or gyroscopes. The use of accelerometers require the patient to be
able to move their limbs freely, if the patient is restrained the measurements will
not accurately describe the motoric behavior. The difficulties of the accelerometry
approach is not to detect the seizures but to differentiate seizures from normal
non-seizure movements. To reduce the amount of false alarms the patient could
be equipped with a method to manually dismiss a seizure alarm if it is caused by
normal movements [4].

1.3.1 GTCS

General tonic-clonic seizures is the most commonly known type of epilepsy. The
seizure consists of two phases with different motoric symptoms. The tonic phase
causes all muscles to contract at a high frequency with small magnitudes, the body
stiffens and the person loses consciousness. When the clonic phase starts the con-
tractions occurs with lower frequency but with higher magnitude, causing limbs to
rythmically contract and relax. The two phases of GTCS have a very characteristic
motoric response which does not vary much between individuals and usually lasts 1
to 3 minutes [5].

1.3.1.1 GTCS patients

The GTCS data used in this study is available from five patients, however only a
fraction will be used for comparison with HMS. Figure 1.1 describes the behavior of a
typical GTC seizure using acceleration with respect to time. The accelerometer data
is pre-processed as described in Section 3.2. After the seizure some subtle movements
are recorded which have significantly lower intensity and shorter duration.
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Figure 1.1: The motor behavior of a pre-processed GTC seizure. The response is
measured using a sensor at each arm.

1.3.2 HMS

Hypermotor seizures consists of involuntary movements such as thrashing, kicking,
boxing and rotation. In some cases there are severe cognitive distortions such as
fear and panic. Unlike GTCS there is no typical pattern of movements, there is
high variation in the motoric manifestations among patients. However, each patient
often have a stereotypic seizure behavior. This implies that in order to perform a
successful classification it might be beneficial to focus on individuals rather than
using a general approach. The motoric manifestations usually last from a couple of
seconds up to one minute [6].

In research related to HMS it is common to focus on nocturnal seizure monitoring
since HMS typically occurs when the patient is asleep or at rest. Additonally, from
a monitoring perspective, collecting data during the night is preferred. Epilepsy is
determined by the use of video-EEG which might not be wireless, hence it is easier
to gather measurements when the patient is in bed. Furthermore, nocturnal seizure
monitoring is the setting from which the highest accuracy can be expected when
using accelerometry. The short durations of the motoric manifestations can make
it easy to mistake seizures for normal movements and vice versa. Naturally, mon-
itoring performed when the patient is asleep will result in a data set consisting of
movements which are much more subtle than if the monitoring had been performed
during the day [7, 8].

A pre-processed HMS seizure is shown in Figure 1.2. If examined carefully, the x
axis of sensor 2 includes a rythmic response, the patient appears to be hitting with
one arm. This is verified by video monitoring. One additional example is shown in
Figure 1.3, this seizure is very short and subtle. After the seizure there is a recorded

4



1. Introduction

3 k

2t

1+t

Magnitude [g]

Sensor 1, patient 39 (24-Mar-2011)

T
|
|
|
|
|
|
|
N

Ly
T

17:36:45

17:37:00
Time

3r X i |
—y | |
2+ z I |
—-—-HMS| | |
4l |- — End | i
% \“‘\‘ : i ‘M‘ ‘ |
Husmmd i
2l | |
! |
3t i |
! |
4t | | 4

Sensor 2, patient 39 (24-Mar-2011)

17:36:45 17:37:00
Time

Figure 1.2: The motor behavior of a pre-processed hypermotor seizure. Sensor 2
have recorded a rythmic seizure manifestation.
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Figure 1.3: The motor behavior of a pre-processed hypermotor seizure and a
similar normal movement. The seizure is short and subtle.
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movement which is quite similar to the seizure. The most obvious difference is that
the non-seizure movement seems to be focused on one arm while the seizure affects
both. However, as in Figure 1.2, a seizure motoric manifestation is not neccessarily
similar in both arms. By visual evaluation of graphs like these there is a wide range
of motoric manifestations where most seizures seems to be quite similar to normal
non-seizure movements, indicating that it might prove difficult to create an accurate
classifier given the data set available.

1.3.2.1 HMS patients

There is HMS data available from four patients, patient 21, 36, 37 and 39. The
patients have 8, 3, 24 and 2 seizures respectively. The onsets and durations of each
seizure is listed in Table A.1 in the appendix.

Patient 21 have valid measurements from 62 hours, during which the patient had
8 HMS and 3 GTCS, where each GTCS occured a short time after a HMS. It is
not uncommon for a seizure to evolve into a different type, depending on how the
electricity spreads through the brain. When using the data from patient 21 for HMS
classification the GTCS data is removed. The seizure durations are varying from 9
up to 32 seconds.

Patient 36 have valid measurements from 94 hours and a total of three seizures. The
seizures have durations between 18 seconds and 31 seconds.

Patient 37 have valid measurements from 100 hours and 24 recorded seizures with
motoric manifestations. The seizures have varying intensity, a few additional EEG
recognized seizures had such a subtle motoric behavior that they are disregarded.
The durations range from 6 to 22 seconds.

Patient 39 have valid measurements from 54 hours during which two HMS occured.
Both seizures evolves into some other form of epileptic behavior which is disregarded.
The seizures durations are 17 and 13 seconds respectively.

1.4 Data limitations

The data have been continuously gathered over several days which has resulted in
a data set which mainly consist of regular movements and only a small fraction
of seizures. Statistical analysis and machine learning algorithms are preferably per-
formed using a large data set with many occurences of each class in order to estimate
general distributions and similarities. The limited number of seizures introduces an
unavoidable uncertainty in the results, there is no guarantee that the created models
are optimal on a larger and more general scale.
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1.5 Aim

The project is a continued research from a previous Master’s thesis, “Machine learn-
ing for detection of epileptic seizures” [9]. Their focus was to identify GTCS and as
a part of their project a set of features was evaluated and used with different types
of machine learning algorithms. The aim of this work was to extend their research to
identify nocturnal HMS instead. Initially, the previous set of features was evaluated
on the new data to determine their relevance. A few additional features was im-
plemented based on HMS related literature. The feature set was initially evaluated
using probability based histograms. The features was used to create several types of
classifiers with varying success, and additionally, the pre-processed data without fea-
ture extraction was evaluated using neural networks. The heavily imbalanced data
set had to be considered and several methods was evaluated to reduce the impact
it had on the classifiers. Furthermore, the classifiers proved to be prone to cause a
large amount of false alarms which had to be dealt with. Lastly, the feature space
was evaluated for multi-class classification purposes, to see if the features not only
differentiated seizures from non-seizure but among different types of seizures as well.

The algorithms was trained and evaluated on the accelerometer data available. The
data have been gathered from patients in hospital environment and does not fully
represent everyday behavior. This is however the common practice in clinical re-
search since it allows monitoring using video-EEG. Since epileptic seizures are de-
fined by EEG, this type of monitoring is usually a requirement. The classification
was performed offline however in a future stage classifiers can be trained offline and
implemented to continuously evaluate data gathered from accelerometers.

The research questions considered in this work was

e How can machine learning algorithms be implemented to accurately detect
and classify HMS?

o How can the specificity of the classifiers be increased?

o What are the differences between HMS and GTCS and which modifications
to the previous work are required?

o How much data is needed to train the classifier?



1. Introduction




2

Theory

2.1 Data

The data set consists of measurements from two accelerometer sensors, one located
at each arm. Each sensor provides a set of three-dimensional data in terms of the
acceleration in three orthogonal directions measured at a frequency of 50Hz, hence
each measured second consists of 50 samples. The components of the sample i are
denoted z;, y; and z;.

2.2 Features

A set of features should be extracted to represent the characteristics of the ac-
celerometer data, where each feature represents a specific aspect of the original data
while omitting the rest. Representing the data as a set of features makes it possible
to weigh the characteristics differently. For instance, if there is a specific component
that is highly relevant to describe seizures it can be favored by the classifiers.

An evaluation of the feature space might reveal that there are some aspects which
are non-essential for the classification process. Components which are basically
equivalent in regular motion data and seizure data can be ignored as it does not
improve a classifiers capabilitity to distinguish between said classes. Additionally,
in order to perform accurately multi-class classification it is of importance to find
characteristics which separates different types of seizures.

All features are calculated from the sampled data to result in one value for each
measured second. Some features are calculated for each sensor while others are a
combination of both sensors. Many features are calculated in combination with a
Hamming window, w;. The Hamming window ensures that each calculated second
mostly depend on the centre of the considered samples, while the surroundings is
given less importance. Some of the features are calculated with a window of two
seconds with one second overlap to capture information over a longer period of time.
In the previous thesis [9] some features for GTCS classification were calculated using
a window of 10 seconds, however the duration of a HMS is usually much shorter
than GTCS.

Most features considered in this work have previously been used to classify GTCS
[9]. They are used for the HMS classification in this thesis since the ultimate goal
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is to separate the GTCS from HMS. If these features can be used to differentiate
HMS from normal non-seizure movements they should also be evaluated to see if it
is possible to differentiate GTCS from HMS as well. Since many of these features
are commonly used to evaluate motion data, they also occur in HMS research.
Additonally, two new features Jerk and Spectral Edge Frequency are evaluated.
Both features have been used in prior work focused on HMS classification.

2.2.1 Vector Magnitude, Signal Magnitude Area, Accumu-
lated Acceleration

The magnitude of the signals can be evaluated in several ways, three different types
are used to describe the general activity. Vector magnitude (2.1) is the mean of each
sensor scaled using the window function. Signal magnitude area (2.2) is the mean
of the absolute axis values. Accumulated acceleration (2.3) is the accumulated sum
of the absolute values of each axis [9]. VM and SMA is calculated for each second in
combination with a window function while AM is calculated over two seconds with

one second overlap.
TR R
var— Sy ) (2.1)

> Wy
B Zl(wglﬂﬂ -w;)
SMA = = (2.2)
N i
AM =323 (il + |yl + i) (2.3)
i=1j=1

2.2.2 Root mean square, mean value

Root mean square and the mean value is calculated for each sensor using the vector
magnitude and a window of two seconds with one second overlap. These features
have not only been used for GTCS detection, but for HMS as well [7, 8, 9].

1 N
RMS = J v > (a2 4y + 22 (2.4)

=1

N

1
mean = S (Vai4yi+22) (2.5)

i=1

2.2.3 Variance, Standard Deviation

Variance and standard deviation are common statistical measurements used to de-
scribe variation within a dataset and have been used in prior epilepsy related re-
search [7, 8, 10, 9]. The variance and standard deviation are calculated from the
pre-processed data for each sensor using a window of two seconds with one second
overlap.

10
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2.2.4 Correlation

Correlation between sensors is calculated to evaluate similarities. A seizure with
a rythmic motoric manifestation in both arms should result in significant correla-
tion while normal movements are not neccessarily similar in both arms [8, 9]. The
correlation is calculated by treating the sensor magnitude as random variables and
calculating the mean for each second. Assuming N samples for each second, sensor
magnitudes denoted X and Y and the sample mean p, the correlation between the
Sensors is

CORR(X,Y) = (X — )Y — y) (26)

=1

2.2.5 Entropy

Entropy is a measurement of information content and it is used to represent the
general activity of measured movements. Given previous results, the feature is ex-
pected to provide a significant difference between seizure movements and non-seizure
movements [9].

The entropy is calculated by evaluating the estimated probability density function
of the acceleration. The probability density function f(z) is estimated using 30 bins
and a sliding window of two seconds with the MATLAB [11] function histogram.
Given the probability density estimate hy(x) at bin k, the entropy is calculated

H(X)=— Xk: f(x)logf(x) (2.7)
where
(o)
flz) = SR (2.8)
2.2.6 Jerk

The feature Jerk is introduced to represent how smooth and controlled movements
are. Jerk denotes the rate of change of acceleration with respect to time and uncon-
trolled activity with short and fast movements results in higher jerk, hence it should
be a suitable feature to describe uncontrolled seizure movements [8, 10].

Jerk is calculated for each measured second of each sensor. The first derivative is
approximated using (2.9) for all directions and the absolute values are summarised
in combination with a window function.

. LTt T Ly
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ST + gl + |Z4]) - ws

Jerk = S w,

(2.10)

2.2.7 Spectral Edge Frequency

Spectral edge frequency is the frequency below which 80%, 90% or 95% of the total
power of the signal is concentrated. It is used to capture and represent the general
frequency content of the signal. It indicates whether the content consists of mainly
low frequencies or contains frequencies from a wider spectrum [8]. A HMS seizure
could for instance include the patient sitting up or rotating in the bed while at the
same time rythmically thrashing with extremities. This type of seizure would result
in frequencies from a wide spectrum and hence have a higher spectral edge frequency.

The spectral edge frequency is calculated using a sliding window of two seconds
with one second overlap. Initially a periodogram is calculated using the MATLAB
function periodogram [11], the periodogram is an estimate of the power spectral
density of the signal. The function bandpower is used to estimate the integral of the
power spectral density at the frequencies used by the periodogram function. The
power in the frequency bands are evaluated to find the spectral edge frequency.

2.2.8 Frequency bands, Frequency Peak

The frequency content of the accelerometer signal can be evaluated by separating
the content into frequency bands and estimating the signal power in the correspond-
ing frequency ranges. A frequency band feature gives an estimate of the amount of
energy in the signal and at which frequencies the activity occurs. Signal power in
frequency bands and frequency peak have been used in prior research [7, 8, 9].

The feature is implemented using the MATLAB function spectrogram [11] which
calculates the STEF'T of the signal at the frequencies of interest. To reduce the win-
dow effects and side lobes of the transform, the Hamming window w; is used. The
STFET is evaluated to find the energy content in each specified band, the energy of
the signal is calculated as the sum of squared absolute values of the transform. The
feature is calculated using a sliding window of two seconds.

Furthermore, the feature Frequency Peak is calculated by evaluating each second of
the frequency bands to find at which frequency the energy content is at its maximum.

2.3 Feature standardization

In order to improve the ability to compare features, each feature is standardized.
Standardization is important for most classification algorithms, by standardizing
the features it ensures that the used classification algorithms focus on the feature
distributions rather than the constant amplitudes. The feature space is standard-
ized by assigning zero mean and unit variance for each feature. The mean py and
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standard deviation o is calculated for each feature vector X in the training set.
The mean and standard deviation of the training set will be used to standardize the
test set as well to ensure similar scaling.

X — iy
of

Xnorm,f = (2.11)

2.4 Feature selection

Several of the features describe similar properties which implies that all features
might not be needed in order to capture the signal content. There might also be
features which have similar non-seizure and seizure distributions, such features does
not contribute to the classification process.

2.4.1 Forward selection

Forward selection is a simple greedy algorithm which can be used to select a subset
of features by comparing the training error. The method can be used to reach a
number of pre-defined features or by minimizing the total error. Forward selection
is performed by iteratively adding the best choice of feature to the model. In the
first iteration, the training error is calculated with only one feature, each available
feature is evaluated and the best one is selected. In the next iteration the previously
selected feature is iteratively combined with each of the remaining features and the
training error is evaluated to choose the best combination. If the method is used
to find a predefined number of features, the process is continued until the number
of components have been chosen. If instead the goal is to minimize the total error
irregardless of the number of features the algorithm should terminate when there is
no feature left which reduces the training error.

Since forward selection does not consider all combinations the set of selected features
is not neccessarily optimal, however it is still commonly used since testing each
combination in the feature space is very time consuming unless the feature space is
small [12].

2.4.2 Overlap integral

The overlap integral, or orbital overlap, is commonly used in quantum mechanics or
chemistry to describe bonds between atoms. Simply put, a bond between atoms is
formed when the orbit of its electrons overlap, if there is no overlap then no bond
will be formed [13]. This concept can be applied to the feature space in this thesis
as well. Classification algorithms highly depend on how the data is separated in the
feature space. In the ideal case the data from different classes is separated entierly
without overlap. This is usually not the case, but using the same idea it is logical to
use the features which provide the most significant difference between seizure data
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and regular motion data.

For each feature the probability density functions for the seizure data and normal
data should be estimated. The overlap integral can then be calculated as a measure-
ment of how well the seizure data is separated from the regular data. The overlap
can be used to reduce the amount of features by selecting the features with smallest
overlap. This method does not take into account the similarities between different
features, for instance it is a possibility that the method selects both variance and
standard deviation even though they are equivalent.

2.5 Classification

This section covers the classification algorithms used in the project. The goal of
each method is to fit a model to describe how the set of classes y relates to the data
set. The data set, denoted X, is a matrix of the feature space, where the columns
corresponds to features and the rows correspond to time instances. The models are
trained on a subset of X and tested on the remaining data, the models should make
a prediction ¢ for each time instance. Additionally, artificial neural network is used
to directly evaluate the accelerometer data instead of using features.

2.5.1 Kernel Density Estimation

Kernel density estimation is a method to estimate probability density functions, fx,
based on a data set X. The method will be described in one dimension but it can
be adapted to consider several dimensions. In the one dimensional case, the method
iteratively places a kernel density function in each point of the training data set.
After all kernel density functions have been placed, the method will iterate over all
points once again to estimate the probability density function fx (z) at each point z.

To achieve a smooth final estimate, the Parzen estimate (2.12) with weights is used.
The equation describes the probability density estimate at point z, where each
surrounding point is scaled with weigths determined by the kernel function K.
The weights decreases with distance, making the final estimation at each point the
average contribution of the kernels in the neighborhood. Multiple kernels in the
neighborhood of point x will make the point more probable, while few kernels in the
neighborhood indicates a lower probability.

Frla) = ]\}Ozm(gx,zi) (2.12)

A common kernel choice is the Gaussian kernel. The Gaussian probability density
function, f,(z|p, 0?), with standard deviation o and mean p is
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2\ _ 1 . (z — H)2
fg(x\,u,a ) - \/Wexp ( 202 ) (213>

Exchanging the kernel K, for the Gaussian kernel and considering the estimate at
point x;, it implies that the mean p should equal x;. In order to calculate the
probability density estimate, each point x; will be considered. The combination of
(2.12) and (2.13) results in the estimate

A

fx(z) = N\/%Z (ﬁ) (2.14)

The kernel density estimate can be used for classification by either using outlier
detection or by estimating a probability density function for each class. If each
class is modeled by a probability density estimate, a test point can be classified by
calculating the probability that it belongs to either class, choosing the most likely
option. To make accurate estimations, multiple occurences of each class should be
available for training [12].

In prior HMS classification research, multivariate kernel have been used for outlier
detection of HMS [7, 8]. The probability density function is based on a feature
space and estimated using only non-seizure movements. The estimate is evaluated
to find a decision boundary which separates seizure movements from non-seizure
movements. If a data point is outside of the decision boundary it is classified as
a seizure. Ideally a decision boundary can be used to directly classify the data by
searching for outliers, however if the features are not entirely separated there will
be errors.

2.5.2 Logistic Regression

Logistic regression is as statistical method where the data is fitted to a linear model.
In the binary case with only two classes, the logistic regression model will consist
of only one linear function meant to separate the classes. Logistic regression differs
from normal linear regression in one aspect, instead of being able to output a range
of continuous values the logistic regression outputs the probability of belonging to
a certain class. To describe a data set with K classes, the model consists of K-1
linear functions according to (2.15), where the syntax Pr(G = k|X = x) denotes the
probability that the data point x belongs to class k. The coefficients J are estimated
during the training process.

Pr(G =k|X =)

09 PG Z KX = 2)

= Bro+Blx, k=1,.,K—1 (2.15)
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Since the goal is to assign the most probable class, the summarized probabilities
should equal one:

PriG=1X=2)+Pr(G=2X=2)+..+Pr(G=K|X=2)=1 (2.16)

Combining and rewriting (2.15) and (2.16) the probabilities for each class is as
follows:

exp(Bro + B x)
1+ eap(Bio + Bl )’
1
1+ Y5 exp(Bo + B @)

Pr(G=klX=x)= k=1,..K—1

Pr(G=K|X =z) =

(2.17)

The model is trained by maximizing the log-likelihood which depends on the coef-
ficient vector 8. In the binary case with only two classes, each predicted output 3
should be either 0 or 1. A training set of size N, known outputs y and the probabilites
above results in the log-likelihood

N

1(B) = Z(yiﬁTxi — log(1 + exp(BTx;)) (2.18)

=1

which is maximized to estimate 3. For it to be maximized the derivatives of [ must
equal zero. To solve the system of equations and find the optimal values of f3,
the Newton-Raphson algorithm is used which iteratively searches for the optimal
coefficients by evaluating the second derivatives of the system [12].

2.5.3 K-Nearest Neighbors

K-Nearest Neighbors is a classification algorithm where each point is classified by
using the majority vote of the neighborhood. When performing classification of a
data point x, the algorithm evaluates the euclidian distances in the feature space to
find K data points which are closest in distance to the original point. The point is
then assigned the most common class in the neighborhood. The method is defined
as (2.19), where the predicted class ¢ is based on the known classes of the training
set, y;, in the neighborhood Nk of x.

W= ¥ u (219)
2, ENg ()
The only parameter in the algorithm is how many neighbors should be considered.
Few neighbors usually leads to a noisy decision boundary where outliers have a large
impact on the classification while a large number of neighbors leads to a smoother
decision boundary but less precise where outliers have less impact [12].
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2.5.4 Random Forest

Random forest is most easily explained by a figure. An example with three trees is
shown in Figure 2.1, where the point x is classified as §j. During the training process,
a random bootstrap sample is drawn from the training feature space for each tree to
be trained. From the sample, a random subset of features is chosen and evaluated to
find the best split-point among the features. The node is divided into two daughter
nodes according to the split-point. The concept of split-points can be interpreted
as questions, in the figure one split-point is referred to as ¢;, and corresponds to
a question which can be answered with yes or no. For instance, a question could
be “is the vector magnitude larger than 27”7 and depending on the answer different
subtrees are entered. Each tree is trained iteratively by evaluating a random subset
of features, finding the best split-points and split each node accordlingly. This is
repeated until the stopping critera have been reached. There are several stopping
criterias which can be considered. The most basic approach is to stop splitting nodes
when the tree have reached a predefined size. One common criteria considers the
response of each node, if all samples in the node have the same response it makes
no sense to split the node further as it will not change the result, hence the splitting
of that particular node will be stopped.

Feature space
iEX

Tree 1 Tree 2 Trea 3
4 4 b
Class Class Class
Majority vote
4
Predicted class
¥

Figure 2.1: Random forest with three trees

By allowing the algorithm to only consider a subset of features when searching for a
split-point the overall correlation between the trees is reduced. If the algorithm were
allowed to consider all features it would most likely result in a forest where each tree
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have similarities and only the most prominent features are used. When performing
classification of a point it will be evaluated against the questions of each tree, and
the result will be averaged using a majority vote. In general the performance can
be improved by increasing the number of trees, however for all classification tasks a
point will be reached where the performance improvement is insignificant. Increasing
the number of trees at that point will only increase the complexity of the forest while
the actual performance remains the same [12].

2.5.5 Support Vector Machine

Support vector machines strive to separate classes by finding boundaries described as
hyperplanes. In the best case scenario classes can be separated entirely. Considering
a classification model with two classes, then the optimal boundary is found by
maximizing the distance from the hyperplane to the closest data points, where each
side consist of one class. When the classes are overlapping the goal is instead to
find the optimal boundary while accepting some error. To allow for some errors
the slack variables ¢ are introduced. The optimization problem with hyperplane
variables denoted by [ can be described as

yi(aT B+ Bo) > 1 —&,Vi
& > O,OZ@ <C (2.20)

The hyperparameter C is called the box constraint and it is used to tune how much
error is allowed. The box constraint will add weights to the slack variables. A
large box constraint implies a higher cost of misclassified points while a smaller
box constraint allows for more errors. The box constraint is usually described by
reformulating (2.20) to

min ||3|| subject to{

N T .
N o [aTB 4 Bo) > 1 € Vi
min ||B]]" + C;@ subject to{ €50 (2.21)

The optimization problem is solved by forming the Lagrange function from (2.21)
and minimizing it with respect to (3, 8y and &.

SVM can be used with different kernels, where the kernel type controls how the
hyperplanes are created. The linear kernel strives to find a separating hyperplane
in the orginial feature space while other kernels initially transform the feature space
before finding the hyperplane. When the inverse transform is applied, the decision
boundary no longer corresponds to a hyperplane. Two types will be considered in
this thesis, linear kernel and radial basis function. The linear kernel results in a
decision boundary which is linear in the original feature space. The radial basis
funcion results in a decision boundary which is described by exponential functions
in the original feature space [12].

2.5.6 Artificial Neural Network

Artificial neural networks extracts linear combinations to explain the relation be-
tween the input and the output of the network. By using several layers in the
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network, nonlinear relations can be estimated as well, which makes neural networks
a powerful classification method. A network with a single hidden layer is shown in
Figure 2.2, with inputs X and outputs Y. In a simple feed-forward neural network,
each node is fully connected with the nodes of the adjacent layers. Each connection
is weighted, making the nodes in the hidden layer and the output layer a linear
combination of the previous layer. When used for classification, the final layer is
usually connected with a final classification function g, transforming the output to
a class.

Figure 2.2: Schematics of a single hidden layer, feed-forward neural network.

The linear combinations can be described as follows

T = 0(agm +alX),m=1,...M
Te=Buw+BE 2 k=1,....K (2.22)

where «a,,, and [, denotes the weights connecting the layers and the additional bi-
ases ag,, and [y,,. The activation function ¢ is usually the sigmoid function, and
for classification the softmax function is used for output function g.

The network is trained using backpropagation. Backpropagation uses the known
schematics of the network to use stochastic gradient descent to minimize the errors
of the network. Backpropagation consists of two phases, initially a training input
vector is propagated forward through the network. The estimated output is com-
pared with the known output and errors are calculated. These errors are propagated
backwards to evaluate the errors of each layer. In the next phase, both sets of errors
are then used with gradient descent to update the weights of the network.
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One significant problem with training a neural network is the concept of overfitting.
If the training process only strives to minimize the training error, then the network
will learn the training data set extremely well while any other input could result in
low performance. A simple yet efficient approach to avoid overfitting is to continu-
ously evaluate the performance of the network using a validation set. The validation
set is a subset of the training set which is not actually used for the training process
itself, it is only used to monitor the training process. As long as the performance
of the validation set is improved, the training phase should continue. When the
validation error is at a minima the training phase should stop [12].

2.6 Evaluation

The performance of each classification method should be evaluated. Cross-validation
is performed to evaluate both binary classifiers and the final post-processed result.

2.6.1 Cross-validation

A commonly used evaluation method is cross-validation, it is an iterative procedure
used for estimating prediction error. Cross-validation is performed by initially di-
viding the data into k folds. A classifier is then trained on k-1 folds and tested on
the remaining fold. This is repeated until all folds have been used as the test fold
and the accuracy is averaged over all folds to estimate the mean and standard error.
Cross-validation can be performed in several ways where the main difference is how
the folds are chosen.

2.6.2 Performance

The performance of the classification process is evaluated in several steps. Initially
the binary classifier performance is evaluated for each method, the measures accu-
racy, specificity and sensitivity is calculated. The results from the binary classifier
is post-processed and the measures true positives, false negatives and false positives
are extracted.

2.6.2.1 Binary classifier performance

The binary classifier performance is evaluated for each second. Specificity denotes
the amount of accurately classified non-seizure seconds and sensitivity denotes the
amount of accurately classified seizure seconds.

Amount of accurate seizure classified seconds

Sensitivity = (2.23)

Total amount of actual seizure seconds

Amount of accurate non-seizure classified seconds

(2.24)

Specificity =
p Y Total amount of actual non-seizure seconds
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Accuracy is the combination of sensitivity and specificity to give an overall perfor-
mance measurement. It can serve as an indicator on how important each class is
for the total performance. In this thesis where the used data set is very imbalanced
it is expected that the total accuracy will be similar to the specificity since the
non-seizure movements dominate the data set. For instance, if the specificity is 80%
while the sensitivity is 50%, the total amount of misclassified non-seizure seconds
will be much larger than the amount of misclassified seizure seconds. This implies
that there might be a high amount of false seizure classifications which must be
dealt with.

Amount of accurate classified seconds

(2.25)

Accuracy =
Y Total amount of seconds

2.6.2.2 Classification performance

The output of the binary classifiers should be processed before the final classification
performance is evaluated. Accurate classification of each second is not the ultimate
goal, the task is to identify time segments where seizures occur. The performance
is measured in true positives, false negatives and false positives. True positives, TP,
denotes how many times the classifier have accurately identified a seizure and false
negatives, FN, is the amount of missed seizures. False positives, FP, is the amount of
misclassified normal movements, i.e the amount of false alarms. The amount of true
positives and false negatives should equal the total amount of seizures in the test
set while the amount of false positives is only limited by the amount of measured
movements. True negatives are not considered since the concept of normal move-
ments is not defined, normal movements can have varying durations unlike seizures
which have a limited duration.

TP = Amount of accurate classified seizures (2.26)
FN = Amount of missed seizures (2.27)
FP = Amount false alarms (2.28)
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Methods

3.1 Algorithm structure

The structure of the data processing from raw data to final classification is described
in Figure 3.1. Initially the accelerometer data is pre-processed to retrieve valid data.
The most significant part of the pre-processing is labeling seizures and determining
which measured seconds are movements and which seconds are non-movement. All
movement seconds are used to calculate features. In the next step the data set
is reduced further by only selecting movements from longer periods of time with
low activity, which is an approximation to nocturnal seizure detection. Due to the
limited data set, all seizures are kept regardless of activity. Depending on evaluation
method, either the general leave-one-patient-out or individual leave-one-seizure-out
will be evaluated for all classification methods. The result is post-processed to
receive classified segments instead of classified seconds since the main task is to
identify seizure occurences, not duration and exact onset. The amount of true
positives, false positives and false negatives are extracted in the final step.
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Figure 3.1: Flowchart describing the most significant parts of the classification
process.
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3.2 Pre-processing

Several days of continuously gathered measurements quickly results in a large data
set. Ome of the most significant steps in the pre-processing is thus to reduce the
amount of data. To that purpose the data is initially evaluated to identify seg-
ments of motion data and the rest should be discarded. The quadratic mean of the
accelerometer data is calculated and evaluated using a sliding window of two sec-
onds with one second overlap. A segment is considered a movement if the standard
deviation exceeds a certain threshold. Each measured second is given a movement
status which indicates whether it belongs to a movement segment or not. To find the
threshold which separates movement from non-movement each segment correspond-
ing to a seizure is evaluated and the standard deviation is calculated. The threshold
should be as large as possible to result in a significant data reduction while it should
be small enough to ensure that no seizure is removed during the pre-processing.

The validity of each movement segment is evaluated. In some segments there might
be interpolation due to data loss caused by sensors losing contact or other malfunc-
tions. As these segments does not provide accurate measurements they are removed.
The interpolation is determined by examining the derivative of the accelerometer
data, if it is constant then the signal is interpolated. Lastly the motion data is fil-
tered using a Butterworth filter with passband 0.3-22 Hz to remove the gravitational
component and high frequences.

3.2.1 Time segments

After the pre-processing the time is piecewise continuous due to the removal of data.
For the remainder of the thesis, time segments or segments corresponds to sequences
with continuous time. Sequences which are less than ten seconds apart are clustered
and considered to be part of the same segment.

3.3 Data reduction

The pre-processing reduces the original dataset by removing non-movement data.
However if the data have been gathered for several days one can assume that the
amount of seizures is significantly smaller than the amount of regular movements.
This implies a very imbalanced dataset which can lead to poorly trained classifiers
since many classification methods are trained by minimising the total error. In the
worst case the classifier will not learn how to separate the classes at all, instead it
assigns the most common class to everything and accepts the small error caused by
the few data points belonging to the other class. Balancing the dataset and removing
or reducing the bias towards learning a particular class can thus be important to
achieve a classifier which gives a reasonable sensitivity.
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3.3.1 Activity based reduction

As described in Section 1.3.2 the hypermotoric seizures commonly occurs when the
patient is asleep. The initial main focus can thus sufficiently be to focus on low-
activity hours. Additionally there is less regular movement than when the patient
is awake, which implies that the data set can be heavily reduced.

To that end each patients activity is evaluated. Two cases are investigated. In
both cases, due to the limited number of seizures, all seizures are kept regardless
of the activity of the segment where it occurs. The activity is calculated using the
movement status assigned in the pre-processing of the data.

3.3.1.1 Hour activity

The activity a; is defined as the amount of movement of each hour i. The activity
is calculated using the movement status m; = {0, 1} for each measured second j.

1 3600z

§=(i—1)%3600+1

Hours with larger activity than the threshold 0.1 is discarded. This means that it
is acceptable to move for 6 minutes each hour.

3.3.1.2 Quarter activity

The activity is defined as the amount of movement of each 15 minutes.

1 9004
j=(i—1)%x900+1

If a quarter activity is less than the threshold 0.1 it is considered low activity. If
the activity exceeds the threshold the surroundings of the period is investigated.
Three quarters, i.e 45 minutes, is evaluated before and after the current quarter. If
at least three of those periods are of low activity the current quarter is considered
low activity else it is discarded.

i—1 i+3
a; < 0.1 (a; <0.1) + > (a; < 0.1)) >3 (3.3)
1—3 i+1

Each quarter activity a; is evaluated according to (3.3), if the statement is true the
quarter is of low activity.

3.3.2 Kernel density estimation

Kernel density estimation is used to model non-seizure movements. Initial evalua-
tion of the feature space, Section 4.3, shows a significant overlap between seizure
movements and non-seizure movements. It implies that it is not feasible to expect
a decision boundary which separates the two classes entirely. Instead, the method
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is used to find a boundary which determines if a time segment consists of only non-
seizure movements, however it is not expected to be accurate enough to determine
whether an outlier corresponds to a seizure or not.

The decision boundary can optionally be used as a part of the classification process.
If used, the data points within the boundary can be classified as non-seizure move-
ments. The classified non-seizure seconds will not be used in further classification
methods, neither in the training nor the testing process. When applied it is impor-
tant to note that the method might accidently classify seizure data of the test set
as normal data and the already classified data will not be considered further. How-
ever, seizure data points are only misclassified if they are dissimilar to the seizures
of the training set. These seizures might arguably be too subtle or too different
from the training set to be accurately identified regardless of method, and if they
are not removed in this step they might have a negative impact on the remaining
classification methods used. The hope is to reduce the amount of false positives in
the end, at a hopefully low amount of initial misclassifications.

Using MATLAB [11] and the function ksdensity, the probability function can be
estimated by evaluating gaussian kernel functions at points covering the range of the
data. The estimated density function will be bivariate and estimated at 900 points.
The features are individually averaged over channels and over time segments, where
time segments denotes episodes with continuous time. The probability density func-
tion is estimated for each available feature pair and a boundary is found which covers
the largest part of the normal training data while excluding all seizure training data.
Initially the seizure boundary is found, that is the boundary which exactly separates
seizures from normal movements. To reduce the risk of accidental misclassification
of seizure data the seizure boundary is reduced to cover at least 10% less of the
normal training data than the original boundary. The decision boundary is applied
to the time segments of both the training data and the test data and each second
is given a status to indicate if it is likely or less likely that it belongs to a segment
which only contains normal movements.

3.3.3 Subtle seizures

Seizures with subtle and short motoric manifestations can be very similiar to reg-
ular movements. These seizures can have a large impact on the total accuracy of
the classifier. When training a classifier on these subtle seizures the classifier will
most likely result in a classifier prone to produce false positives as many regular
movements will be similar to said seizures.

These seizures can either be included or removed in the training and evaluation
process. If they are included it indicates that the goal is to have a classifier sensitive
enough to accurately identify short and subtle seizures. However it should be noted
that the task is made more difficult and will most likely reduce the specificity. If
instead the seizures are removed from the data sets it is under the assumption that
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it is acceptable to never notice these short and subtle seizures and the focus is to
have a high sensitivity for severe seizures and a higher specificity. In this thesis, all
seizures have been included regardless of their subtlety.

3.3.4 Balancing dataset

A fully balanced training set with 50% normal movements and 50% seizure move-
ments implies that there is no preference, it is of equal importance to accurately
classify each data point regardless of which class it belongs to. The test set should
not be balanced since the timeline will not be kept intact and it will make the result
difficult to interpret. Additionally, when the classifiers are used in a real-life appli-
cation it will never be presented balanced data.

Two methods are used to balance the training data set. In the first method the
dataset is balanced by random selection of normal data until there is an equal
amount of normal data and seizure data. In the second method the normal data is
averaged using K-means clustering. The euclidian distances in the normal data set
are evaluated to create K clusters, where K is the amount of seizure data points.
The normal data is then exchanged by the centroid locations.

3.4 Features

The pre-processed data is used to calculate features as described in Section 2.2.
Most features will be represented by two vectors where each vector corresponds to
one sensor, having values for each second of the pre-processed data set. Correla-
tion only consist of one feature vector since the calculations consider both sensors.
Additionally, the energy content is evaluated using 14 frequency bands resulting in
28 feature vectors. For convenience, the frequency bands are clustered into four
separate features, where each feature consists of several frequency bands. By repre-
senting the energy content using multiple vectors rather than one representing the
entire band, it enables the possibility to weigh or favor the bands differently. The
frequency bands range from 0.75 to 11.25 Hz.

3.4.1 Feature selection

The feature selection methods are used to select a pre-defined number of features.
The evaluated number of features are 2, 5, 10 and the original case with no feature
space reduction.

3.4.1.1 Forward Selection

The optimal set of features is model dependent. A feature which is important for
one classification method might be irrelevant for another. In the GTCS thesis an
optimal feature space was generated for each method, and the result clearly shows
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differences among the classifiers. For instance, KNN favored SMA while logistic
regression and random forest did not [9]. Given their result it is of importance to
consider the classification algorithm when using forward selection. To that end,
the forward selection algorithm is implemented to use the intended classification
algorithm. If the reduced feature space should be used with a KNN classification
model, the same setup will be used in the process to find which set of features should
be used.

3.4.1.2 Overlap Integral

The overlap integral method is used to find the features with smallest overlap.
The MATLAB [11] function histogram is used to estimate the probability density
functions for each feature f using N equally spaced bins. The overlap is calculated
as the sum of the products of the normal bins n; and the seizure bins s;. A small
overlap indicates a well-separated feature. For this thesis, N = 50 is used to calculate
the histograms.

overlap(f) = iv:nis,- (3.4)
i=1

To reduce redundancy of the overlap integral reduction, the method is modified to
consider pre-defined similarities, the method can only choose one feature among sim-
ilar features. The similarities considered is described by the list below, the method
can only choose one feature from each row.

o Spectral Edge 80, 90, 95
e Mean value, RMS
e Variance, Standard deviation

3.5 Classification

The reduced and pre-processed accelerometer data and the extracted features are
used to train several classifiers. The original case with all features is considered as
well as different combinations of feature selection methods and kernel density esti-
mation.

Artificial neural networks is used to evaluate pre-processed accelerometer data in-
stead of the calculated features. Perhaps there are some form of pattern and infor-
mation in the original data which is not entirely covered by the feature set. Using
neural network on raw data is an attempt to learn seizure characteristics directly
instead of relying on designed features. Naturally, this approach is not combined
with feature selection methods and kernel density estimation as they both require
the calculated features. The binary result of the neural networks is processed using
the same post-processing layer as the feature classifiers to give comparable results.
This includes the veto which are feature based. Hence, the total performance of the
neural networks depends on both accelerometer data and features.
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In the previously mentioned classification algorithms, each data point represent one
second of data. In the neural network approach each sample is considered instead,
an input equivalent to one second will consist of 50 samples. The neural network
will be trained on low activity data which have not been further balanced, which
makes it important to evaluate whether the network learns to recognize seizures or
not. By assigning error weights to the training data, the class with lesser occurence
can be favored during the training process. The error weights basically control how
much the network should penalize an error, by assigning seizures a larger weight
it will have a larger impact on the training process than normal movements. The
training process is performed by iteratively changing the error weights in favor of
seizures until the network have learned to recognize at least 50% of the seizure data
in the validation set.

3.5.1 Binary Classification

A set of parameters are evaluated for each classification algorithm. Additonally, each
parameter is evaluated in combination with forward selection, denoted FS, overlap
integral reduction, OI, and kernel density estimation, KDE.

3.5.1.1 Classification algorithms

The parameters and combinations to be evaluated for each classification algorithm
is shown in Table 3.1.

Table 3.1: Combination table.

Primary method | Parameter 1 Parameter 2 KDE | FS | OI
KNN Neighbors
2, 5,10
X
X
X X
X
X X
Random Forest Trees
10, 30, 50
X
X
X X
X
X X
Logistic regression
X
X
X X
X
X X
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SVM Kernel Box constraint
linear, rbf 1, 100
X
X
X X
X
X X
ANN Hidden neurons | Hidden depth
2, 5,10, 18 0,1, 2

3.5.2 Post-processing

In order to evaluate the perfomance as described in Section 2.6.2, a post-processing
structure is developed. The result from the binary classifiers should be processed
further in order to be able to better interpret the result. The binary classifier results
in a classification for each tested second, but since the seizures are longer than this
it is not desirable to directly present the result for each second. Several misclassi-
fications within a short time period should not result in several false positives and
several true seizure classified seconds should not neccessarily be equivalent to the
same amount of true positives. Additionally, to reduce the amount of false positives
two veto filters are evaluated. The post-processing structure is described in Figure
3.2.

The post-processing structure is created manually given knowledge about the per-
formance and ideas of how to improve it. Given a more complete data set another
learning approach could have been evaluated. It is possible that this structure could
have been modeled using a hidden Markov model instead. A hidden Markov model
consists of a set of states and transitions, much like the flowchart, where there are
some observable outputs available but the states themselves are hidden [14].

3.5.2.1 Median filter

Initially the result from the binary classifier is filtered to make the classification
smoother, this is an important step towards segment classification rather than one
separate classification for each second. Each second is evaluated, if there are at
least two seizure markings within a five second window the second should be seizure
marked. If not, the second should be marked as non-seizure. In Figure 3.3 the effect
of the filter is shown, when there is only one seizure classification within the window
it is removed and several seizure classifications have been clustered.

3.5.2.2 Veto

The classification can be further evaluated with the purpose to reduce false posi-
tives. Two approaches are investigated using the features correlation, entropy and
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Median filter and decision epoch
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Figure 3.3: The effect of the median filter and decision epoch of a binary classifica-
tion result. Fach second is classified, where a seizure classified second is represented
by a peak and normal by a valley.

frequency peak. Initially the seizures of the training set are considered and the mean
value of correlation, entropy and frequency peak are calculated, denoted ¢, € and f.
These means will be used as a veto, if a classified seizure segment does not fulfill
the veto requirements the seizure classification will be removed. Two different vetos
are evaluated.

Veto 1. Segment based veto Each seizure classified segment is considered indi-
vidually. The mean values of entropy, correlation and frequency peak are calculated
over both sensors and over the segment and compared to the means of the training
set.

if (mean(correlation) < 0.6¢ V mean(entropy) < 0.5¢) A A freqPeak > 0.8f
class = Normal

Veto 2. Second and segment based veto In addition to a modifed version of
Veto 1, each seizure classified second is initially considered individually before the
median filter.

if (correlation < 0.8¢ V entropy < 0.7¢) A P freqPeak > f
class = Normal

Afterwards the median filter is applied and each resulting seizure segment is consid-
ered as in Veto 1.
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if (mean(correlation) < 0.8¢ V mean(entropy) < 0.7¢) A B freqPeak > 0.8f
class = Normal

3.5.2.3 Decision epoch

As previously mentioned the goal is to reach a segment classification rather than
accurate classification of each measured second, estimating exact onset and duration
is not considered. As seen in Table A.1 the HMS seizure with longest duration is 32
seconds, however according to literature it is not uncommon for a seizure to last for
up to one minute. Additionally, according to the data set there is at least a couple of
minutes after a seizure before another seizure occurs. The shortest duration between
seizures occurs in patient 37, there is three minutes and 37 seconds between seizure
three and four.

The known seizure statistics and literature implies that it is unreasonable to seizure
classify several segments in close proximity to each other. Such segments are either
due to several misclassifications within a short period of time or the actual seizure
is noticable over several segments. Thus the final processing step is to modify each
cluster of seizure markings to be of length 90 seconds regardless of the initial amount
of markings. Additonally, after each seizure classified cluster it is not allowed to have
a seizure marking within 60 seconds. The effect is visualized in Figure 3.3. Note
that due to the piecewise continuous timeline the shown decision epoch is shorter
than 90 seconds, if there had been additional valid segments within the 90 second
window it would have been marked as well.

3.5.3 Performance

The post-processed result is compared to the true classes of the data set. If a
seizure classified segment overlaps an actual seizure segment it results in one true
positive. If a seizure classified segment have no overlap with an actual seizure it is
a false positive. If an actual seizure segment does not have any overlapping seizure
classified segment it results in one false negative.

3.6 Cross-validation

The methods are evaluated using cross-validation and two different approaches
will be investigated, the general leave-one-patient-out approach and patient spe-
cific leave-one-seizure-out. Leave-one patient-out denotes the case where each fold
consists of one patient, this is a general method where each patient will be evalu-
ated using classifiers trained on the remaining patients. In this thesis continuous
time is of importance since movements and seizures have duration and thus it is not
desirable to choose the folds randomly. The timeline is automatically kept intact
using leave-one patient-out. The patient specific classification is performed using
one patient at a time by creating a fold for each seizure. The normal data is divided
according to segments with continuous time and randomly distributed so that each
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fold has roughly the same amount.

Patient 36 and 39 have three and two seizures respectively, the corresponding pa-
tient specific classification will be trained on a very small amount of seizure data.
Leave-one-seizure-out will be performed, but it is important to note that the result
might not be very general given the small amount of training data.

Furthermore, as described in Section 2.5.6, artificial neural network requires one
additional fold for validation to reduce overfitting. When leave-one-seizure-out is
performed one fold is used for testing, and the remaining data is divided into a
validation set and a training set. The training set will consist of 85% of the training
data and the remaining 15% is used for validation. Due to the imbalanced set,
precautions are made to ensure that there is seizure data in both sets. The seizure
data and the normal data is divided separately instead of dividing the entire data
set at random. When evaluating the general leave-one-patient-out the same method
is used to divide the training data into a training set and validation set.
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Results

4.1 Seizure statistics

The HMS statistics aquired during the pre-processing is presented in Table A.1.
Seizure time represents the duration of the motoric manifestations. The maximum
standard deviation indicates which threshold is suitable for separating movement
from non-movement. If the chosen threshold is larger than the standard deviation
of a seizure then it will be discarded during the pre-processing of the data. The
maximum threshold allowed is 0.076 g; in order for all seizures to survive the pre-
processing with some margin, the threshold for HMS pre-processing is set to equal
0.06 g.

For comparison, when processing the GTCS data in the same manner the maximum
threshold allowed equals 0.62 g, which is ten times larger than the chosen threshold
for HMS. The statistics for the GTCS data set is shown in Table G.1.

4.2 Low-activity build

The processed data is reduced according to Section 3.3.1, it results in a distribu-
tion of seizure seconds according to Tables 4.1 and 4.2. The column “LA seizure”
corresponds to the amount of seizure seconds in low activity segments while “HA
seizures” corresponds to the amount in high activity segments. There are only low
activity seizures available from patient 37 when hour basis is used. The higher res-
olution of the quarter basis results in low activity seizures from all HMS patients
but patient 39. Hence, the hour build is not considered valid and only the quarter
based activity will be evaluated. However as previously mentioned, all seizure data
will be kept regardless of the activity of the corresponding segment. Additionally,
the column “Duration” corresponds to the duration of the low activity build.

Table 4.1: Low-activity build statistics, hour basis.

Patient | Duration [h] | LA seizure [s] | HA seizure [s]
21 16 0 85
36 24 0 83
37 49 217 123
39 14 0 31
total 103 217 322
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Table 4.2: Low-activity build statistics, quarter basis.

Patient | Duration [h] | LA seizure [s| | HA seizure [s]
21 26.50 49 45
36 33.25 19 64
37 50.00 229 99
39 17.50 0 31
total 127.25 297 239

Further data is extracted from the quarter basis low-activity build to show the
amount of seizure data compared with the amount of normal data. For each patient,
the amount of seizure data is 1.3%, 1.4%, 7.0% and 1.0% respectively. This confirms
the claimed fact that the data set is very imbalanced.

4.3 Features

The normal and seizure distributions of each feature described in Section 2.2 is eval-
uated using histograms. Examples are shown in Figures 4.1 to 4.4, where all quarter
based low activity build data is used to estimate the distributions. The features have
not been normalized, however they will be before usage for classification. There is
a clearly visible difference between the distributions but there is also a significant
overlap for all features. The difference indicates that it is possible to separate the
classes to some extent, but due to the overlap it will be difficult to do so with perfect
accuracy.

Figure 4.1 confirms the expected behavior of the feature correlation, a seizure com-
monly results in a motor behavior in both arms. According to the distributions, if
the correlation of a segment is low it is most likely a non-seizure movement, while a
higher correlation indicates that the segment might contain a seizure. Similarly, en-
tropy indicates high activity in seizures while there is a lot of variation in the normal
non-seizure movements. This was expected, normal movements have a wide range
of intensity and activity, some movements are subtle while others are not. The high
activity level of seizures is verified by the feature Spectral Edge Frequency, Figure
4.2, which clearly indicates that seizures contain frequencies from a larger spectrum
than normal movements.

The feature frequency peak, Figure 4.3, indicates that if a segment have any large
frequency peaks it is likely to be a seizure segment. The newly added feature Jerk,
Figure 4.2, confirms the hypotheses that the behavior of a seizure is more erratic
than normal movements, and as a result generally higher jerk. Vector magnitude,
mean value and standard deviation results in similar distributions where normal
movements are focused around a low feature value while higher values increases the
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Figure 4.3: Left: Frequency peak of all HMS patients. Right: Vector magnitude
of all HMS patients.
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Figure 4.4: Left: Mean value of all HMS patients. Right: Standard deviation of
all HMS patients.
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4.4 Subtle and atypical seizures

Subjective evaluation of accelerometer data, video and the post-processed result
indicated that some of the seizures are subtle or atypical. Some of these seizures are
visually very similar to normal movements but given the activity in the video-EEG
they are indeed involuntary movements caused by epilepsy, however very subtle.
Hence, some seizures are considered subtle due to short duration and a low amount
of activity in the accelerometer data, the seizures seems to consist of only a few
movements. The seizures which are considered subtle or atypical are seizure 3 and
7 for patient 21 and seizures 6, 15, 16, 17 and 18 for patient 37. To illustrate the
differences, a few examples are shown. First, Figure 4.5 illustrates the difference by
plotting the histograms of the feature entropy. The histogram to the left consists of
all typical seizures from all patients while the histogram to the right consist of the
atypical seizures. The seizure distribution of the atypical seizures is shifted to the
left, indicating a generally lower activity than the case with only typical seizures.
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Figure 4.5: Left: Entropy for all typical seizures. Right: Entropy for all subtle
and atypical seizures.

A typical seizure is shown in Figure 4.6, even though the duration is short there is a
lot of activity in both sensors. The same patient have several seizures with a subtle
behavior, an example is provided in Figure 4.7 where there is much less activity,
the patient is barely moving at all. Figure 4.8 illustrates a subtle seizure of patient
21 in proximity to normal non-seizure movements. There is no obvious difference,
the seizure is very similar to the normal movements. Additonally, patient 21 have a
seizure where the signal is interpolated in the middle of the seizure, Figure 4.9.
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Sensor 1, patient 37 (10-Feb-2011)
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Figure 4.6: The motor behavior of the fifth pre-processed hypermotor seizure of

patient 37. Typical behavior.
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Figure 4.7: The motor behavior of the sixteenth pre-processed hypermotor seizure
of patient 37. The seizure is very subtle.
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Sensor 1, patient 21 (04-Sep-2009)

Sensor 2, patient 21 (04-Sep-2009)
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Figure 4.8: The motor behavior of the third pre-processed hypermotor seizure of
patient 21. The seizure is similar to normal movements.
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Figure 4.9: The motor behavior of the seventh pre-processed hypermotor seizure
of patient 21. The signal is interpolated in some parts.

4.5 Kernel Density Estimate

The KDE method described in Section 3.3.2 is evaluated in both the general case
and the patient specific case. From each training set all combinations of feature
pairs are evaluated to find the decision boundary which provides the best separa-
tion of normal segments and seizure segments. Each patient is considered separatly
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for evaluation of the performance, the optimal decision boundaries are applied to
the corresponding patient data sets and the amount of normal data and seizure data
within each boundary is found. Whether the data belongs to the training data or
testing data is not differentiated in the evaluation here, but when the method is used
in the classification process the data within the boundary from the training set will
not be used for further training and data from the test set will be classified accord-
ing to whether the data is inside the boundary or not. Additionally for evaluation
purposes only, if the same feature pair is used multiple times the result is averaged
over the corresponding decision boundaries. Furthermore, the total average over all
cross-validation folds and corresponding decision boundaries is calculated.

The performance is summarized in tables and figures. The tables show the amount of
normal data and seizure data within each decision boundary chosen by the algorithm.
The figures illustrates the performance by plotting the seizure boundary for each fold
using a red dotted line and the average boundary in black. The average boundary
is not used during the classification, it only strives to illustrate the average behavior
of the method. Blue dots represents the normal segments and red dots represent
seizure segments. For visual evaluation of the performance it is the segments in
close proximity to the boundaries which is of interest since the shape is limited by
the seizures that are close to the dominating cluster of normal segments. To display
the boundaries with higher resolution, all outlier segments are not shown.

4.5.1 General performance

The general performance for each patient is shown in Table 4.3. Given the four
folds, this could have resulted in four different feature pairs. However, variance and
correlation was optimal for three folds and the decision boundary for the remain-
ing fold was optimal given the feature pair correlation and frequency band 1 (low
frequencies). For visual evaluation, plots corresponding to the feature pair variance
and correlation is shown in Figure 4.10 and 4.11.

Table 4.3: General KDE performance

Patient Feature 1 Feature 2 Normal data | Seizure data
Correlation | Frequency band 1 27.6% 19.1%
21 Variance Correlation 40% 0%
Average: 36.9% 4.79%
Correlation | Frequency band 1 20% 0%
36 Variance Correlation 23.2% 0%
Average: 22.4% 0%
Correlation | Frequency band 1 27.6% 0%
37 Variance Correlation 27.6% 0%
Average: 27.6% 0%
Correlation | Frequency band 1 14.8% 0%
39 Variance Correlation 13.6% 0%
Average: 13.9% 0%
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The general segments can be evaluated by inspection of Figures 4.10 and 4.11.
For patient 36 and 39 the seizure segments are outliers while patient 21 and 37
have seizure segments which are placed in the cluster of normal segments. The
performance of the KDE method is highly affected by these seizures, either or both
patients are always used in the general training process, hence the decision boundary
is reduced to cover only a small portion of the normal data. This explains the low
percentage of normal data shown in Table 4.3. For Patient 21 a seizure segment is
removed due to the KDE method. The seizure which is removed is the seizure which
is partly interpolated and previously shown in Figure 4.9. When this seizure is in
the test set, the amount of classified normal segments is increased when compared to
the cases where it is not. This indicates that if the seizure had not been considered
at all, the performance where it is a part of the training set might be improved.

KDE generally trained, tested on 21 KDE generally trained, tested on 36

@]

a
! © O% o O Normal O Normal
08F o o O  Seizure | O  Seizure
% Fold decision boundary Fold decision boundary
06F O 08 Average decision boundary | | Average decision boundary
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1.5 2 25 3
variance variance

Figure 4.10: General KDE, estimate based on three patients and evaluated using
the remaining patient. Left: Evaluated using patient 21. Right: Evaluated using
patient 36.
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Figure 4.11: General KDE, estimate based on three patients and evaluated using
the remaining patient. Left: Evaluated using patient 37. Right: Evaluated using
patient 39.

4.5.2 Patient specific performance

The patient specific performance is evaluated as in the general case. The perfor-
mance is evaluated using the fold structure described in Section 3.6, the method is
iteratively trained using all folds but one and tested on the remaining fold. Hence,
each patient can result in as many original feature pairs as there are seizures. This
is however not always the case, for patient 21 and 37 some pairs are used for several
folds. The performance is shown in Table 4.4.
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Table 4.4: Patient specific KDE performance

Patient Feature 1 Feature 2 Normal data | Seizure data
21 Variance Correlation 62.8% 0%
RMS Correlation 64.4% 0%
Stddev Jerk 84.2% 19.1%
Mean Value Correlation 69.3% 0%
Average: 67.3% 2.39%
36 VM Variance 78.1% 0%
Spectral Edge 80 | RMS 86.4% 0%
Spectral Edge 95 | Stddev 81.8% 0%
Average: 82.1% 0%
37 Correlation Jerk 33.7% 0%
Average: 33.7% 0%
39 VM Stddev 89.5% 0%
VM Spectral Edge 90 89% 0%
Average: 89.3% 0%

Patient 21 results in four feature pairs. By inspection of the left plot in Figure 4.12
it appears that the fold decision boundary is missing. This is not the case, when a
specific feature pair is only chosen once the average decision boundary is equvivalent
to the fold decision boundary. As in the general approach, when the interpolated
seizure is in the test fold it is classified as a normal segment. This can be seen in
Figure 4.12 to the left, a seizure segment is clearly placed within the decision bound-
ary. However, the amount of accurately classified normal segments is increased when
compared to the cases when it is a part of the training set. According to the right
plot in Figure 4.12, the decision boundary is limited by one seizure segment which
corresponds to the same seizure, the boundary could have covered more data if the
seizure had not been included. As in the general case, this implies yet again that
the performance could be improved if it had not been a part of the training set.
This clearly indicates that this specific seizure is very dissimilar to the remaining
seizures, regardless of training method.
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Figure 4.12: Patient specific KDE, estimate and evaluation using patient 21.

KDE trained on patient 36, tested on 36
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Figure 4.13: Patient specific KDE,
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KDE trained on patient 37, tested on 37
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Figure 4.14: Patient specific KDE, estimate and evaluation using patient 37.

One of the seizure segments of patient 36, Figure 4.13, is in close proximity to the
non-seizure movements while the remaining two are not. Regardless of fold, no
seizure segment is within the boundary. According to Table 4.4, the boundaries
cover approximately 80% of the data, making it an efficient method. In contrast,
by evaluating Table 4.4, it is evident that patient 37 is not very well suited for the
use of KDE. The performance is far worse than for the other patients. Only 34% of
the normal data is classified as such while the others reach over 60%. This is due to
poor feature separation, there are subtle or atypical seizures which are too similar
to non-seizure movements for the method to be efficient.

According to Figure 4.15, by visual inspection patient 39 is the only patient where
the seizure segments and normal segments can be separated entirely given the used
set of features. If the method had not been implemented to reduce the boundary
it would cover all normal segments. Furthermore, perfect separation implies that
KDE could be used as the sole classification method for patient 39, without need
for further processing. As mentioned in Section 2.5.1, this approach was considered
in articles [7] and [8]. This is supported by Table 4.4, patient 39 results in the best
performance.
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Figure 4.15: Patient specific KDE, estimate and evaluation using patient 39.

4.6 Cross-validation

This section covers the performance aquired using the two cross-validation ap-
proaches mentioned, the general leave-one-patient out compared with the patient
specific leave-one-seizure-out. The result is shown for each patient, one classifica-
tion method at a time.

The complete result of the binary classification methods and post-processed result of
the general approach can be found in Appendix B and the patient specific approach
in Appendix C - F. The following tables have been reduced to only compare KNN
with ten neighbors, random forest with 50 trees, SVM with linear kernel and box
constraint 1, and artifical neural network with all considered structures. Further-
more, the feature reduction methods will only be shown for the original case and ten
features. No combination of KDE and feature reduction is shown since the result is
generally quite poor.

4.6.1 Initial evaluation

All combinations described in Table 3.1 leads to a very large set of results. To im-
prove readability and the results have been reduced significantly. All tables have
been briefly evaluated to find general performance patterns and a set of combina-
tions are selected to be presented.
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4.6.1.1 Data balancing method

The two cases described in Section 3.3.4 are evaluated, one where the training data
is balanced by choosing random samples and one where the entire normal training
data is clustered. By comparing the results in the general case, the cluster method
results in a significant higher amount of false positives. When KDE is used, the
cluster method generally results in a higher sensitivity with more true positives.

In the patient specific approach the result varies. For patient 36 and 39 the clus-
ter method generally provides better performance, KNN with the cluster method
for patient 39 actually gives a perfect result with all seizures found and zero false
positives for several classifier setups. Similarly, patient 36 with cluster method will
increase the performance when compared with the random approach. However, for
both patient 21 and and 37 the clustering method results in decreased sensitivty,
the amount of true positives is generally not within acceptable limits. Given the
performances, the following results will be based on the random balancing method
only. The complete result is found in Appendix.

4.6.1.2 Classification parameters

The initial performance evaluation indicate that ten features is marginally better
than two or five features, however the differences are small and not always as sug-
gested. A similar review indicates that KNN with two neighbors are significiantly
worse than five or ten. Ten neighbors provide a marginally better specificity at the
cost of a small reduction of sensitivity when compared with five neighbors. Ran-
dom forest gives a better result with a larger amount of trees, however it is unclear
whether 30 or 50 trees is better. SVM have a generally more stable result with linear
kernel, the rbf kernel results varies too much to be considered reliable. The result
does not depend on the evaluated box constraints.

Since the results are generally comparable and moderatly varying with change of
method and parameters, it is not likely that a particulary good result have been
found by accident. Roughly equal performance is achieved for all evaluated cases
besides the kernel of SVM and KNN with two neighbors compared to five or more
neighbors.

4.6.2 Post-processed example

The binary classifier output is processed as described in Section 3.5.2. The per-
formance of the classifier will be presented in tables but the general effect of the
post-processing method can be visualised using graphs. As an example, the high-
lighted result in the general column of Table 4.7 will be presented. It corresponds
to KNN with ten neighbors, overlap integral reduction and veto 2 evaluated using
patient 21. In Figure 4.16 the entire processed time of patient 21 is shown. The
red lines corresponds to the estimated class where the normal class is represented
by the value one and seizure is represented by two. The blue lines represents the
actual seizures and the vector magnitude is shown to illustrate the activity. In this
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resolution it is difficult to interpret details, however it is clear that the amount of
red is significantly reduced, indicating a more stable result with less frequent change
from seizure marking to non-seizure marking.
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Figure 4.16: Left: Visualisation of the binary classification. Right: The corre-
sponding post-processed classification.

The graphs in Figure 4.16 are shown using a shorter time window in Figure 4.17
and 4.18. The effect of the post-processing layer is evident when comparing the
figures, over ten false positives have been reduced to two while the classified seizures
remains. For this example, the complete post-processed performance without veto
corresponds to 7 true positives and 111 false positives. By using veto 2 the amount
of false positives is reduced to 31 at the cost of one true positive.
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Figure 4.17: The binary classification example with frequent false positives.
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KNN - veto 2 - processed output

i u n f
i I [ —-—- Seizures
i \| | — — Estimated
151 \| (I LSS VM I
| I I |
| I I |
1 k! I | [
| |
i i
i : i
0.5 i |
i o L |
A S B |
o LL fiu 1S B S IS . |
10:00:00 11:00:00 12:00:00

Figure 4.18: The post-processed example, signficicantly reduced amount of false
positives.

4.6.3 Binary performance

The binary performance of the classification methods are evaluated with quarter
based low activity data, 50-50 balanced training set and non-balanced test set. The
binary performance is mainly evaluated to confirm that the classification method
learns to recognize both seizure seconds and non-seizure seconds. Initially this per-
formance was evaluated when training on the original imbalanced data set, however
it was apparent that most classifiers only trained to recognize normal movements.
The binary performance is found in Appendix B.

The results clearly indicate that all methods learn to recognize both classes. All
combinations which includes KDE results in a significantly higher specificity while
the sensitivity generally is reduced. A clear tradeoff is recognized when using KNN;
if two neighbors are used the specificity is high while the sensitivity is small. When
increasing neighbors these performances are shifted, the sensitivity is increased by
reducing the specificity. The specificity of random forest generally increases with in-
creased number of trees. The sensitivity varies, there is no clear indicator of whether
the sensitivity is increased or decreased with the increased number of trees. SVM
with rbf kernel generally have a much lower specificity than the linear kernel. In
some cases the specificity is barely 50%, hence a large amount of false positives is to
be expected. Nearly all combinations with the linear kernel have a specificity over
70%. Given the poor performance, the result of the rbf kernel is not shown.

4.6.4 Post-processed performance

As described in Section 2.6.2.2, the post-processed performance is presented using
true positives (TP), false positives (FP) and false negatives (FN). The results tabu-
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lated in this section will show the post-processed result for the original case, KDE,
FS 10, OI 10 and one parameter for each classifier. Additionally, the original case
without feature selection and KDE is evaluated to find seizures which often are
missed, to verify the atypical and subtle seizures defined in Section 4.4. Hence, the
amount of false negatives for each patient is summed over all feature dependent
classifiers and their parameters and presented in one table for each patient. The
amount of atypical false negatives encountered in the classification result for both
the general and the patient specific approach is shown within parentheses accord-

ingly.

Furthermore, to improve readability one result for each patient, approach and clas-
sification method will be highlighted using the color blue. The highlighted results
are subjectively decided to be the “best” results aquired. For a result to be high-
lighed it must have the best specificity available given an acceptable sensitivity. The
highlighted results may include false negatives if they are considered atypical, other-
wise false negatives are not allowed. From the results which fulfill the false negative
criterium, the one with the smallest amount of false positives is chosen, one for
the general case and one for the patient specific case. Furthermore, the amount of
atypical false negatives will be shown within parentheses.

4.6.4.1 Patient 21

Table 4.5 verifies the initial evaluation of the data set in Section 4.4, commonly
missed seizures are seizure 3 and 7 which is not surprising as they are considered
atypical.

Table 4.5: False negatives patient 21.

Seizure Nr Date No veto Veto 1l Veto 2
1 03-Sep-2009 23:44:41 0 2 2
2 04-Sep-2009 01:21:18 2 9 8
3 04-Sep-2009 01:46:20 4 17 18
4 04-Sep-2009 07:22:02 2 2 5
5 04-Sep-2009 09:57:08 2 2 2
6 04-Sep-2009 12:49:09 2 2 2
7 04-Sep-2009 20:16:17 13 15 18
8 05-Sep-2009 03:41:41 3 3 8

The feature based classifiers of patient 21 have a higher sensitivity when the patient
specific approach is used, the sensitivity is either higher or equal to the general
case for all evaluated parameters. However, the false negatives in the general case
are often atypical seizures and thus within acceptable limits. The patient specific
approach generally leads to a significant increase of false positives, however for the
best combinations (blue) the amount is arguably within similar range to the general
case. Furthermore, the result indicates that veto 2 is superior in the patient specific
approach while veto 1 is prefered in the general approach. The results also indicate
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that OI10 is the best setup for patient 21. Furthermore, in Section 4.5, patient 21
was found not suitable for the KDE method which is confirmed by the performance.

The ANN performance is comparable with the feature based classifier performance.
The patient specific performance is roughly equivalent while the general ANN ap-
proach generally have more false positives than the feature based classifiers.

Table 4.6: Post-processed results for random forest, patient 21.

Method: Random Forest, Trees = 30
General Patient specific
KDE | Red No veto Veto1l Veto2 | Noveto Vetol Veto 2
TP 6 6 5 7 7 7
FP 57 36 20 101 70 53
FN | 2(2) 2(2) 3(2) 1(1) 1 (1) 1 (1)
TP 2 1 1 2 2 2
X FP 44 11 3 44 27 20
FN| 6(2) 7(2) 7(2) 6 (2) 6 (2) 6 (2)
TP 7 6 5 8 7 7
FS 10 | FP 86 58 37 101 73 53
FN| 1(1) 2 (2) 3(2) 0 1 (1) 1 (1)
TP 7 5 5 8 8 8
OI'10 | FP 65 38 19 102 73 53
FN | 1(1) 3(2) 3(2) 0 0 0

Table 4.7: Post-processed results for KNN, patient 21.

Method: KNN, Neighbors = 10
General Patient specific
KDE | Red No veto Veto1l Veto?2 | Noveto Veto1l Veto 2
TP 7 6 6 7 7 7
FP 115 53 36 81 63 48
FN| 1(1) 2 (2) 2 (2) 1 (1) 1 (1) 1 (1)
TP 2 1 1 3 3 3
X FP 66 17 5 37 25 13
FN| 6(2) 7(2) 7(2) 5(2) 5(2) 5(2)
TP 7 6 5 8 8 6
FS 10 | FP 104 59 38 83 62 44
FN | 1(1) 2(2) 3(2) 0 0 2 (2)
TP 7 6 6 7 7 7
OI'10 | FP 111 53 31 83 64 54
FN | 1(1) 2 (2) 2 (2) 1(1) 1 (1) 1(1)
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Table 4.8: Post-processed results for logistic regression, patient 21.

Method: Logistic Regression

General Patient specific
KDE | Red No veto Vetol Veto2 | Noveto Vetol Veto 2
TP 7 5 4 8 8 7
FP 76 49 25 167 85 58
FN| 1(1) 3(2) 4 (2) 0 0 1 (0)
TP 4 2 1 4 3 3
X FP 60 11 4 66 42 31
FN | 4(2) 6 (2) 7(2) 4 (2) 5(2) 5(2)
TP 6 4 4 7 6 6
FS 10 | FP 79 44 26 150 85 59
FN | 2(1) 4 (2) 4 (2) 1(1) 2 (2) 2 (2)
TP 7 6 4 7 7 7
OI'10 | FP 82 40 26 117 82 58
FN | 1(1) 2 (2) 4 (2) 1(1) 1 (1) 1(1)

Table 4.9: Post-processed results for SVM, patient 21.

Method: SVM, Kernel = linear, box constraint = 1

General Patient specific
KDE | Red No veto Veto1l Veto2 | Noveto Vetol Veto 2
TP 7 5 4 8 7 6
FP 82 38 21 117 81 56
FN| 1(1) 3(2) 4 (2) 0 1 (1) 2 (2)
TP 3 1 0 3 3 2
X FP 58 9 2 46 29 19
FN | 5(2) 7(2) 8 (2) 5(2) 5(2) 6 (2)
TP 7 5 5 7 7 6
FS 10 | FP 7 39 25 110 79 58
FN | 1(1) 3(2) 3(2) 1(0) 1 (0) 2 (1)
TP 7 6 4 7 7 7
OI'10 | FP 92 42 25 97 70 55
FN | 1(1) 2 (2) 4 (2) 1 (1) 1 (1) 1 (1)
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Table 4.10: Post-processed results for ANN, patient 21.

Method: ANN
General Patient specific

H neurons | H depth No veto Veto 1 Veto 2 | No veto Veto1l Veto 2

TP 7 6 6 5 5 5

0 0 FP 146 73 59 118 69 58
FN| 1(1) 2(2) 2(2 3(2) 3(2) 3(2)

TP 7 6 6 5 5 5

2 1 FP 180 86 72 140 96 58
FN| 1(1) 2(1)  2(2 3(2) 3(2) 3(2)

TP 6 6 4 6 6 6

2 2 FP 107 56 42 145 78 68
FN| 2(2) 2(2) 4(2 2(2) 2(2) 2(2)

TP 6 6 3 6 6 5

5 1 FP 110 66 48 97 56 48
FN | 2(2) 2(2) 5(2) 2 (2) 2(2)  3(2

TP 6 6 4 6 6 6

5 2 FP 120 62 52 123 69 56
FN| 2(2) 2(2) 4(2 2 (2) 2(2) 2(2

TP 6 6 6 6 6 5

10 1 FP 148 71 58 104 65 53
FN| 2(2) 2(12) 2(2 2 (2) 2(2) 3(2)

TP 6 6 4 7 7 5

10 2 FP 129 73 59 83 59 53
FN| 2(2) 2(2) 4(2 1(1) 1(1) 3(2)

TP 6 6 4 6 6 5

18 1 FP 111 60 46 97 61 56
FN | 2(2) 2(2) 4(2 2(2) 2(2)  3(2)

TP 6 6 5 7 7 6

18 2 FP 113 66 52 94 64 56
FN | 2(2) 2(2)  3(2 1(1) 1(1) 2(2

4.6.4.2 Patient 36

Patient 36 have no atypical seizures according to Section 4.4, which is verified by
Table 4.11. This implies that all seizures should be accurately classified for it to be
acceptable. Additionally, the amount of seizures is very small, the patient specific
approach only have two seizures in the training set.
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Table 4.11: False negatives patient 36.

Seizure Nr Date No veto Veto 1l Veto 2
1 05-Nov-2010 06:06:59 2 2 2
2 07-Nov-2010 01:54:28 2 2 2
3 07-Nov-2010 06:11:04 2 2 2

Classification of patient 36 have a high true positive rate, regardless of whether
patient specific or general approach is used. The amount of false positives is gener-
ally reduced when the patient specific approach is used, indicating that it might be
preferable. In the patient specific case, KDE combined with no veto is prefered for
all methods but random forest. This is not surprising given the results of Section
4.5 which clearly indicated that the patient specific KDE was efficient for patient
36. The general approach is improved by using veto 2 which reduces the amount of

false positivies significantly.

The ANN performance of the general approach results in a smaller amount of false
positives than the feature based classifiers while the opposite relation is aquired

using the patient specific approach.

Table 4.12: Post-processed results for random forest, patient 36.

Method: Random Forest, Trees = 30

General Patient specific
KDE | Red No veto Veto1l Veto2 | Noveto Veto1l Veto 2

TP 3 3 3 3 3 3

FP 114 72 58 93 71 52

FN 0 0 0 0 0 0

TP 2 2 2 1 1 1

X FP 95 45 30 17 9 4
FN 1 1 1 2 2 2

TP 3 3 3

FS 10 | FP 118 80 64 107 73 47

FN 0 0 0 0 0 0

TP 3 3 3 3 3 3

OI'10 | FP 124 80 63 93 69 53

FN 0 0 0 0 0 0
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Table 4.13: Post-processed results for KNN, patient 36.

Method: KNN, Neighbors = 10
General Patient specific
KDE | Red No veto Veto1l Veto?2 | Noveto Veto1l Veto 2
TP 3 3 3 3 3 3
FP 120 81 62 100 61 36
FN 0 0 0 0 0 0
TP 2 2 1 3 2 2
X FP 93 47 28 24 13 8
FN 1 1 2 0 1 1
TP 3 3 3 3 3
FS 10 | FP 112 78 59 132 65 40
FN 0 0 0 0 0 0
TP 3 3 3 3 3 3
OI'10 | FP 126 82 57 97 65 44
FN 0 0 0 0 0 0

Table 4.14: Post-processed results for logistic regression, patient 36.

Method: Logistic Regression
General Patient specific
KDE | Red No veto Veto 1 Veto 2 | No veto Veto1l Veto 2
TP 3 3 3 3 3 3
FP 117 90 71 127 75 44
FN 0 0 0 0 0 0
TP 2 2 2 3 2 2
X FP 95 40 27 25 16 9
FN 1 1 1 0 1 1
TP 3 3 3
FS 10 | FP 119 87 64 126 73 37
FN 0 0 0 0 0 0
TP 3 3 3 3 3 3
OI'10 | FP 119 89 73 116 76 53
FN 0 0 0 0 0 0
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Table 4.15: Post-processed results for SVM, patient 36.

Method: SVM, Kernel = linear, box constraint = 1

General Patient specific
KDE | Red No veto Vetol Veto2 | Noveto Vetol Veto 2
TP 3 3 3 3 3 3
FP 111 86 76 94 61 36
FN 0 0 0 0 0 0
TP 1 1 1 3 2 2
X FP 80 34 22 20 14 10
FN 2 2 2 0 1 1
TP 3 3 3 3
FS 10 | FP 126 90 79 87 55 35
FN 0 0 0 0 0 0
TP 3 3 3 3 3 3
OI10 || FP 135 92 7 86 64 46
FN 0 0 0 0 0 0
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Table 4.16: Post-processed results for ANN, patient 36.

Method: ANN
General Patient specific

H neurons | H depth No veto Veto 1 Veto 2 | No veto Veto1l Veto 2

TP 3 3 3 3 3 3

0 0 FP 69 69 57 138 91 72

FN 0 0 0 0 0 0

TP 3 3 3 3 3 3

2 1 FP 111 92 79 125 98 90

FN 0 0 0 0 0 0

TP 2 2 2 2 2 2

2 2 FP 56 54 44 76 64 58
FN| 1(0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

TP 3 3 3 3 3 2

5 1 FP 71 66 57 110 85 69
FN 0 0 0 0 0 1(0)

TP 3 3 3 3 3 3

5 2 FP 92 82 75 114 86 76

FN 0 0 0 0 0 0

TP 3 3 3 2 2 2

10 1 FP 70 67 58 79 57 48
FN 0 0 0 1 (0) 1 (0) 1 (0)

TP 3 3 3 2 2 2

10 2 FP 60 57 42 84 64 55
FN 0 0 0 1 (0) 1 (0) 1 (0)

TP 3 3 3 2 2 2

18 1 FP 81 75 66 105 77 68
FN 0 0 0 1(0) 1 (0) 1(0)

TP 3 3 3 3 3 3

18 2 FP 56 55 49 96 7 63

FN 0 0 0 0 0 0

4.6.4.3 Patient 37

According to Section 4.4, the atypical seizures are 6, 15, 16, 17, 18 and 20. Table
4.17 show that these are commonly missed in the classification process, verifying
that they are too dissimilar or subtle to detect. In the following tables, the amount
of false negatives which are atypical is shown within parentheses. Additionally, given
the result seizure 19 is quite commonly missed as well, however as it was not initially
defined as atypical it will not be shown within parentheses.

Both in the patient specific approach and the general approach, the best results are
most commonly aquired using the setup F'S 10. In the patient specific case, the setup
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is usually combined with veto 1 for best result while the general approach benefits
from veto 2. Furthermore, KDE is not preferable when evaluating patient 37. When
using KDE the amount of false negatives is severly increased, and corresponds to
significant amount of seizures which are not considered as atypical. This supports
the results of Section 4.5, KDE was not expected to be efficient for patient 37.

Generally the patient specific approach results in a smaller amount of true positives
than the general approach. However this reduction is often within the false negative
criterium, the additional false negatives are often atypical. The amount of false
positives are similar in both approaches. The patient specific ANN results in more
false negatives than the general approach. The highlighted patient specific result
does not fulfill the false negative criterium, it contains two false negatives which were
not specified as atypical seizure. However, the atypical seizures were confirmed as
such by evaluating the response of the feature based classifiers, which indicates that
it might not be directly transferable to the ANN approach which mainly depends
on accelerometer data.

Table 4.17: False negatives patient 37.

Seizure Nr Date No veto Veto 1l Veto 2
1 09-Feb-2011 22:55:38 2 2 2
2 09-Feb-2011 23:40:06 2 2 2
3 10-Feb-2011 01:02:46 2 2 2
4 10-Feb-2011 01:06:45 2 2 2
5 10-Feb-2011 01:14:52 1 1 2
6 10-Feb-2011 01:37:02 0 9 20
7 10-Feb-2011 01:46:07 1 2 2
8 10-Feb-2011 03:50:42 0 4 7
9 10-Feb-2011 04:55:43 1 2 2
10 10-Feb-2011 06:04:59 2 2 2
11 10-Feb-2011 08:48:24 2 2 2
12 10-Feb-2011 14:51:15 3 3 8
13 10-Feb-2011 22:30:39 2 2 2
14 10-Feb-2011 23:53:50 2 5 5
15 11-Feb-2011 00:21:56 2 13 22
16 11-Feb-2011 00:29:06 11 22 22
17 11-Feb-2011 00:34:05 4 17 22
18 11-Feb-2011 00:41:02 6 20 22
19 11-Feb-2011 02:01:03 4 6 7
20 11-Feb-2011 04:10:09 2 11 17
21 11-Feb-2011 04:21:17 1 2 4
22 11-Feb-2011 04:50:03 2 2 2
23 11-Feb-2011 06:09:15 1 2 2
24 11-Feb-2011 07:33:48 2 2 2
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Table 4.18: Post-processed results for random forest, patient 37.

Method: Random Forest, Trees = 30

General Patient specific
KDE | Red No veto Vetol Veto2 | Noveto Vetol Veto 2
TP 22 21 18 22 18 18
FP 82 55 37 79 45 27
FN| 2(2) 3(3) 6 (6) 2 (1) 6 (5) 6 (5)
TP 17 8 6 16 11 9
X FP 67 20 16 57 23 15
FN | 7(0) 16 (6) 18 (6) 8 (3) 13 (5) 15 (6)
TP 23 21 17 24 17 15
FS 10 | FP 100 61 44 96 56 37
FN | 1(1) 3(3) 7 (6) 0 7 (6) 9 (6)
TP 22 21 18 23 18 18
OI10 || FP 80 61 39 76 47 29
FN | 2(2) 3(3) 6 (6) 1 6 (5) 6 (5)

Table 4.19: Post-processed results for KNN, patient 37.

Method: KNN, Neighbors = 10

General Patient specific
KDE | Red No veto Veto1l Veto2 | Noveto Vetol Veto 2
TP 24 20 17 24 20 16
FP 84 65 37 90 53 30
FN 0 4 (4) 7 (6) 0 4 (4) 8 (6)
TP 17 8 4 15 12 7
X FP 52 15 12 66 27 13
FN | 7(0) 16 (4) 20 (6) 9 (3) 12 (5) 17 (6)
TP 23 21 18 23 19 17
FS 10 | FP 89 56 35 90 52 28
FN | 1(1) 3(3) 6 (6) 1(1) 5 (5) 7 (6)
TP 24 22 17 23 21 17
OI10 || FP 78 59 31 92 50 25
FN 0 2 (2) 7 (6) 1 (1) 3(3) 7 (6)
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Table 4.20: Post-processed results for logistic regression, patient 37.

Method: Logistic Regression

General Patient specific
KDE | Red No veto Vetol Veto2 | Noveto Vetol Veto 2
TP 22 22 20 24 18 16
FP 93 69 47 93 53 32
FN| 2(2) 2 (2) 4 (4) 0 6 (5) 8 (6)
TP 16 6 7 12 8 7
X FP 67 25 16 68 26 18
FN | 8(0) 18 (6) 17 (6) | 12(3) 16 (5) 17 (6)
TP 22 21 18 24 19 16
FS 10 | FP 84 59 45 96 49 34
FN | 2(2) 3(3) 6 (6) 0 5 (5) 8 (6)
TP 21 21 19 22 17 16
OI'10 | FP 81 64 51 100 51 36
FN | 3(3) 3(3) 5 (5) 2 (1) 7 (5) 8 (6)

Table 4.21: Post-processed results for SVM, patient 37.

Method: SVM, Kernel = linear, box constraint = 1

General Patient specific
KDE | Red No veto Veto1l Veto2 | Noveto Vetol Veto 2
TP 21 20 18 24 17 15
FP 65 52 37 100 53 35
FN | 3(3) 4 (3) 6 (5) 0 7 (5) 9 (6)
TP 13 4 4 13 10 7
X FP 56 25 12 72 23 17
FN| 11 (1) 20(5) 20(5) | 11(2) 14 (4) 17(6)
TP 22 20 15 23 20 16
FS 10 | FP 89 62 42 102 54 32
FN | 2(2) 4 (4) 9 (6) 1(1) 4 (4) 8 (6)
TP 21 19 17 23 19 15
OI10 || FP 69 54 43 108 54 36
FN | 3(3) 5(4) 7 (5) 1 (1) 5 (3) 9 (6)
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Table 4.22: Post-processed results for ANN, patient 37.

Method: ANN
General Patient specific

H neurons | H depth No veto Veto 1 Veto 2 | No veto Veto1l Veto 2

TP 21 21 21 18 18 14

0 0 FP 115 91 72 74 54 44
FN| 3(3) 3(3) 33 6 (4) 6 (4) 10 (5)

TP 21 21 20 18 18 15

2 1 FP 96 79 59 85 60 49
FN| 3(3) 3(3) 43 6 (4) 6(4) 94

TP 22 22 22 17 17 16

2 2 FP 115 92 71 95 66 54
FN| 2(2) 2(2) 2(2 7 (3) 7(3) 8(4)

TP 21 21 21 18 16 16

5 1 FP 90 80 59 7 65 49
FN | 3(3) 3(3) 33 6 (3) 8(4) 8 (4)

TP 21 21 20 18 17 17

5 2 FP 90 74 64 87 57 43
FN| 3(3) 3(3) 44 6 (3) 7T(4) T4

TP 22 22 22 17 17 16

10 1 FP 105 91 69 66 56 44
FN| 2(2) 2(12) 2(2 7 (4) 7(4) 8(H)

TP 21 21 21 18 18 15

10 2 FP 100 86 68 62 53 38
FN| 3(2) 3(2) 3(2) 6 (4) 6 (4)* 9 (5

TP 22 22 22 16 16 14

18 1 FP 103 99 79 67 57 47
FN | 2(2) 2(2)  2(2 8 (4) 8(4) 10 (5)

TP 22 22 22 17 17 15

18 2 FP 124 109 87 58 53 40
FN | 2(2) 2(2)  2(2 7 (4) 7)) 9(5)

* Does not fulfill false negative criterium

4.6.4.4 Patient 39

Patient 39 have no atypical seizure which is verified in Table 4.23. Additionally,
the amount of seizures is very small, the patient specific approach only have one
seizure in the training set. The patient specific approach for both the feature based
methods and ANN is evaluated nonetheless, however it is important to note the
limitations of the data set. The ANN models will be trained using only 75% of one
seizure, which is not much to go on.
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Table 4.23: False negatives patient 39.

Seizure Nr Date No veto Veto1l Veto 2
1 24-Mar-2011 17:36:53 3 3 3
2 24-Mar-2011 21:30:02 2 2 2

The results in Section 4.5 clearly indicated the possible efficiency of KDE for patient
39 which is confirmed in the final performance, in the general approach the best re-
sults are aquired using KDE and veto 2. However, the general approach results in
a large amount of false positives, which is significantly reduced using the patient
specific approach. Additionally, the patient specific approach with KNN results in
the best performance of all evaluated setups which indicate clearly that the patient
specific approach is optimal for patient 39. ANN results in high sensitivity for both
the general approach and patient specific approach. The amount of false positives
is significantly smaller when the patient specific approach is used. However as pre-
viously mentioned, it is important to note that the patient specific approach only

have one seizure in the training fold.

Table 4.24: Post-processed results for random forest, patient 39.

Method: Random Forest, Trees = 30

General Patient specific
KDE | Red No veto Veto1l Veto2 | No veto Veto1l Veto 2

TP 2 2 2 2 2 2

FP 80 73 64 41 36 34

FN 0 0 0 0 0 0

TP 2 2 2 1 1 1

X FP 78 40 44 16 7 4
FN 0 0 0 1 1 1

TP 2 2 2 2 2 2

FS 10 | FP 7 66 59 55 48 40

FN 0 0 0 0 0 0

TP 2 2 2 2 2 2

OI10 || FP 82 75 61 47 39 38

FN 0 0 0 0 0 0
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Table 4.25: Post-processed results for KNN, patient 39.

Method: KNN, Neighbors = 10
General Patient specific
KDE | Red No veto Veto 1 Veto 2 | No veto Veto1l Veto 2
TP 2 2 2 2 2 2
FP 85 75 57 6 4 4
FN 0 0 0 0 0 0
TP 1 1 1 0 0 0
X FP 7 47 42 1 0 0
FN 1 1 1 2 2 2
TP 2 2 2 2 2
FS 10 | FP 81 72 59 6 4 5
FN 0 0 0 0 0 0
TP 2 2 2 2 2 2
OI'10 | FP 83 69 60 13 9 7
FN 0 0 0 0 0 0

Table 4.26: Post-processed results for logistic regression, patient 39.

Method: Logistic Regression
General Patient specific
KDE | Red No veto Veto 1 Veto 2 | No veto Veto1l Veto 2
TP 2 2 2 1 1 1
FP 78 70 62 82 58 22
FN 0 0 0 1 1 1
TP 2 2 2 1 1 1
X FP 79 46 43 21 6 5
FN 0 0 0 1 1 1
TP 2 2 2 2 2 1
FS 10 | FP 79 69 62 89 54 28
FN 0 0 0 0 0 1
TP 2 2 2 2 2 2
OI10 | FP 86 70 61 51 42 29
FN 0 0 0 0 0 0
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Table 4.27: Post-processed results for SVM, patient 39.

Method: SVM, Kernel = linear, box constraint = 1

General Patient specific
KDE | Red No veto Vetol Veto2 | Noveto Vetol Veto 2

TP 2 2 2 2 2 2

FP 78 71 62 32 26 20

FN 0 0 0 0 0 0

TP 2 2 2 0 0 0

X FP 79 47 45 9 5 4
FN 0 0 0 2 2 2

TP 2 2 2 2 2 2

FS 10 | FP 82 69 66 46 40 31

FN 0 0 0 0 0 0

TP 2 2 2 2 2 2

OI10 || FP 85 67 58 32 28 23

FN 0 0 0 0 0 0
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Table 4.28: Post-processed results for ANN, patient 39.

Method: ANN
General Patient specific

H neurons | H depth No veto Veto 1 Veto 2 | No veto Veto1l Veto 2

TP 2 2 2 1 1 1

0 0 FP 72 68 59 27 24 19
FN 0 0 0 1(0) 1 (0) 1 (0)

TP 2 2 2 2 2 2

2 1 FP 74 71 64 27 27 17

FN 0 0 0 0 0 0

TP 2 2 2 2 2 2

2 2 FP 7 71 60 30 27 21

FN 0 0 0 0 0 0

TP 2 2 2 2 2 2

5 1 FP 70 68 63 32 32 25

FN 0 0 0 0 0 0

TP 2 2 2 2 2 2

5 2 FP 84 79 72 41 41 33

FN 0 0 0 0 0 0

TP 2 2 2 1 1 1

10 1 FP 75 69 62 21 21 15
FN 0 0 0 1 (0) 1 (0) 1 (0)

TP 2 2 2 2 2 2

10 2 FP 83 79 72 49 48 38

FN 0 0 0 0 0 0

TP 2 2 2 2 2 2

18 1 FP 66 65 59 30 30 18

FN 0 0 0 0 0 0

TP 2 2 2 2 2 2

18 2 FP 7 75 66 40 39 30

FN 0 0 0 0 0 0

4.6.5 Summary

All highlighted performances are summarized in Table 4.29, where the false positives
is displayed as the amount of false positives per hour. The false negative criterium is
fulfilled for all combinations except the ANN, patient specific approach for patient
37. However the amount of false negatives are less than the total number of atypical

seizures.

Since the amount of true positives is sufficient for each combination, the preferable
approach can be chosen such that the amount of false alarms are at a minimum.
The results indicate that the general approach is superior for patient 21 and 37 while
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the patient specific approach is preferable for patient 36 and 39.

Table 4.29: Summary of post-processed results.

Patient randf | KNN | logr | SVM | ANN
TP 6 6 6 6 6
21 Gen | FP/h | 1.36 | 1.17 | 1.51 | 2.11 | 2.11
FN 2 2 2 2 2
TP 8 6 7 7 6
21 Spec || FP/h | 2.00 | 1.66 | 2.19 | 2.08 | 2.11
FN 0 2 1 1 2
TP 3 3 3 3 3
36 Gen | FP/h | 1.74 | 1.71 | 1.92 | 2.32 | 1.26
FN 0 0 0 0 0
TP 3 3 3 3 3
36 Spec || FP/h | 1.41 | 0.72 | 0.75 | 0.60 | 1.90
FN 0 0 0 0 0
TP 18 18 18 20 21
37 Gen || FP/h | 0.74 | 0.70 | 0.90 | 1.24 | 1.18
FN 6 6 6 4 3
TP 24 21 19 20 18
37 Spec || FP/h | 1.92 | 1.00 | 0.98 | 1.08 | 1.06
FN 0 3 5 4 6*
TP 2 2 2 2 2
39 Gen || FP/h | 229 | 3.26 | 2.46 | 2.58 | 3.37
FN 0 0 0 0 0
TP 2 2 2 2 2
39 Spec || FP/h | 1.94 | 0.23 | 1.66 | 1.14 | 0.97
FN 0 0 0 0 0
* Does not fulfill false negative criterium

To evaluate which setup results in the best performance, Table 4.29 can be modified
by rating each performance. Since the true positives are within acceptable limits
for each setup except one, the rating will be based on the amount of false positives.
Each item in each row is graded between one and five, where one corresponds to
the best achieved performance for the current patient and approach, and five cor-
responds to the worst performance. Each column, corresponding to classification
methods, is summarized to give a total rating for each method, and a low total
rating indicates a classifier method with good performance. The ratings are shown
in Table 4.30. The ratings indicates that KNN is the superior classification method
while the other methods results in similar ratings.
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Table 4.30: Rating of the summary of Table 4.29.

Patient randf | KNN | logr | SVM | ANN
21 Gen 2 1 3 4 4
21 Spec 2 1 5 3 4
36 Gen 3 2 4 5 1
36 Spec 4 2 3 1 5
37 Gen 2 1 3 5 4
37 Spec 5 2 1 4 3
39 Gen 1 4 2 3 5
39 Spec 5 1 4 3 2

Total: 24 14 25 28 28

4.7 Multi-class Features

As mentioned in 1.3.2.1, patient 21 have both considered seizure types. Hence, the
patient is evaluated to indicate differences between HMS, GTCS and non-seizure
movements. Figures 4.19 and 4.20 show that GTCS has got a significantly smaller
overlap with normal data than HMS, indicating that it might be easier to accurately
identify GTCS than HMS. The figures also show a significant difference between
GTCS and HMS, indicating that the current set of features could be used for multi-
class classification. The newly introduced feature Spectral Edge Frequency 95 is
especially interesting for multi-class classification as it seems to provide a significant
Based on the histograms, it is definately possible to
evaluate this feature set as a basis for multi-class classification in future work.

difference in distribution.
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Figure 4.19: Left: Entropy of patient 21. Right: RMS of patient 21.
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Figure 4.20: Left: Spectral Edge Frequency 95 of patient 21. Right: Standard
deviation of patient 21.
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Discussion

5.1 Data set

The initial evaluation of the accelerometer data was briefly discussed in Section
1.3.2. There is a wide range of seizure manifestations where some are very subtle
or atypical while others are not. As discussed, this was expected to have a negative
impact on the classifier performance. This was later confirmed by the performance
statistics in Section 4.6.4. The atypical seizures were often misclassified, indicating
that the seizures were too dissimilar to the rest of the available data.

There are several possible reasons as to why some seizures were not accurately clas-
sified. Ome possibility is that these seizures are not representative of HMS. The
original seizure onsets were determined by video-EEG, the physicians did not vali-
date the accelerometer data for each seizure. Perhaps the motoric response of these
seizures are not significant enough for them to actually be considered as typical
HMS. One other possibility is that the seizures are valid HMS, but due to the lim-
ited data set the variability is not sufficiently represented. Hence, some seizures
which are valid, but too different from the rest are not recognized as HMS.

For future work, each seizure and its corresponding accelerometer data should be
evaluated by physicians to determine whether the motor manifestations are signifi-
cant enough to represent HMS. While all current seizures are valid HMS according
to EEG, a stricter selection where the severity of motor manifestations are taken
into account would make the data more suitable for the accelerometry based ma-
chine learning approach. Discussion with physicians and the results in Section 4.4
initiates this work, a set of subtle and atypical seizures have been identified. In the
result presented in this thesis these seizures are included, but an initial step in future
work could be to evaluate the performance when these seizures have been removed.
Hopefully this will improve the performance by reducing the amount of false posi-
tives. Additionally, more data should be collected to increase the variability covered
by the classifiers.

5.2 Data reduction

As mentioned in Section 3.3 an imbalanced dataset can lead to poorly trained classi-
fiers with the main focus to accurately classify only the dominant class. The different
methods used for data reduction have been used with varying result.
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5.2.1 Low-activity build

The activity based reduction based on either quarter activity or hour activity pro-
vides an important initial data reduction. Upon review the hour based reduction
is not sufficient to describe the low activity of a patient, only patient 37 have low
activity hours with seizures which can be seen in Table 4.1. Additionally, when
considering only complete hours there may be low-activity movements which are
overlooked and high-activity movements which are kept. For instance if there is
an low-activity hour which ends with the patient waking up the entire hour might
be discarded. To that end, only the data reduction based on quarter activity is
used. In Table 4.2 it is evident that there are low-activity seizures for all patients
but patient 39. The low-activity build is constructed to simulate nocturnal activity.
However, the resulting build is much less restricted and controlled when compared
to the literature. In the literature only actual sleep is used, in the build of this thesis
general low activity is considered which might be during the day as well.

All seizure data is kept regardless of activity. One can argue that the behavior before,
during and after might be different depending on whether the patient is asleep or
not, however given the small amount of seizure data the potential differences have
to be accepted.

5.2.2 Balancing dataset

If the training dataset is balanced by random sampling there is no guarantee that
the data covers the range of all types of normal movements. However, under the
assumption that the normal movements follow some kind of distribution it is likely
that a set of random samples will sufficiently describe the distribution. If the clus-
tering method is used instead, the normal data will be based on all available normal
data. It is however important to note that the clustering method will result in clas-
sifiers which have not been trained on original data. The clustering method clusters
data points in close proximity to each other, and the centroid of the cluster is the
new data point. This averaging approach will generally reduce the amount of normal
outliers in the training data since the means will be placed closer to the dominating
clusters. As a consequence, the classifiers will not be trained on the extreme values
presented in the original normal data set. Naturally this can result in an increased
amount of false positives, since normal outliers of the test set might not have been
represented in the training set.

The reasoning above is supported by the results. As briefly discussed in Section
4.6.1.1, the general performance with the clustering method results in a larger
amount of false positives. In the patient specific approach, the performance of the
clustering method varies among the patients. For patients with limited separability
the amount of true positives is decreased and generally not within acceptable limits.
For the remaining patients where the seizures are further away from the dominat-
ing normal clusters the performance is significantly improved, resulting in the best
performance encountered.
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5.3 Features

The histograms in Section 4.3 shows that there are differences in the distributions
of normal movements and seizure movements which indicates that classification is
possible. However, the significant overlap between the two classes implies that it will
be difficult to achieve both high sensitivity and high specificity using the available
data set. This is supported by the cross-validation and post-processed statistics,
presented in Section 4.6.4; the classifiers are clearly learning to identify seizures but
at a cost of specificity. Additionally, the current feature set differentiates HMS and
GTCS, hence it can be used as a basis for multi-class classification.

Additionally, since the performance of the feature based classifiers is better than
that of the ANN, it appears that the current feature set successfully represents the
characteristics of the data set.

5.4 Performance

5.4.1 KDE

The KDE reduction of the data sets significantly increases the specificity in all eval-
uated cases. However this is usually at a cost of sensitivity. The KDE reduction
will remove seizures if the test patients seizure movements are very similar to the
normal movements of the patients used in the training process, hence subtle seizures
risk being removed. This risk might be reduced if a stricter seizure selection is con-
sidered, as described in Section 5.1.

As mentioned in Section 4.5, KDE is accurate enough to be used as the sole classifi-
cation algorithm for patient 39 and nearly as efficient for patient 36. For patient 21
and 37 the method is not sufficient, the feature overlap for seizures and non-seizures
are too significant. Hence the KDE method described in literature is not guaran-
teed to work, some kind of improvement must be done in order for it to function
efficiently regardless of patient. The performance can be improved by removing the
specified atypical and subtle seizures, but it will not be perfect regardless.

Additionally, the KDE algorithm could be extended to a multivariate method which
covers more dimensions than the currently used bivariate case. However, the brute-
force approach evaluated in this thesis would result in a significantly increased com-
putation time if the number of dimensions are increased.

5.4.2 Post-processed statistics

The veto is chosen to depend on correlation and entropy after inspection of the
histograms in Section 4.3. There is a clear difference in the distributions of normal
movements and seizure movements. The additional feature frequency peak is only
used to disable the veto; when there is an unusually high frequency peak it is most
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likely not a normal movement. All features and feature combinations have not been
tested, it is possible that the result can be improved further.

Regardless of method there is a high amount of false positives, however 1 FP/h is
not uncommon for continuous monitoring. This can partly be explained by all the
previous discussions, the less restricted low-activity build, the atypical and subtle
seizures and the significant overlap in the feature space. It is also important to
note that the training of the models is performed using a balanced dataset while
the test set is not. By balancing the training set neither normal movements nor
seizure movements is prefered during the training process. But the test set does not
follow the balanced distribution, there is more normal data than seizure data. As a
consequence even though the binary classification specficity is roughly equivalent to
the sensitivity there will be more misclassified normal seconds than seizure seconds.
When the same testing was performed with non-balanced training set, the classifiers
basically ignored the seizures and had all focus on the specificity.

Given the rating found in Table 4.30, it appears that KNN is the superior method.
KNN also gave good results for detection of GTCS [9], which indicates that the
method is promising for multi-class classification as well.

5.5 General vs Patient specific approach

The performance does not fully indicate which approach is preferable. As previously
mentioned, the general approach can be considered superior for patient 21 and 37
while the patient specific approach is superior for patient 36 and 39. The results
indicate that if the patient have seizures which are dissimilar to normal non-seizure
movements the patient specific approach is preferable. This is not difficult to grasp,
if the seizures are outliers they can quite easily be identified using the patient specific
approach. If the general approach is considered instead, the models will be trained
to recognize subtle seizures as well. Since the subtle seizures are similar to non-
seizure movements, it would result in more false positives, hence the patient specific
approach gives better performance. For the patients with both representative and
subtle seizures the general approach is prefered, this might be due to the increased
seizure variability presented. In this case, the models are trained using more data
which might be the reason as to why the general approach is superior.
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Conclusion

Several machine learning algorithms have been implemented to consider a set of
defined features and ANN has been used to evaluate pre-processed accelerometry
directly. While most classifiers results in sufficient sensitivity this is usually at the
cost of false positives. The results clearly indicate a trade-off which must be consid-
ered when using the classifiers in future work. If the current models are implemented
in wearable electronics, it is up to the researcher in future work and physicians to
decide how to handle this trade-off, whether the sensitivity or the specificity should
be favored. KNN seems to be the most accurate method evaluated, and since it gives
accurate result for GTCS classification as well it should be considered for multi-class
classification. Additionally, the patient specific approach seems to be optimal for
two patients while the general approach is superior in the remaining two. Hence
there is no clear indication of which approach is optimal. As discussed, if seizures
are removed due to a stricter seizure evaluation it is likely that the patient specific
approach will be improved also for the cases where the general approach is currently
favored.

Several methods have been considered to improve the specificity. The most effi-
cient method was the implementation of veto filters in the post-processing layer.
By removing seizure markings which does not fulfill certain conditions based on the
distribution of seizure data in the training set the rate of false positives could be
signficiantly reduced. Additonally, the amount of false positives could be reduced
further by using the KDE method. However, two of the patiens had poor separabil-
ity in the feature space which unfortunately resulted in a reduced amount of true
positives as well.

The main difference between HMS and GTCS is the duration and activity. GTCS
have an intense motor response which does not vary much among patients while
HMS results in a wide range of motoric behavior. GTCS have a typically longer
duration, between one and three minutes, while the duration of HMS is usually a
couple of seconds up to one minute. By evaluating feature histograms it was verified
that the distributions were different depending on type. Hence, the feature space in
this thesis could serve as a basis for multi-class classification. Additionally, as sus-
pected, the GTCS provided a smaller overlap with the distribution of normal data
in the feature space, confirming that HMS is more difficult to detect than GTCS.

The current data set includes a subset of atypical or subtle seizures. Hence, given
the data set available the results are not unexpected, the classifiers can detect HMS
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6. Conclusion

with high sensitivity but it is difficult to do so with perfect accuracy. Some seizures
are commonly overlooked due to their characteristics, they are either too subtle or
too atypical to be detected using the remaining data. The subtle seizures are very
similar to regular non-seizure movements, making the classifiers prone to give false
alarms. The specificty is reduced for the patients with subtle or atypical seizures,
which clearly indicates a correlation between atypical seizures and a larger amount
false alarms. This indicates that the performance of both the general and the patient
specific approach could be improved by removing the subtle and atypical seizures
from the data sets. By entirely removing the seizures which are similar to non-seizure
movements the feature separability would be improved and the classifiers would most
likely achieve higher specificity. This is an issue which should be adressed by physi-
cians, currently they only evaluate the video-EEG but ideally they should evaluate
the accelerometer data as well to determine which seizures should be considered.

The limitations of the data set makes it unrealistic to expect perfect performance,
there are simply too few seizures to represent the variability sufficiently. This es-
pecially affects the patient specific case, the classifiers are trained on a very small
amount of seizures. Hence, more data should be recorded.
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Appendix 1: HMS Seizure data

Table A.1: HMS statistics describing seizure onsets, duration, pre-processed dura-
tion and standard deviation.

Patient Start Stop Seizure time | Processed time | Max STD
21 2009-09-03 23:44:41 | 2009-09-03 23:44:54 00:13 00:13 0.5754
21 2009-09-04 01:21:18 | 2009-09-04 01:21:27 00:09 00:09 1.1323
21 2009-09-04 01:46:20 | 2009-09-04 01:46:37 00:17 00:17 0.1110
21 2009-09-04 07:22:02 | 2009-09-04 07:22:11 00:09 00:13 0.4729
21 2009-09-04 09:57:08 | 2009-09-04 09:57:18 00:10 00:10 0.3608
21 2009-09-04 12:49:09 | 2009-09-04 12:49:19 00:10 00:10 0.4948
21 2009-09-04 20:16:17 | 2009-09-04 20:16:35 00:18 00:04 0.3224
21 2009-09-05 03:41:41 | 2009-09-05 03:42:13 00:32 00:10 0.3782
36 2010-11-05 06:06:59 | 2010-11-05 06:07:30 00:31 00:31 0.6119
36 2010-11-07 01:54:28 | 2010-11-07 01:54:46 00:18 00:18 0.5953
36 2010-11-07 06:11:04 | 2010-11-07 06:11:35 00:31 00:31 0.6057
37 2011-02-09 22:55:38 | 2011-02-09 22:55:52 00:14 00:14 0.3660
37 2011-02-09 23:40:06 | 2011-02-09 23:40:25 00:19 00:19 0.5119
37 2011-02-10 01:02:46 | 2011-02-10 01:03:08 00:22 00:22 0.3222
37 2011-02-10 01:06:45 | 2011-02-10 01:06:56 00:11 00:11 0.5635
37 2011-02-10 01:14:52 | 2011-02-10 01:15:11 00:19 00:19 0.2864
37 2011-02-10 01:37:02 | 2011-02-10 01:37:14 00:12 00:12 0.2694
37 2011-02-10 01:46:07 | 2011-02-10 01:46:24 00:17 00:17 0.4035
37 2011-02-10 03:50:42 | 2011-02-10 03:50:52 00:10 00:10 0.3211
37 2011-02-10 04:55:43 | 2011-02-10 04:55:52 00:09 00:09 0.4991
37 2011-02-10 06:04:59 | 2011-02-10 06:05:12 00:13 00:13 0.4467
37 2011-02-10 08:48:24 | 2011-02-10 08:48:36 00:12 00:12 0.3016
37 2011-02-10 14:51:15 | 2011-02-10 14:51:22 00:07 00:07 0.2712
37 2011-02-10 22:30:39 | 2011-02-10 22:30:58 00:19 00:19 0.4002
37 2011-02-10 23:53:49 | 2011-02-10 23:54:05 00:16 00:15 0.4629
37 2011-02-11 00:21:56 | 2011-02-11 00:22:04 00:08 00:08 0.2183
37 2011-02-11 00:29:06 | 2011-02-11 00:29:17 00:11 00:06 0.1233
37 2011-02-11 00:34:05 | 2011-02-11 00:34:15 00:10 00:10 0.0759
37 2011-02-11 00:41:01 | 2011-02-11 00:41:12 00:11 00:11 0.2977
37 2011-02-11 02:01:03 | 2011-02-11 02:01:09 00:06 00:06 0.1938
37 2011-02-11 04:10:09 | 2011-02-11 04:10:24 00:15 00:15 0.3468
37 2011-02-11 04:21:17 | 2011-02-11 04:21:29 00:12 00:12 0.6351
37 2011-02-11 04:50:03 | 2011-02-11 04:50:18 00:15 00:15 0.3830
37 2011-02-11 06:09:15 | 2011-02-11 06:09:28 00:13 00:13 0.5977
37 2011-02-11 07:33:48 | 2011-02-11 07:34:09 00:21 00:21 0.5140
39 2011-03-24 17:36:53 | 2011-03-24 17:37:10 00:17 00:17 1.2042
39 2011-03-24 21:30:02 | 2011-03-24 21:30:15 00:13 00:12 0.9637
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Appendix 2: HMS General result

B.1 Randomly balanced training set

Table B.1: General cross-validation results for KNN.

Method: KNN, Neighbors: 2, 5, 10
KDE | Red H1 K2 M3 a1 o2 03
Accuracy 0.72755  0.75663  0.76227 | 0.091014 0.048143 0.060656
Specificity | 0.73868 0.76372  0.76969 | 0.098311 0.051383  0.065199
Sensitivity | 0.58616  0.60267 0.68733 | 0.13436  0.076772  0.09751
Accuracy 0.89393 0.81721 0.86199 | 0.021867 0.042056  0.037568
X Specificity | 0.90719  0.82537  0.87252 | 0.025079  0.045364  0.041591
Sensitivity 0.3967 0.55627  0.51529 0.13083 0.10307 0.12703
Accuracy 0.72547  0.74073  0.75218 | 0.085418 0.062433  0.062941
FS 2 Specificity | 0.73524  0.74572  0.7593 0.09226  0.065302 0.067786
Sensitivity | 0.65388  0.65208 0.66785 0.1349 0.092282  0.12991
Accuracy 0.71926  0.7111  0.70326 | 0.09635  0.070928  0.086018
Ol 2 Specificity | 0.72997  0.71415 0.70727 | 0.10278  0.073458  0.08936
Sensitivity | 0.58122  0.70823  0.72256 | 0.13467  0.074151  0.080707
Accuracy 0.87392  0.78223  0.81307 | 0.024567  0.044304 0.042218
X FS 2 Specificity 0.88579  0.78877 0.82086 | 0.026568 0.047576  0.046264
Sensitivity | 0.39457  0.56823  0.59291 | 0.061385  0.082037  0.11734
Accuracy 0.86536  0.77733  0.81013 | 0.035282  0.059183  0.061652
X OI 2 Specificity | 0.87814  0.7831  0.81792 | 0.038099 0.061669  0.06443
Sensitivity | 0.39878  0.60877  0.58043 | 0.098039  0.08581 0.072209
Accuracy 0.7327  0.76382 0.76754 | 0.082177 0.043418 0.062812
FS 5 Specificity | 0.74363 0.76992  0.77584 | 0.089233  0.046474 0.067771
Sensitivity | 0.59798  0.67486  0.66884 0.13805 0.11039 0.11965
Accuracy 0.72233  0.74054 0.73833 | 0.089475  0.05316  0.064645
0I5 Specificity | 0.73316  0.74472  0.74372 | 0.096144  0.055995 0.068404
Sensitivity | 0.58329  0.68895  0.6835 0.12093  0.089953  0.097069
Accuracy 0.87882 0.81135 0.84662 | 0.022962  0.042705  0.042888
X FS5 Specificity | 0.89279  0.81777 0.85664 | 0.026143  0.044981 0.04677
Sensitivity | 0.31444  0.57997  0.52839 | 0.087905 0.087419  0.11106
Accuracy 0.87816  0.79413 0.83196 | 0.027456  0.049161  0.046029
X Ol 5 Specificity 0.89157 0.79967 0.83953 | 0.029945 0.051869  0.048804
Sensitivity | 0.33738  0.62863 0.56371 | 0.067604  0.10821 0.10038
Accuracy 0.72123  0.76461 0.77009 | 0.088047 0.047689 0.063586
FS 10 || Specificity | 0.73203 0.76961 0.77694 | 0.09499  0.050069 0.067441
Sensitivity | 0.56432  0.66968 0.68596 | 0.10403  0.080981  0.089564
Accuracy 0.73412  0.75849  0.76339 | 0.087496  0.048241 0.063199
OI 10 || Specificity | 0.74635 0.76432 0.77089 | 0.09478  0.051275 0.067322
Sensitivity | 0.57871 0.6522  0.65077 | 0.14672 0.10449 0.089
Accuracy 0.88712 0.8193 0.8557 0.020247 0.039331  0.042317
X FS 10 || Specificity | 0.90034 0.82687  0.8657 | 0.023431 0.042324  0.046067
Sensitivity | 0.39119  0.55531  0.51598 0.11596 0.10441 0.1122
Accuracy 0.89056  0.81337  0.85553 | 0.022176  0.044248 0.039416
X OI 10 || Specificity | 0.90493 0.82139 0.86575 | 0.02555  0.047624  0.043502
Sensitivity | 0.33593  0.53614  0.53407 | 0.097266  0.10422 0.12748

ITT



B. Appendix 2: HMS General result

Table B.2: General cross-validation results for randf.

Method: Random Forest, Trees: 10, 30, 50
KDE | Red M1 p2 U3 o1 o2 o3

Accuracy 0.75149  0.78778  0.79032 | 0.065124  0.065081 0.06758
Specificity | 0.756472  0.79162 0.79477 | 0.067217 0.067556  0.070278

Sensitivity | 0.70074  0.69476  0.69228 | 0.079483 0.11332 0.11162

Accuracy 0.80342  0.82928 0.83582 | 0.056924  0.056653 0.05391

X Specificity | 0.80883  0.83628  0.84289 0.05911 0.059775 0.05704
Sensitivity | 0.59319  0.61036  0.59483 0.11061 0.12847 0.13149
Accuracy 0.71578  0.72993 0.72704 | 0.064269 0.063821  0.070806
FS 2 Specificity | 0.71823  0.73277  0.73047 | 0.066533  0.066368  0.073499
Sensitivity | 0.69825  0.69728  0.71781 | 0.078278 0.11079  0.088166
Accuracy 0.70171  0.71237 0.71746 | 0.073604 0.072076  0.074094
OI 2 Specificity | 0.70322  0.71491 0.72083 | 0.075581  0.074549  0.076538
Sensitivity | 0.73099  0.73868 0.68822 | 0.064715 0.09227  0.074052
Accuracy 0.79549  0.77838 0.79058 | 0.051726 0.06256  0.054313
X FS 2 Specificity | 0.80013  0.78283  0.79596 | 0.053809  0.064793  0.056651
Sensitivity | 0.62179 0.6301 0.60787 | 0.085793 0.10185 0.093289
Accuracy 0.76418 0.78323 0.78303 | 0.060517  0.05727  0.058179
X Ol 2 Specificity | 0.76772  0.78901 0.78861 | 0.062323 0.05917  0.060213
Sensitivity | 0.66644  0.59091  0.60953 | 0.067507  0.055702  0.068473
Accuracy 0.73991  0.76109 0.75706 | 0.075628 0.067789  0.059222
FS 5 Specificity | 0.74252  0.76515  0.76064 0.07814  0.070166  0.061565
Sensitivity | 0.72572  0.67467  0.71609 0.10469 0.093638  0.087911
Accuracy 0.72616 0.7409  0.74428 | 0.068422 0.066332 0.067667

Ol 5 Specificity | 0.72824  0.74366 0.74715 | 0.070684 0.068933 0.07018
Sensitivity | 0.73398 0.7324  0.73536 0.08186 0.1051 0.08784
Accuracy 0.79615 0.80013 0.81074 | 0.054694 0.060273 0.051169
X FS 5 Specificity | 0.80134  0.80693 0.81671 | 0.056955 0.063081  0.053542
Sensitivity | 0.62397 0.59193  0.61556 0.10047  0.091401 0.098161

Accuracy 0.77896  0.80009  0.80728 | 0.056415  0.057351 0.05564
X Ol 5 Specificity | 0.78159  0.80606 0.81266 0.05844  0.060033 0.058134
Sensitivity | 0.70009 0.61763 0.63987 | 0.11073 0.1052 0.097319
Accuracy 0.74261  0.77025  0.76009 | 0.067012 0.063366 0.061855
FS 10 || Specificity | 0.74553  0.77427 0.76388 | 0.069432 0.065699  0.064421
Sensitivity | 0.72607 0.71341  0.73123 0.10824  0.096565  0.094299

Accuracy 0.74597 0.78076  0.78358 | 0.065539  0.064937  0.06271
oI 10 Specificity | 0.74987  0.78597  0.78908 | 0.068306 0.067769  0.065452
Sensitivity | 0.70119  0.68918 0.66315 | 0.097117  0.10143  0.097131

Accuracy 0.80996  0.81325 0.8102 0.055136  0.054558 0.05632

X FS 10 || Specificity | 0.81599 0.81965 0.81659 | 0.057512  0.056968 0.05941

Sensitivity | 0.6039 0.59218  0.63449 0.11429 0.065281 0.1256
Accuracy 0.80018  0.82751 0.82607 | 0.051245 0.050518  0.050048
X OI 10 Specificity | 0.80535 0.83433  0.8331 0.053709  0.053525  0.052774
Sensitivity | 0.61452  0.61313  0.59693 0.10062 0.098787  0.099239

Table B.3:

IV

General cross-validation results for logistic regression.

Method: Logistic Regression

Red

KDE 5 o1

Accuracy 0.78148 | 0.059034

Specificity | 0.78788 | 0.062423

Sensitivity | 0.63573 0.12759

Accuracy 0.83653 | 0.049902

X Specificity | 0.84455 | 0.052536
Sensitivity | 0.52521 | 0.084945

Accuracy 0.74082 | 0.069243

FS 2 Specificity | 0.74383 | 0.07216
Sensitivity | 0.71749 0.11301

Accuracy 0.72195 | 0.079889

OI 2 Specificity | 0.72439 | 0.082558
Sensitivity | 0.74123 | 0.076078
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Accuracy 0.7972 0.062538

X FS 2 Specificity | 0.80138 | 0.065318
Sensitivity | 0.68894 0.1181

Accuracy 0.80004 | 0.07551

X Ol 2 Specificity | 0.80461 | 0.077775

Sensitivity | 0.63525 | 0.091716

Accuracy 0.75026 | 0.071022

FS 5 Specificity | 0.75447 | 0.074352
Sensitivity | 0.70776 | 0.12339

Accuracy 0.73669 | 0.073058

OI5 Specificity | 0.73997 | 0.075785

Sensitivity | 0.70726 | 0.090904

Accuracy 0.81942 | 0.059748

X FS 5 Specificity | 0.82562 | 0.062843
Sensitivity | 0.64325 0.11544

Accuracy 0.8006 0.063983

X OI5 Specificity | 0.80527 | 0.066343
Sensitivity | 0.65773 0.10157

Accuracy 0.77361 | 0.061375

FS 10 || Specificity | 0.77872 | 0.064538
Sensitivity | 0.66638 | 0.12843

Accuracy 0.76256 | 0.07007

OI 10 || Specificity | 0.76946 | 0.073948
Sensitivity | 0.63654 0.11616

Accuracy 0.82392 | 0.055779

X FS 10 Specificity | 0.83168 | 0.059066
Sensitivity | 0.55207 | 0.11363

Accuracy 0.81943 | 0.060406

X OI 10 || Specificity | 0.82677 | 0.063418
Sensitivity | 0.56516 | 0.11346

Table B.4: General cross-validation results for SVM.

Method: SVM, Trees: 10, 30, 50

KDE | Red H1 K2 u3 Ha o1 o2 o3 o4
Accuracy 0.57081 0.5706 0.79299 0.80163 0.11537 0.10729 0.060703  0.053203
Specificity 0.58362  0.58268 0.80216  0.81015 0.13378 0.12424 0.065417 0.05704
Sensitivity | 0.70528  0.69607 0.60459  0.58765 0.22807 0.21873 0.12535 0.12847
Accuracy 0.66973  0.66606  0.84995 0.85554 | 0.093235 0.091343 0.051934  0.042662
X Specificity 0.68137 0.67733 0.86018 0.86574 0.10687 0.10422 0.055013  0.045802
Sensitivity | 0.64627  0.64624 0.47039 0.47331 0.22017 0.21821 0.082485  0.077682
Accuracy | 0.71773 0.70224 0.71924 0.71856 | 0.067354 0.053823 0.072883 0.072728
FS 2 Specificity 0.71958 0.70491 0.72095 0.72014 | 0.069776  0.056227 0.075856  0.075634
Sensitivity | 0.71394  0.70363 0.76157  0.76497 0.10149 0.085097 0.11109 0.10873
Accuracy 0.68499  0.70293 0.6931 0.69272 | 0.082281 0.07157 0.081858  0.081624
Ol 2 Specificity 0.6853 0.70834 0.69358 0.69316 0.08445 0.073734  0.084468  0.084203
Sensitivity | 0.79574  0.58019 0.79763 0.79763 0.0656 0.055624  0.093219  0.093219
Accuracy 0.76945 0.75983 0.78283 0.79174 | 0.065753 0.053279  0.065842 0.06441
X FS 2 || Specificity | 0.77584 0.76451 0.78645 0.79578 | 0.069951 0.055707 0.068938  0.067242
Sensitivity 0.6626 0.66458  0.71961  0.69022 0.13436 0.11032 0.13404 0.12409
Accuracy 0.77985 0.76617  0.78717 0.7877 0.077756  0.061079  0.079578  0.079731
X OI 2 Specificity 0.78521 0.77356  0.79102 0.79154 | 0.079953 0.063437 0.081838 0.081995
Sensitivity | 0.62699 0.51089 0.65594  0.65667 | 0.046848 0.049196 0.094414  0.094478
Accuracy 0.64646  0.63665 0.72619  0.74061 | 0.053995 0.050674 0.076854  0.070041
FS 5 Specificity 0.64463  0.63508  0.73005 0.74542 | 0.055647  0.052017 0.080979  0.073905
Sensitivity | 0.80166 0.78763 0.72531  0.67425 | 0.095046 0.070386 0.13113 0.1293
Accuracy | 0.72664 0.70837 0.71767 0.71652 | 0.057549 0.051522 0.073929  0.074031
Ol 5 Specificity 0.72978 0.7118 0.71949 0.71843 | 0.060205 0.053566  0.076522 0.076574
Sensitivity | 0.70933  0.66801 0.73812  0.72739 | 0.085992  0.08661  0.097831  0.096724
Accuracy 0.72709 0.70988 0.80682 0.83364 | 0.049415 0.044154 0.062601  0.062059
X FS 5 Specificity 0.72804 0.71084 0.81357 0.84128 | 0.051185 0.045694 0.06644 0.065233
Sensitivity | 0.75567  0.72969 0.64158 0.58616 0.10876 0.083926 0.13054 0.119
Accuracy 0.78905 0.77351 0.79434 0.79425 | 0.053618 0.043564 0.065801 0.065525
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x OI5 || Specificity | 0.79343  0.7783  0.79856  0.79865 | 0.055974  0.04574  0.068373  0.068161
Sensitivity | 0.65823  0.6105  0.67458 0.67164 | 0.11389  0.11054  0.11589  0.11616
Accuracy | 0.61189  0.5836  0.76153  0.76009 | 0.092411 0.055826  0.06426  0.063924

FS 10 || Specificity | 0.62393 0.58013 0.76854 0.76563 | 0.10808  0.056896 0.067692  0.067135
Sensitivity | 0.6798  0.82951 0.59914 0.62548 | 0.20418  0.06645  0.090261  0.11361
Accuracy | 0.5878  0.59145  0.74317 0.74929 | 0.053931 0.056821 0.076158 0.074792

OI 10 || Specificity | 0.58245  0.586  0.75081 0.75719 | 0.054338 0.057307 0.081651 0.080175
Sensitivity | 0.84958 0.84081  0.6553  0.64816 | 0.067944 0.055936  0.14137  0.14221
Accuracy | 0.66831 0.67222 0.83951 0.84245 | 0.053323 0.046395 0.060459  0.059121

X | FS 10 || Specificity | 0.66863 0.67204 0.84729 0.85112 | 0.055473 0.048049 0.063504  0.062565
Sensitivity | 0.77144 0.76518 0.57891 0.54618 | 0.10013  0.09066  0.11953  0.13577
Accuracy | 0.6878  0.68658 0.81691 0.81797 | 0.049511 0.051134 0.061645  0.060899

OI 10 || Specificity | 0.68686 0.68562 0.82526 0.82674 | 0.050859 0.052399  0.065575 0.064746
Sensitivity | 0.79495 0.79361 0.57256 0.54452 | 0.090106 0.077116 0.13314  0.12983

Table B.5: General post-processed results for KNN.
Method: KNN, Neighbors: 2, 5, 10
Original Veto 1 Veto 2

KDE | Red M1 K2 u3 | M K2 U3 | pa H2 K3
TP | 35 36 36 | 27 32 31 | 25 27 28
FP | 432 451 404 | 237 282 274 | 170 195 192
FN | 2 1 1 | 10 5 6 | 12 10 9
TP | 18 25 22 | 11 17 2] 9 14 7
X FP | 244 351 288 | 110 149 126 | 67 106 87
FN | 19 12 15 | 26 20 25 | 28 23 30
TP | 31 36 33 | 27 29 30 | 26 25 25
FS2 || FP | 440 435 437 | 224 287 254 | 172 215 198
FN | 6 1 4 | 10 8 7 | 11 12 12
TP | 33 36 36 | 29 32 32 | 24 29 28
O12 || FP | 394 432 421 | 239 277 266 | 200 208 212
FN | 4 1 1| 8 5 5 | 13 8 9
TP | 23 29 23 | 17 18 17 | 11 11 16
X FS2 || FP | 286 400 363 | 118 155 130 | 67 117 99
FN | 14 8 14 | 20 19 20 | 26 26 21
TP | 22 27 26 | 17 19 15 | 10 16 13
X Ol2 || FP | 286 370 331 | 122 138 133 | 8 119 106
FN | 15 10 11 | 20 18 22 | 27 21 24
TP | 35 34 35 | 28 29 31 | 25 28 27
FS5 || FP | 429 443 417 | 239 270 253 | 169 183 180
FN | 2 3 2 | 9 8 6 | 12 9 10
TP | 35 35 36 | 29 30 32 | 26 27 27
Ol5 || FP | 414 457 427 | 220 281 270 | 184 200 192
FN | 2 2 1 8 7 5 | 11 10 10
TP | 17 28 23 | 13 17 3| 9 13 12
X FS5 || FP | 264 356 298 | 113 136 116 | 66 104 85
FN | 20 9 14 | 24 20 24 | 28 24 25
TP | 23 27 24 | 16 17 14 | 11 12 10
X oI5 | FP | 262 365 322 | 107 145 112 | 64 109 88
FN | 14 10 13 | 21 20 23 | 26 25 27
TP | 34 35 35 | 29 31 32 | 26 27 28
FS10 || FP | 443 430 386 | 238 289 265 | 176 192 191
FN | 3 2 2 | 8 6 5 | 11 10 9
TP | 33 37 36 | 28 33 33 | 23 26 28
O110 || FP | 414 428 398 | 227 272 263 | 177 197 179
FN | 4 0 1 9 4 4 | 14 11 9
TP | 22 25 23 | 14 15 14 | 10 12 14
X | FS10 | FP | 255 347 292 | 103 142 115 | 62 107 84
FN | 15 12 14 | 23 22 23 | 27 25 23
TP | 21 26 20 | 15 17 11 | 10 11 9
X | OI10 | FP | 248 337 286 | 105 132 115 | 69 103 90
FN | 16 11 17 | 22 20 26 | 27 26 28
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Table B.6: General post-processed results for random forest.

Method: Random Forest, Trees: 10, 30, 50
Original Veto 1 Veto 2

KDE | Red M1 12 M3 | 12 M3 | p1 H2 M3
TP | 35 35 33 31 32 32 27 29 28
FP | 407 354 333 | 280 263 236 | 194 194 179

FN 2 2 4 6 5 5 10 8 9

TP 29 24 23 22 14 13 16 11 11

X FP | 323 290 284 | 129 113 116 | 109 90 93
FN 8 13 14 15 23 24 21 26 26

TP | 35 35 36 32 30 33 28 27 24
FS 2 FP | 446 438 414 | 270 280 277 | 212 206 210

FN 2 2 1 5 7 4 9 10 13

TP | 36 36 35 32 32 31 30 28 28
oI 2 FP | 434 428 424 | 270 265 269 | 208 217 212

FN 1 1 2 5 5 6 7 9 9

TP 28 28 27 17 20 17 12 13 14
X FS 2 FP | 360 365 357 | 132 140 127 | 116 117 106
FN 9 9 10 20 17 20 25 24 23

TP 29 28 28 20 17 18 14 17 14
X OI 2 FP | 385 356 363 | 139 138 141 | 125 108 102
FN 8 9 9 17 20 19 23 20 23

TP | 34 34 35 32 32 30 29 27 26
FS 5 FP | 416 404 389 | 270 279 283 | 193 183 200

FN 3 3 2 5 5 7 8 10 11

TP | 36 36 36 31 33 33 29 30 29
OI5 FP | 437 417 400 | 282 283 276 | 203 204 194

FN 1 1 1 6 4 4 8 7 8

TP 28 27 28 18 17 17 16 13 15

X FS 5 FP | 342 341 335 | 131 121 125 | 113 106 97
FN 9 10 9 19 20 20 21 24 22

TP | 30 26 25 20 17 16 15 15 15

X oI5 FP | 369 346 327 | 135 127 125 | 106 96 98
FN 7 11 12 17 20 21 22 22 22

TP | 34 36 35 29 32 32 27 28 27
FS 10 || FP | 413 392 381 | 259 274 265 | 192 187 204

FN 3 1 2 8 5 5 10 9 10

TP | 36 35 34 32 33 31 29 29 28
OI 10 || FP | 418 357 351 | 279 268 254 | 206 192 182

FN 1 2 3 5 4 6 8 8 9

TP | 30 26 24 21 14 17 15 14 14
X FS 10 || FP | 331 339 331 | 130 129 123 | 104 102 105
FN 7 11 13 16 23 20 22 23 23

TP 26 22 22 17 14 15 16 10 10

X OI'10 || FP | 334 305 302 | 133 112 119 | 97 101 98
FN 11 15 15 20 23 22 21 27 27

Table B.7: General post-processed results for logistic regression.

Method: Logistic Regression

Original | Veto 1 | Veto 2
KDE Red
TP 34 32 29
FP 364 278 205
FN 3 5 8
TP 24 12 12
FP 301 122 90
FN 13 25 25
TP 34 31 28
FS 2 FP 393 271 215
FN 3 6 9
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TP 33 30 28
OI 2 FP 400 276 213
FN 4 7 9
TP 26 16 13
X FS 2 FpP 313 119 98
FN 11 21 24
TP 24 14 12
X OI 2 FP 334 118 95
FN 13 23 25
TP 34 30 27
FS 5 FP 373 273 212
FN 3 7 10
TP 34 31 28
OI5 FP 402 281 229
FN 3 6 9
TP 24 13 10
X FS 5 FP 296 123 95
FN 13 24 27
TP 27 16 11
X OI5 FP 313 117 92
FN 10 21 26
TP 33 30 27
FS 10 || FP 361 259 197
FN 4 7 10
TP 33 32 28
OI 10 FP 368 263 211
FN 4 5 9
TP 24 13 13
X FS 10 || FP 302 122 96
FN 13 24 24
TP 25 15 9
X OI 10 FP 297 116 93
FN 12 22 28

Table B.8: General post-processed results SVM.

Method: SVM, kernel: rbf, linear, BoxConst: 1, 100
Original Veto 1 Veto 2

KDE | Red M1 M2 13 4 M1 H2  p3 Ha M1 M2 P34
TP 15 22 33 31 12 14 30 29 11 12 27 26
FP | 521 539 336 346 173 181 247 254 174 177 196 198

FN 22 15 4 6 25 23 7 8 26 25 10 11

TP 16 19 19 20 11 14 8 11 9 10 7 9

X FP | 399 411 273 277 138 144 115 116 129 130 81 85
FN 21 18 18 17 26 23 29 26 28 27 30 28

TP 35 34 33 34 30 29 31 31 30 30 28 28
FS 2 FP 449 506 416 417 304 280 280 280 223 215 224 223

FN 2 3 4 3 7 8 6 6 7 7 9 9

TP 35 36 34 34 31 29 31 31 28 28 28 28
Ol 2 FP 446 446 434 437 278 272 280 281 208 211 213 211

FN 2 1 3 3 6 8 6 6 9 9 9 9

TP 24 32 25 24 14 21 15 15 13 17 13 13

X FS 2 FP | 365 422 318 313 138 145 127 121 109 113 100 96
FN 13 5 12 13 23 16 22 22 24 20 24 24

TP 26 28 25 24 15 17 16 15 14 16 13 12
X Ol 2 FP | 333 392 347 346 138 151 130 130 109 120 103 103
FN 11 9 12 13 22 20 21 22 23 21 24 25

TP 34 36 34 34 31 31 30 30 29 27 29 28
FS 5 FP 581 573 408 398 287 269 269 271 222 218 215 219

FN 3 1 3 3 6 6 7 7 8 10 8 9

TP 36 36 34 34 32 29 31 31 27 27 28 28
Ol 5 FP 458 488 429 428 284 263 278 278 205 209 222 223

FN 1 1 3 3 5 8 6 6 10 10 9 9
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TP | 31 34 21 19 20 23 12 12 18 16 10 9
X FS5 || FP | 457 463 300 286 | 159 174 124 113 | 112 127 100 85
FN | 6 3 16 18 17 14 925 25 19 21 27 28
TP | 28 30 26 27 19 20 15 16 18 16 12 13
X o15 || FP | 378 413 312 311 | 138 154 116 117 | 109 110 96 97
FN | 9 7 11 10 18 17 22 21 19 21 25 24
TP | 22 37 34 33 18 30 30 30 14 29 25 27
FS 10 || FP | 537 640 374 393 | 229 272 260 261 | 193 220 212 197
FN | 15 0 3 4 19 7 7 7 23 8 12 10
TP | 37 37 33 32 32 31 30 30 28 28 26 27
o110 || FP | 623 613 381 371 | 277 265 255 252 | 222 220 203 206
FN | 0 0 4 5 5 6 7 7 9 9 11 10
TP | 33 33 19 22 21 21 12 12 9 18 10 9
X | Fs10 || FP | 4s6 493 273 284 | 158 166 112 112 | 140 138 84 79
FN | 4 4 18 15 16 16 25 23 18 19 27 28
TP | 34 33 20 20 21 9 12 10 18 18 11 10
x |or1o | FP | 471 469 297 296 | 169 177 124 123 | 139 135 89 92
FN | 3 4 17 17 16 18 25 27 19 19 2 27
B.2 Cluster balanced training set
Table B.9: General cross-validation results for KNN.
Method: KNN, Neighbors: 2, 5, 10
KDE Red ni 12 us o1 02 03
Accuracy | 0.80096  0.84639  0.82463 | 0.083063  0.012488  0.023367
Specificity | 0.82083  0.86267 0.84247 | 0.092997  0.01608  0.034169
Sensitivity | 0.36613 0.33948 0.35578 | 0.15782  0.072709  0.11104
Accuracy | 0.94852  0.84753 0.88151 | 0.0099548 0.021675  0.012163
X Specificity | 0.96826 0.86055 0.89754 | 0.0049737 0.018842 0.011913
Sensitivity | 0.14906 0.31626 0.21314 | 0.058564  0.078103  0.026311
Accuracy | 0.70218 0.46452 0.55874 | 0.046406  0.15016  0.11644
FS 2 || Specificity | 0.71122 0.45231 0.55893 | 0.052105  0.15915  0.1179
Sensitivity | 0.53175 0.64315 0.63341 | 0.095139  0.050418  0.02953
Accuracy | 0.71415 0.74896  0.75032 | 0.091963  0.041419 0.056183
Ol 2 || Specificity | 0.72798  0.75881 0.76336 | 0.098586  0.043448  0.061796
Sensitivity | 0.44511  0.4621  0.46033 | 0.11987  0.024792  0.071216
Accuracy | 0.79542 0.46361  0.6062 | 0.038445  0.12627 _ 0.090589
X FS 2 || Specificity | 0.80667 0.45663 0.60107 | 0.039376  0.13065  0.097526
Sensitivity | 0.20011 0.58054 0.58694 | 0.035247  0.075599  0.066464
Accuracy | 0.86461 0.75828 0.81169 | 0.021072  0.045101 _ 0.033219
X OI2 | Specificity | 0.8805 0.76664  0.8235 | 0.023287  0.046955  0.036026
Sensitivity | 0.21162  0.44357 0.36902 | 0.026468  0.065054 0.055273
Accuracy | 0.7094  0.72606  0.74716 | 0.053858  0.040369  0.03812
FS5 || Specificity | 0.7223  0.73496 0.75812 | 0.062143  0.043066  0.043529
Sensitivity | 0.44377  0.4238  0.45668 | 0.07271  0.055255  0.042522
Accuracy | 0.74213 07820  0.7814 | 0.097911  0.026635  0.038869
OI5 | Specificity | 0.75775 0.79432  0.79517 | 0.10648  0.029913  0.045935
Sensitivity | 0.44576 0.43268  0.4325 | 0.13291  0.033088  0.046541
Accuracy | 0.85689  0.76386  0.80526 | 0.028612  0.035421 _ 0.030226
X FS5 | Specificity | 0.87121 07712  0.81639 | 0.029271  0.037637  0.031427
Sensitivity | 0.20701  0.47619  0.3187 | 0.044195  0.040618 0.016979
Accuracy | 0.90479 0.79196  0.84705 | 0.0123 0.02004  0.018242
X OI5 || Specificity | 0.92189 0.80112 0.85976 | 0.012516  0.02914  0.020435
Sensitivity | 0.19381 0.42264  0.303 | 0.035864  0.039767  0.046483
Accuracy | 0.77673  0.80544  0.79893 | 0.065864  0.022898  0.032222
FS 10 | Specificity | 0.79364 0.81944 0.81367 | 0.075724  0.026961  0.037208
Sensitivity | 0.42592 0.38956 0.35473 | 0.15765 0.065  0.063598
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Accuracy 0.78387  0.83934 0.83713 0.088653 0.015542  0.026763
OI 10 Specificity | 0.80248 0.8555 0.85564 0.097561 0.019775  0.037389
Sensitivity | 0.37331  0.34349  0.34112 0.12285 0.069769  0.094983

Accuracy 0.90906  0.81463  0.84963 | 0.020539  0.027316  0.017904
X FS 10 || Specificity | 0.92698  0.8266  0.86254 | 0.022847  0.029122 0.016711
Sensitivity | 0.18335 0.35096  0.28655 0.04763 0.06106  0.035677

Accuracy 0.93322  0.84457  0.88933 0.009901 0.022241  0.011839
X OI 10 Specificity 0.9522 0.85764  0.90548 | 0.0087529  0.020622 0.013814
Sensitivity | 0.15012 0.3121 0.23024 0.03712 0.070919  0.031781

Table B.10: General cross-validation results for randf.

Method: Random Forest, Trees: 10, 30, 50

KDE Red M1 M2 n3 o1 02 03

Accuracy 0.39937  0.52311 0.47582 | 0.066256  0.10055 0.099686
Specificity | 0.38631  0.51659 0.46566 | 0.071972  0.10204 0.10441
Sensitivity | 0.74999  0.67425 0.67433 | 0.047927  0.050551 0.054626

Accuracy 0.53975  0.58065 0.57238 | 0.061329  0.079141 0.080673
X Specificity | 0.53303  0.57632 0.56631 | 0.064279  0.080459  0.083595
Sensitivity | 0.67172  0.61497  0.63527 | 0.087097 0.080131 0.076888

Accuracy 0.46296 0.57224  0.5638 0.10972  0.075957  0.060502
FS 2 Specificity 0.4498  0.57258 0.55983 | 0.12124  0.076547 0.0637
Sensitivity | 0.65498  0.51326 0.63436 | 0.077944  0.050529  0.059362

Accuracy 0.68573  0.71481  0.72507 | 0.051752 0.0457 0.047154
OI2 Specificity | 0.68926  0.72162 0.73212 | 0.052526  0.046707  0.048362
Sensitivity | 0.51976  0.47907 0.47542 | 0.043725 0.019992 0.029986

Accuracy 0.62888  0.73239  0.62009 | 0.06603  0.062199  0.0096489
X FS 2 Specificity | 0.62997  0.73923  0.62082 | 0.067577 0.063558  0.010997
Sensitivity | 0.51263  0.46302 0.50311 | 0.040514 0.044053  0.060066

Accuracy 0.697 0.71597  0.72306 | 0.059366  0.05812 0.057795
X OI2 Specificity 0.7033  0.72329 0.73148 | 0.060926  0.060177  0.059863
Sensitivity | 0.4571 0.46215  0.41295 | 0.05695 0.05791 0.071215

Accuracy 0.50046  0.55437  0.56055 | 0.094746  0.039592 0.023748
FS 5 Specificity | 0.48957  0.55186  0.55745 0.10452 0.039995 0.02592
Sensitivity | 0.61503  0.60679  0.64688 | 0.086426 0.05382 0.093339

Accuracy 0.60021  0.65202  0.64443 | 0.049793  0.042594  0.040346
oI5 Specificity 0.5983  0.65336  0.64439 | 0.051685 0.043321 0.041653
Sensitivity | 0.60818  0.59114  0.59887 | 0.035817  0.029131 0.037425

Accuracy 0.63478  0.59802  0.59489 | 0.041672  0.049977  0.031196
X FS 5 Specificity | 0.63598  0.59687  0.59511 | 0.042571 0.050434  0.031698
Sensitivity | 0.51981  0.55936  0.58314 | 0.02714  0.061073  0.071186

Accuracy 0.68199  0.69059  0.70891 | 0.057649  0.054776  0.052082
X oI5 Specificity | 0.68441  0.69524  0.71334 0.0587 0.055889 0.05331
Sensitivity | 0.55015  0.49816  0.53886 | 0.056918 0.031757  0.039076

Accuracy 0.46942  0.56283  0.59341 0.10176  0.058653  0.036425
FS 10 || Specificity | 0.45575  0.5594  0.59071 0.11164  0.060546  0.037695
Sensitivity | 0.72781  0.60809  0.64068 | 0.062223  0.059292  0.042618

Accuracy 0.49824  0.54992  0.58094 | 0.086061  0.074265 0.070548
OI 10 Specificity | 0.48988  0.54531  0.57795 | 0.090439  0.076682 0.071769
Sensitivity | 0.68398 0.6065 0.60268 0.04616 0.044992 0.046688

Accuracy 0.57509  0.62443 0.64378 | 0.046614  0.05887 0.041089
X FS 10 || Specificity 0.5683  0.62342  0.64428 | 0.052704 0.060204 0.04232
Sensitivity | 0.6509  0.58715 0.57234 | 0.091226 0.076221 0.070072

Accuracy 0.6068  0.63244  0.64399 | 0.084145 0.070491 0.065882
X OI 10 Specificity | 0.60619  0.63086  0.64311 | 0.085509 0.072139  0.068031
Sensitivity | 0.56162  0.57126  0.55502 | 0.051442  0.062001 0.054086

Table B.11: General cross-validation results for logistic regression.

l Method: Logistic Regression ‘
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KDE Red n1 o1

Accuracy 0.75653 | 0.034969
Specificity | 0.76231 | 0.037054
Sensitivity | 0.54502 | 0.075376
Accuracy 0.7874 | 0.031942
X Specificity | 0.79362 | 0.033473
Sensitivity | 0.49509 | 0.080091
Accuracy 0.64033 | 0.050336
FS 2 Specificity | 0.64312 | 0.051447
Sensitivity | 0.53983 | 0.052516
Accuracy 0.78455 | 0.054939
OI 2 Specificity | 0.79983 | 0.061071
Sensitivity | 0.32614 0.1101
Accuracy 0.75104 | 0.062937
X FS 2 Specificity | 0.76315 | 0.071205
Sensitivity | 0.41461 | 0.076192

Accuracy 0.66372 | 0.08624
X oI 2 Specificity 0.677 0.093597
Sensitivity | 0.22102 | 0.050905
Accuracy 0.71935 | 0.063184
FS 5 Specificity 0.7297 | 0.069125
Sensitivity | 0.47496 | 0.067658
Accuracy 0.76699 | 0.054913
OI5 Specificity | 0.78014 | 0.060267
Sensitivity | 0.37338 | 0.11559
Accuracy 0.7454 | 0.045662
X FS 5 Specificity | 0.75537 | 0.051375
Sensitivity 0.4119 0.026491
Accuracy 0.79782 | 0.044014
X oI5 Specificity | 0.80959 | 0.047186
Sensitivity | 0.33033 0.12114
Accuracy 0.74259 | 0.041223
FS 10 || Specificity | 0.74823 | 0.043532
Sensitivity | 0.56194 | 0.072853
Accuracy 0.74309 | 0.049882
OI 10 || Specificity | 0.75577 | 0.055977
Sensitivity | 0.38386 | 0.082063

Accuracy 0.77497 0.036
X FS 10 Specificity | 0.78315 | 0.038063
Sensitivity | 0.43061 | 0.033705

Accuracy 0.77439 | 0.03927
X OI 10 || Specificity | 0.78542 | 0.041867
Sensitivity | 0.33474 | 0.07438

Table B.12: General cross-validation results for SVM.

Method: SVM, Trees: 10, 30, 50

KDE Red

|2} M2 K3 o1 a2 o3 o4
Accuracy 0.94323 0.92415 0.75797 0.8085 0.012751 0.017713 0.039004 0.0018163
Specificity 0.97011 0.94965 0.76615 0.81707 0.0063931  0.0064666 0.042875 0.0056199
Sensitivity | 0.025759 0.04911 0.50673 0.50821 0.019935 0.027982 0.063006 0.076296
Accuracy 0.94331 0.93291 0.78359 0.84183 0.016753 0.016613 0.032976 0.017371
X Specificity 0.96492 0.95401 0.79081 0.851 0.007437 0.008927 0.035428 0.01744
Sensitivity | 0.021578  0.035008 0.49064 0.43741 0.013926 0.01687 0.098155 0.084837
Accuracy 0.76794 0.52901 0.97005 0.96866 0.033552 0.056822 0.015781 0.018167
FS 2 Specificity 0.78346 0.52769 0.99593 0.99259 0.038927 0.059269 0.0018502  0.0053274
Sensitivity 0.25106 0.58387 0.070285 0.14156 0.074667 0.12396 0.022275 0.085939
Accuracy 0.71675 0.66635 0.78455 0.78386 0.058858 0.034413 0.062818 0.06281
OI 2 Specificity 0.72622 0.6714 0.80655 0.80588 0.061904 0.035672 0.076631 0.076706
Sensitivity 0.43624 0.51135 0.26601 0.26335 0.054954 0.033317 0.1358 0.13554
Accuracy 0.71773 0.53217 0.97583 0.97611 0.058285 0.029594 0.012166 0.012704
X FS 2 Specificity 0.72543 0.535 0.99694 0.9965 0.057045 0.03303 0.0016259 0.002048
Sensitivity 0.26355 0.56834 0.0797 0.1389 0.071702 0.13812 0.030084 0.095037
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Accuracy 0.75816 0.70393 0.89208 0.89178 0.047481 0.047784 0.081114 0.081414
X OI 2 Specificity 0.76629 0.70939 0.91396 0.91366 0.049165 0.04877 0.086038 0.086344
Sensitivity 0.38064 0.48781 0.032258  0.032258 0.091544 0.040213 0.032258 0.032258
Accuracy 0.86294 0.7795 0.73637 0.75526 0.010937 0.031043 0.065791 0.069067
FS 5 Specificity 0.88548 0.79486 0.75111 0.7712 0.019835 0.024814 0.076676 0.078779
Sensitivity 0.13882 0.22183 0.45291 0.39033 0.050974 0.037261 0.081431 0.064579
Accuracy 0.76451 0.72715 0.77055 0.76035 0.032831 0.032234 0.065506 0.056189
OI5 Specificity 0.77318 0.73327 0.79187 0.77391 0.035463 0.03363 0.080109 0.063249
Sensitivity 0.52108 0.5762 0.2884 0.37827 0.05405 0.080685 0.16213 0.13243
Accuracy 0.84457 0.81772 0.77742 0.80112 0.014311 0.026874 0.042608 0.052581
X FS 5 Specificity 0.86131 0.83199 0.79043 0.81493 0.018223 0.024155 0.051467 0.06123
Sensitivity 0.15032 0.18427 0.38712 0.39023 0.043276 0.041773 0.07141 0.082163
Accuracy 0.77074 0.75646 0.80969 0.81003 0.032285 0.031914 0.054405 0.056815
X Ol 5 Specificity 0.77808 0.76319 0.82775 0.8276 0.032338 0.033213 0.065654 0.066994
Sensitivity 0.46784 0.53006 0.254 0.25908 0.034111 0.084195 0.15219 0.14504
Accuracy 0.91515 0.86346 0.75287 0.74909 0.0082403 0.023733 0.052549 0.03514
FS 10 Specificity 0.94055 0.88519 0.76604 0.75903 0.012023 0.016453 0.0607 0.038661
Sensitivity | 0.063072 0.10079 0.41692 0.40314 0.040153 0.03965 0.049819 0.032565
Accuracy 0.89868 0.87098 0.7238 0.7298 0.012496 0.01564 0.060147 0.062101
OI 10 Specificity 0.92318 0.89357 0.73834 0.7452 0.018744 0.012598 0.070009 0.07179
Sensitivity | 0.090815 0.10313 0.37767 0.34325 0.040022 0.041705 0.09556 0.089901
Accuracy 0.92235 0.8855 0.76844 0.78086 0.011256 0.02173 0.041695 0.037603
X FS 10 Specificity 0.94297 0.90386 0.77818 0.79141 0.0092369 0.01627 0.046152 0.043061
Sensitivity | 0.060333  0.093093 0.46936 0.44222 0.030192 0.034148 0.086476 0.055236
Accuracy 0.90853 0.89511 0.74773 0.75012 0.012802 0.016262 0.048585 0.041178
X Ol 10 Specificity 0.92863 0.91428 0.75959 0.76153 0.010452 0.01276 0.054073 0.04514
Sensitivity | 0.068608 0.078148 0.33879 0.32892 0.029362 0.031052 0.084611 0.072033
Table B.13: General post-processed results for KNN.
Method: KNN, Neighbors: 2, 5, 10
Original Veto 1 Veto 2

KDE | Red M1 2 M3 | 12 M3 | p1 H2 M3

TP 19 32 27 15 23 21 9 11 12

FP | 285 380 384 | 106 205 179 85 86 103

FN 18 5 10 22 14 16 28 26 25

TP 3 25 21 2 18 16 2 10 8

X FP 94 351 290 35 142 119 8 86 59

FN 34 12 16 35 19 21 35 27 29

TP 36 37 36 25 20 31 22 27 27

FS 2 FP | 539 570 562 | 231 215 182 | 181 199 210

FN 1 0 1 12 17 6 15 10 10

TP 31 36 34 22 29 27 19 24 20

OI 2 FP | 428 457 441 | 213 229 245 | 164 186 175

FN 6 1 3 15 8 10 18 13 17

TP 30 33 34 21 21 20 19 24 23

X FS 2 FP | 428 478 477 | 184 140 157 | 125 185 149

FN 7 4 3 16 16 17 18 13 14

TP 25 29 29 15 21 22 8 16 13

X OI 2 FP | 314 422 386 | 127 163 158 69 103 101

FN 12 8 8 22 16 15 29 21 24

TP 35 36 36 25 29 29 13 20 19

FS 5 FP 538 495 480 | 226 221 212 | 174 183 161

FN 2 1 1 12 8 8 24 17 18

TP 30 33 33 23 25 24 18 21 17

OI5 FpP | 371 442 420 | 158 218 208 | 125 141 141

FN 7 4 4 14 12 13 19 16 20

TP 26 29 28 16 21 18 10 13 12

X FS 5 FP | 317 412 394 | 149 159 151 81 107 97

FN 11 8 9 21 16 19 27 24 25

TP 19 29 24 13 18 14 6 18 8

X OI5 FP | 231 408 355 95 167 130 44 107 81

FN 18 8 13 24 19 23 31 19 29
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TP 29 35 33 23 26 25 14 13 19
FS 10 FP | 385 433 426 | 169 210 220 | 113 126 129

FN 8 2 4 14 11 12 23 24 18

TP 26 30 25 20 22 17 12 14 11

OI 10 FP | 323 375 364 | 129 189 153 | 109 90 88

FN 11 7 12 17 15 20 25 23 26

TP 12 26 28 7 18 19 5 10 12

X FS 10 FP | 199 393 350 88 155 140 42 98 79
FN 25 11 9 30 19 18 32 27 25

TP 12 25 16 7 18 7 5 11 5

X OI 10 FP 141 344 268 45 139 99 22 75 54
FN 25 12 21 30 19 30 32 26 32

Table B.14: General post-processed results for random forest.
Method: Random Forest, Trees: 10, 30, 50
Original Veto 1 Veto 2

KDE | Red M1 2 M3 | 2 M3 | p1 H2 M3
TP 36 36 36 14 21 19 25 26 26
FP | 683 588 611 124 164 154 | 209 205 204

FN 1 1 1 23 16 18 12 11 11

TP 35 35 35 24 24 22 26 27 27
X FP | 510 483 467 | 165 148 150 | 208 204 203
FN 2 2 2 13 13 15 11 10 10

TP 37 36 36 27 25 18 27 22 25
FS 2 FP | 663 579 589 | 262 173 170 | 185 196 184

FN 0 1 1 10 12 19 10 15 12

TP 36 36 36 27 26 27 25 26 26
OI 2 FP | 490 459 447 | 226 236 238 | 189 184 206

FN 1 1 1 10 11 10 12 11 11

TP 35 35 35 23 26 21 27 23 23
X FS 2 FP | 466 402 497 | 185 201 142 | 194 173 174
FN 2 2 2 14 11 16 10 14 14

TP 35 35 35 25 29 29 27 24 25
X OI 2 FP | 418 412 395 | 185 186 194 | 182 172 167
FN 2 2 2 12 8 8 10 13 12

TP 36 36 36 16 21 20 27 25 24
FS 5 FP | 628 604 589 | 166 145 137 | 199 199 189

FN 1 1 1 21 16 17 10 12 13

TP 36 36 36 22 21 23 22 22 23
OI5 FP | 577 516 519 | 169 190 161 | 188 197 190

FN 1 1 1 15 16 14 15 15 14

TP 35 35 35 21 21 23 23 25 25
X FS 5 FP | 496 501 494 | 170 135 134 | 190 188 182
FN 2 2 2 16 16 14 14 12 12

TP 35 35 35 26 23 24 23 22 23
X OI5 FP | 426 417 407 | 185 168 177 | 185 179 172
FN 2 2 2 11 14 13 14 15 14

TP 36 36 35 21 20 22 26 24 25
FS 10 FP | 618 588 544 | 197 143 153 | 206 187 189

FN 1 1 2 16 17 15 11 13 12

TP 36 36 36 20 25 23 25 27 27
OI 10 FP | 605 582 556 | 147 173 173 | 200 208 199

FN 1 1 1 17 12 14 12 10 10

TP 35 35 35 22 23 22 26 25 24
X FS 10 FP | 502 459 457 | 151 159 151 | 197 190 186
FN 2 2 2 15 14 15 11 12 13

TP 35 35 35 26 22 25 26 26 26
X OI 10 FP | 440 437 441 168 165 182 | 202 196 200
FN 2 2 2 11 15 12 11 11 11
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Table B.15: General post-processed results for logistic regression.

Method: Logistic Regression
Original | Veto 1 | Veto 2
KDE Red
TP 35 30 25
FP 447 259 181
FN 2 7 12
TP 30 21 19
X FP 385 148 108
FN 7 16 18
TP 36 25 27
FS 2 FpP 531 197 210
FN 1 12 10
TP 27 21 17
OI 2 FP 385 223 165
FN 10 16 20
TP 17 10 8
X FS 2 FP 358 125 103
FN 20 27 29
TP 26 13 13
X OI 2 FP 425 107 109
FN 11 24 24
TP 34 27 24
FS 5 FP 486 192 192
FN 3 10 13
TP 32 28 21
OI5 FP 409 253 186
FN 5 9 16
TP 28 19 15
X FS 5 FP 399 132 108
FN 9 18 22
TP 26 18 12
X oI5 FP 362 128 99
FN 11 19 25
TP 36 29 25
FS 10 || FP 462 250 193
FN 1 8 12
TP 31 30 24
OI 10 FP 444 245 198
FN 6 7 13
TP 31 23 18
X FS 10 || FP 405 145 114
FN 6 14 19
TP 28 20 16
X OI 10 FP 392 135 112
FN 9 17 21
Table B.16: General post-processed results SVM.
Method: SVM, kernel: rbf, linear, BoxConst: 1, 100
Original Veto 1 Veto 2
KDE | Red M1 12 3 2 M1 2 3 4 ©1 2 3 4
TP 10 14 34 35 1 2 29 31 0 0 24 25
FP 112 183 430 424 32 39 243 252 0 0 166 161
FN 27 23 3 2 36 35 8 6 37 37 13 12
TP 9 10 30 29 6 7 21 19 1 3 15 13
X FP | 117 150 384 351 39 43 139 126 11 16 110 79
FN 28 27 7 8 31 30 16 18 36 34 22 24
TP 31 37 8 12 25 20 8 11 15 23 4 10
FS 2 FP | 430 639 14 28 235 177 9 18 150 189 5 10
FN 6 0 29 25 12 17 29 26 22 14 33 27
TP | 36 36 11 11 28 25 7 7 25 26 5 5
OI 2 FP | 459 562 348 349 231 207 187 187 187 202 140 139
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FN 1 1 26 26 9 12 30 30 12 11 32 32
TP 31 35 2 3 17 21 1 1 20 26 0 0
FS 2 FP | 439 540 12 13 143 146 4 5 125 178 0 0
FN 6 2 35 34 20 16 36 36 17 11 37 37
TP 29 33 2 2 19 26 2 2 17 18 2 2
OI 2 FP | 408 459 79 79 148 179 45 46 122 133 43 43
FN 8 4 35 35 18 11 35 35 20 19 35 35
TP 16 33 26 28 8 18 23 24 4 9 19 20
FS 5 FP | 350 483 434 403 161 172 214 189 65 89 170 180
FN 21 4 11 9 29 19 14 13 33 28 18 17
TP 36 35 11 31 30 27 8 26 25 24 6 21
oI5 FP | 452 506 367 431 240 248 196 237 168 174 147 173
FN 1 2 26 6 7 10 29 11 12 13 31 16
TP 24 26 22 16 15 21 14 10 9 16 11 7
FS5 FP | 360 389 398 317 132 154 139 105 T 88 107 99
FN 13 11 15 21 22 16 23 27 28 21 26 30
TP 29 28 8 9 19 21 6 7 18 11 4 4
OI5 FP | 407 435 316 313 152 167 116 120 113 123 92 92
FN 8 9 29 28 18 16 31 30 19 26 33 33
TP 11 24 29 33 4 10 23 28 0 2 22 22
FS 10 || FP | 204 348 408 465 82 119 231 264 11 30 169 188
FN 26 13 8 4 33 27 14 9 37 35 15 15
TP 17 24 28 29 4 9 24 26 1 1 18 19
OI 10 FP | 245 341 431 427 101 119 205 200 23 38 178 175
FN 20 13 9 8 33 28 13 11 36 36 19 18
TP 12 19 29 27 9 15 21 20 3 9 11 12
FS10 || FP | 182 289 386 379 68 116 134 131 29 41 115 106
FN 25 18 8 10 28 22 16 17 34 28 26 25
TP 12 17 26 26 7 13 17 18 4 7 10 13
OI 10 FP | 220 238 393 408 73 85 132 136 29 47 111 107
FN 25 20 11 11 30 24 20 19 33 30 27 24
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Appendix 3: HMS Patient 21
result

C.1 Randomly balanced training set

Table C.1: Cross-validation results for KNN, patient 21.

Method: KNN, Neighbors: 2, 5, 10
KDE Red 5 wo n3 o1 o2 o3
Accuracy 0.89307  0.82861 0.88911 | 0.0094919 0.015675 0.0099372
Specificity | 0.90111  0.83279  0.89521 | 0.0099704  0.015626 0.0095423
Sensitivity | 0.29425 0.5421 0.46932 0.054593 0.063122 0.074267
Accuracy 0.93239  0.88358 0.93625 | 0.0079124  0.013007  0.0088568
X Specificity | 0.93926  0.88879  0.94283 | 0.0083238 0.013303 0.0090089
Sensitivity | 0.24795  0.38353  0.30905 0.066477 0.082433 0.069643
Accuracy 0.88628 0.81583  0.86163 | 0.010582 0.015532 0.021091
FS 2 Specificity 0.8935 0.8195 0.86657 | 0.0097642 0.015465 0.020805
Sensitivity | 0.33844  0.56645 0.49607 | 0.062795 0.065513 0.093553
Accuracy 0.87723  0.81125 0.86591 0.010392 0.016011 0.014476
OI 2 Specificity | 0.88362 0.81437 0.87074 | 0.010053 0.015633 0.013717
Sensitivity | 0.37545  0.58447  0.5162 0.089197 0.084839 0.083102
Accuracy 0.92503  0.87902  0.93135 | 0.0054679 0.012404 0.010736
X FS 2 Specificity 0.9312  0.88381 0.93654 | 0.0053946 0.012975 0.0098928
Sensitivity | 0.35234  0.49308 0.46769 | 0.056864 0.077618 0.091859
Accuracy 0.94077  0.8853 0.92224 | 0.008624 0.016917 0.013105
X OI 2 Specificity | 0.94779  0.89013  0.92772 | 0.0085196 0.017154 0.012827
Sensitivity | 0.24503  0.45493 0.4211 0.062112 0.089181 0.083241
Accuracy 0.87826  0.81023 0.87661 0.007275 0.018888 0.014137
FS5 Specificity | 0.88482  0.81433 0.88113 | 0.0072223 0.018612 0.013233
Sensitivity | 0.39217  0.51863  0.53467 | 0.084223 0.077206 0.10026
Accuracy 0.88377  0.82034  0.89098 | 0.010102 0.011305 0.012408
oI5 Specificity | 0.89096 0.82459  0.89683 | 0.0097943 0.010995 0.011837
Sensitivity | 0.35045 0.51665 0.44863 | 0.072152 0.069791 0.076622
Accuracy 0.92073  0.88053  0.94318 | 0.0050792 0.015343 0.0075848
X FS 5 Specificity | 0.92756  0.88464 0.94918 | 0.0048617  0.015855 0.0063359
Sensitivity | 0.27662  0.53883  0.36175 0.054106 0.078871 0.10216
Accuracy 0.93507  0.88372  0.93653 | 0.0062346 0.010217  0.0084868
X OI5 Specificity | 0.94213  0.88835  0.94249 | 0.0060525 0.010589 0.0076667
Sensitivity | 0.2348  0.47107 0.39058 | 0.066624 0.080279 0.067711
Accuracy 0.88622  0.81056  0.87796 | 0.011532 0.017727 0.012542
FS 10 Specificity | 0.89289  0.81438 0.88254 | 0.011403 0.017804 0.012628
Sensitivity | 0.38662  0.53054  0.55431 0.068337 0.06776 0.080013
Accuracy 0.88883  0.8145 0.88122 | 0.0087497  0.015878 0.010891
OI 10 Specificity | 0.89579  0.81819  0.88623 | 0.0092358 0.015951 0.010289
Sensitivity | 0.37578  0.55164  0.52594 | 0.070513 0.067409 0.082857
Accuracy 0.92705  0.88088 0.9353 | 0.0073375 0.010764  0.0079205
X FS 10 Specificity | 0.93357  0.88559  0.94106 | 0.0075395 0.010941 0.0074027
Sensitivity | 0.28318  0.4524  0.38964 | 0.074602 0.08657 0.081072
Accuracy 0.94066  0.88811 0.94177 | 0.0054291 0.0084594  0.0057679
X OI 10 Specificity | 0.94747  0.89291 0.94738 | 0.0049563 0.0083771  0.0042887
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\ \ | Sensitivity | 0.26532 0.44775 0.41425 | 0.05822  0.071481  0.077403
Table C.2: Cross-validation results for randf, patient 21.
Method: Random Forest, Trees: 10, 30, 50
KDE Red ni n2 n3 o1 o9 o3
Accuracy | 0.81098 0.84163 0.85497 | 0.020298  0.019961  0.017474
Specificity | 0.81412  0.84538  0.8589 | 0.020605  0.019502  0.017116
Sensitivity | 0.58171 0.57148 0.55785 | 0.097639  0.073278  0.089082
Accuracy | 0.87097 0.91738 0.91632 | 0.01072  0.004355  0.0078249
X Specificity | 0.87472  0.92205 0.92133 | 0.011682  0.0040029  0.0078532
Sensitivity | 0.56886 0.52078  0.4676 | 0.10668  0.10222  0.083972
Accuracy | 0.79315 0.81515 0.81731 | 0.026073 0.018813  0.016797
FS 2 | Specificity | 0.79589 0.81834 0.82093 | 0.026463  0.018716  0.016456
Sensitivity | 0.57976  0.56199  0.53431 | 0.093119  0.076994  0.086364
Accuracy | 0.78683 0.80398 0.81195 | 0.01991  0.025055  0.025922
Ol 2 | Specificity | 0.78881 0.80695 0.81491 | 0.02008  0.024739  0.025731
Sensitivity | 0.63452  0.5869  0.59827 | 0.075304  0.076138  0.082401
Accuracy | 0.85538 0.89402 0.90222 | 0.015845 0.010149  0.012162
X FS 2 || Specificity | 0.85997 0.89814 0.90681 | 0.015819  0.0093501  0.010919
Sensitivity | 0.42477  0.53363  0.49935 | 0.074121  0.093574  0.10021
Accuracy | 0.86192 0.88805 0.89391 | 0.016623  0.014997  0.013999
X OI2 | Specificity | 0.86608 0.89301 0.89904 | 0.016823  0.015099  0.013875
Sensitivity | 0.50915 0.44844 0.42484 | 0.09784  0.089942  0.099888
Accuracy | 0.80106 0.82954 0.83526 | 0.02031  0.015666  0.020227
FS5 || Specificity | 0.80419 0.83271 0.83894 | 0.020247  0.015095  0.020267
Sensitivity | 0.5619  0.59713  0.54612 | 0.091364  0.08641  0.077663
Accuracy | 0.78629 0.81534 0.82617 | 0.021776  0.022264  0.023459
OI5 || Specificity | 0.78825 0.81861 0.82973 | 0.022131  0.022328  0.023993
Sensitivity | 0.64015 0.56677 0.55586 | 0.10618  0.099797  0.10148
Accuracy | 0.86622 0.90288 0.90311 | 0.013028 0.0091133  0.010059
X FS 5 || Specificity | 0.87026 0.90745 0.90757 | 0.013646  0.008581  0.0093759
Sensitivity | 0.50044  0.49493  0.50873 | 0.072663  0.085613  0.09233
Accuracy | 0.8545  0.89833 0.90316 | 0.017716  0.0131 0.012722
X OL5 | Specificity | 0.85806 0.90282 0.90784 | 0.017876  0.013405  0.012634
Sensitivity | 0.56295 0.51175 0.49935 | 0.10243  0.095442  0.09413
Accuracy | 0.80274 0.83125 0.83497 | 0.028426  0.017769  0.020126
FS 10 || Specificity | 0.80559 0.83519  0.83824 | 0.028321  0.017616  0.01993
Sensitivity | 0.59895 0.52781 0.59583 | 0.089815  0.087199  0.084853
Accuracy | 0.78631 0.82545 0.84526 | 0.021807 0.023146  0.018494
OI 10 || Specificity | 0.78858 0.82829  0.84837 | 0.022075  0.023367  0.018093
Sensitivity | 0.62551 0.62145 0.61414 | 0.084448  0.08738  0.079623
Accuracy | 0.86565 0.90229 0.90805 | 0.012739  0.010361  0.01682
X | FS10 || Specificity | 0.87034 0.90686 0.91277 | 0.013027 0.0097121  0.016481
Sensitivity | 0.47182 0.50828  0.49805 | 0.074887  0.096469  0.097755
Accuracy | 0.85751 0.9014 0.90561 | 0.0183  0.012137  0.011437
X | OI10 || Specificity | 0.86149 0.90622 0.91057 | 0.018527  0.01231  0.011075
Sensitivity | 0.5313  0.47717  0.47013 | 0.087852  0.090564  0.09148

Table C.3: Cross-validation results for logistic regression, patient 21.

XVIII

Method: Logistic Regression

KDE Red 1 o1
Accuracy 0.75014 | 0.010641
Specificity | 0.75294 | 0.011299
Sensitivity | 0.60132 | 0.098643
Accuracy 0.83388 0.012016
X Specificity | 0.83871 0.012998
Sensitivity | 0.43613 | 0.081429
Accuracy 0.84253 | 0.013759
FS 2 Specificity | 0.84742 | 0.013231
Sensitivity | 0.48994 0.114
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Accuracy 0.83746 0.017044

OI 2 Specificity | 0.84078 | 0.016946
Sensitivity | 0.58905 0.10744

Accuracy 0.92323 | 0.011612

X FS 2 Specificity | 0.92856 | 0.011352
Sensitivity | 0.45097 | 0.089625

Accuracy 0.92135 | 0.010128

X Ol 2 Specificity 0.926 0.0094545
Sensitivity | 0.52321 0.10477

Accuracy 0.81256 | 0.016968

FS5 Specificity | 0.81663 0.016957
Sensitivity | 0.51313 | 0.063961

Accuracy 0.83135 0.017224

Ol 5 Specificity | 0.83445 | 0.017194
Sensitivity | 0.61077 | 0.085496

Accuracy 0.90631 0.011256

X FS 5 Specificity | 0.91138 | 0.010775
Sensitivity 0.4724 0.08517

Accuracy 0.91605 | 0.010185

X OI5 Specificity | 0.92078 | 0.0088446
Sensitivity | 0.49389 | 0.096334

Accuracy 0.78525 | 0.011862

FS 10 || Specificity | 0.78945 | 0.012222
Sensitivity | 0.47339 | 0.077983

Accuracy 0.82046 | 0.012927

OI 10 Specificity | 0.82413 0.012628
Sensitivity | 0.59737 | 0.087889

Accuracy 0.87315 0.01059

X FS 10 || Specificity | 0.87792 | 0.0093055
Sensitivity | 0.47655 0.10991

Accuracy 0.89866 | 0.0077734

X OI 10 || Specificity | 0.90376 | 0.0069257
Sensitivity | 0.46347 0.07986

Table C.4: Cross-validation results for SVM, patient 21.

Method: SVM, Trees: 10, 30, 50

KDE Red I H2 w3 m o1 o2 o3 o4
Accuracy 0.96465 0.94504  0.82982  0.75277 | 0.0038707  0.0056756 0.012263 0.015988
Specificity 0.97727 0.95729  0.83446  0.75646 | 0.0045027 0.0067644  0.012566 0.016959
Sensitivity | 0.011364  0.020292 0.51843  0.53009 | 0.011364 0.013411 0.075691 0.082138
Accuracy 0.98464 0.96257 0.90434 0.82786 | 0.0031454  0.0044492  0.0069245 0.015503
X Specificity 0.99399 0.97148  0.91033 0.83252 | 0.0025536  0.0051884  0.0061002 0.01588
Sensitivity | 0.012401 0.03373 0.3636 0.44808 | 0.0091059  0.026694 0.058215 0.081605
Accuracy 0.76617 0.76175  0.86864 0.85221 0.023744 0.028746 0.015659 0.01387
FS 2 Specificity 0.76839 0.7676 0.87311  0.85703 | 0.023817 0.028721 0.01538 0.014604
Sensitivity | 0.61008 0.29697  0.54594  0.50779 | 0.071437 0.070475 0.10976 0.10574
Accuracy 0.8347 0.74431 0.84583  0.84333 | 0.015391 0.016024 0.011498 0.011267
Ol 2 Specificity 0.83836 0.74671 0.84926  0.84674 0.014448 0.016209 0.010945 0.010797
Sensitivity | 0.56418 0.58277  0.58905  0.58905 | 0.072249 0.0578 0.10744 0.10744
Accuracy 0.85541 0.85555  0.92856  0.92979 | 0.0081788  0.019447 0.010292 0.0119
X FS 2 Specificity 0.85886 0.86246  0.93388 0.9351 0.0084988 0.01914 0.0096119  0.011048
Sensitivity 0.5873 0.15068  0.44627  0.45932 | 0.090098 0.040065 0.089543 0.083607
Accuracy 0.92037 0.85226  0.93261  0.92891 0.014042 0.021137 0.009761 0.010105
X Ol 2 Specificity 0.92565 0.8567 0.93782  0.93398 | 0.013509 0.021207  0.0087481  0.0089884
Sensitivity 0.4474 0.47418  0.46526  0.47419 0.09163 0.058567 0.085991 0.088006
Accuracy 0.82024 0.78806 0.84229  0.82422 0.045971 0.033746 0.011091 0.013427
FS 5 Specificity 0.8276 0.79365  0.84706  0.82947 | 0.047167 0.034456 0.010679 0.013867
Sensitivity 0.22693 0.33829 0.5138 0.45301 0.10637 0.071308 0.098583 0.070655
Accuracy 0.83404 0.78154  0.83988 0.83318 0.0202 0.013641 0.013479 0.014966
Ol 5 Specificity 0.83989 0.78646  0.84325 0.83616 | 0.020407 0.013667 0.013214 0.014627
Sensitivity | 0.39352 0.40112  0.60467 0.61658 | 0.079562 0.056793 0.09983 0.082477
Accuracy 0.90871 0.85779  0.92939  0.90986 | 0.024277 0.014876 0.008152 0.010305
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X FS 5 Specificity 0.91624 0.86439 0.93506  0.91637 0.023024 0.013877 0.0076373  0.0098303
Sensitivity | 0.091585 0.17915 0.41792  0.29503 0.046884 0.040801 0.067519 0.053455
Accuracy 0.90131 0.85586 0.93106  0.92753 0.018183 0.014252 0.0089971 0.010219

X Ol5 Specificity 0.90816 0.86187 0.93614  0.93264 0.016961 0.014204 0.0075762  0.0085757
Sensitivity 0.18779 0.25656 0.47662  0.46769 0.054503 0.070835 0.094682 0.088978
Accuracy 0.89991 0.89623 0.8296 0.77989 0.044974 0.011623 0.014225 0.010251

FS 10 Specificity 0.91034 0.9074 0.83439  0.78299 0.045713 0.012196 0.014828 0.0098547
Sensitivity | 0.061959  0.045094 0.52603  0.58297 0.040919 0.019177 0.095168 0.091103
Accuracy 0.94127 0.90234 0.8443 0.82599 | 0.0045649 0.0063983 0.014228 0.016024

OI 10 Specificity 0.95331 0.91389 0.84798  0.83014 | 0.0052101  0.0073706 0.014017 0.015905
Sensitivity | 0.029221 0.029221 0.61851 0.57127 0.019749 0.019749 0.098064 0.096858
Accuracy 0.97305 0.91641 0.91326  0.88094 | 0.0043019 0.0078562  0.0068941 0.012606

X FS 10 Specificity 0.98202 0.92486 0.91982  0.88653 0.003811 0.0093033  0.0061701 0.012587
Sensitivity | 0.041622 0.05055 0.27409 0.38724 0.02709 0.026597 0.063725 0.087866
Accuracy 0.97355 0.94078 0.92042  0.90936 0.005592 0.0061094  0.0087236  0.0061979

X OI 10 Specificity 0.98251 0.94939 0.92585  0.91437 0.004708 0.0065525  0.0074743  0.0049799
Sensitivity 0.03373 0.045094 0.43198  0.48377 0.026694 0.027059 0.082132 0.079974

Table C.5: Post-processed results for KNN, patient 21.
Method: KNN, Neighbors: 2, 5, 10
Original Veto 1 Veto 2

KDE | Red M1 K2 u3 | H2 w3 | K2 u3
TP 6 8 7 5 7 7 4 7 7
FP 92 115 81 | 49 78 63 | 31 53 48
FN 2 0 1 3 1 1 4 1 1

TP 4 4 3 4 4 3 4 4
X FP 43 59 37 | 30 37 25 18 27 13
FN 4 4 5 4 4 5 4 4 5
TP 6 8 6 6 7 6 6 7 6
FS 2 FP 96 129 94 | 67 72 72 | 37 51 46
FN 2 0 2 2 1 2 2 1 2
TP 6 8 7 6 8 7 6 7
OI 2 FP | 110 114 85 | 71 69 66 | 50 55 52
FN 2 0 1 2 0 1 2 0 1

TP 2 3 2 3 3 2 3
X FS 2 FpP 45 57 38 | 30 39 28 18 23 19
FN 6 5 5 6 5 5 6 5 5
TP 3 3 3 3 3 3 2 3 3
X OI 2 FP 35 53 46 | 17 33 31 9 27 21
FN 5 5 5 5 5 5 6 5 5
TP 6 7 7 6 7 6 6 7 6
FS 5 FP 98 128 90 | 57 i 65 | 38 53 46
FN 2 1 1 2 1 2 2 1 2
TP 6 8 6 7 6 6 6
OI 5 FP 93 113 75 | 57 75 59 | 39 55 48
FN 2 0 1 2 1 2 2 1 2
TP 5 4 3 4 4 3 4 4 3
X FS 5 FP 47 56 29 | 28 37 21 14 21 11
FN 3 4 5 4 4 5 4 4 5
TP 3 4 3 3 4 3 3 4 3
X OI 5 FP 39 54 37 29 39 24 16 25 15
FN 5 4 5 5 4 5 5 4 5
TP 7 8 8 6 7 8 6 6 6
FS 10 FP 84 120 83 | 57 78 62 | 32 56 44
FN 1 0 0 2 1 0 2 2 2
TP 6 7 7 5 6 7 5 6 7
OI 10 FP 95 114 83 | 50 76 64 | 32 54 54
FN 2 1 1 3 2 1 3 2 1

TP 4 4 3 4 4 3 3 4
X FS 10 FP 40 57 44 | 22 40 32 15 30 19
FN 4 4 5 4 4 5 5 4 5
TP 2 4 2 2 3 2 2 3 2
X OI 10 FP 42 56 40 | 26 39 24 14 27 15

XX




C. Appendix 3: HMS Patient 21 result

| | FN | 6 4 6 | 6 5 6 | 6 5 6
Table C.6: Post-processed results for random forest, patient 21.
Method: Random Forest, Trees: 10, 30, 50
Original Veto 1 Veto 2

KDE | Red K1 K2 M3 | p1 K2 B3 | M K2 K3

TP | 7 8 7| 7 8 76 8 7

FP | 119 101 017 74 70|53 55 53

FN | 1 0 1|1 0 1] 2 0 1

TP | 4 1 2 4 2 | 4 4 2

x FP | 57 41 44 |38 26 27 |30 1T 20

FN | 4 4 6 | 4 4 6 | 4 4 6

TP | 7 7 7 | 6 7 76 7 7

FS2 | FP | 124 111 109 | 79 72 71|56 56 49

FN | 1 1 1| 2 1 1| 2 1 1

TP | 8 8 8 8 8 | 8 8 8

Ol2 || FP | 134 123 117 | 80 76 81 | 57 53 57

FN | 0 0 0| o0 0 0] o 0 0

TP | 4 6 3 [ 4 4 3| 4 4 3

x FS2 || FP | 60 52 44 | 37 31 27|28 22 20

FN | 4 2 5 | 4 4 5 | 4 4 5

TP | 4 4 4 | 4 4 4| 3 3 3

x Ol2 || FP | 59 53 52 |35 32 30|25 22 22

FN | 4 4 4 | 4 4 4 | 5 5 5

TP | 7 8 7 | 6 8 6 | 6 8 6

FS5 || FP | 121 103 1037 75 78|58 50 59

FN | 1 0 1| 2 0 2 | 2 0 2

TP | 7 7 7 | 6 6 6 | 6 6 6

Ol5 || FP | 132 116 105 | 80 74 72|56 56 56

FN | 1 1 1| 2 2 2 | 2 2 2

TP | 4 1 3 | 4 3 3 | 3 3 3

X FS5 || FP | 56 51 45 |32 31 29|22 22 21

FN | 4 4 5 | 4 5 5| 5 5 5

TP | 5 1 4 |5 2 4|5 1 4

X Ol5 || FP | 56 51 48 |35 20 2731 2 20

FN | 3 4 4 | 3 6 4 | 3 4 4

TP | 8 7 8 | 8 6 77 6 7

FS10 || FP | 118 103 01|78 77 73|58 52 53

FN | 0 1 0|0 2 1|1 2 1

TP | 8 8 8 | 8 7 8 | 8 7 8

OI10 || FP | 122 110 10274 8 73|60 61 53

FN | 0 0 0|0 1 0| o0 1 0

TP | 5 4 4[5 3 4| 4 3 4

X | FS10 || FP | 57 47 43 |34 30 30|24 20 21

FN | 3 4 4 | 3 5 4 | 4 5 4

TP | 3 3 4 | 3 2 3 | 3 3 3

X | o110 || FP | 55 47 45 |32 31 27|30 24 18

FN | 5 5 4 | 5 6 5| 5 5 5

Table C.7: Post-processed results for logistic regression, patient 21.

Method: Logistic Regression
Original | Veto 1 | Veto 2
KDE Red
TP 8 8 7
FP 167 85 58
FN 0 0 1
TP 4 3 3
X FpP 66 42 31
FN 4 5 5
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TP 6 6 6

FS 2 FP 118 81 56

FN 2 2 2

TP 7 7 6

Ol 2 FP 104 7 54

FN 1 1 2

TP 3 2 3

FS 2 FP 45 30 21

FN 5 6 5

TP 3 2 3

OI 2 FP 38 23 19

FN 5 6 5

TP 8 8 8

FS 5 FpP 128 86 59

FN 0 0 0

TP 8 7 7

Ol 5 FpP 107 76 55

FN 0 1 1

TP 3 3 3

FS 5 FP 49 34 24

FN 5 5 5

TP 3 3 3

Ol 5 FP 38 24 20

FN 5 5 5

TP 7 6 6

FS 10 FP 150 85 59

FN 1 2 2

TP 7 7 7

OI 10 FpP 117 82 58

FN 1 1 1

TP 3 3 3

FS 10 FpP 58 33 27

FN 5 5 5

TP 4 3 3

Ol 10 FP 50 33 24

FN 4 5 5

Table C.8: Post-processed results SVM, patient 21.
Method: SVM, kernel: rbf, linear, BoxConst: 1, 100
Original Veto 1 Veto 2

KDE | Red M1 12 13 p4 M1 H2  p3 M M1 p2 B3 g
TP 1 1 8 8 0 0 7 7 0 0 6 6
FP 29 51 117 158 2 8 81 86 0 0 56 61
FN 7 7 0 0 8 8 1 1 8 8 2 2
TP 0 1 3 4 0 0 3 4 0 0 2 3
X FpP 5 22 46 66 3 12 29 37 1 4 19 29
FN 8 7 5 4 8 8 5 4 8 8 6 5
TP 7 6 6 6 6 4 6 6 6 4 6 6
FS 2 FP | 155 165 93 97 88 80 T2 73 61 44 49 48
FN 1 2 2 2 2 4 2 2 2 4 2 2
TP 8 8 7 7 7 7 7 7 7 7 6 6
Ol 2 FP 111 155 98 99 79 76 70 75 57 55 56 55
FN 0 0 1 1 1 1 1 1 1 1 2 2
TP 3 3 3 3 2 3 2 2 3 2 3 3
X FS 2 FP 53 60 39 36 30 43 24 23 24 26 14 16
FN 5 5 5 5 6 5 6 6 5 6 5 5
TP 3 3 3 3 3 3 2 2 3 3 3 3
X OI 2 FP 38 61 34 36 24 31 21 23 20 28 17 18
FN 5 5 5 5 5 5 6 6 5 5 5 5
TP 5 7 7 7 3 5 7 6 2 4 7 5
FS 5 FP | 124 150 115 123 63 75 76 74 38 39 55 56
FN 3 1 1 1 5 3 1 2 6 4 1 3
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TP | 7 7 7 ) 6 6 7 7 6 6 7 7
o15 || FP | 114 141 100 98 72 75 73 73 48 50 58 58
FN | 1 1 1 0 2 2 1 1 2 2 1 1
TP | 2 3 3 1 2 2 3 3 1 2 3 3
X FS5 || FP | 45 64 43 45 27 42 29 25 20 30 19 18
FN | 6 5 5 4 6 6 5 5 7 6 5 5
TP | 1 3 3 3 1 3 3 3 I 3 3 3
X oI5 || FP | 41 59 33 34 30 39 20 21 19 27 17 16
FN | 7 5 5 5 7 5 5 5 7 5 5 5
TP | 2 2 7 8 0 17 7 0 0 6 6
FS10 || FP | 70 87 110 148 | 23 28 79 88 11 9 58 61
FN | 6 6 1 0 8 71 1 8 8 2 2
TP | 2 2 7 7 1 T 7 7 0o o0 7 7
o110 || FP | 51 93 97 114 | 11 27 70 82 1 7 55 57
FN | 6 6 1 1 7 701 1 8 8 1 1
TP | 0 2 3 3 0 T 3 0 1 3 3
x | Fs10| FP | 15 44 49 56 10 29 32 34 4 19 21 20
FN | 8 6 5 5 8 7 5 5 8 7 5 5
TP | 0 1 3 3 0 1 3 3 0 1 3 3
x |oriwo | FP | 15 37 43 47 8 22 29 29 5 18 21 22
FN | 8 7 5 5 8 7 5 5 8 7 5 5
C.2 Cluster balanced training set
Table C.9: Cross-validation results for KNN, patient 21.
Method: KNN, Neighbors: 2, 5, 10
KDE Red ni 2 n3 o1 o9 o3
Accuracy | 0.04948  0.79338  0.89592 | 0.0054177 0.022136 _ 0.0138
Specificity | 0.96136  0.80138 0.90658 | 0.006185  0.023478  0.014836
Sensitivity | 0.051786 0.22671 0.12565 | 0.028048  0.05223  0.053028
Accuracy | 0.95067  0.78813  0.85243 | 0.0028668 0.018921  0.017536
X Specificity | 0.95939  0.79446  0.85968 | 0.0039932  0.020601  0.019079
Sensitivity | 0.054122 0.18331 0.15522 | 0.019417  0.050229  0.043617
Accuracy | 0.82962  0.66812  0.6934 | 0.027172  0.052573 _ 0.10661
FS 2 || Specificity | 0.83699  0.67198 0.69679 | 0.027318  0.054253  0.10821
Sensitivity | 0.27866  0.436  0.48752 | 0.053176  0.07296  0.064549
Accuracy | 0.89357  0.7886  0.87874 | 0.012368  0.023431 _ 0.0114
Ol 2 | Specificity | 0.90147  0.79316 0.88532 | 0.013316  0.02447  0.01228
Sensitivity | 0.2871  0.45976 0.39562 | 0.079232  0.074448  0.083435
Accuracy | 0.86813 072746 0.81191 | 0.013045 _ 0.03509  0.042836
X FS 2 || Specificity | 0.87479  0.73175 0.8165 | 0.014311 0.037014  0.043901
Sensitivity | 0.24438  0.38243  0.44292 | 0.057257  0.080049  0.071104
Accuracy | 0.00034 076717 0.85691 | 0.012928  0.021902  0.016876
X O12 | Specificity | 0.90737  0.77151 0.86251 | 0.014431  0.023769  0.018529
Sensitivity | 0.22399  0.43359 0.34116 | 0.052828  0.069291  0.058321
Accuracy | 0.88646  0.79604  0.8826 | 0.0074597  0.02268 _ 0.016371
FS5 | Specificity | 0.89567  0.80269 0.89066 | 0.0081278 0.023423  0.016754
Sensitivity | 0.2097  0.29632 0.28957 | 0.052721  0.07971  0.074803
Accuracy | 091054 079105 0.80774 | 0.0069476  0.020342 _ 0.010675
OI5 || Specificity | 0.92023  0.79695 0.90634 | 0.007763  0.021634  0.01095
Sensitivity | 0.17785  0.36717 0.24278 | 0.051756  0.063934  0.071678
Accuracy | 0.89218 077951  0.84365 | 0.015721  0.023643 _ 0.020339
X FS 5 || Specificity | 0.89951  0.78421 0.84945 | 0.016814  0.025414  0.021737
Sensitivity | 0.1847  0.33739 0.27246 | 0.060763  0.091237  0.069596
Accuracy | 0.91794 078715 0.85712 | 0.005707  0.017037 _ 0.014943
X O15 | Specificity | 0.92561  0.79182 0.86357 | 0.006841  0.018949  0.016534
Sensitivity | 0.1525  0.3886  0.23915 | 0.051618  0.076211  0.072127
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Accuracy | 0.93102  0.80044 0.90161 | 0.0075825 0.020867  0.0090198
FS 10 || Specificity | 0.94184  0.80728 0.91108 | 0.008345  0.021898  0.010214
Sensitivity | 0.10909  0.29791 0.22532 | 0.04311  0.056287  0.064841
Accuracy | 0.9409  0.80623 0.92236 | 0.0060081 0.019679  0.0095101
OI 10 | Specificity | 0.95182  0.81386  0.93239 | 0.0067813  0.020942  0.010367
Sensitivity | 0.11623  0.23957 0.17175 | 0.039993  0.067075  0.065591
Accuracy | 0.9333  0.78945  0.85649 | 0.0069249 0.018807  0.019953
X | FS10 | Specificity | 0.94119  0.79494 0.86269 | 0.0078744 0.020551  0.021549
Sensitivity | 0.14  0.27671 0.29532 | 0.040516  0.061767  0.070469
Accuracy | 0.94363  0.77449 0.87177 | 0.0044136 0.020804  0.012367
X | O110 | Specificity | 0.95189  0.78006 0.87889 | 0.0056668 0.022568  0.014016
Sensitivity | 0.10834  0.2534  0.15701 | 0.041458  0.055734  0.059736
Table C.10: Cross-validation results for randf, patient 21.
Method: Random Forest, Trees: 10, 30, 50
KDE | Red H1 K2 M3 a1 o2 03
Accuracy | 0.43134 0.43154 043214 | 0.053774 0.042451 0.045728
Specificity | 0.42939  0.43002  0.43028 | 0.055919  0.044364  0.047436
Sensitivity | 0.59798  0.57477  0.58829 | 0.099378  0.097569  0.085962
Accuracy | 0.73718 0.75783  0.75809 | 0.033088 0.024512  0.027033
X Specificity | 0.74011  0.76124  0.76179 | 0.034014 0.025732  0.027884
Sensitivity | 0.62931  0.60668 0.59351 | 0.055241 0.061374  0.088216
Accuracy | 0.44619 0.63354 0.61973 | 0.038902 0.038013  0.037743
FS 2 || Specificity | 0.44513  0.635  0.62171 | 0.039732 0.038941  0.038481
Sensitivity | 0.50146  0.51849  0.51203 | 0.05387  0.080039  0.067271
Accuracy | 0.73823  0.72447 0.76692 | 0.034506 0.049574  0.037622
OI2 || Specificity | 0.74128  0.7276  0.77058 | 0.03615  0.051021  0.039481
Sensitivity | 0.48918  0.46407  0.4669 | 0.10477  0.084598  0.10727
Accuracy | 0.7666  0.78868 0.80353 | 0.031363 0.030618  0.025286
X | FS2 | Specificity | 077113 0.79321 0.80741 | 0.032437 0.031847  0.026594
Sensitivity | 0.5128  0.54471 0.62913 | 0.05268  0.066071 0.071112
Accuracy | 0.85137 0.87279 0.87468 | 0.011797 0.012328 0.012923
X OI2 || Specificity | 0.85773  0.8786  0.8812 | 0.012733  0.012991  0.013326
Sensitivity | 0.41521  0.48609  0.441 | 0.08928  0.10682  0.089378
Accuracy | 0.46734 0.58882 0.56266 | 0.05227  0.035485  0.035727
FS5 || Specificity | 0.46612 0.58942  0.56302 | 0.053972  0.036484  0.036799
Sensitivity | 0.55352  0.54398  0.52583 | 0.11468  0.098189  0.11933
Accuracy | 0.66749 0.67903 0.67457 | 0.03835  0.034074  0.032796
OI5 || Specificity | 0.66887 0.68089 0.67686 | 0.039448 0.034935  0.034395
Sensitivity | 0.57466  0.54527 0.51674 | 0.084639 0.086769 0.096086
Accuracy | 0.76561 0.78656  0.789 | 0.023901 0.021604 0.021978
X | FS5 | Specificity | 0.76892 0.79016 0.79287 | 0.024852 0.021853  0.022544
Sensitivity | 0.59128  0.62505 0.60056 | 0.10094  0.068974 0.053153
Accuracy | 0.8021  0.81905 0.81932 | 0.024798 0.019409  0.02162
x OI5 || Specificity | 0.80674 0.82391 0.82406 | 0.025324 0.019728  0.022005
Sensitivity | 0.52764 0.53024  0.54045 | 0.068205 0.084765 0.087243
Accuracy | 0.44384  0.67637 0.65248 | 0.035222 0.022817  0.026694
FS 10 || Specificity | 0.44157 0.67788 0.65439 | 0.036216 0.024313  0.028203
Sensitivity | 0.63968 0.56061 0.51917 | 0.066842  0.12541  0.092641
Accuracy | 04712  0.52767 0.53231 | 0.043285 0.051615  0.045033
OI 10 | Specificity | 0.46934  0.52755 0.53288 | 0.044249  0.053597  0.046883
Sensitivity | 0.62293  0.55581  0.52009 | 0.096248  0.11079  0.11413
Accuracy | 0.75781 0.80187  0.8079 | 0.018888 0.028157 0.021173
X | FS10 || Specificity | 0.76062 0.80578 0.81246 | 0.020139  0.029008  0.021706
Sensitivity | 0.64434 0.59647  0.5616 | 0.0775  0.090092 0.069135
Accuracy | 0.79111 0.78763  0.79156 | 0.024093 0.022072  0.025371
X | O110 || Specificity | 0.79446 0.79112  0.79483 | 0.024706 0.022835  0.026637
Sensitivity | 0.64416 0.61967 0.66531 | 0.053513 0.085791  0.06455
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Table C.11: Cross-validation results for logistic regression, patient 21.

Method: Logistic Regression
KDE Red n1 o1

Accuracy 0.7367 0.016892

Specificity | 0.74152 0.018098

Sensitivity | 0.41349 | 0.066515

Accuracy 0.75869 0.016811

X Specificity 0.7629 0.018141
Sensitivity | 0.37589 | 0.045206

Accuracy 0.78564 0.01249

FS 2 Specificity | 0.79109 | 0.012327
Sensitivity | 0.38746 0.065487

Accuracy 0.91765 | 0.013389

Ol 2 Specificity 0.9255 0.013593
Sensitivity | 0.3211 0.085497

Accuracy 0.85005 | 0.028954

X FS 2 Specificity | 0.85531 | 0.029048
Sensitivity | 0.31925 | 0.078493

Accuracy 0.92829 | 0.015034

X Ol 2 Specificity | 0.93612 0.015994
Sensitivity | 0.14448 | 0.072908

Accuracy 0.83409 0.020606

FS5 Specificity | 0.84048 | 0.020849
Sensitivity | 0.36508 | 0.037541
Accuracy 0.84852 | 0.0096096
OI5 Specificity 0.8547 | 0.0098174
Sensitivity | 0.38395 0.060772

Accuracy 0.85806 | 0.017904

X FS 5 Specificity | 0.86423 | 0.018142
Sensitivity | 0.24522 | 0.038641

Accuracy 0.88484 | 0.012657

X OI5 Specificity | 0.89062 | 0.011653
Sensitivity | 0.34178 | 0.064759

Accuracy 0.80476 0.016008

FS 10 Specificity | 0.81028 0.016548
Sensitivity | 0.43171 | 0.087521
Accuracy 0.82777 | 0.0088898
OI 10 || Specificity | 0.83396 | 0.0089632
Sensitivity | 0.38483 | 0.053942

Accuracy 0.8025 0.016667

X FS 10 || Specificity | 0.80749 0.01786
Sensitivity | 0.37574 0.080224

Accuracy 0.82879 | 0.015926

X OI 10 || Specificity | 0.83438 0.01596
Sensitivity | 0.30224 | 0.051583

Table C.12: Cross-validation results for SVM, patient 21.

Method: SVM, Trees: 10, 30, 50

KDE Red w2 u3 pa o1 o2 o3 o4

Accuracy 0.96139 0.94622 0.78862 0.73021 0.0030997  0.0054369 0.016323 0.020412

Specificity 0.97411 0.95862 0.79425 0.73564 0.004049  0.0063899 0.016862 0.021645

Sensitivity 0.0089286  0.40853 0.36726 0 0.0089286 0.085189 0.066434

Accuracy 0.97125 0.95721 0.81252 0.75937 | 0.0026864  0.0039074  0.016912 0.019384

X Specificity 0.98059 0.96618 0.81755 0.76367 | 0.0038686  0.0054972 0.017983 0.020828
Sensitivity | 0.0089286 0.032693 0.35281 0.39752 | 0.0089286 0.019316 0.073153 0.06121

Accuracy 0.83925 0.63379 0.823 0.82293 0.036369 0.040855 0.053373 0.054862

FS 2 Specificity 0.8476 0.63885 0.83105 0.83074 0.036989 0.041996 0.054895 0.056592
Sensitivity 0.20168 0.26979 0.26883  0.23782 0.055592 0.04741 0.051346 0.081548

Accuracy 0.84508 0.7413 0.92871 0.92548 0.022397 0.022158 0.017144 0.017844

OI 2 Specificity 0.85032 0.745 0.93794  0.93466 0.023405 0.02283 0.01771 0.018406
Sensitivity 0.44369 0.44163 0.21916  0.21916 0.074941 0.077291 0.085916 0.085916
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Accuracy 0.79796 0.71565 0.92952 0.91576 0.028513 0.011652 0.032853 0.041302
X FS 2 Specificity 0.80393 0.72017 0.93695 0.92306 0.030148 0.012308 0.033746 0.042317
Sensitivity 0.26214 0.27489 0.19968 0.19968 0.065333 0.04175 0.078142 0.078142
Accuracy 0.84895 0.76512 0.98804 0.98232 0.014964 0.022389 0.0044534  0.0058549
X Ol 2 Specificity 0.85438 0.7691 0.99756 0.9916 0.016472 0.023977 0.0024427  0.0047194
Sensitivity 0.34376 0.41574 0 0.022727 0.061931 0.06613 0 0.022727
Accuracy 0.88444 0.78319 0.84415 0.81316 0.016991 0.029157 0.041871 0.042606
FS5 Specificity 0.89559 0.79173 0.85186 0.81922 0.018466 0.029981 0.04279 0.043882
Sensitivity 0.051948 0.13122 0.28782 0.38101 0.020534 0.039932 0.081787 0.11431
Accuracy 0.8224 0.79647 0.87095 0.85373 0.01877 0.016734 0.012734 0.012326
Ol 5 Specificity 0.83087 0.80412 0.87817 0.85931 0.019849 0.017625 0.013538 0.012893
Sensitivity 0.1858 0.21503 0.3375 0.42859 0.056904 0.052969 0.072446 0.067938
Accuracy 0.87111 0.80295 0.82992 0.77388 0.014003 0.01294 0.02669 0.029617
X FS 5 Specificity 0.87897 0.80926 0.83529 0.77883 0.015212 0.014255 0.028326 0.03222
Sensitivity 0.074414 0.16769 0.35422 0.39286 0.03807 0.049347 0.084779 0.10199
Accuracy 0.85199 0.81905 0.91141 0.88552 0.018066 0.012098 0.023109 0.021358
X Ol 5 Specificity 0.85874 0.82505 0.91845 0.89164 0.019229 0.012967 0.023278 0.021587
Sensitivity 0.1799 0.23984 0.22143 0.31088 0.049644 0.072081 0.070975 0.068704
Accuracy 0.94552 0.88238 0.792 0.7698 0.0062911 0.015277 0.030984 0.027778
FS 10 Specificity 0.95805 0.89361 0.798 0.77515 0.0073118 0.016506 0.031797 0.028611
Sensitivity 0 0.038149 0.39113 0.40898 0 0.01988 0.077898 0.058468
Accuracy 0.9539 0.9237 0.86932 0.84728 0.0043066  0.0078991 0.011977 0.014255
OI 10 Specificity 0.96639 0.93553 0.87621 0.85401 0.0052794  0.0088626 0.012174 0.014461
Sensitivity | 0.0089286 0.029221 0.36311 0.36782 0.0089286 0.014416 0.067594 0.054176
Accuracy 0.95149 0.87617 0.8152 0.8057 0.011242 0.013247 0.018629 0.017858
X FS 10 Specificity 0.96055 0.88424 0.81991 0.81019 0.012423 0.015069 0.019387 0.018821
Sensitivity 0.023764 0.054022 0.38983 0.43145 0.013107 0.026398 0.087707 0.076897
Accuracy 0.96076 0.93847 0.87111 0.82796 0.0034273  0.0041281 0.025883 0.026501
X OI 10 Specificity 0.96983 0.9471 0.87748 0.83358 0.0045706  0.0058769 0.02649 0.026773
Sensitivity 0.023764 0.05055 0.26916 0.29321 0.013107 0.026597 0.056386 0.043479
Table C.13: Post-processed results for KNN, patient 21.
Method: KNN, Neighbors: 2, 5, 10
Original Veto 1 Veto 2
KDE | Red B “2 B3 | M1 12 M3 | ©2 ©3
TP 2 6 2 0 3 2 0 3 0
FP 45 155 92 9 45 47 4 28 26
FN 2 6 8 5 6 8 5 8
TP 1 5 4 0 4 3 0 4 2
X FP 34 68 61 15 33 34 2 33 25
FN 7 3 4 8 4 5 8 4 6
TP 6 6 8 5 5 7 5 5 6
FS 2 FP 149 194 151 50 50 53 36 44 50
FN 2 2 0 3 3 1 3 3 2
TP 7 7 6 6 5 6 5 5
Ol 2 FP 97 148 95 48 49 54 | 38 43 41
FN 1 1 2 2 3 2 2 3 3
TP 7 3 4 7 3 3 4 2
X FS 2 FP 62 69 63 28 30 30 | 20 32 26
FN 3 1 5 4 1 5 5 4 6
TP 3 5 5 3 5 2 3 4
X Ol 2 FP 54 71 65 29 32 37 | 17 34 30
FN 5 3 3 5 4 3 6 5 4
TP 5 5 5 3 4 5 3 4 3
FS5 FP 97 143 102 | 45 49 48 | 22 36 33
FN 3 3 3 5 4 3 4 5
TP 5 6 6 5 4 6 1 5 3
Ol 5 FP 81 153 89 36 60 50 23 36 25
FN 3 2 2 3 4 2 7 3 5
TP 4 6 5 3 6 5 2 4 3
X FS5 FP 56 69 60 26 35 32 | 15 35 27
FN 4 2 3 5 2 3 6 4 5
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TP 4 6 5 3 6 5 2 6 4
X Ol 5 FP 41 69 61 21 34 34 10 38 25
FN 4 2 3 5 2 3 6 2 4
TP 4 6 5 2 5 3 2 4 3
FS 10 FP 65 145 92 29 45 46 14 27 24
FN 4 2 3 6 3 5 6 4 5
TP 4 4 4 3 4 3 1 3 2
OI 10 FP 51 145 65 14 48 41 8 30 23
FN 4 4 4 5 4 5 7 5 6
TP 2 6 4 2 6 2 0 4 2
X FS 10 FP 39 69 62 18 34 34 10 36 27
FN 6 2 4 6 2 6 8 4 6
TP 1 5 3 0 4 2 0 4 1
X OI 10 FP 39 69 58 22 34 31 7 38 26
FN 7 3 5 8 4 6 8 4 7
Table C.14: Post-processed results for random forest, patient 21.
Method: Random Forest, Trees: 10, 30, 50
Original Veto 1 Veto 2
KDE | Red M1 M2 “3 | p1 M2 M3 | p1 12 13
TP 6 7 7 1 4 4 5 5 5
FP 224 240 228 | 35 40 40 48 50 51
FN 2 1 1 7 4 4 3 3 3
TP 6 6 5 6 6 5 6 5 4
X FP 76 75 74 31 28 29 | 40 37 35
FN 2 2 3 2 2 3 2 3 4
TP 7 7 7 5 5 5 6 4 4
FS 2 FP 237 192 193 | 55 45 40 46 52 47
FN 1 1 1 3 3 3 2 4 4
TP 7 7 7 6 7 7 7 5 6
Ol 2 FP | 157 162 144 | 63 59 61 | 49 49 46
FN 1 1 1 2 1 1 1 3 2
TP 6 6 6 6 6 6 4 5
X FS 2 FP 75 71 67 31 29 32 | 35 36 39
FN 2 2 2 2 2 2 2 4 3
TP 6 5 5 6 5 5 4 5 5
X Ol 2 FP 67 68 65 39 39 39 | 39 37 37
FN 2 3 3 2 3 3 4 3 3
TP 7 7 7 4 5 4 4 4 3
FS 5 FP | 229 204 214 | 54 40 44 | 48 48 47
FN 1 1 1 4 3 4 4 4 5
TP 7 7 7 5 7 3 5 5 4
OI5 FP | 177 171 178 | 49 47 44 | 52 42 47
FN 1 1 1 3 1 5 3 3 4
TP 6 6 6 6 5 6 5 5 5
X FS 5 FP 75 70 68 31 28 26 | 37 38 36
FN 2 2 2 2 3 2 3 3 3
TP 6 5 6 6 5 5 5 5 5
X OI5 FP 69 67 65 32 30 30 | 41 38 40
FN 2 3 2 2 3 3 3 3 3
TP 7 7 7 2 6 6 5 4 3
FS 10 FP 227 176 185 | 35 44 49 48 45 48
FN 1 1 1 6 2 2 3 4 5
TP 7 6 6 4 4 3 5 5 5
OI 10 FP | 230 216 207 | 52 44 41 | 53 47 52
FN 1 2 2 4 4 5 3 3 3
TP 6 6 6 6 6 6 5 5 6
X FS 10 FP 73 67 68 33 29 30 39 34 37
FN 2 2 2 2 2 2 3 3 2
TP 6 6 6 6 6 6 5 4 5
X OI 10 FP 71 71 71 36 32 37 | 40 39 37
FN 2 2 2 2 2 2 3 4 3
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Table C.15: Post-processed results for logistic regression, patient 21.

Method: Logistic Regression
Original | Veto 1 | Veto 2
KDE Red

TP 7 7 5

FP 172 70 50

FN 1 1 3

TP 6 5 4

FP 70 31 33

FN 2 3 4

TP 6 6 5

FS 2 FP 120 68 50

FN 2 2 3

TP 6 6 5

OI 2 FpP 61 50 36

FN 2 2 3

TP 4 4 3

FS 2 FP 47 22 18

FN 4 4 5

TP 1 0 0

OI 2 FP 36 25 18

FN 7 8 8

TP 7 7 5

FS 5 FP 108 66 48

FN 1 1 3

TP 7 7 5

oI5 FP 103 65 50

FN 1 1 3

TP 4 4 2

FS5 FP 57 30 24

FN 4 4 6

TP 3 3 2

oI5 FP 52 28 18

FN 5 5 6

TP 8 6 6

FS 10 || FP 128 67 43

FN 0 2 2

TP 7 6 5

OI 10 FpP 115 68 49

FN 1 2 3

TP 5 4 4

FS 10 || FP 70 29 30

FN 3 4 4

TP 4 3 3

OI 10 FpP 61 36 24

FN 4 5 5

Table C.16: Post-processed results SVM, patient 21.
Method: SVM, kernel: rbf, linear, BoxConst: 1, 100
Original Veto 1 Veto 2

KDE Red #1 M2 ©3 J 2 M1 M2 p3 4 M1 p2 M3 P4
TP 1 1 8 7 0 0 7 7 0 0 7 5
FP | 38 55 141 174 1 5 59 64 0 0 53 52
FN 7 7 0 1 8 8 1 1 8 8 1 3
TP 1 1 5 5 0 0 5 5 0 0 4 5
X FP | 20 29 65 71 6 11 33 30 1 4 30 36
FN 7 7 3 3 8 8 3 3 8 8 4 3
TP 6 6 6 5 4 3 5 4 2 3 3 2
FS 2 FP | 132 205 100 101 50 38 39 34 29 37 34 31
FN 2 2 2 3 4 5 3 4 6 5 5 6
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Appendix 4: HMS Patient 36
result

D.1 Randomly balanced training set

Table D.1: Cross-validation results for KNN, patient 36.

Method: KNN, Neighbors: 2, 5, 10
KDE Red 5 wo n3 o1 o2 o3

Accuracy 0.89091 0.80844  0.8601 0.018529 0.025594 0.021151

Specificity | 0.89677  0.80988  0.86268 | 0.020553 0.02716 0.021679

Sensitivity | 0.43805 0.6398 0.61184 0.17166 0.18854 0.20066

Accuracy 0.9438  0.88493 0.9168 | 0.0058793  0.0095656 0.013432

X Specificity | 0.94797  0.88699  0.91942 | 0.0055488  0.0093758 0.012979
Sensitivity | 0.39309  0.5773 0.5318 0.10182 0.15939 0.18695

Accuracy 0.84767  0.77627  0.82093 | 0.032677 0.045048 0.046386

FS 2 Specificity | 0.85179  0.7777  0.82426 | 0.033929 0.044772 0.045967
Sensitivity | 0.52193  0.65132  0.57127 0.1092 0.097197 0.075588

Accuracy 0.85035  0.74624  0.76974 | 0.027996 0.016411 0.033789

OI 2 Specificity | 0.85792  0.75056  0.77355 0.02822 0.016521 0.032562
Sensitivity | 0.31689  0.41393  0.45175 0.03236 0.1021 0.18768

Accuracy 0.92883  0.88886  0.89783 | 0.009588 0.017463 0.018515

X FS 2 Specificity | 0.93315 0.89103  0.90001 | 0.0099142 0.017634 0.018637
Sensitivity | 0.36184  0.60252  0.58443 | 0.093026 0.039156 0.13553

Accuracy 0.92174  0.85542  0.89359 | 0.0057592 0.016406 0.0028406

X OI 2 Specificity | 0.92659 0.85826  0.89756 | 0.0056097  0.016699 0.0025176
Sensitivity | 0.28509  0.44846  0.35088 | 0.091705 0.15504 0.15864

Accuracy 0.8684  0.77768 0.82973 | 0.027276 0.040189 0.029142

FS5 Specificity | 0.87425 0.779 0.83377 | 0.029235 0.040834 0.028812
Sensitivity | 0.41721  0.63322  0.51151 0.16328 0.13987 0.11647

Accuracy 0.86693  0.7873 0.80433 0.03964 0.045607 0.050473

oI5 Specificity | 0.87376  0.79152 0.8067 0.03986 0.046712 0.050717
Sensitivity | 0.36897  0.43805 0.58443 | 0.053669 0.14037 0.15248

Accuracy 0.93773  0.88248  0.90403 | 0.004977 0.014156 0.013127

X FS 5 Specificity | 0.94205 0.8847  0.90588 | 0.0049989 0.014706 0.012495
Sensitivity | 0.36513  0.57072  0.61897 0.10362 0.11075 0.17813

Accuracy 0.92365 0.86737  0.88497 | 0.0077742 0.011416 0.0065257

X OI5 Specificity | 0.92815  0.86966 0.8881 0.0077079 0.011681 0.0058225
Sensitivity | 0.32675  0.52138  0.43421 0.11221 0.18197 0.19417

Accuracy 0.8776  0.78409  0.82221 0.012993 0.038627 0.016149

FS 10 Specificity | 0.88254  0.78567  0.82586 | 0.014587 0.039625 0.014976
Sensitivity | 0.47971  0.61568  0.52522 0.17286 0.15237 0.14959

Accuracy 0.89378  0.82162 0.86381 0.022105 0.034707 0.021738

OI 10 Specificity | 0.89948  0.8227  0.86716 | 0.023295 0.035597 0.022544
Sensitivity | 0.46272 0.68531  0.59156 0.11352 0.1625 0.11193

Accuracy 0.93754  0.87307  0.91251 | 0.0034955 0.014857 0.014719

X FS 10 Specificity | 0.94108 0.87476  0.91452 | 0.0035322 0.014531 0.014357
Sensitivity | 0.45559  0.62281  0.60855 0.12286 0.13221 0.17364

Accuracy 0.94812 0.8927  0.92262 | 0.0060072  0.0067555 0.010029

X OI 10 Specificity 0.9525  0.89453  0.92538 | 0.0062763 0.0069988  0.0098632
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\ | || Sensitivity | 0.35088 0.60855 0.52138 | 0.15021 0.17364 0.18726
Table D.2: Cross-validation results for randf, patient 36.
Method: Random Forest, Trees: 10, 30, 50
KDE | Red M1 M2 13 o1 o2 03
Accuracy | 0.80508 0.83286 0.84106 | 0.03649  0.038385  0.033255
Specificity | 0.80669 0.83469 0.84338 | 0.03796  0.039865  0.03481
Sensitivity | 0.63322  0.64364 0.60855 | 0.14669 0.14787 0.18098
Accuracy | 0.90357 0.93615 0.92737 | 0.016575  0.013834  0.018054
X Specificity | 0.90565 0.93889  0.92965 | 0.017104  0.014384  0.018549
Sensitivity | 0.59485 0.54605 0.58059 | 0.13982 0.14598 0.18525
Accuracy | 0.75894 0.77159  0.79999 | 0.039635  0.015987  0.026303
FS2 || Specificity | 0.76171 0.77379  0.80278 | 0.040049  0.016359  0.027083
Sensitivity | 0.54331  0.60252 0.57072 | 0.044095  0.039156  0.10155
Accuracy | 0.79176 0.81186 0.82423 | 0.041543  0.046405  0.052379
OI 2 || Specificity | 0.7946  0.81522 0.82827 | 0.041847  0.046364  0.052379
Sensitivity | 0.54989  0.5466  0.51535 | 0.12176  0.089041  0.071782
Accuracy | 0.86858 0.91249 0.91097 | 0.011388  0.0077652  0.0079663
X FS 2 || Specificity | 0.87138 0.91536  0.914 0.01235  0.0077873  0.0087056
Sensitivity | 0.51206 0.52193  0.49397 | 0.092229  0.10307 0.1411
Accuracy | 0.88307 0.88972 0.88453 | 0.028025  0.025822  0.030098
X OI 2 | Specificity | 0.8863  0.89246 0.88721 | 0.029023  0.025649  0.029878
Sensitivity | 0.4205  0.50439 0.50439 | 0.1773 0.14056 0.15062
Accuracy | 0.81421 0.83444 0.83498 | 0.040035  0.015704  0.012393
FS5 || Specificity | 0.81578 0.83779 0.83873 | 0.041344  0.01678  0.013396
Sensitivity | 0.64364  0.54605 0.52522 | 0.14787 0.15145 0.13591
Accuracy | 0.81548  0.8283  0.82537 | 0.053309  0.053576  0.054851
OI5 || Specificity | 0.81804  0.832  0.82915 | 0.054381  0.054113  0.055739
Sensitivity | 0.56689  0.52193  0.49013 | 0.17664 0.11642 0.18112
Accuracy | 0.90421 0.90525 0.91309 | 0.018364  0.0097422  0.0076859
X FS5 || Specificity | 0.90704 0.90793 0.91587 | 0.019181  0.010688  0.0077339
Sensitivity | 0.50439  0.51809  0.53235 | 0.15062 0.1739 0.10865
Accuracy | 0.86582  0.8892  0.89476 | 0.0021458  0.014717  0.0019674
X OI 5 | Specificity | 0.86859 0.89141  0.89718 | 0.0023541  0.014672 0.0025
Sensitivity | 0.48355 0.56689 0.55318 | 0.11166 0.15293 0.12698
Accuracy | 0.79489 0.81729 0.83035 | 0.034196  0.035044  0.044676
FS 10 || Specificity | 0.79747 0.82059  0.83359 | 0.034973  0.035948  0.045837
Sensitivity | 0.55647 0.52851  0.54605 | 0.15344 0.16001 0.14259
Accuracy | 0.80493 0.84479 0.84514 | 0.045621  0.031171  0.03713
OI 10 || Specificity | 0.80597  0.84718 0.84767 | 0.047029  0.032558  0.038906
Sensitivity | 0.6716  0.61568 0.59101 | 0.14928 0.15658 0.19363
Accuracy | 0.90082 0.91079 0.92002 | 0.017385  0.013754  0.011469
X | FS10 | Specificity | 0.90297  0.9135  0.92244 | 0.01849  0.014592  0.011922
Sensitivity | 0.58443 0.51096 0.55976 | 0.1618 0.18019 0.17485
Accuracy | 0.91212 0.91984  0.9267 | 0.015872  0.019483  0.019395
X | O110 | Specificity | 0.91398 0.92235 0.92878 | 0.016842  0.020256  0.019841
Sensitivity | 0.61897  0.54934  0.62281 | 0.18878 0.17784 0.12847

Table D.3: Cross-validation results for logistic regression, patient 36.

XXXII

Method: Logistic Regression

KDE Red n1 o1
Accuracy 0.8051 0.0081387
Specificity | 0.80947 | 0.0093905
Sensitivity | 0.44134 0.1702
Accuracy 0.86293 | 0.017029
X Specificity 0.8648 0.017973
Sensitivity | 0.59156 0.13798
Accuracy 0.87571 | 0.0058954
FS 2 Specificity | 0.88062 | 0.0074659
Sensitivity 0.5011 0.12932
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Accuracy 0.80788 | 0.0079679

OI 2 Specificity | 0.81271 | 0.0069156
Sensitivity | 0.45614 0.084451

Accuracy 0.9029 0.026967

X FS 2 Specificity | 0.90636 | 0.028104
Sensitivity | 0.43476 0.14972

Accuracy 0.91934 | 0.010348

X OI 2 Specificity | 0.92363 | 0.011086
Sensitivity | 0.36897 0.11245

Accuracy 0.82266 | 0.016883

FS5 Specificity | 0.82635 0.017469
Sensitivity | 0.50768 0.17382
Accuracy 0.79452 0.0392

Ol 5 Specificity | 0.79722 0.041084
Sensitivity | 0.5318 0.18695

Accuracy 0.90515 0.020637

X FS 5 Specificity | 0.90816 | 0.021794
Sensitivity | 0.46217 0.22396

Accuracy 0.90168 | 0.017137

X OI5 Specificity | 0.90417 | 0.017692
Sensitivity | 0.56743 | 0.085973

Accuracy 0.79855 | 0.034549

FS 10 || Specificity | 0.80396 | 0.034424
Sensitivity | 0.38268 0.11233

Accuracy 0.81323 | 0.040394

OI 10 Specificity | 0.81526 0.042329
Sensitivity | 0.60855 0.17643

Accuracy 0.88847 0.019054

X FS 10 || Specificity | 0.89165 | 0.019843
Sensitivity | 0.43805 0.19476

Accuracy 0.91705 0.012847

X OI 10 || Specificity | 0.91983 | 0.013774
Sensitivity | 0.51096 0.19072

Table D.4: Cross-validation results for SVM, patient 36.

Method: SVM, Trees: 10, 30, 50

KDE Red I H2 u3 m o1 2 o3 o4
Accuracy 0.98434 0.98294  0.86451  0.7887 0.0032723 0.004038  0.0062893  0.016338
Specificity | 0.99821 0.99679  0.86903  0.79195 | 0.0011063  0.0018865 0.0078564  0.018052
Sensitivity | 0.020833  0.020833 0.483 0.50055 0.010417 0.010417 0.19418 0.17716
Accuracy 0.99137 0.9904 0.91186  0.87998 0.001697 0.0024086 0.017421 0.02604
X Specificity | 0.99912 0.99814  0.91476  0.88241 | 0.00061419  0.0014485  0.018471  0.027339
Sensitivity | 0.020833  0.020833 0.483 0.51096 0.010417 0.010417 0.19915 0.19825
Accuracy 0.71195 0.73222  0.88469  0.85349 0.030148 0.029104  0.0095234  0.020358
FS 2 Specificity | 0.71021 0.73374  0.88934 0.85786 0.030604 0.028895 0.010218  0.023397
Sensitivity 0.8114 0.61678  0.52193  0.51864 0.063596 0.099508 0.12582 0.17891
Accuracy 0.78953 0.75593  0.77015  0.76035 0.044851 0.015649 0.035977  0.031547
Ol 2 Specificity 0.79385 0.76013 0.77438 0.76387 0.045541 0.01574 0.035579 0.030452
Sensitivity | 0.44518 0.43147  0.46656  0.49781 0.1187 0.0884 0.094866 0.12611
Accuracy 0.8366 0.85063  0.89058  0.88576 0.015293 0.0089402  0.039695  0.030681
X FS 2 Specificity 0.8366 0.85095  0.89352  0.88844 0.015935 0.0088332  0.041351  0.031887
Sensitivity 0.8114 0.7977 0.47643  0.52906 0.07312 0.054409 0.1897 0.15736
Accuracy 0.86046 0.8583 0.90192  0.90174 0.019284 0.027904 0.027594 0.02721
X Ol 2 Specificity | 0.86362 0.86142  0.90659  0.90631 0.019511 0.028402 0.028278  0.027785
Sensitivity | 0.42434 0.42434 0.2955  0.30592 0.11283 0.11983 0.151 0.1476
Accuracy 0.61828 0.64878 0.89016  0.82659 0.033575 0.050482 0.0085353 0.01511
FS 5 Specificity | 0.61403 0.6462 0.89545  0.83121 0.034962 0.052735  0.0093625 0.016777
Sensitivity 0.88103 0.80811 0.47643  0.45559 0.072657 0.080488 0.14039 0.16961
Accuracy 0.83089 0.81996  0.77461  0.77863 0.076676 0.060259 0.053833  0.048427
oI5 Specificity | 0.83691 0.82565  0.77628  0.78074 0.078451 0.061284 0.056071 0.05044
Sensitivity 0.358 0.38268  0.58059  0.55263 0.12924 0.087945 0.18525 0.19737
Accuracy 0.86734 0.84795 0.9081  0.90014 0.060635 0.043692 0.028064  0.031954
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X FS5 Specificity 0.8703 0.84969  0.91177  0.90282 0.063297 0.045578 0.028515  0.033778
Sensitivity | 0.41667 0.53125 0.4068  0.48629 0.30046 0.27776 0.12575 0.25559

Accuracy 0.91075 0.89845  0.88923  0.88639 0.010967 0.014422 0.028592  0.017453
X oI5 Specificity 0.91462 0.90232  0.89193  0.88943 0.01156 0.014941 0.028967  0.017653

Sensitivity | 0.36458 0.35417  0.49342  0.45175 0.18251 0.17708 0.21402 0.17696
Accuracy 0.6922 0.77516  0.88113  0.80885 0.13742 0.12443 0.0046639  0.013758
FS 10 || Specificity 0.6909 0.77715  0.88571 0.8136 0.14266 0.12936 0.0065307  0.013641
Sensitivity 0.625 0.51042  0.49342  0.4205 0.31302 0.28086 0.20706 0.1773
Accuracy 0.81643 0.81565  0.84797  0.7998 0.14576 0.13802 0.020412  0.044633
OI 10 Specificity 0.82221 0.82125  0.85133  0.80245 0.1518 0.14383 0.022403  0.046912
Sensitivity | 0.34375 0.35417  0.53509  0.54934 0.28356 0.2797 0.21792 0.17784

Accuracy 0.97252 0.96446 0.914 0.89399 | 0.0091078 0.010713 0.025807  0.024181
X FS 10 || Specificity 0.97933 0.97101  0.91681 0.89682 | 0.0090405 0.010649 0.027141 0.025311
Sensitivity | 0.10417 0.125 0.49342  0.47259 0.05512 0.065052 0.21402 0.20462

Accuracy 0.96691 0.96147  0.91638 0.91331 0.017259 0.016617 0.028096  0.016956
X oI 10 Specificity 0.97375 0.96788  0.91893  0.91559 0.017186 0.016467 0.029288  0.017864
Sensitivity | 0.09375 0.13542  0.53893  0.5773 0.065052 0.072917 0.18318 0.17681

Table D.5: Post-processed results for KNN, patient 36.

Method: KNN, Neighbors: 2, 5, 10
Original Veto 1 Veto 2
KDE | Red H1 K2 u3 | 1 H2 w3 | K2 u3
TP 3 3 3 3 3 3 3 3 3
FP 82 124 100 | 56 78 61 | 34 47 36
FN 0 0 0 0 0 0 0 0 0
TP 2 2 3 1 2 2 1 2 2
X FP 14 25 24 9 19 13 6 13 8
FN 1 1 0 2 1 1 2 1 1
TP 3 3 3 3 3 3
FS 2 FP 117 131 112 | 76 85 80 40 62 54
FN 0 0 0 0 0 0 0 0 0
TP 3 3 3 3 3 3 3 3 3
012 FP | 111 162 154 | 61 81 74 | 34 54 47
FN 0 0 0 0 0 0 0 0 0
TP 2 3 3 2 3 3 1 2 2
X FS 2 FP 20 21 23 14 15 16 11 12 9
FN 1 0 0 1 0 0 2 1 1
TP 3 3 3 2 3 3 0 3
X Ol 2 FP 19 24 22 13 17 16 10 12 12
FN 0 0 0 1 0 0 3 0 0
TP 3 3 3 3 3 3 3 3 3
FS 5 FP 96 135 119 | 63 80 67 | 41 55 44
FN 0 0 0 0 0 0 0 0 0
TP 3 3 3 3 3 3 3 3 3
OI5 FP 95 128 119 | 63 80 74 | 40 56 53
FN 0 0 0 0 0 0 0 0
TP 2 3 3 2 1 2 1 1
X FS 5 FP 17 27 22 11 19 15 6 11 9
FN 1 0 0 1 2 1 2 2 2
TP 3 3 2 3 3 2 2 2
X OI5 FP 19 22 26 15 17 19 10 14 14
FN 0 0 1 0 0 1 1 1 1
TP 3 3 3 3 3 3 3 3 3
FS 10 || FP 95 133 132 | 60 76 65 | 37 52 40
FN 0 0 0 0 0 0 0 0 0
TP 3 3 3 3 3 3 3 3 3
OI10 || FP 83 115 97 | 56 79 65 | 31 54 44
FN 0 0 0 0 0 0 0 0
TP 2 2 2 1 2 2 1 1 0
X FS 10 FP 14 27 22 11 20 16 6 15 10
FN 1 1 1 2 1 1 2 2 3
TP 3 3 3 3 3 3 1 2 1
X 0110 || FP 15 25 20 9 17 13 3 14 8
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| |FN | © 0 0 |o 0 0 | 2 1 2
Table D.6: Post-processed results for random forest, patient 36.
Method: Random Forest, Trees: 10, 30, 50
Original Veto 1 Veto 2
KDE | Red K1 K2 M3 | p1 K2 B3 | M K2 K3
TP | 3 3 3 | 3 3 313 3 3
FP | 111 101 93 | 80 74 71|57 56 52
FN | 0 0 0 | o0 0 0|0 0 0
TP | 2 2 1T | 2 1 T ] 1 1 1
X FP | 21 17 17 | 14 10 9 | 7 4 4
FN | 1 1 2 |1 2 2 | 2 2 2
TP 3 3 | 3 3 313 3 3
FS2 | FP | 135 126 125 | 84 8 76 | 54 68 54
FN | 0 0 0| o0 0 0|0 0 0
TP | 3 3 3 13 3 3] 3 3 3
Or2 || FP | 123 108 01|75 73 70 |50 52 49
FN | 0 0 0|0 0 0| o0 0 0
TP | 3 2 2 | 2 2 2 | 2 1 2
X FS2 || FP | 22 19 20 | 15 13 14 | 12 11 10
FN | 0 1 1|1 1 1|1 2 1
TP | 2 3 2 | 2 2 2 | 2 2 2
X Ol2 | FP | 21 23 20 | 16 15 16 | 10 9 10
FN | 1 0 1|1 1 1|1 1 1
TP | 3 3 3 3 313 3 3
FS5 | FP | 112 115 111 | 82 78 69 | 58 49 49
FN | 0 0 0 | o0 0 0|0 0 0
TP | 3 3 3 | 3 3 313 3 3
Ol5 || FP | 104 102 103 |73 69 70|50 48 51
FN | 0 0 0 0 0| o0 0 0
TP | 3 2 2 | 1 2 2 | 1 2 2
X FS5 | FP | 21 21 19 |15 15 12 ]9 9 11
FN | 0 1 1| 2 1 1] 2 1 1
TP | 3 3 3 13 2 2 |1 2 2
X Ol5 || FP | 25 24 24 | 16 14 16 | 13 9 11
FN | 0 0 0|0 1 1] 2 1 1
TP | 3 3 3 | 3 3 313 3 3
FS10 || FP | 124 115 107 | 80 76 73| 57 48 47
FN | 0 0 0 | o0 0 0|0 0 0
TP | 3 3 3 | 3 3 313 3 3
OI10 || FP | 100 97 93 | 80 73 69 | 56 54 53
FN | 0 0 0 | o0 0 0|0 0 0
TP | 2 2 2 | 1 2 2 | 1 2 2
X | FS10 || FP | 22 22 18 |16 14 11 | 11 9 6
FN | 1 1 1| 2 1 1| 2 1 1
TP | 3 2 2 | 2 1 1 [ 1 1 1
X | o110 || FP | 19 18 17 |14 10 12 | 10 8 8
FN | 0 1 1|1 2 2 | 2 2 2

Table D.7: Post-processed results for logistic regression, patient 36.

Method: Logistic Regression
Original | Veto 1 | Veto 2
KDE Red
TP 3 3 3
FP 127 75 44
FN 0 0 0
TP 3 2 2
X FpP 25 16 9
FN 0 1 1
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TP 3 3 3

FS 2 FP 89 54 35

FN 0 0 0

TP 3 3 3

Ol 2 FP 117 68 50

FN 0 0 0

TP 2 2 2

FS 2 FP 19 11 8

FN 1 1 1

TP 1 1 1

OI 2 FP 23 13 8

FN 2 2 2

TP 3 3 3

FS 5 FP 116 74 46

FN 0 0 0

TP 3 3 3

Ol 5 FpP 111 78 58

FN 0 0 0

TP 2 2 2

FS 5 FP 19 14 6

FN 1 1 1

TP 3 3 3

Ol 5 FP 23 10 5

FN 0 0 0

TP 3 3 3

FS 10 FP 126 73 37

FN 0 0 0

TP 3 3 3

OI 10 FpP 116 76 53

FN 0 0 0

TP 3 3 2

FS 10 FP 20 14 9

FN 0 0 1

TP 3 2 1

Ol 10 FP 18 15 11

FN 0 1 2

Table D.8: Post-processed results SVM, patient 36.
Method: SVM, kernel: rbf, linear, BoxConst: 1, 100
Original Veto 1 Veto 2

KDE | Red M1 12 13 p4 M1 H2  p3 M M1 p2 B3 g
TP 0 0 3 3 0 0 3 3 0 0 3 3
FpP 0 0 94 127 0 0 61 78 0 0 36 44
FN 3 3 0 0 3 3 0 0 3 3 0 0
TP 0 0 3 3 0 0 2 3 0 0 2 2
X FpP 0 2 20 23 0 1 14 17 0 1 10 12
FN 3 3 0 0 3 3 1 0 3 3 1 1
TP 3 3 3 3 3 3 3 3 3 3 3 3
FS 2 FP | 163 149 81 94 85 87 57 57 64 65 42 38
FN 0 0 0 0 0 0 0 0 0 0 0 0
TP 3 3 3 3 3 3 3 3 3 3 3 3
OI 2 FP 130 165 130 138 75 81 74 75 55 55 59 60
FN 0 0 0 0 0 0 0 0 0 0 0 0
TP 3 3 2 2 3 3 2 2 3 2 2 2
X FS 2 FP 27 27 17 21 17 16 11 12 11 13 10 8
FN 0 0 1 1 0 0 1 1 0 1 1 1
TP 3 3 2 2 2 3 2 2 2 1 2 2
X OI 2 FP 22 22 24 24 17 17 13 14 12 14 6 7
FN 0 0 1 1 1 0 1 1 1 2 1 1
TP 3 3 3 3 3 3 3 3 3 3 3 3
FS 5 FP | 195 193 70 115 88 92 53 68 68 61 31 47
FN 0 0 0 0 0 0 0 0 0 0 0 0
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TP | 3 3 3 3 3 3 3 3 3 3 3 3
o15 || FP | 102 118 113 111 | 67 72 81 78 43 49 63 65
FN | © 0 0 0 0 0 0 0 0o 0 0 0
TP | 3 3 2 2 2 3 2 2 11 1 2
X FS5 || FP | 20 22 19 17 14 16 13 13 11 14 9 9
FN | 0 0 1 1 1 0o 1 1 2 2 2 1
TP | 3 3 3 3 2 2 3 3 2 1 3 3
X oI5 || FP | 18 18 24 928 15 16 14 11 9 12 7 5
FN | 0 0 0 0 1 1 0 0 1 2 0 0
TP | 2 2 3 3 2 3 3 2 2 3 3
FS 10 || FP | 134 117 87 122 | 69 57 55 77 |51 34 35 40
FN | 1 1 0 0 1 1 0 0 1 1 0 0
TP | 2 2 3 3 1 T 3 3 T 2 3 3
o110 || FP | 73 83 86 117 | 51 59 64 81 37 37 46 50
FN | 1 1 0 0 2 2 0 0 2 1 0 0
TP | 0 0 3 3 0 0 2 2 0 0 1 1
x | Fs1w0| FP | 6 10 15 16 4 8 13 14 3 5 6 7
FN | 3 3 0 0 3 31 1 3 3 2 2
TP | 0 0 1 2 0 0 1 1 0 0 1 1
x |or1o| FP | 8 10 17 18 6 7 10 15 5 5 8 10
FN | 3 3 2 1 3 3 2 2 3 3 2 2
D.2 Cluster balanced training set
Table D.9: Cross-validation results for KNN, patient 36.
Method: KNN, Neighbors: 2, 5, 10
KDE Red Q1 %) n3 o1 o9 o3
Accuracy | 0.96766  0.86379  0.89308 | 0.0016176  0.00030949  0.011448
Specificity | 0.9792  0.87085 0.90097 | 0.0027707  0.0016609  0.010887
Sensitivity | 0.14583  0.33004  0.30208 | 0.075116 0.15636 0.17148
Accuracy | 0.0603  0.84874  0.8296 | 0.0097117 _ 0.046857 0.0659
X Specificity | 0.96665 0.85183  0.83337 | 0.010195 0.046614  0.066193
Sensitivity | 0.14583 0.41009 0.30208 | 0.075116 0.17711 0.15763
Accuracy | 0.82243 0.67251 0.73477 | 0.041137 __ 0.030701 _ 0.035667
FS 2 || Specificity | 0.82975 0.67522 0.73816 | 0.04133 0.032974  0.037734
Sensitivity | 0.26042  0.40625  0.42708 0.1378 0.21271 0.22268
Accuracy | 0.90467 0.75982 0.73557 | 0.016817 _ 0.017492 _ 0.02978
OI2 || Specificity | 0.91351 0.76574 0.74179 | 0.016988 0.017717  0.030304
Sensitivity | 0.25713  0.31634 0.26042 | 0.10264 0.10592 0.13052
Accuracy | 0.91859 0.81828  0.7652 | 0.011285 0.026287  0.048967
X FS 2 || Specificity | 0.92327 0.82089 0.76792 | 0.01133 0.026913  0.049481
Sensitivity | 0.3273  0.43805 0.37171 | 0.070826 0.14037 0.15954
Accuracy | 0.90509 0.78333 0.73796 | 0.0064694  0.040237  0.06274
X O12 || Specificity | 0.91039 0.78618 0.74107 | 0.0061495  0.040608  0.063347
Sensitivity | 0.22259 0.37884  0.30208 | 0.058662 0.13708 0.15131
Accuracy | 00151 0.78683  0.8198 | 0.014312 0.005557 _ 0.025218
FS 5 || Specificity | 0.92354 0.79138 0.82667 | 0.013719  0.0053423  0.026697
Sensitivity | 0.28838 0.41338  0.30208 | 0.12971 0.18832 0.18072
Accuracy | 0.91746  0.82962  0.83629 | 0.029181 0.015645 _ 0.023055
OI5 || Specificity | 0.92521  0.83593  0.84346 | 0.029565 0.01638  0.024175
Sensitivity | 0.33717  0.34046  0.29167 0.1163 0.1442 0.15023
Accuracy | 0.92983 0.82078  0.82944 | 0.015349 0.033739 __ 0.025736
X FS5 || Specificity | 0.93428 0.82322  0.83304 | 0.014987 0.034185  0.025846
Sensitivity | 0.33004 0.45175 0.33004 | 0.14889 0.1815 0.14332
Accuracy | 0.93078 0.80604 0.76039 | 0.0073098  0.018291 _ 0.021678
X O15 || Specificity | 0.93564 0.80854 0.76279 | 0.0072672  0.017739  0.021644
Sensitivity | 0.28838  0.44134 0.40206 | 0.12327 0.17951 0.18088
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Accuracy 0.94799 0.84196 0.85907 | 0.00077955 0.0073314 0.031902

FS 10 Specificity | 0.95747  0.84712 0.8655 0.00097504 0.0073348 0.031365

Sensitivity 0.25 0.43092 0.37171 0.1263 0.16383 0.16847

Accuracy 0.96032 0.86706  0.90312 0.0023594 0.0012416 0.010252

OI 10 Specificity 0.97 0.87344  0.91078 0.0032289 0.0026535 0.010205
Sensitivity | 0.25713  0.36458  0.32292 0.11175 0.19292 0.16764

Accuracy 0.94176  0.84725 0.8137 0.0097024 0.014252 0.041819

X FS 10 Specificity | 0.94633 0.85015 0.81697 0.009258 0.014175 0.041919
Sensitivity | 0.33717  0.43092  0.35088 0.13203 0.17159 0.15864

Accuracy 0.9594 0.86642 0.86122 0.0087782 0.037094 0.041203

X OI 10 Specificity 0.96516  0.86956  0.86548 0.0092571 0.037029 0.041343
Sensitivity | 0.20833  0.40625 0.28125 0.11024 0.21271 0.14321

Table D.10: Cross-validation results for randf, patient 36.
Method: Random Forest, Trees: 10, 30, 50
KDE Red 5 o n3 o1 o9 o3

Accuracy 0.68425  0.74592  0.75466 0.079087 0.066359 0.078802
Specificity | 0.68397  0.74757  0.75601 0.081185 0.068909 0.0819
Sensitivity | 0.63322  0.54221  0.55592 0.13514 0.19237 0.22605
Accuracy 0.93839 0.93604 0.93857 | 0.0084714 0.01918 0.01843
X Specificity | 0.94419  0.94249  0.94522 0.010292 0.020896 0.01977
Sensitivity | 0.46546  0.42379  0.41338 0.21586 0.19603 0.18395

Accuracy 0.80955 0.76381  0.73662 0.035185 0.050771 0.042495

FS 2 Specificity 0.81283 0.76797 0.74112 0.036761 0.051719 0.043495
Sensitivity | 0.51809  0.43147  0.37555 0.15615 0.095481 0.12582

Accuracy 0.7444 0.77705 0.80167 0.015457 0.039325 0.040627

OI 2 Specificity | 0.74846  0.78159  0.80726 0.015438 0.040295 0.041466
Sensitivity | 0.42434 0.4068 0.358 0.11983 0.12575 0.12669

Accuracy 0.9133 0.93205 0.93165 0.014891 0.015086 0.022921

X FS 2 Specificity | 0.91948  0.93955  0.93685 0.015327 0.016323 0.024625
Sensitivity | 0.45943  0.37555  0.52522 0.074052 0.13578 0.14959

Accuracy 0.93786 0.94193 0.93674 0.013728 0.0097462 0.014465

X OI 2 Specificity | 0.94556  0.95041  0.94478 0.01335 0.009654 0.014736
Sensitivity | 0.37226  0.31634  0.33717 0.085275 0.10592 0.1163

Accuracy 0.66759  0.76279  0.71602 0.13072 0.059134 0.039381

FS 5 Specificity | 0.66962  0.76827  0.72144 0.13392 0.060096 0.040096
Sensitivity | 0.42379  0.31963  0.28125 0.1858 0.13621 0.14768

Accuracy 0.78533  0.81063  0.79394 0.043115 0.046585 0.063122

OI5 Specificity 0.7909 0.81563  0.79896 0.043034 0.04768 0.064122
Sensitivity | 0.36897 0.4068 0.38596 0.069524 0.12575 0.11545

Accuracy 0.92095 0.93265 0.92878 0.019189 0.024155 0.026817

X FS 5 Specificity | 0.92688 0.93958  0.93564 0.020607 0.026115 0.028461
Sensitivity | 0.47314  0.39254  0.39967 0.14446 0.19241 0.16811

Accuracy 0.93728 0.94138 0.94833 0.016462 0.0099939  0.0057867

X OI5 Specificity | 0.94328  0.94935 0.9564 0.017718 0.01024 0.0055454
Sensitivity | 0.48355 0.35471  0.35471 0.13173 0.10206 0.098823

Accuracy 0.76866  0.77555  0.79346 0.077716 0.077804 0.068804
FS 10 Specificity | 0.77105  0.77977 0.7983 0.079715 0.079784 0.0698
Sensitivity | 0.54276  0.41721  0.40351 0.11909 0.14422 0.11064

Accuracy 0.75985  0.77253  0.78951 0.062551 0.060335 0.065275

OI 10 Specificity | 0.76213 0.7748 0.79294 0.064303 0.062778 0.066972
Sensitivity | 0.53564 0.5318 0.49397 0.15016 0.1904 0.12391

Accuracy 0.92584 0.94119 0.93941 0.019733 0.017455 0.019916

X FS 10 Specificity | 0.93094 0.94805 0.94608 0.021582 0.018413 0.020493
Sensitivity | 0.51809  0.40296  0.42763 0.1739 0.1754 0.13487

Accuracy 0.93266  0.94211 0.93715 0.018078 0.012006 0.022536

X OI 10 Specificity | 0.93858 0.94829  0.94311 0.020315 0.013827 0.024599
Sensitivity | 0.46217 0.4375 0.46217 0.20419 0.22535 0.19606
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Table D.11: Cross-validation results for logistic regression, patient 36.

Method: Logistic Regression
KDE Red o1

Accuracy 0.8088 | 0.0048214

Specificity | 0.81415 | 0.0050596

Sensitivity | 0.38925 0.14314

Accuracy 0.88317 0.013083

X Specificity | 0.88687 | 0.012672
Sensitivity | 0.38596 0.12623

Accuracy 0.72912 0.088712

FS 2 Specificity | 0.73559 | 0.090401
Sensitivity | 0.26425 0.081517

Accuracy 0.77189 | 0.058319

Ol 2 Specificity 0.7796 0.059575
Sensitivity | 0.22588 0.11275

Accuracy 0.75493 0.10807

X FS 2 Specificity | 0.75637 0.10962
Sensitivity 0.483 0.18909

Accuracy 0.81621 | 0.046538

X OI 2 Specificity | 0.82005 0.04797
Sensitivity | 0.29879 0.17001

Accuracy 0.83114 0.023855

FS5 Specificity | 0.83696 | 0.024695
Sensitivity | 0.37884 0.13944

Accuracy 0.81554 0.028704

OI5 Specificity | 0.81985 | 0.030406
Sensitivity | 0.45175 0.17696

Accuracy 0.80705 | 0.017621

X FS 5 Specificity | 0.80907 0.01685
Sensitivity | 0.5148 0.16024

Accuracy 0.81426 | 0.016926

X OI5 Specificity | 0.81753 | 0.016676
Sensitivity | 0.36129 0.15459

Accuracy 0.79436 0.01609

FS 10 Specificity 0.7987 0.017551
Sensitivity | 0.43092 0.17159

Accuracy 0.79262 | 0.015873

OI 10 Specificity | 0.79596 0.01778
Sensitivity | 0.50055 0.18259

Accuracy 0.87874 0.026567

X FS 10 || Specificity | 0.88243 | 0.026713
Sensitivity | 0.36842 0.14228

Accuracy 0.86376 | 0.012789

X OI 10 || Specificity | 0.86662 | 0.012651
Sensitivity | 0.47314 0.10842

Table D.12: Cross-validation results for SVM, patient 36.

Method: SVM, Trees: 10, 30, 50

KDE Red I H2 w3 a o1 o9 o3 o4

Accuracy 0.98521 0.9838 0.85436  0.83657 0.0029009 0.0037977 0.010806  0.025182

Specificity 0.99927 0.99766  0.85941  0.84307 | 0.00072582 0.0018479  0.011893  0.026161

Sensitivity | 0.010417  0.020833 0.44134  0.32292 0.010417 0.010417 0.17399 0.16171

Accuracy 0.99166 0.99108 0.8914  0.87703 | 0.0015343 0.0018608  0.018094 0.016204

X Specificity 0.99961 0.99883  0.89463  0.88131 | 0.00039273 0.00078054  0.018411 0.016277
Sensitivity 0 0.020833  0.42379  0.29167 0 0.010417 0.19098 0.16271

Accuracy 0.80663 0.81041 0.76585  0.76201 0.035364 0.042093 0.086069  0.079595

FS 2 Specificity 0.81006 0.81761 0.77309  0.76843 0.035849 0.043937 0.088549  0.08141
Sensitivity | 0.47917 0.26042  0.25384  0.2955 0.25022 0.18779 0.11005 0.10527

Accuracy 0.85383 0.7854 0.71816  0.71226 0.023954 0.028666 0.073773  0.075939

OI 2 Specificity 0.86141 0.79035 0.7253 0.71947 0.024253 0.029452 0.075192  0.077735
Sensitivity 0.2955 0.40351 0.21546  0.20504 0.095547 0.098164 0.085795  0.093472
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Accuracy 0.86038 0.88194 0.82645 0.81915 0.011111 0.012872 0.07122 0.075881
X FS 2 Specificity 0.86474 0.88715 0.82985  0.82344 0.010846 0.012234 0.072285  0.077105
Sensitivity 0.27796 0.19792 0.35417 0.25 0.12136 0.128 0.19874 0.14434
Accuracy 0.85889 0.82812 0.80036  0.81116 0.019848 0.026843 0.083277 0.071454
X OI 2 Specificity 0.86233 0.83168 0.80477  0.81567 0.020196 0.027012 0.085229  0.073264
Sensitivity 0.37884 0.3443 0.21875  0.21875 0.13708 0.099943 0.17399 0.17399
Accuracy 0.95771 0.89166 0.77782  0.80189 0.0046049 0.01841 0.061243  0.011805
FS 5 Specificity 0.96997 0.90256 0.78332 0.8079 0.0041963 0.018197 0.06157 0.011379
Sensitivity 0.09375 0.11458 0.36842  0.34046 0.047735 0.057998 0.13158 0.1442
Accuracy 0.88982 0.86265 0.81489  0.81803 0.05478 0.057222 0.060881  0.052389
Ol 5 Specificity 0.89678 0.86864 0.81941 0.82259 0.056455 0.058961 0.063794  0.054908
Sensitivity 0.35088 0.38213 0.43421  0.43421 0.15343 0.16696 0.21104 0.20398
Accuracy 0.95226 0.91454 0.83501 0.8554 0.0033059 0.0042577 0.072215  0.037453
X FS 5 Specificity 0.95892 0.92022 0.83794  0.85928 0.0025811 0.0044722 0.072916  0.037566
Sensitivity 0.10417 0.17708 0.42434 0.34101 0.052083 0.089 0.10691 0.065241
Accuracy 0.93575 0.92388 0.79967 0.81123 0.0082626 0.0019986 0.024222  0.033967
X Ol 5 Specificity 0.94035 0.92808 0.80274  0.81479 0.0083209 0.0018134 0.023697  0.034059
Sensitivity 0.3125 0.34375 0.36458  0.33004 0.15729 0.17211 0.18429 0.13987
Accuracy 0.97955 0.96603 0.83327  0.79012 0.0035072 0.0049508 0.021483 0.03997
FS 10 Specificity 0.99299 0.97875 0.83764  0.79588 0.0017413 0.0043606 0.022862  0.041197
Sensitivity | 0.041667 0.072917  0.46217  0.33004 0.02756 0.037558 0.17868 0.14332
Accuracy 0.978 0.96814 0.81553  0.80744 0.004024 0.0053338 0.027013  0.022631
OI 10 Specificity 0.9916 0.98088 0.81898 0.81112 0.0018756 0.0037346 0.028784  0.024257
Sensitivity 0.03125 0.072917  0.50384  0.49013 0.018042 0.037558 0.20112 0.18112
Accuracy 0.9843 0.97644 0.87636  0.86741 0.0021902 0.0048549 0.030661  0.018474
X FS 10 Specificity 0.99171 0.9834 0.87964  0.87142 0.002416 0.0049559 0.030973  0.018468
Sensitivity | 0.052083 0.09375 0.41009 0.31963 0.02756 0.047735 0.15663 0.14091
Accuracy 0.98793 0.9841 0.88407  0.85253 0.0016959 0.0024161 0.036097 0.02354
X OI 10 Specificity 0.99555 0.9914 0.88688  0.85539 0.0010646 0.0023255 0.036162  0.023435
Sensitivity 0.03125 0.0625 0.47259  0.44846 0.018042 0.036084 0.18717 0.1497
Table D.13: Post-processed results for KNN, patient 36.
Method: KNN, Neighbors: 2, 5, 10
Original Veto 1 Veto 2
KDE | Red M1 12 H3 | p1 M2 M3 | p1 12 13
TP 3 3 3 3 3 2 2 3 2
FP 14 101 83 8 47 39 2 15 18
FN 0 0 0 0 1 1 0 1
TP 1 3 3 1 3 2 0 2 1
X FP 12 24 29 7 15 17 5 13 14
FN 2 0 0 2 0 1 3 1 2
TP 3 3 3 3 3 3 3 3 3
FS 2 FP 114 165 148 45 58 53 25 41 32
FN 0 0 0 0 0 0 0 0 0
TP 3 3 3 2 2 2 2 2 2
Ol 2 FP 65 152 157 | 33 58 52 12 33 24
FN 0 0 0 1 1 1 1 1 1
TP 3 3 3 3 3 3 0 2
X FS 2 FP 25 27 29 12 18 17 7 14 14
FN 0 0 0 0 0 3 3 1
TP 2 3 3 1 3 3 0 2 2
X OI 2 FP 24 28 29 16 17 18 10 15 17
FN 1 0 0 2 0 0 3 1 1
TP 3 3 3 3 3 3 2
FS 5 FP 67 135 119 | 37 61 44 | 20 33 22
FN 0 0 0 0 0 0 0 1 0
TP 3 3 3 2 2 2 2 3 2
OI 5 FP 65 117 115 38 58 49 13 27 25
FN 0 0 0 1 1 1 1 0 1
TP 2 3 3 2 3 3 1 2 1
X FS 5 FP 15 29 28 8 20 17 7 15 15
FN 1 0 0 1 0 0 2 1 2
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TP 3 3 3 1 3 3 0 3 3
X Ol 5 FP 17 29 30 12 18 18 11 15 16
FN 0 0 0 2 0 0 3 0 0
TP 3 3 3 2 2 3 3 3 3
FS 10 FP 42 112 96 21 50 31 6 25 12
FN 0 0 0 1 1 0 0 0 0
TP 3 3 3 3 3 3 3 3 3
OI 10 FP 26 105 74 15 44 36 5 18 17
FN 0 0 0 0 0 0 0 0 0
TP 2 3 3 1 3 3 0 2 3
X FS 10 FP 15 28 31 10 17 17 8 14 16
FN 1 0 0 2 0 0 3 1 0
TP 1 2 3 0 1 3 0 0 0
X OI 10 FP 14 25 26 7 14 17 5 11 14
FN 2 1 0 3 2 0 3 3 3
Table D.14: Post-processed results for random forest, patient 36.
Method: Random Forest, Trees: 10, 30, 50
Original Veto 1 Veto 2
KDE | Red M1 M2 “3 | p1 M2 M3 | p1 12 13
TP 3 3 3 3 3 3 3 3 3
FP | 164 137 130 | 73 73 64 | 51 51 46
FN 0 0 0 0 0 0 0 0 0
TP 3 3 3 3 3 3 3 2 3
X FP 18 16 17 15 15 16 | 14 10 12
FN 0 0 0 0 0 0 0 1 0
TP 3 3 3 3 3 3 3 2 3
FS 2 FP 118 123 146 | 72 65 64 | 43 38 41
FN 0 0 0 0 0 0 0 1 0
TP 3 3 3 3 3 3 3 2 2
Ol 2 FP | 140 133 126 | 69 62 68 | 43 39 40
FN 0 0 0 0 0 0 0 1 1
TP 3 3 3 3 3 3 3 2 2
X FS 2 FP 20 20 19 16 15 15 16 13 11
FN 0 0 0 0 0 0 0 1 1
TP 3 3 3 3 3 3 3 2 2
X Ol 2 FP 19 18 19 16 14 15 11 10 12
FN 0 0 0 0 0 0 0 1 1
TP 3 3 3 3 3 2 3 3 2
FS 5 FP | 158 136 148 | 53 62 60 | 43 41 39
FN 0 0 0 0 0 1 0 0 1
TP 3 3 3 3 3 3 3 3 2
Ol 5 FP 132 123 124 | 65 67 65 35 42 38
FN 0 0 0 0 0 0 0 0 1
TP 3 3 3 3 3 3 3 2 3
X FS 5 FP 19 15 15 17 13 12 15 12 12
FN 0 0 0 0 0 0 0 1 0
TP 3 3 3 2 3 2 2 2 3
X OlI5 FP 18 19 19 15 15 15 11 10 9
FN 0 0 0 1 0 1 1 1 0
TP 3 3 3 3 3 3 3 3 2
FS 10 FP 124 118 107 | 66 61 64 | 42 41 40
FN 0 0 0 0 0 0 0 0 1
TP 3 3 3 3 3 3 3 3 2
OI 10 FP | 128 130 121 | 72 70 68 | 49 47 46
FN 0 0 0 0 0 0 0 0 1
TP 3 3 3 3 2 3 2 2 2
X FS 10 FP 19 17 17 16 14 13 15 10 11
FN 0 0 0 0 1 0 1 1 1
TP 3 3 3 2 3 2 3 3 3
X OI 10 FP 19 17 18 17 16 15 15 14 14
FN 0 0 0 1 0 1 0 0 0
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Table D.15: Post-processed results for logistic

regression, patient 36.

Method: Logistic Regression
Original | Veto 1 | Veto 2
KDE Red

TP 3 3 3

FP 142 69 39

FN 0 0 0

TP 3 2 2

X FpP 23 16 11

FN 0 1 1

TP 3 3 3

FS 2 FP 143 46 31

FN 0 0 0

TP 3 2 3

OI 2 FpP 116 41 28

FN 0 1 0

TP 3 3 3

X FS 2 FpP 20 11 13

FN 0 0 0

TP 2 2 1

X Ol 2 FP 27 16 10

FN 1 1 2

TP 3 2 2

FS 5 FP 128 66 34

FN 0 1 1

TP 3 2 2

oI5 FP 118 75 41

FN 0 1 1

TP 3 3 3

X FS 5 FpP 29 16 15

FN 0 0 0

TP 3 3 3

X oI5 FP 29 16 12

FN 0 0 0

TP 3 3 3

FS 10 FpP 145 76 44

FN 0 0 0

TP 3 3 3

OI 10 FpP 139 73 44

FN 0 0 0

TP 3 2 1

X FS 10 || FP 23 17 12

FN 0 1 2

TP 3 2 1

X OI 10 FpP 24 16 13

FN 0 1 2

Table D.16: Post-processed results SVM, patient 36.
Method: SVM, kernel: rbf, linear, BoxConst: 1, 100
Original Veto 1 Veto 2

KDE Red #1 M2 ©3 J 2 M1 M2 p3 4 M1 p2 M3 P4
TP 0 0 3 3 0 0 3 3 0 0 3 3
FP 0 1 105 126 0 0 54 58 0 0 31 32
FN 3 3 0 0 3 3 0 0 3 3 0 0
TP 0 0 3 3 0 0 2 2 0 0 1 0
X FpP 0 1 24 24 0 0 16 16 0 0 13 12
FN 3 3 0 0 3 3 1 1 3 3 2 3
TP 3 3 3 3 3 3 2 2 3 2 1 2
FS 2 FP | 114 124 125 125 55 61 38 37 39 33 20 28
FN 0 0 0 0 0 0 1 1 0 1 2 1

XLII




D. Appendix 4: HMS Patient 36 result

aF S A D amB8Bo|la@ Al AmFomRolag o o|ad ~
AP DA Do ol Ao amBolmPdolmBolod =D
© N © 0 —
w8 oo mal ~lanw—~mnRolodmlocomcomn[w-aalomm|lc ~m
NR S A alramamJolomwmjormocom|o - mo A moom
© o~ ! = — I~ ~ 0 o 0 10
NG~ A2 aaF Al A A S ol B AR AN R
0 » < I~ o © ~ = = ™ I~
N =Ny S QA g O E =N DA D OMm s oM 3O NN T
— 0 = < ~ ) =
mgololmm ol AlnEola®R oS mat - afommncam
AR AT AR AR A Ro= - ao S m A A~ N[o = m[o o m
o © o = ©

o < © = =~ <
mHolmP |~ JamAomaonKolnJonmtomAolmFolnI e
® o 5 N = x & = N ™ 2
o o - 0 o

o < 10 o 10 0
mR oMY | Famdomoolal] ~nmRolm—tolmtolal AlmRo
x & B a = 2 @ = = 2 2
©
3B03%03W03%03%02%11~_m22m12w1073063
o
mSomgolagag—delo-dal«Tal-aal~oaommn|o~m
VDR [ Pl (oW Wl [« VRN WS [o PRl [ WS [« VRN Wl [o Yl (oW Wl [« VRN Wl [ o P
IR SR Iy | ey | | R T S R SR SR S iy S g ey [ S e iy [ e o

= =
™ ™ ™ 0 0 0 0 = S S S
— wn — wm — wn —
n = n =

o 3 o = o <3 o = o F o

x x x x x x

XLIIT



D. Appendix 4: HMS Patient 36 result

XLIV



Appendix 5: HMS Patient 37
result

E.1 Randomly balanced training set

Table E.1: Cross-validation results for KNN, patient 37.

Method: KNN, Neighbors: 2, 5, 10
KDE Red n1 wo n3 o1 [ o3

Accuracy 0.82877  0.77425 0.80689 | 0.015675 0.013553 0.014539
Specificity | 0.84978  0.78267 0.82173 0.02096 0.014818 0.016943

Sensitivity | 0.42687  0.66055  0.5834 | 0.039792 0.038355 0.0473
Accuracy 0.86818  0.82039 0.85595 | 0.014397 0.0098436  0.0098351
X Specificity 0.8939  0.83523  0.8747 | 0.016244  0.010276 0.010341
Sensitivity | 0.36131  0.56087  0.5155 0.048261 0.049638 0.050264
Accuracy 0.81256  0.76828  0.78545 0.0171 0.014746 0.018786
FS 2 Specificity | 0.83275  0.77469  0.79491 | 0.021409  0.017324 0.021922
Sensitivity | 0.44742  0.71251  0.70903 | 0.039611 0.034009 0.039448
Accuracy 0.82041 0.74592  0.76693 | 0.015135 0.018545 0.019577
OI 2 Specificity | 0.84431 0.74954  0.7724 | 0.018063  0.020642 0.022748
Sensitivity | 0.44652 0.6982 0.70132 | 0.041414  0.035313 0.045204
Accuracy 0.86134 0.80914 0.83554 | 0.012887  0.011284 0.011985
X FS 2 Specificity | 0.88336 0.82198 0.85316 | 0.014059  0.012282 0.013254
Sensitivity | 0.44082  0.59344 0.53911 | 0.036685 0.035863 0.040972
Accuracy 0.85971  0.80484 0.82015 | 0.013594  0.015623 0.014309

X oI 2 Specificity | 0.88736  0.82086  0.84015 | 0.014467 0.0173 0.0161
Sensitivity | 0.37433  0.57493  0.5389 0.04815 0.038514 0.040769
Accuracy 0.82989  0.76221  0.80423 | 0.015002 0.015586 0.017284
FS 5 Specificity | 0.84743 0.76303 0.82004 | 0.01889 0.019398 0.020086
Sensitivity | 0.49202 0.68389  0.60627 | 0.040451 0.042722 0.048489
Accuracy 0.82742  0.76794 0.79836 | 0.019215 0.01741 0.016896
oI5 Specificity | 0.84505 0.77306 0.80914 | 0.025314  0.018605 0.018463
Sensitivity | 0.47164 0.68754  0.63947 | 0.038448 0.03924 0.04067

Accuracy 0.86683  0.82251  0.83997 | 0.01394 0.012554 0.0114
X FS 5 Specificity | 0.89025 0.83464 0.85697 | 0.01524 0.012981 0.011889
Sensitivity | 0.41823 0.60493 0.56531 | 0.044764  0.045185 0.042667
Accuracy 0.87082  0.83039 0.85258 | 0.013038 0.01107 0.010925
X OI5 Specificity | 0.89299 0.84324 0.87011 | 0.013985 0.010655 0.010455
Sensitivity | 0.45018  0.62993  0.57447 | 0.039079  0.042067 0.045114
Accuracy 0.83416  0.77028  0.80947 | 0.015135 0.013005 0.015533
FS 10 Specificity | 0.85628  0.7778 0.81975 0.0186 0.013739 0.017733
Sensitivity | 0.43983  0.67077  0.63945 0.0454 0.041985 0.053553
Accuracy 0.82502  0.77052 0.79929 | 0.017633  0.015458 0.016128
OI 10 Specificity | 0.84231 0.77294 0.80948 | 0.022409  0.017191 0.017471
Sensitivity | 0.49026 0.68862  0.6171 0.037817  0.044216 0.047302
Accuracy 0.86663  0.82449  0.84644 | 0.013702 0.011572 0.012815
X FS 10 Specificity | 0.89072 0.83522 0.86478 | 0.014869  0.012169 0.012025
Sensitivity | 0.40002 0.60834 0.53458 | 0.044183  0.047738 0.044536
Accuracy 0.86918  0.82297 0.85233 | 0.011681 0.011053 0.010782
X OI 10 Specificity | 0.89409 0.83562 0.87001 | 0.012337  0.011022 0.010613
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| | Sensitivity | 0.42702 0.60884  0.5599 | 0.035811  0.043673  0.052301
Table E.2: Cross-validation results for randf, patient 37.
Method: Random Forest, Trees: 10, 30, 50
KDE Red 1 %) n3 o1 o2 o3
Accuracy | 0.8069  0.82789 0.82566 | 0.014928 0.012558  0.013175
Specificity | 0.81053  0.83779  0.83571 | 0.016033  0.015263  0.014201
Sensitivity | 0.75495 0.69822 0.69325 | 0.045268  0.052531  0.061628
Accuracy | 0.8534  0.87125 0.8776 | 0.01081  0.011456 0.0096834
X Specificity | 0.86459  0.8826  0.89017 | 0.011734  0.01215  0.010824
Sensitivity | 0.6733  0.67096 0.67046 | 0.057076  0.05717  0.057494
Accuracy | 0.75542 0.77698 0.75855 | 0.015055  0.015026  0.014971
FS 2 | Specificity | 0.75279 0.78428 0.77142 | 0.016119  0.01653  0.017784
Sensitivity | 0.73541 0.67894 0.63294 | 0.041742  0.046472  0.038939
Accuracy | 0.75163 0.75844 0.77087 | 0.017755  0.016284  0.016088
OI 2 || Specificity | 0.75852  0.76452 0.77523 | 0.022069  0.02023  0.019135
Sensitivity | 0.72509 0.71784 0.74818 | 0.039076  0.039707  0.038277
Accuracy | 0.82095 0.83414 0.82741 | 0.0086883  0.01219  0.011561
X FS 2 || Specificity | 0.82863 0.84669 0.84151 | 0.010198  0.015057  0.01331
Sensitivity | 0.6647  0.62794 0.60398 | 0.044288  0.050367  0.041664
Accuracy | 0.81405 0.81543 0.81993 | 0.015362  0.015436  0.014944
X OI 2 || Specificity | 0.82409 0.83059 0.83363 | 0.016636  0.017699  0.016616
Sensitivity | 0.64558 0.59088 0.58804 | 0.03921  0.044857  0.044719
Accuracy | 0.78486 0.78778 0.77942 | 0.015413  0.016665  0.015958
FS5 | Specificity | 0.78379 0.79619 0.78819 | 0.01687  0.019694  0.016882
Sensitivity | 0.78006 0.70632 0.67748 | 0.046927  0.039955  0.040268
Accuracy | 0.76755 0.7874  0.78811 | 0.015323  0.016447  0.015371
OI5 || Specificity | 0.77243  0.79305  0.7966 | 0.016879  0.019253  0.017597
Sensitivity | 0.71344 0.73932 0.68652 | 0.035889  0.038776  0.042269
Accuracy | 0.84242 0.84447 0.85144 | 0.010601  0.011388  0.011136
X FS5 || Specificity | 0.85195 0.85655 0.86502 | 0.011078  0.013164  0.01227
Sensitivity | 0.63852  0.65753  0.60293 | 0.05643  0.046625  0.051274
Accuracy | 0.8347  0.84701 0.85066 | 0.012451  0.012571  0.01286
X OI 5 | Specificity | 0.84534 0.85868 0.86328 | 0.014034  0.013737  0.014364
Sensitivity | 0.67261 0.63144  0.62958 | 0.03874  0.040531  0.043818
Accuracy | 0.79763 0.79364 0.78682 | 0.013572 0.015874  0.016476
FS 10 || Specificity | 0.80246 0.80138 0.79724 | 0.017056  0.019187  0.018632
Sensitivity | 0.74384  0.74287 0.70226 | 0.054549  0.041151  0.037726
Accuracy | 0.79742 0.81028 0.81524 | 0.016548 0.015854  0.014925
OI 10 || Specificity | 0.80497 0.81606 0.82304 | 0.018338  0.018225  0.016792
Sensitivity | 0.6889  0.73546 0.72173 | 0.049854  0.048231  0.053317
Accuracy | 0.84563 0.85862 0.84934 | 0.01113  0.011643  0.012477
X | FS 10 || Specificity | 0.85531 0.86939 0.86126 | 0.012064  0.012563  0.014017
Sensitivity | 0.66861 0.67271 0.65599 | 0.056256  0.052941  0.043722
Accuracy | 0.84396 0.86398 0.86114 | 0.01239  0.01202  0.011174
X OI 10 || Specificity | 0.85173 0.87535 0.87231 | 0.013195  0.013505  0.011991
Sensitivity | 0.70102  0.66973  0.65757 | 0.045327  0.045713  0.050395

Table E.3: Cross-validation results for logistic regression, patient 37.
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Method: Logistic Regression

KDE Red 5 o1

Accuracy 0.80341 | 0.011541

Specificity | 0.81778 | 0.011775

Sensitivity | 0.62335 | 0.045828

Accuracy 0.85098 | 0.010546

X Specificity | 0.86821 | 0.010765
Sensitivity | 0.59178 | 0.046259

Accuracy 0.77676 | 0.015028

FS 2 Specificity | 0.78325 | 0.017283
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Sensitivity | 0.66882 | 0.056639

Accuracy 0.76843 | 0.019494

oI 2 Specificity | 0.77676 | 0.024051
Sensitivity | 0.6646 | 0.065314

Accuracy 0.83143 | 0.01471

X FS 2 Specificity 0.8477 | 0.016632
Sensitivity | 0.55141 | 0.05237

Accuracy 0.8481 | 0.012738

X OI 2 Specificity | 0.86993 | 0.015311
Sensitivity | 0.48009 | 0.065963

Accuracy 0.78311 | 0.015534

FS 5 Specificity | 0.79403 | 0.017646
Sensitivity | 0.63624 0.05222

Accuracy 0.77091 | 0.015482

OI5 Specificity | 0.77741 | 0.017377
Sensitivity | 0.66265 | 0.052911

Accuracy 0.84024 | 0.013317

X FS 5 Specificity | 0.85493 | 0.01548
Sensitivity | 0.58171 0.05162

Accuracy 0.82743 | 0.013186

X OI5 Specificity | 0.84019 | 0.014555
Sensitivity | 0.61377 | 0.053705

Accuracy 0.78823 | 0.012799

FS 10 Specificity | 0.80064 | 0.013562
Sensitivity | 0.65555 | 0.038635

Accuracy 0.78741 | 0.014432

OI 10 Specificity | 0.80057 | 0.015842
Sensitivity | 0.61086 | 0.053646

Accuracy 0.84684 | 0.011866

X FS 10 || Specificity | 0.86297 | 0.012501
Sensitivity | 0.55662 | 0.051232

Accuracy 0.84104 | 0.012692

X OI 10 || Specificity | 0.85626 | 0.013826
Sensitivity | 0.58476 | 0.056198

Table E.4: Cross-validation results for SVM, patient 37.

Method: SVM, Trees: 10, 30, 50

KDE Red w1 7% u3 a o1 o9 o3 o4

Accuracy 0.56902 0.58073 0.79665 0.79397 | 0.017028 0.015815 0.012687 0.011788

Specificity | 0.54655 0.55788  0.81258 0.81131 | 0.017823  0.01638  0.013068  0.013173

Sensitivity | 0.85929 0.8608 0.61751 0.6197 0.031204 0.031107  0.047503 0.044114

Accuracy 0.69728 0.70726  0.85135 0.84893 | 0.022158  0.02034  0.010804  0.009801
X Specificity | 0.69415  0.70565 0.8699 0.86515 | 0.026144  0.02407  0.010893  0.0095103
Sensitivity | 0.76776  0.74603 0.57611 0.6123 | 0.064446 0.063315  0.050698 0.04311

Accuracy 0.76494  0.76943 0.75787 0.76016 | 0.015794 0.011639 0.017936  0.017774

FS 2 Specificity | 0.77469  0.77743  0.76569  0.76754 | 0.020227  0.01381 0.021645  0.021583
Sensitivity | 0.64196  0.66253 0.66284 0.66955 | 0.060798 0.042161 0.056097  0.056869

Accuracy 0.73973  0.75609 0.74855  0.7485 0.018965 0.014416  0.020939 0.02096

Ol 2 Specificity 0.73554 0.76196 0.75166 0.75162 0.02198 0.01712 0.025577 0.025603
Sensitivity | 0.80616  0.6913 0.7107 0.7107 | 0.052442 0.035892 0.063781 0.063781

Accuracy 0.81513 0.81116  0.82994 0.82691 | 0.013037 0.013414 0.016205  0.015986

X FS 2 Specificity | 0.82602 0.82171 0.84655 0.84272 | 0.014916 0.014154 0.018632  0.018294
Sensitivity | 0.62556  0.64148 0.55001 0.56303 | 0.058511 0.04097  0.061654  0.060141

Accuracy 0.81681  0.81823  0.84008 0.84117 | 0.015828  0.014103 0.0141 0.013781

X Ol 2 Specificity | 0.82734  0.83433  0.85907 0.86009 | 0.01865 0.01571 0.016431 0.016054
Sensitivity | 0.66231 0.55503  0.49908 0.50371 0.056094  0.045795  0.068784 0.067466

Accuracy 0.70676  0.69115 0.77187  0.7691 0.016118 0.014732 0.015191 0.016178

FS 5 Specificity | 0.70284  0.6857  0.78264  0.78148 | 0.018335 0.016245 0.016435  0.017544
Sensitivity | 0.75578  0.75664 0.64404 0.63617 | 0.040356  0.034006  0.04851 0.044102

Accuracy 0.76747  0.7498  0.76087  0.75747 | 0.01656  0.013766 0.016098  0.016559

Ol 5 Specificity | 0.77265 0.76062 0.76253 0.76012 | 0.017855 0.014542 0.018282  0.018709
Sensitivity | 0.68983  0.65894  0.71369 0.69127 | 0.042143  0.040053 0.054575  0.054322
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Accuracy 0.75956 0.7536 0.8327 0.82932 | 0.015834 0.014875 0.013159 0.012979
X FS5 Specificity 0.76 0.75609  0.84652 0.8416 0.017162  0.016395  0.014269 0.013573
Sensitivity | 0.73808 0.70526  0.59858  0.60488 | 0.049015 0.04226 0.05429 0.056998

Accuracy 0.83256  0.8156  0.82074 0.81812 | 0.01194  0.012378 0.013058  0.012903
X oI5 Specificity 0.8453  0.83076  0.83362 0.83123 | 0.011868  0.01205  0.014544  0.014401
Sensitivity | 0.61967  0.58114  0.60087  0.6031 0.048389  0.041311  0.058213 0.05823

Accuracy 0.61905  0.6338  0.78342 0.79161 | 0.017627 0.016899  0.012391  0.012517
FS 10 || Specificity | 0.60393 0.62148  0.7984  0.80434 | 0.019576 0.019136 0.013203  0.013188
Sensitivity | 0.81364 0.79749 0.58679  0.66281 | 0.037563 0.038802  0.04981 0.045038

Accuracy 0.6521 0.66253  0.77836  0.77438 | 0.016529 0.016166 0.014933 0.01425
OI 10 Specificity | 0.63709  0.6502 0.79285 0.78916 | 0.018121 0.017868 0.016319  0.015996
Sensitivity | 0.8235 0.80719  0.60223  0.59424 | 0.037768 0.039905 0.054946  0.055203

Accuracy 0.70495 0.71139 0.85061  0.84615 | 0.016397  0.015367 0.011759 0.01115
X FS 10 || Specificity | 0.69874 0.70903 0.87013 0.86476 | 0.01755  0.017425 0.012974  0.012144
Sensitivity 0.788 0.76974  0.5505  0.55859 | 0.049713 0.042966 0.061753  0.044892

Accuracy 0.72754  0.74251 0.83922 0.83784 | 0.016561 0.014851 0.012084  0.011937
X OI 10 Specificity | 0.72218  0.74054 0.85502 0.85338 | 0.017809 0.015942 0.013022  0.012874
Sensitivity | 0.79864  0.76187 0.55939  0.56532 | 0.043187 0.042636  0.059231 0.057123

Table E.5: Post-processed results for KNN, patient 37.

Method: KNN, Neighbors: 2, 5, 10
Original Veto 1 Veto 2
KDE | Red K1 K2 M3 | B2 B3 | K2 K3
TP | 23 24 24 20 19 20 18 18 16
FP | 76 113 90 52 60 53 | 27 32 30
FN 1 0 0 4 5 4 6 6 8
TP 11 16 15 9 12 12 5 10 7
X FpP 53 82 66 25 34 27 12 17 13
FN | 13 8 9 15 12 12 19 14 17
TP | 22 24 24 18 20 20 | 15 16 19
FS 2 FP | 84 109 97 | 50 57 58 | 27 38 34
FN | 2 0 0 6 4 4 9 8 5
TP | 24 24 23 21 19 17 15 18 18
oI 2 FP | 88 114 104 | 45 48 55 | 25 39 36
FN 0 0 1 3 5 7 9 6 6
TP 16 17 14 12 12 9 9 10 8
X FS 2 FP | 70 83 76 28 35 29 | 14 21 18
FN 8 7 10 12 12 15 15 14 16
TP | 13 14 12 9 7 8 6 5 5
X OI 2 FP | 72 86 79 24 28 30 | 16 21 22
FN | 11 10 12 15 17 16 18 19 19
TP | 24 24 24 19 19 20 15 19 18
FS5 FpP 7 108 95 40 59 51 24 39 30
FN | O 0 0 5 5 4 9 5 6
TP | 22 24 24 16 19 19 15 18 16
oI5 FP | 76 104 89 | 39 59 50 | 19 33 28
FN | 2 0 0 8 5 5 9 6 8
TP | 11 15 13 8 9 10 5 7 8
X FS 5 FP | 64 79 71 26 33 32 | 13 18 18
FN | 13 9 11 16 15 14 19 17 16
TP 15 16 15 9 12 11 7 8 7
X oI5 FP | 55 69 62 21 29 21 | 11 16 13
FN 9 8 9 15 12 13 17 16 17
TP | 23 24 23 19 19 19 17 18 17
FS10 || FP | 76 103 90 | 48 66 52 | 24 29 28
FN 1 0 1 5 5 5 7 6 7
TP | 24 24 23 20 20 21 18 17 17
OI 10 FpP 78 109 92 48 47 50 | 24 31 25
FN | O 0 1 4 4 3 6 7 7
TP 10 14 14 8 13 10 7 9 7
X FS10 || FP | 58 80 70 24 27 28 9 17 14
FN | 14 10 10 16 11 14 17 15 17
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TP [ 12 15 4 ]9 12 11 5 8 8
X | o110 | FP | 58 80 67 |23 32 28|11 20 13
FN | 12 9 10 |15 12 13|19 16 16
Table E.6: Post-processed results for random forest, patient 37.
Method: Random Forest, Trees: 10, 30, 50
Original Veto 1 Veto 2
KDE | Red M1 12 u3 | p1 M2 3 | p1 12 13
TP | 24 23 22 |20 19 18 | 17 18 18
FP | 86 82 79 | 46 49 45 [ 32 25 27
FN | o 1 2 | 4 5 6 | 7 6 6
TP | 15 14 16 | 10 11 11 ] 8 8 9
x FP | 63 59 57 |24 20 23|14 1T 15
FN | 9 10 8 |14 13 13|16 16 15
TP | 24 24 24 |20 20 19 | 18 18 16
FS2 || FP | 114 109 108 | 56 54 55|35 30 38
FN | 0 0 0 | 4 4 5 | 6 6 8
TP | 24 24 24 |16 18 18 | 17 18 19
or2 | Fp | 110 109 105 | 52 50 48 | 39 34 36
FN | 0 0 0o | 8 6 6 | 7 6 5
TP | 16 13 16 | 11 8 1] 9 7 10
X | Fs2 || FpP | 81 75 75 |30 28 29|22 20 21
FN | 8 11 8 |13 16 13|15 17 14
TP | 14 13 13 | 10 9 8 | 8 6 7
x o2 || FP | 78 76 74 | 24 24 2522 20 @ 22
FN | 10 11 11|14 15 16|16 18 17
TP | 23 24 24 | 18 20 19 | 17 18 15
FS5 || FP | 98 97 97 | 49 54 52 |33 33 37
FN | 1 0 0| 6 4 5 |7 6 9
TP | 24 24 23 | 18 19 20 | 16 18 17
oI5 | FP | 102 98 99 | 56 51 55 | 41 32 33
FN | 0 0 1|6 5 4| 8 6 7
TP | 18 12 14 | 11 9 ] 7 7 9
X | FS5 || FP | 70 72 66 | 26 26 23|14 17 14
FN | 6 12 10 |13 15 13|17 17 15
TP | 14 13 13 | 11 10 10| 10 8 7
x o5 || FP | 72 73 69 | 24 26 23|18 18 18
FN | 10 11 11|13 14 14|14 16 17
TP | 23 24 24 [ 20 17 17 |17 16 15
FS10 | FP | 104 90 96 | 49 48 56 | 30 38 37
FN | 1 0 0 | 4 7 7|7 8 9
TP | 22 23 23 | 19 18 18 | 18 18 18
0110 || FP | 90 84 76 | 50 52 47 [ 32 34 29
FN | 2 1 1|5 6 6 | 6 6 6
TP | 17 13 13 | 12 9 10 | 10 7 8
X | Fs10 || FP | 70 66 68 |31 25 28|14 20 21
FN | 7 11 1|12 15 14|14 17 16
TP | 17 13 15 | 11 9 11| 10 8 8
X | o110 || FP | 74 66 67 |27 27 29|19 19 20
FN | 7 11 9 |13 15 13|14 16 16

Table E.7: Post-processed results for logistic regression, patient 37.

Method: Logistic Regression

Original | Veto 1 | Veto 2
KDE Red
TP 24 18 16
FP 93 53 32
FN 0 6 8
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TP 12 8 7

X FP 68 26 18

FN 12 16 17

TP 22 19 17

FS 2 FP 102 48 35

FN 2 5 7

TP 22 21 19

OI 2 FP 113 58 36

FN 2 3 5

TP 15 10 8

X FS 2 FP 74 22 13

FN 9 14 16

TP 12 7 5

X Ol 2 FP 72 22 15

FN 12 17 19

TP 23 19 16

FS 5 FP 96 56 35

FN 1 5 8

TP 23 18 16

Ol 5 FP 110 54 34

FN 1 6 8

TP 14 9 7

X FS 5 FP 78 21 16

FN 10 15 17

TP 15 11 8

X Ol 5 FP 79 23 17

FN 9 13 16

TP 24 19 16

FS 10 FP 96 49 34

FN 0 5 8

TP 22 17 16

OI 10 FP 100 51 36

FN 2 7 8

TP 12 8 7

X FS 10 FP 7 23 17

FN 12 16 17

TP 12 8 7

X OI 10 FP 69 24 18

FN 12 16 17

Table E.8: Post-processed results SVM, patient 37.
Method: SVM, kernel: rbf, linear, BoxConst: 1, 100
Original Veto 1 Veto 2

KDE | Red 2 M2 13 4 M1 M2 p3 Ha M1 p2 M3 4
TP 24 24 24 24 18 18 17 18 18 18 15 15
FP 183 181 100 106 55 54 53 53 43 42 35 36
FN 0 0 0 0 6 6 7 6 6 6 9 9
TP 20 20 13 13 16 16 10 9 12 12 7 7
X FP 102 104 72 65 40 39 23 22 22 24 17 17
FN 4 4 11 11 8 8 14 15 12 12 17 17
TP 22 24 23 23 21 19 19 20 17 15 16 16
FS 2 FP 114 119 116 117 61 52 51 50 44 39 36 36
FN 2 0 1 1 3 5 5 4 7 9 8 8
TP 24 24 22 22 19 17 21 21 19 18 18 18
OI 2 FP 112 107 119 119 51 50 57 56 40 36 34 34
FN 0 0 2 2 5 7 3 3 5 6 6 6
TP 16 16 14 14 12 11 9 9 8 9 8 8
X FS 2 FP 79 84 69 72 32 28 24 24 20 23 14 15
FN 8 8 10 10 12 13 15 15 16 15 16 16
TP 13 12 13 13 9 7 8 8 7 5 5 5
X OI 2 FP 75 80 75 75 27 26 23 23 20 22 15 15
FN 11 12 11 11 15 17 16 16 17 19 19 19
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TP | 24 24 24 24 21 20 21 20 17 19 18 17
FS5 || FP | 142 148 107 105 61 59 51 51 39 36 36 39
FN | 0 0 0 0 3 4 3 4 75 6 7
TP | 24 24 23 23 19 20 18 18 17 17 17 16
oI5 || FP | 99 113 118 118 49 50 55 55 34 36 35 35
FN | 0 0 1 1 5 4 6 6 77 7T 8
TP | 18 20 4 15 15 4 10 11 g8 10 8 8
X FS5 || FP | 98 96 79 74 32 36 23 23 22 25 17 18
FN | 6 4 10 9 9 10 14 13 16 14 16 16
TP | 14 16 16 16 10 10 11 11 g 9 8 8
X oI5 || FP | 70 84 81 82 29 30 24 24 16 16 15 16
FN | 10 8 8 8 14 14 13 13 16 15 16 16
TP | 24 24 23 23 19 8 20 19 18 18 16 16
FS10 || FP | 173 174 102 102 61 58 54 54 41 42 32 35
FN | 0 0 1 1 5 6 4 5 6 6 8 8
TP | 24 24 23 22 18 19 19 18 18 17 15 17
0110 || FP | 154 153 108 109 57 58 54 53 41 42 36 34
FN | 0 0 1 2 6 5 5 6 6 7 9 7
TP | 21 21 12 12 16 5 8 9 0 9 6 7
X | Fs1o0 | FP | 109 110 72 7 41 39 20 20 26 32 13 14
FN | 3 3 12 12 8 9 16 15 14 15 18 17
TP | 21 21 4 14 17 6 10 10 1110 7 7
X | o110 || FP | 103 102 GO 39 38 26 23 25 26 18 18
FN | 3 3 10 10 7 8§ 14 14 13 14 17 17
E.2 Cluster balanced training set
Table E.9: Cross-validation results for KNN, patient 37.
Method: KNN, Neighbors: 2, 5, 10
KDE | Red i M2 U3 o1 o2 o3
Accuracy | 0.88080 0.81069 0.81829 | 0.016653  0.010064  0.014694
Specificity | 0.92882  0.84702 0.86258 | 0.019026  0.0082199  0.012668
Sensitivity | 0.18043 0.40492  0.3105 | 0.038698  0.042492  0.038374
Accuracy | 0.89933 0.85153 0.86159 | 0.012373  0.0076607  0.010725
X Specificity | 0.93717  0.88246  0.89597 | 0.014194  0.0071413  0.0091216
Sensitivity | 0.21627  0.35689  0.30357 | 0.042209  0.042999  0.033688
Accuracy | 0.78651 0.75702  0.78162 | 0.018848  0.015099  0.010544
FS 2 | Specificity | 0.81535 0.77414 0.80738 | 0.019402  0.015192  0.013003
Sensitivity | 0.40805  0.5848  0.51798 | 0.038761  0.042083  0.042217
Accuracy | 0.81826 0.76061  0.7621 | 0.016657  0.015733 _ 0.020755
OI2 || Specificity | 0.85322 0.78014 0.78426 | 0.019031  0.013688  0.019934
Sensitivity | 0.33867 0.56766 0.51139 | 0.039701  0.038332  0.041601
Accuracy | 0.77206 0.79537 0.81258 | 0.019804  0.01375  0.012488
X FS 2 | Specificity | 0.79744 0.81134 0.83396 | 0.020881  0.012286  0.012568
Sensitivity | 0.38053 0.57143  0.49237 | 0.036844  0.037882  0.039903
Accuracy | 0.85857 0.8111  0.81599 | 0.013764  0.012124 _ 0.014079
X OI2 | Specificity | 0.89162 0.83649  0.8408 | 0.014385  0.012919  0.013472
Sensitivity | 0.20238  0.45315 0.44667 | 0.037974  0.038663  0.034594
Accuracy | 0.81922  0.7593  0.77579 | 0.012125  0.017575 _ 0.015565
FS 5 || Specificity | 0.85318 0.77128 0.79945 | 0.011991  0.017926  0.01523
Sensitivity | 0.38432  0.61265 0.50512 | 0.034861  0.035042  0.040165
Accuracy | 0.85016 0.78064 0.80901 | 0.02018  0.018217 _ 0.018975
OI5 || Specificity | 0.88491 0.80502 0.84639 | 0.025736  0.014252  0.014886
Sensitivity | 0.27523  0.50969 0.36688 | 0.038845  0.03613  0.037717
Accuracy | 0.84882 0.81303 0.83497 | 0.013937  0.012940  0.011481
X FS5 | Specificity | 0.87736 0.83491 0.86369 | 0.014708  0.011084  0.010054
Sensitivity | 0.34932  0.53087  0.38979 | 0.036169  0.040549  0.030917
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Accuracy 0.88077 0.82548  0.85244 0.014066 0.012879 0.012219
X Ol 5 Specificity | 0.91362 0.85035 0.88191 0.01484 0.0094926 0.010002
Sensitivity 0.2944 0.46781  0.38409 0.035766 0.038799 0.035076
Accuracy 0.8596 0.77932  0.80635 0.014171 0.015302 0.015864
FS 10 Specificity 0.8972 0.80424  0.84469 0.016519 0.013193 0.012586
Sensitivity | 0.31522  0.48351  0.39276 0.039325 0.037926 0.036477
Accuracy 0.86527 0.7936 0.80935 0.019677 0.018347 0.018854
OI 10 Specificity | 0.90432 0.8278 0.85052 0.022329 0.012305 0.014387
Sensitivity 0.2864 0.43555  0.32146 0.043417 0.039671 0.042915
Accuracy 0.88416  0.83288  0.84577 | 0.0093663 0.010146 0.013419
X FS 10 Specificity 0.91881 0.85841 0.87974 0.010626 0.0080906  0.0091906
Sensitivity | 0.26349  0.43004  0.32628 0.042222 0.033736 0.038889
Accuracy 0.89104 0.83797 0.85542 0.013847 0.01202 0.014039
X OI 10 Specificity | 0.92428  0.86894  0.89093 0.015103 0.0082263  0.0095114
Sensitivity | 0.29006 0.4026 0.32102 0.039392 0.036768 0.043002
Table E.10: Cross-validation results for randf, patient 37.
Method: Random Forest, Trees: 10, 30, 50
KDE Red I 7% w3 o1 o2 o3
Accuracy 0.6817 0.72377 0.74335 | 0.014264 0.016833  0.018747
Specificity | 0.68049  0.72759 0.75124 | 0.015807 0.019281  0.021065
Sensitivity | 0.73905 0.74935 0.70879 | 0.034828 0.032386  0.036581
Accuracy 0.75182  0.78786  0.79409 0.01949 0.014795  0.013394
X Specificity | 0.74266  0.78675 0.79357 | 0.019003 0.013254 0.012022
Sensitivity | 0.71391  0.69071 0.67953 | 0.022895 0.031829  0.031883
Accuracy 0.69839  0.68563 0.66865 | 0.019327  0.026533  0.025387
FS 2 Specificity | 0.70377 0.69563 0.67321 | 0.020011 0.028027 0.026391
Sensitivity | 0.63967 0.58542  0.61318 | 0.034613 0.02338 0.034482
Accuracy 0.74528 0.76168 0.76574 | 0.014066 0.014387  0.013893
OI 2 Specificity 0.76267  0.78277 0.78555 | 0.015634 0.013071 0.013195
Sensitivity 0.6076 0.58875 0.59336 | 0.033946 0.035239  0.037137
Accuracy 0.78139 0.75109 0.71073 | 0.016894 0.020366  0.020302
X FS 2 Specificity | 0.78859  0.75092 0.70194 | 0.016439 0.019353 0.018849
Sensitivity | 0.55667  0.60045 0.58048 | 0.043133 0.03605 0.029838
Accuracy 0.78785 0.79893 0.80223 | 0.013848 0.012468 0.012155
X OI 2 Specificity | 0.79397 0.81105 0.81331 | 0.013161 0.010147 0.010153
Sensitivity | 0.55546  0.56628  0.54647 | 0.031485 0.040228 0.033189
Accuracy 0.65936  0.60445 0.58753 | 0.022283 0.01853 0.0155
FS 5 Specificity | 0.65631  0.60909  0.58922 0.02347 0.024077  0.018743
Sensitivity 0.7142 0.6626 0.63949 | 0.035075 0.038609  0.039036
Accuracy 0.70103 0.73892  0.74859 | 0.017837 0.015778 0.012356
Ol 5 Specificity | 0.70765  0.75247 0.76278 | 0.019654 0.017742 0.013146
Sensitivity | 0.69394  0.63953 0.66055 | 0.039399 0.040221  0.042284
Accuracy 0.76222 0.7112 0.69207 | 0.020816 0.019392 0.019571
X FS 5 Specificity 0.75146  0.70122 0.68359 | 0.019366 0.016967 0.016985
Sensitivity | 0.70853  0.62085  0.58077 0.02966 0.031834  0.034623
Accuracy 0.76001  0.78859 0.79513 | 0.016913 0.013989  0.015601
X Ol 5 Specificity | 0.76106  0.79404  0.80399 | 0.015823 0.01325 0.014456
Sensitivity | 0.63642 0.62247 0.59732 | 0.033801 0.034075 0.035691
Accuracy 0.69 0.67698 0.69359 | 0.014914 0.016751 0.015572
FS 10 Specificity | 0.68965 0.68212 0.70217 | 0.016998 0.01893 0.019547
Sensitivity | 0.76954  0.67097 0.67955 | 0.027257 0.037951  0.036192
Accuracy 0.70435 0.72248 0.74066 | 0.016838 0.01792 0.017191
OI 10 Specificity 0.7077 0.73158 0.74882 | 0.017128 0.017565  0.016004
Sensitivity | 0.71861 0.70764 0.71096 | 0.026465 0.033284  0.034813
Accuracy 0.7371 0.74992  0.75518 | 0.019327 0.016701  0.015819
X FS 10 Specificity | 0.73107 0.74533  0.75561 | 0.018969 0.014259  0.014222
Sensitivity | 0.65729  0.64292 0.6075 0.050049 0.031607  0.037286
Accuracy 0.76919 0.7941 0.80053 | 0.017168 0.013661  0.014153
X OI 10 Specificity 0.77115 0.79786  0.80418 | 0.015678 0.011326 0.013214
Sensitivity | 0.65911  0.67794 0.67851 | 0.037401 0.034439  0.028279
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Table E.11: Cross-validation results for logistic regression, patient 37.

Method: Logistic Regression
KDE Red

Accuracy 0.77297 | 0.012373

Specificity | 0.78879 | 0.010808

Sensitivity | 0.6045 | 0.037323

Accuracy 0.82377 | 0.010667

X Specificity 0.8404 | 0.010218
Sensitivity | 0.57498 | 0.039143

Accuracy 0.70105 | 0.019865

FS 2 Specificity | 0.71656 | 0.021253
Sensitivity | 0.54488 | 0.032417

Accuracy 0.78794 | 0.014907

OI 2 Specificity | 0.81412 | 0.015048
Sensitivity | 0.44562 | 0.057668

Accuracy 0.76727 | 0.022666

X FS 2 Specificity | 0.78837 | 0.024603
Sensitivity | 0.42189 | 0.046197

Accuracy 0.77889 | 0.020517

X OI 2 Specificity | 0.80979 | 0.020475
Sensitivity | 0.27573 | 0.041168

Accuracy 0.72922 | 0.013191

FS 5 Specificity | 0.74253 | 0.014669
Sensitivity | 0.56714 | 0.048958

Accuracy 0.77468 | 0.014184

oI5 Specificity | 0.79646 | 0.013549
Sensitivity 0.5048 0.037423

Accuracy 0.78174 | 0.017656

X FS 5 Specificity | 0.80078 | 0.019095
Sensitivity 0.5005 0.044945

Accuracy 0.82922 | 0.010407

X OI5 Specificity | 0.85122 | 0.010035
Sensitivity | 0.46982 | 0.036708

Accuracy 0.75566 | 0.01347

FS 10 Specificity | 0.77751 | 0.018085
Sensitivity | 0.55475 | 0.035253

Accuracy 0.77318 | 0.013243

OI 10 Specificity | 0.79294 | 0.012381
Sensitivity | 0.53668 | 0.042945

Accuracy 0.81376 | 0.010867

X FS 10 || Specificity | 0.83172 | 0.010638
Sensitivity 0.5342 0.03932

Accuracy 0.83279 | 0.010341

X OI 10 || Specificity | 0.85179 | 0.01008
Sensitivity | 0.52838 | 0.046076

Table E.12: Cross-validation results for SVM, patient 37.

Method: SVM, Trees: 10, 30, 50

LIII

KDE Red I H2 w3 a o1 o9 o3 o4

Accuracy 0.88771 0.88356 0.77304 0.77571 0.015059 0.014041 0.012069 0.011839

Specificity 0.96165 0.95636 0.78847 0.79334 | 0.0038135 0.0039066  0.011276 0.011434

Sensitivity | 0.053638  0.056427  0.60646 0.60363 0.021433 0.018439 0.039021 0.042613

Accuracy 0.91675 0.9127 0.82103 0.8249 0.0097849  0.0094111 0.010541 0.011186

X Specificity 0.97378 0.96889 0.83601 0.84241 0.002627  0.0024749  0.010273 0.011221
Sensitivity | 0.038923  0.054841 0.60104 0.57757 0.018347 0.021181 0.038734 0.041426

Accuracy 0.7411 0.56591 0.91213 0.91012 0.013573 0.02269 0.013657 0.013245

FS 2 Specificity 0.77253 0.57161 0.98188 0.97884 0.017482 0.023612 0.0040743  0.0053612
Sensitivity | 0.48689 0.57388  0.092958  0.094817 | 0.042633 0.041701 0.022828 0.023426

Accuracy 0.71765 0.71917 0.79167 0.78795 0.019232 0.013918 0.019227 0.018609

Ol 2 Specificity 0.72664 0.73256 0.81585 0.81156 0.019078 0.01274 0.022732 0.021334
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Sensitivity | 0.64244  0.60176  0.46688  0.478 | 0.045452  0.038743  0.061028  0.057705
Accuracy | 0.78344  0.65952  0.86946  0.86489 | 0.013757  0.018234  0.027298  0.025707
X | FS2 || Specificity | 0.81276  0.67868  0.91314  0.90785 | 0.01488  0.019426  0.028174  0.026721
Sensitivity | 0.4026  0.39521  0.15983  0.16571 | 0.039462  0.031796  0.037957  0.03536
Accuracy | 0.80299  0.77462  0.899  0.89643 | 0.013308  0.014061  0.015821  0.015456
x OI2 || Specificity | 0.82121  0.78912  0.94718  0.94279 | 0.013216  0.014494  0.016593  0.016423
Sensitivity | 0.55503  0.56171  0.12219  0.14729 | 0.046303  0.032727  0.043041  0.044509
Accuracy | 0.82714  0.78769  0.75655  0.75606 | 0.013451  0.014561  0.013163  0.014604
FS5 || Specificity | 0.88533  0.83374  0.7766  0.77821 | 0.010706  0.01004  0.012672  0.017877
Sensitivity | 0.21083  0.3152  0.50498  0.53696 | 0.035469  0.034713  0.049749  0.04664
Accuracy | 0.78983  0.7827  0.77416  0.77421 | 0.018814  0.015157  0.014151  0.014261
OI5 || Specificity | 0.82028  0.81014  0.79517  0.79503 | 0.015057  0.01268  0.013739  0.013805
Sensitivity | 0.42523  0.44663  0.50513  0.51599 | 0.041882  0.040914  0.037242  0.034797
Accuracy | 0.86831  0.82067  0.7968  0.79539 | 0.010556  0.0108  0.012392  0.014356
X | FS5 || Specificity | 091246  0.86044  0.81207  0.81054 | 0.0074958  0.010926  0.011873  0.013922
Sensitivity | 0.2093  0.25973  0.55642  0.54092 | 0.034228  0.028544  0.047819  0.045349
Accuracy | 0.84445  0.8222  0.8317  0.83095 | 0.013087  0.01194  0.011222 _ 0.010563
X O15 || Specificity | 0.87331  0.84631  0.85161  0.85092 | 0.0090411  0.010211  0.010029  0.0097684
Sensitivity | 0.40905 044016  0.50345  0.4932 | 0.043725  0.039082  0.039292  0.039244
Accuracy | 0.87128  0.84868  0.77177  0.77832 | 0.015162  0.013961  0.011049  0.012912
FS 10 || Specificity | 0.94181  0.91217  0.78968  0.80091 | 0.0062292 0.0057208  0.011287  0.016725
Sensitivity | 0.08671  0.13158  0.53359  0.54359 | 0.026297  0.02333  0.052831  0.047586
Accuracy | 0.85945  0.84953  0.75472  0.75832 | 0.020017  0.020364  0.013137 _ 0.013958
OI 10 || Specificity | 0.91774  0.90405  0.77195  0.7766 | 0.010238  0.012684  0.013144  0.013969
Sensitivity | 0.18216  0.19899  0.55291  0.54718 | 0.034464  0.031785  0.039901  0.040342
Accuracy | 0.90303  0.87841  0.80283  0.8083 | 0.0097586  0.010195  0.013116 _ 0.012937
X | FS10 || Specificity | 0.95843  0.92819  0.81746  0.8229 | 0.0046892 0.0060095  0.013735  0.011815
Sensitivity | 0.057715  0.11837  0.59417  0.59875 | 0.019908  0.023382  0.041637  0.036179
Accuracy | 0.89546  0.88576  0.81886  0.82248 | 0.012836  0.01258  0.011242  0.011786
X | O110 || Specificity | 0.94313 093224  0.8372  0.84134 | 0.0054078 0.0055984  0.011278  0.01167
Sensitivity | 0.15924  0.17347  0.53495  0.52563 | 0.025361  0.024672  0.043871  0.04517
Table E.13: Post-processed results for KNN, patient 37.
Method: KNN, Neighbors: 2, 5, 10
Original Veto 1 Veto 2
KDE | Red K1 K2 M3 | p1 K2 B3 | M K2 u3
TP | 13 22 21 | 10 15 13| 6 11 9
FP | 36 99 91 | 15 35 36 | 3 16 10
FN | 11 2 3 | 14 9 11|18 13 15
TP | 10 13 12 | 6 11 9 | 3 4 6
x FP | 35 72 61 | 11 26 23| 4 12 8
FN | 14 11 12 |18 13 15|21 20 18
TP | 24 24 23 | 16 16 15 | 14 15 11
FS2 || FP | 107 110 107 | 37 41 44|19 29 25
FN | 0 0 1| 8 8 9 | 10 9 13
TP | 22 24 24 [ 19 15 17 | 9 13 13
or2 || Fp | 87 114 108 | 38 38 44 |20 31 28
FN | 2 0 0|5 9 7 15 11 11
TP | 17 16 16 | 11 8 0] 7 8 10
X | Fs2 || FP | 93 95 82 |20 31 25|19 20 22
FN | 7 8 8 |13 16 14|17 16 14
TP | 13 15 5 | 7 8 0 | 3 5 5
X O12 || FP | 69 80 80 | 19 27 31|12 16 20
FN | 11 9 9 |17 16 14|21 19 19
TP | 23 24 23 | 15 18 16 | 14 18 14
FS5 | FP | 86 110 114 | 38 48 42 | 17 32 24
FN | 1 0 1|9 6 8 | 10 6 10
TP | 19 24 21 | 13 16 15 | 5 5 12
oI5 || FP | 65 103 92 | 31 45 40 | 16 26 18
FN | 5 0 3 |11 8 9 | 19 9 12
TP | 13 14 4 [ 10 9 9| 5 7 7
X | FS5 || FP | 68 76 72 |25 30 28|14 15 17
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FN | 11 10 10 |14 15 15|19 17 17
TP | 12 14 13 | 7 11 9 | 5 6 5
x oI5 | FP | 47 78 67 | 16 39 30 | 8 20 15
FN | 12 10 11|17 13 15|19 18 19
TP | 21 24 23 | 14 15 15 | 11 12 12
FS10 || FP | 65 101 93 | 25 41 41|12 19 9
FN | 3 0 1 |10 9 9 |13 12 12
TP | 17 23 22 | 14 18 15 | 8 13 7
0110 || FP | 45 101 93 | 27 32 32| 8 12 6
FN | 7 1 2 | 10 6 9 |16 11 17
TP | 11 16 13 | 6 12 7 | 4 7 6
X | FS10 || FP | 56 73 65 |25 26 23|10 15 10
FN | 13 8 1|18 12 17|20 17 18
TP | 12 13 0 | 7 9 7 | 4 7 3
X | o110 || FP | 44 70 64 | 21 27 25 | 7 15 9
FN | 12 11 14 |17 15 17|20 17 21
Table E.14: Post-processed results for random forest, patient 37.
Method: Random Forest, Trees: 10, 30, 50
Original Veto 1 Veto 2
KDE | Red K1 K2 M3 | p1 K2 B3 | M K2 U3
TP | 24 24 24 | 15 14 15 | 17 17 17
FP | 136 118 118 [ 30 30 44 |34 30 29
FN | 0 0 0|9 10 9 | 7 7 7
TP | 23 23 23 | 16 17 16 | 17 18 17
x FP | 96 85 8 |35 3 31|31 28 27
FN | 1 1 1| 8 7 8 | 7 6 7
TP | 24 24 24 |16 14 13 | 14 15 16
FS2 || FP | 136 132 137 | 49 34 37|34 34 28
FN | 0 0 0 | 8 10 11|10 9 8
TP | 24 24 24 |16 15 18 | 17 17 16
o2 || FP | 112 107 108 | 46 47 40 | 33 31 29
FN | 0 0 0o | 8 9 6 | 7 7 8
TP | 22 23 22 | 17 13 13 | 15 16 14
X | Fs2 || FP | 93 92 97 |41 32 33|28 28 32
FN | 2 1 2 | 7 11 11| 9 8 10
TP | 23 23 23 | 15 15 14 | 17 16 17
x OI2 || FP | 82 83 82 |39 37 39|20 29 27
FN | 1 1 1|9 9 10| 7 8 7
TP | 24 24 24 |12 15 14 | 15 15 16
FS5 | FP | 142 161 166 | 32 22 24|29 32 29
FN | 0 0 0 | 12 9 10 | 9 9 8
TP | 24 24 24 | 14 16 15 | 16 14 14
ors | Fp | 121 116 117 | 36 38 43 |27 29 27
FN | 0 0 0 | 10 8 9 | 8 10 10
TP | 23 23 23 | 15 13 13 | 18 16 15
X | FS5 || FP | 92 100 106 | 41 29 18 |31 25 28
FN | 1 1 1|9 11 11| 6 8 9
TP | 23 23 23 | 13 16 16 | 16 15 13
X oI5 | FP | 87 85 82 | 41 40 32 |34 29 30
FN | 1 1 1|11 8 8 | 8 9 11
TP | 24 24 24 | 15 11 14 | 17 16 15
FS10 || FP | 138 131 1203 30 30|32 29 31
FN | 0 0 0|9 13 10| 7 8 9
TP | 24 24 24 | 15 12 15 | 16 17 18
0110 || FP | 129 119 114 | 40 36 41 |34 30 31
FN | 0 0 0|9 12 9 | 8 7 6
TP | 23 23 23 | 13 14 14 | 16 16 14
X | FS10 || FP | 92 94 91 |28 20 33|27 24 30
FN | 1 1 1 |11 10 10] 8 8 10
TP | 23 23 23 | 17 14 16 | 15 19 16
X | o110 || FP | 83 83 82 |32 39 42 |33 26 27
FN | 1 1 1|7 10 8 | 9 5 8
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Table E.15: Post-processed results for logistic regression, patient 37.

Method: Logistic Regression
Original | Veto 1 | Veto 2
KDE Red

TP 24 15 15

FpP 110 43 25

FN 0 9 9

TP 15 9 6

FP 75 25 16

FN 9 15 18

TP 24 15 15

FS 2 FP 139 37 30

FN 0 9 9

TP 19 16 16

OI 2 FpP 111 38 27

FN 5 8 8

TP 14 9 7

FS 2 FP 87 30 26

FN 10 15 17

TP 16 11 6

OI 2 FpP 75 22 14

FN 8 13 18

TP 22 14 16

FS 5 FP 130 33 30

FN 2 10 8

TP 22 17 15

oI5 FP 108 39 29

FN 2 7 9

TP 14 9 7

FS 5 FpP 87 32 19

FN 10 15 17

TP 12 9 6

oI5 FP 81 23 17

FN 12 15 18

TP 24 16 14

FS 10 FpP 115 38 24

FN 0 8 10

TP 23 17 15

OI 10 FP 111 45 28

FN 1 7 9

TP 13 11 8

FS 10 || FP 82 25 19

FN 11 13 16

TP 13 9 5

OI10 || FP 7 30 17

FN 11 15 19

Table E.16: Post-processed results SVM, patient 37.
Method: SVM, kernel: rbf, linear, BoxConst: 1, 100
Original Veto 1 Veto 2

KDE Red #1 M2 ©3 J 2 M1 M2 p3 4 M1 p2 M3 P4
TP 8 9 23 23 2 2 16 14 0 0 15 16
FP 34 33 109 105 1 4 44 42 0 0 27 24
FN | 16 15 1 1 22 22 8 10 24 24 9 8
TP 3 4 15 14 1 1 10 8 0 0 6 7
X FP 16 23 79 78 5 7T 29 29 0 0 16 16
FN 21 20 9 10 23 23 14 16 24 24 18 17
TP | 23 23 9 9 12 13 7 8 10 13 6 6
FS 2 FP | 109 181 10 11 39 45 4 4 25 32 1 1
FN 1 1 15 15 12 11 17 16 14 11 18 18
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TP 24 24 19 20 15 13 17 17 15 16 13 14
OI 2 FP | 117 124 96 98 39 41 38 37 35 35 26 26
FN 0 0 5 4 9 11 7 7 9 8 11 10
TP 13 22 6 7 9 13 5 6 7 14 3 4
FS 2 FP 87 113 34 34 25 33 8 5 19 25 7 5
FN 11 2 18 17 15 11 19 18 17 10 21 20
TP 15 17 2 5 9 12 2 4 9 11 1 2
OI 2 FP 7 93 28 31 25 28 8 12 22 17 3 4
FN 9 7 22 19 15 12 22 20 15 13 23 22
TP 18 23 23 23 9 16 16 16 2 7 15 15
FS 5 FP 84 111 116 121 36 40 41 43 1 19 28 31
FN 6 1 1 1 15 8 8 8 22 17 9 9
TP 21 21 23 23 14 14 17 17 11 13 15 13
oI5 FP 93 104 103 104 43 40 44 45 25 24 28 30
FN 3 3 1 1 10 10 7 7 13 11 9 11
TP 11 15 15 12 5 11 10 8 5 6 8 5
FS 5 FP 60 80 91 88 25 28 28 26 6 12 18 19
FN 13 9 9 12 19 13 14 16 19 18 16 19
TP 11 14 14 13 8 10 11 10 6 6 7 6
OI5 FP 69 78 83 83 27 28 23 24 12 20 14 14
FN 13 10 10 11 16 14 13 14 18 18 17 18
TP 9 14 22 23 2 6 17 13 0 0 15 14
FS 10 FP 55 71 110 108 11 24 43 44 0 4 26 28
FN 15 10 2 1 22 18 7 11 24 24 9 10
TP 16 15 24 24 6 7 18 18 2 3 15 15
OI 10 FP 62 61 118 113 18 21 47 46 0 2 31 32
FN 8 9 0 0 18 17 6 6 22 21 9 9
TP 7 10 16 15 4 6 9 8 2 3 7 7
FS 10 FP 34 53 84 81 11 19 25 26 2 4 20 19
FN 17 14 8 9 20 18 15 16 22 21 17 17
TP 10 10 14 14 8 7 9 9 1 3 [§ 6
OI 10 FP 32 42 80 78 11 16 33 33 3 4 19 18
FN 14 14 10 10 16 17 15 15 23 21 18 18
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Appendix 6: HMS Patient 39
result

F.1 Randomly balanced training set

Table F.1: Cross-validation results for KNN, patient 39.

Method: KNN, Neighbors: 2, 5, 10
KDE Red “1 na n3 o1 [ o3

Accuracy 0.92972  0.97938 0.98497 | 0.037229 0.009124 0.00083187

Specificity | 0.93263  0.9836 0.9899 0.038037 0.010929 0.0025688
Sensitivity | 0.63034  0.59615  0.52991 0.09188 0.096154 0.08547

Accuracy 0.93871 0.9883  0.99364 | 0.050383 0.0015461 0.0022272

X Specificity | 0.94022  0.99101 0.99637 | 0.052607 0.0018145 0.0024953
Sensitivity | 0.61538  0.49786  0.49786 0.38462 0.11325 0.11325

Accuracy 0.91845 0.95393  0.9622 0.029336 0.033902 0.026977

FS 2 Specificity | 0.92227  0.95827  0.96696 0.02973 0.036938 0.030298
Sensitivity | 0.53632  0.57906  0.55128 | 0.074786 0.19017 0.21795

Accuracy 0.83038  0.85937  0.87025 0.10286 0.036504 0.0061536

OI 2 Specificity | 0.83212 0.86169  0.87194 0.10522 0.037692 0.0047262
Sensitivity | 0.61966  0.65171  0.72863 0.15812 0.040598 0.11752

Accuracy 0.96003  0.95219  0.9659 0.029821 0.039163 0.022448

X FS 2 Specificity | 0.96201  0.95335  0.96735 | 0.030813 0.03909 0.022827
Sensitivity | 0.5812 0.74573  0.69658 0.19658 0.023504 0.081197

Accuracy 0.9012 0.93769  0.94326 | 0.068346 0.016071 0.041327

X OI 2 Specificity | 0.90265 0.93899  0.94459 | 0.070153 0.016435 0.042569
Sensitivity | 0.59829  0.69658 0.67521 0.2906 0.081197 0.21368
Accuracy 0.89575 0.95553  0.9794 | 0.0021575 0.027569 0.01113
FS5 Specificity | 0.89771  0.95987  0.98431 | 0.0030431 0.029867 0.01364
Sensitivity | 0.71795  0.56838  0.5406 0.051282 0.12393 0.15171

Accuracy 0.8899 0.88435 0.88574 | 0.071104 0.028432 0.0040492

OI5 Specificity 0.893 0.88658  0.88794 | 0.072331 0.029914 0.004603
Sensitivity | 0.5641 0.69017  0.67949 0.10256 0.07906 0.012821

Accuracy 0.92937  0.95807 0.98225 | 0.065371 0.032156 0.0087314

X FS 5 Specificity | 0.93023  0.9591 0.98436 | 0.066753 0.032588 0.0092168
Sensitivity | 0.74145 0.76282  0.59188 0.20299 0.070513 0.13034

Accuracy 0.94874  0.94443  0.94733 | 0.040361 0.021737 0.035376
X OI5 Specificity | 0.95028  0.94576  0.94887 | 0.041414 0.022129 0.03677
Sensitivity | 0.64744  0.69658  0.63675 0.1859 0.081197 0.25214

Accuracy 0.92216  0.95575  0.98436 | 0.055363 0.01788 0.0061726

FS 10 || Specificity | 0.92429 0.95939  0.9893 0.055708 0.019391 0.0079644
Sensitivity | 0.70726  0.62393  0.52991 0.014957 0.068376 0.08547

Accuracy 0.92042  0.96088 0.96982 | 0.061733 0.02763 0.020713

oI 10 Specificity | 0.92286  0.9646  0.97497 | 0.061806 0.029929 0.022973
Sensitivity | 0.67949  0.63462 0.50214 | 0.012821 0.13462 0.11325

Accuracy 0.9326 0.96653  0.9755 0.062517 0.025947 0.017733

X FS 10 || Specificity | 0.93348 0.96725 0.97684 | 0.063879 0.026328 0.018627
Sensitivity | 0.74145  0.82906  0.71368 0.20299 0.059829 0.17521

Accuracy 0.94824  0.98221 0.99341 0.042733  0.00025377  0.00057158

X OI 10 Specificity | 0.94904 0.98394 0.99576 | 0.043781 0.00056634  8.3559e-05
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|| Sensitivity | 0.77991 0.67949  0.58547 | 0.16453 0.012821 0.029915
Table F.2: Cross-validation results for randf, patient 39.
Method: Random Forest, Trees: 10, 30, 50
KDE | Red 1 M2 U3 o1 o2 o3

Accuracy | 0.81828 0.86506 0.86286 | 0.038376  0.066648  0.07899

Specificity | 0.82018  0.86715 0.86529 | 0.039509  0.067821  0.079955

Sensitivity | 0.65171 0.67949  0.64103 | 0.040598  0.012821  0.025641

Accuracy | 0.8982 0.88785 0.90321 | 0.031287  0.024931  0.023108

X Specificity | 0.8995  0.88756 0.90375 | 0.030973  0.02517  0.023342
Sensitivity | 0.65812  0.93376 0.80128 | 0.11966  0.010684  0.032051

Accuracy | 0.81756 0.81273 0.84467 | 0.033689  0.049342  0.066082

FS 2 | Specificity | 0.81909  0.8139  0.84723 | 0.033754  0.049896  0.067897
Sensitivity | 0.6688  0.70726 0.62393 | 0.053419  0.014957  0.068376

Accuracy | 0.82822 0.80199 0.78387 | 0.00072171  0.045878  0.039656

OI2 || Specificity | 0.82979  0.80305 0.78473 | 0.00045996  0.047051  0.040731
Sensitivity | 0.6688  0.71795 0.71795 | 0.053419  0.051282  0.051282

Accuracy | 0.86806 0.90336 0.90676 | 0.025545  0.021828  0.018428

X FS 2 | Specificity | 0.86933 0.90464 0.90824 | 0.026027  0.022072  0.01847
Sensitivity | 0.63034  0.6688  0.64103 | 0.09188  0.053419  0.025641

Accuracy | 0.88707 0.89629 0.90583 | 0.037746  0.040173  0.047558

X OI 2 || Specificity | 0.88751  0.89734 0.90656 | 0.038445  0.041076  0.048487
Sensitivity | 0.7906  0.6859  0.75214 | 0.098291  0.14744  0.13675

Accuracy | 0.81394  0.8397 0.83044 | 0.067739  0.069702  0.078287

FS5 | Specificity | 0.8155 0.84187 0.83253 | 0.06883  0.071203  0.079861
Sensitivity | 0.67949 0.65171 0.65171 | 0.012821  0.040598  0.040598

Accuracy | 0.8345 0.81774 0.82263 | 0.053266  0.019988  0.067837

OI5 || Specificity | 0.83591 0.81892 0.82395 | 0.054576  0.020918  0.069279
Sensitivity | 0.71795 0.71795 0.71795 | 0.051282  0.051282  0.051282

Accuracy | 0.88578 0.91022 0.90758 | 0.0078281  0.025114  0.022115

X FS5 || Specificity | 0.88641  0.9108  0.90833 | 0.0078088  0.025354  0.02216
Sensitivity | 0.7735  0.80128  0.7735 | 0.0042735  0.032051  0.0042735

Accuracy | 0.89432  0.89302 0.89228 | 0.027107  0.033675  0.033657

X OI 5 || Specificity | 0.89482 0.89386 0.89275 | 0.028108  0.033986  0.03396
Sensitivity | 0.77991 0.73504 0.80128 | 0.16453  0.042735  0.032051

Accuracy | 0.76284 0.83943 0.82071 | 0.041757  0.075381  0.046091

FS 10 || Specificity | 0.76451 0.84162 0.82197 | 0.043842  0.077617  0.0473
Sensitivity | 0.63462  0.66239 0.71795 | 0.13462 0.10684  0.051282

Accuracy | 0.86013 0.81652 0.83853 | 0.073611  0.089493  0.085064

OI 10 || Specificity | 0.86251 0.81747 0.84004 | 0.074515  0.090808  0.086039
Sensitivity | 0.64103  0.74573  0.70726 | 0.025641  0.023504  0.014957

Accuracy | 0.8888  0.91479 0.91775 | 0.048423  0.054012  0.055185

X | FS10 || Specificity | 0.88944 0.91591  0.9189 0.04974  0.054242  0.055788
Sensitivity | 0.74145 0.70726  0.69658 | 0.20299  0.014957  0.081197

Accuracy | 0.89861 0.90656 0.90701 | 0.03748  0.047576  0.04337

X | O110 | Specificity | 0.89856 0.90747 0.90738 | 0.037971  0.047956  0.044265
Sensitivity | 0.8953  0.73504 0.81838 | 0.049145  0.042735  0.12607

Table F.3: Cross-validation results for logistic regression, patient 39.

LX

Method: Logistic Regression

KDE Red 5 o1

Accuracy 0.71209 0.15969

Specificity | 0.71759 0.15907

Sensitivity | 0.18162 0.12607

Accuracy 0.81956 0.023318

X Specificity | 0.82241 | 0.023771
Sensitivity | 0.32051 0.012821

Accuracy 0.81603 0.10486

FS 2 Specificity 0.8194 0.10873




F. Appendix 6: HMS Patient 39 result

Sensitivity | 0.55128 0.21795

Accuracy 0.84642 | 0.044044

OI 2 Specificity | 0.84795 | 0.045279
Sensitivity | 0.71795 | 0.051282

Accuracy 0.90924 | 0.044951

X FS 2 Specificity | 0.91133 | 0.045443
Sensitivity | 0.54701 | 0.008547

Accuracy 0.94362 | 0.0037486

X Ol 2 Specificity | 0.94476 | 0.0034804
Sensitivity | 0.74573 | 0.023504
Accuracy 0.80426 0.0693

FS5 Specificity | 0.80608 | 0.072083
Sensitivity | 0.67308 0.17308

Accuracy 0.87043 0.038969

OI5 Specificity | 0.87254 | 0.040537
Sensitivity | 0.69017 0.07906

Accuracy 0.89554 | 0.035387

X FS5 Specificity | 0.89718 | 0.035453
Sensitivity | 0.60256 0.064103

Accuracy 0.94198 | 0.018294

X OI5 Specificity 0.9446 0.01902
Sensitivity | 0.49145 | 0.047009

Accuracy 0.70169 0.045836

FS 10 Specificity | 0.70426 0.043071
Sensitivity | 0.49573 0.2735

Accuracy 0.8547 0.037119

OI 10 || Specificity | 0.85764 | 0.037639
Sensitivity | 0.57479 | 0.036325

Accuracy 0.84867 0.040022

X FS 10 || Specificity | 0.84969 | 0.039718
Sensitivity | 0.65812 0.11966

Accuracy 0.88688 0.022523

X OI 10 || Specificity | 0.88806 | 0.022784
Sensitivity 0.6688 0.053419

Table F.4: Cross-validation results for SVM, patient 39.

Method: SVM, Trees: 10, 30, 50

KDE Red w1 e u3 a o1 o2 o3 o4
Accuracy 0.98962 0.98929 0.89609  0.89609 0.0017891 0.0014586 0.061988 0.061988
Specificity 1 0.99967  0.89953  0.89953 0 0.00033333  0.064195 0.064195
Sensitivity 0 0.59615  0.59615 0 0 0.096154 0.096154
Accuracy 0.99434  0.99434  0.93235 0.93235 | 0.00077758  0.00077758  0.022198 0.022198
X Specificity 1 0.93401  0.93401 0 0 0.022407 0.022407
Sensitivity 0 0.64103  0.64103 0 0 0.025641 0.025641
Accuracy 0.68217  0.80882 0.91428  0.83364 0.060225 0.087734 0.014343 0.066291
FS 2 Specificity | 0.68099  0.81003 0.91742  0.83643 0.061654 0.089359 0.013246 0.06843
Sensitivity | 0.82265  0.71795 0.62393  0.59615 0.10043 0.051282 0.068376 0.096154
Accuracy 0.82386  0.81722 0.84488  0.8382 0.087571 0.033351 0.0030996  0.0031755
OI 2 Specificity 0.82591 0.8191 0.84665  0.84058 0.089906 0.034429 0.0020198  0.0014244
Sensitivity | 0.66239  0.65171 0.69017  0.63462 0.10684 0.040598 0.07906 0.13462
Accuracy 0.93413  0.94646 0.94437  0.91177 0.024354 0.0073659 0.012018 0.046356
X FS 2 Specificity | 0.93707  0.95003 0.94697  0.91406 0.025469 0.0078272 0.011093 0.047038
Sensitivity | 0.4359 0.32051 0.50214  0.51923 0.10256 0.012821 0.11325 0.019231
Accuracy 0.89641 0.88052 0.94476  0.95082 0.029908 0.002565 0.0052434  0.0059425
X Ol 2 Specificity | 0.89711 0.88058 0.94554  0.9522 0.031113 0.0030601 0.005343  0.0062391
Sensitivity | 0.74145 0.85684 0.80128  0.69658 0.20299 0.087607 0.032051 0.081197
Accuracy 0.68393  0.71495 0.8986  0.82556 0.30389 0.26815 0.017564 0.090598
FS 5 Specificity | 0.68733  0.71758 0.90163  0.82763 0.31267 0.27558 0.018968 0.092968
Sensitivity 0.5 0.58333 0.62393  0.66239 0.5 0.41667 0.068376 0.10684
Accuracy 0.74537  0.75348 0.87336  0.84986 0.23975 0.21812 0.031983 0.052773
Ol 5 Specificity 0.7493 0.75779 0.87583  0.85279 0.24796 0.22579 0.033825 0.054123
Sensitivity 0.5 0.46154  0.66239  0.58547 0.5 0.46154 0.10684 0.029915
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Accuracy 0.98855 0.98149 0.92581  0.92947 0.0032149 0.0070554 0.012274 0.027219
X FS5 Specificity | 0.99363 0.98635 0.92741  0.93186 0.0042083 0.0078851 0.012791 0.027437
Sensitivity 0.1047 0.13248 0.65171  0.50855 0.049145 0.021368 0.040598 0.047009

Accuracy 0.97773  0.96997 0.9426  0.92624 | 0.0042201 0.0014623 0.008011 0.031882
X OI5 Specificity 0.9833 0.97531 0.94466  0.92822 | 0.0034752  0.00088792  0.0085079 0.03324

Sensitivity 0 0.027778  0.58547  0.60684 0 0.027778 0.029915 0.16239
Accuracy 0.64527  0.66146  0.86085  0.87077 0.34256 0.3257 0.049221 0.039307
FS 10 || Specificity | 0.64833  0.66466  0.86391  0.87424 0.35167 0.33466 0.051906 0.041572
Sensitivity 0.5 0.5 0.60684  0.56838 0.5 0.5 0.16239 0.12393
Accuracy 0.98664  0.98499  0.94145 0.91204 | 0.0011851 0.0028375  0.0050102  0.024402
OI 10 Specificity 0.997 0.99533  0.94457  0.91557 0.003 0.0046667  0.0034319  0.025568
Sensitivity 0 0 0.66239  0.58547 0 0 0.10684 0.029915

Accuracy 0.99415  0.99358  0.91912  0.91979 | 0.00058961 2.57e-05 0.015738 0.025806
X FS 10 || Specificity | 0.99981  0.99924  0.92014 0.92065 | 0.00018889  0.00075557  0.016098 0.025675

Sensitivity 0 0 0.74573  0.76282 0 0 0.023504 0.070513
Accuracy 0.99434  0.99396 0.9467  0.91512 | 0.00077758  0.00040164  0.0021741 0.029405
X OI 10 Specificity 1 0.99962 0.94824  0.9165 0 0.00037779  0.0022723  0.029462
Sensitivity 0 0 0.6688 0.6688 0 0 0.053419 0.053419

Table F.5: Post-processed results for KNN, patient 39.

Method: KNN, Neighbors: 2, 5, 10
Original Veto 1 Veto 2
KDE | Red M1 12 13 | p1 12 n3 | p1 M2 M3
TP 2 2 2 2 2 2 2 2 2
FP | 42 10 6 36 8 4 22 5 4
FN | 0 0 0 0 0 0 0 0 0
TP 1 0 0 1 0 0 1 0 0
X FpP 11 3 1 1 1 0 0 1 0
FN 1 2 2 1 2 2 1 2 2
TP 2 2 2 2 2 2 2 2 2
FS 2 FpP 43 18 18 | 38 14 14 | 24 12 8
FN | 0 0 0 0 0 0 0 0 0
TP 2 2 2 2 2 2 2 2 2
oI 2 FP | 58 48 47 | 44 43 41 | 33 33 36
FN 0 0 0 0 0 0 0 0 0
TP | O 1 0 0 1 0 0 1 0
X FS 2 FP 12 12 10 3 3 4 2 3 4
FN 2 1 2 2 1 2 2 1 2
TP 1 1 1 1 1 1 1 0 0
X OI 2 FP | 12 10 8 2 4 1 1 4 1
FN 1 1 1 1 1 1 1 2 2
TP 2 2 2 2 2 2 2 2 2
FS 5 FpP 44 23 10 | 39 20 7 29 12 6
FN | 0 0 0 0 0 0 0 0 0
TP 2 2 2 2 2 2 2 2 2
Ol 5 FpP 43 47 46 | 40 42 42 31 28 36
FN 0 0 0 0 0 0 0 0
TP 1 1 0 1 1 0 1 0 0
X FS 5 FpP 14 9 5 6 3 1 2 3 1
FN 1 1 2 1 1 2 1 2 2
TP 1 0 1 1 0 1 1 0 0
X OI5 FP 10 12 10 1 3 1 1 1 1
FN 1 2 1 1 2 1 1 2 2
TP 2 2 2 2 2 2 2 2
FS 10 || FP | 41 24 6 38 20 4 25 11 5
FN | 0 0 0 0 0 0 0 0 0
TP 2 2 2 2 2 2 2 2 2
OI 10 FpP 36 16 13 | 34 13 9 27 7 7
FN 0 0 0 0 0 0 0 0
TP 1 0 1 1 0 1 1 0 0
X FS10 || FP | 14 9 5 6 3 1 0 3 1
FN 1 2 1 1 2 1 1 2 2
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TP [ 1 0 01 0 00 0 0
Xx |orio || FpP | 11 5 4| 3 3 311 1 1
FN | 1 2 2 |1 2 2 | 2 2 2
Table F.6: Post-processed results for random forest, patient 39.
Method: Random Forest, Trees: 10, 30, 50
Original Veto 1 Veto 2
KDE | Red M1 12 13 | p1 12 u3 | p1 M2 M3
TP | 2 2 2 | 2 2 2 | 2 2 2
FP | 58 42 41|49 35 36|40 33 34
FN | 0 0 0] o0 0 0| o0 0 0
TP | 2 1 1] 2 1 1] 2 1 1
x FP | 14 18 16 | 5 8 7| 4 4 4
FN | 0 1 1|0 1 1|0 1 1
TP | 2 2 2 | 2 2 2 | 2 2 2
FS2 || FP | 59 55 47 | 47 49 42 | 37 40 36
FN | 0 0 0o 0 0| o 0 0
TP | 2 2 2 | 2 2 2 | 2 2 2
or2 || FP | 56 62 67 | 49 50 54 | 39 41 46
FN | 0 0 0o 0 0| o 0 0
TP | 1 1 |1 1 T 1 1 1
X | Fs2 || Fp | 18 16 15| 9 8 5 | 4 1 2
FN | 1 1 ! 1 1] 1 1 1
TP | 1 1 1] 1 1 T 1 1 1
x or2 || Fp | 17 18 17 | 8 8 7| 4 4 1
FN | 1 1 1] 1 1 1] 1 1 1
TP | 2 2 2 | 2 2 2 | 2 2 2
FS5 || FP | 54 47 47 | 47 38 41|38 33 36
FN | 0 0 0] o0 0 0| o 0 0
TP | 2 2 2 | 2 2 2 | 2 2 2
or5 || FpP | 51 61 51 | 42 51 41 |36 42 33
FN | 0 0 0o 0 0| o 0 0
TP | 1 1 1] 1 1 1] 1 1 1
X | Fs5 || FP | 17 17 16 | 9 8 8 | 5 4 4
FN | 1 1 1] 1 1 1] 1 1 1
TP | 1 1 |1 1 1] 1 1 1
x or5 || FP | 17 18 17 | 8 8 8 | 4 2 4
FN | 1 1 ! 1 1] 1 1 1
TP | 2 2 2 | 2 2 2 | 2 2 2
FS 10 || FP | 67 49 55 | 50 41 48 | 41 33 40
FN | 0 0 0] o0 0 0| o 0 0
TP | 2 2 2 | 2 2 2 | 2 2 2
0110 || FP | 40 52 47 |36 42 39 |31 36 38
FN | 0 0 0] o0 0 0| o 0 0
TP | 1 1 1] 1 1 1] 1 1 1
X | Fs10 || FP | 17 17 17 | 8 7 8 | 4 1 3
FN | 1 1 1] 1 1 1] 1 1 1
TP | 1 1 1] 1 1 1] 1 1 1
X | o110 || Fp | 17 17 17 | 8 8 8 | 4 2 1
FN | 1 1 1] 1 1 1] 1 1 1

Table F.7: Post-processed results for logistic regression, patient 39.

Method: Logistic Regression

Original | Veto 1 | Veto 2
KDE Red
TP 1 1 1
FP 82 58 22
FN 1 1 1
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Table F.8

Method: SVM, kernel: rbf, linear, BoxConst: 1, 100
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TP | 1 2 2 2 1 2 2 2 T 2 2 2
FS5 | FP | 46 45 40 50| 19 21 35 39 |20 20 28 31
FN | 1 0 0 0 1 0 0 0 1 0 0 0
TP | 1 1 2 2 1 T 2 2 T 1 2 2
OI5 || FP | 42 45 45 47| 20 22 38 43 |18 19 35 38
FN | 1 1 0 0 1 1 0 0 1 1 0 0
TP | 0 0 0 o0 0 0 o0 0 0 0 0 o0
x | FS5 || FP | 2 2 12 12 2 2 5 5 1 1 2 4
FN | 2 2 2 2 2 2 2 2 2 2 2 2
TP | 0 0 0 1 0 0 o0 1 0 0 0 0
x | o5 | FP | 3 4 9 10 1 1 4 5 0 0 4 4
FN | 2 2 2 1 2 2 2 1 2 2 2 2
TP | 1 1 2 2 1 1 2 2 T 1 2 2
FS10 | FP | 46 46 46 45 | 18 19 40 38 |20 20 31 30
FN | 1 1 0 0 1 1 0 0 1 1 0 0
TP | 0 0 2 2 0 0 2 2 0 0 2 2
o110 || FP | 1 2 32 38 1 2 28 32 1 1 23 28
FN | 2 2 0 2 2 0 0 2 2 0 0
TP | 0 0 T 1 0 0 1 1 0 o0 1 1
x |Fsio || FP | 0o 0 4 11 0 0o 5 5 o o0 5 3
FN | 2 2 11 2 2 1 1 2 2 1 1
TP | 0 0 0 1 0 0 o0 0 0 0 0 o0
x |or1w || FP | 0 0 10 12 0 0o 5 5 o 0 3 2
FN | 2 2 2 1 2 2 2 2 2 2 2 2
F.2 Cluster balanced training set
Table F.9: Cross-validation results for KNN, patient 39.
Method: KNN, Neighbors: 2, 5, 10
KDE | Red M1 M2 13 o1 02 03
Accuracy | 0.97305  0.99162  0.99096 | 0.019023  0.0017663  0.0017739
Specificity | 0.97845 0.99864 0.99863 | 0.020885 0.00069336  0.0013689
Sensitivity | 0.41026 0.32051 0.24359 | 0.25641  0.012821  0.089744
Accuracy | 0.97821  0.99524  0.99507 | 0.01615  0.00024973  0.00079561
x Specificity | 0.98088  0.99944  0.99928 | 0.017985 0.00019767  0.00072046
Sensitivity | 0.45513  0.25427 0.24359 | 0.37821  0.023504  0.089744
Accuracy | 0.95109 0.86607 0.98359 | 0.038992  0.07973 0.002526
FS2 || Specificity | 0.9549  0.8706  0.98779 | 0.03977  0.080732  0.0042136
Sensitivity | 0.5641  0.40385 0.54274 | 0.10256  0.096154 0.23504
Accuracy | 0.91978 0.96999 0.96822 | 0.059735  0.0063435  0.0027007
OI2 || Specificity | 0.92354 0.97544 0.97328 | 0.061122  0.0067687  0.0027159
Sensitivity | 0.52564 0.44231  0.47009 | 0.14103  0.057692 0.08547
Accuracy | 0.94669 0.99392  0.99039 | 0.046545  0.0010661  0.0043477
X | FS2 || Specificity | 0.94912 0.99663 0.99292 | 0.047102  0.0022931  0.0048104
Sensitivity | 0.49786  0.5406  0.52564 | 0.11325  0.15171 0.14103
Accuracy | 0.91958 0.96587 0.97832 | 0.05523  0.0087228  0.0055179
X | O12 || Specificity | 092169 0.96918  0.9808 | 0.056776 ~ 0.0088467  0.0067348
Sensitivity | 0.50427 0.37607 0.50427 | 0.2735  0.068376 0.2735
Accuracy | 0.94028 0.97339  0.98862 | 0.049141  0.011061  0.0014662
FS5 || Specificity | 0.9443  0.9792  0.99423 | 0.049704  0.010533  0.0024401
Sensitivity | 0.53632 0.39316 0.42094 | 0.074786  0.16239 0.19017
Accuracy | 0.95956  0.97694 0.97049 | 0.029203  7.2171e-05  0.0083567
OI5 || Specificity | 0.96381 0.98177 0.97487 | 0.029521  0.00043532  0.010463
Sensitivity | 0.53632 0.50855 0.50427 | 0.074786  0.047009 0.2735
Accuracy | 0.98163 0.99338 0.99365 | 0.013483 0.00089612  0.0025942
X | PS5 || Specificity | 0.98393 0.99645 0.99639 | 0.014185  0.0017439  0.0032333
Sensitivity | 0.55342 0.46368 0.48718 | 0.1688  0.074786 0.17949
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Accuracy 0.96938 0.97929 0.98348 0.02235 0.00040796 0.0007726
X Ol 5 Specificity | 0.97196 0.98248 0.98618 | 0.022752  0.00023244  0.00022434
Sensitivity | 0.49786  0.42521 0.4765 0.11325 0.036325 0.24573
Accuracy 0.96661  0.99096 0.99164 | 0.026783 0.0011054 0.00042923
FS 10 Specificity | 0.97059 0.9966 0.99866 | 0.028081 0.0020712 0.00065777
Sensitivity | 0.55342  0.42094 0.32051 0.1688 0.19017 0.012821
Accuracy 0.97472  0.98965 0.99063 0.01867 0.00088505  0.00077489
OI 10 Specificity | 0.97916  0.99564 0.9973 0.018174 0.0023066 3.5592e-05
Sensitivity | 0.54701  0.42521  0.34829 | 0.008547 0.036325 0.040598
Accuracy 0.96517  0.99449  0.99434 | 0.029947 0.00050215 0.00077758
X FS 10 Specificity 0.96718 0.99795 0.99745 | 0.030936 0.0009708 0.0014146
Sensitivity 0.5812 0.38675  0.42094 0.19658 0.0021368 0.19017
Accuracy 0.98139 0.99449 0.99505 | 0.011094 0.00050215 6.176e-05
X OI 10 Specificity | 0.98405  0.99795 0.9987 0.011791 0.0009708 0.00021523
Sensitivity | 0.48718  0.38675  0.34829 0.17949 0.0021368 0.040598
Table F.10: Cross-validation results for randf, patient 39.
Method: Random Forest, Trees: 10, 30, 50
KDE Red w1 7 u3 o1 o9 o3
Accuracy 0.87302 0.89789 0.93672 0.056924 0.014864 0.020003
Specificity | 0.87493  0.90052  0.93882 0.059736 0.014144 0.021484
Sensitivity | 0.63675 0.65171  0.75641 0.25214 0.040598 0.089744
Accuracy 0.98043  0.98664 0.992 0.012812 0.0005166 0.0019144
X Specificity | 0.98464  0.99123  0.99632 0.013307 0.00055989 0.0023155
Sensitivity | 0.57479  0.53632  0.57479 0.036325 0.074786 0.036325
Accuracy 0.85579  0.88631  0.88907 0.074565 0.025112 0.032496
FS 2 Specificity | 0.85747 0.8889 0.89169 0.076137 0.02623 0.033021
Sensitivity | 0.71795 0.65171  0.64103 0.051282 0.040598 0.025641
Accuracy 0.90236 0.93526 0.93814 | 0.0044518 0.0086226 0.0023741
OI 2 Specificity 0.90603 0.93867 0.94189 | 0.0059658 0.010675 0.0014408
Sensitivity | 0.51496  0.63462  0.58547 0.20726 0.13462 0.029915
Accuracy 0.93932 0.97083  0.96927 0.012679 0.021059 0.0016561
X FS 2 Specificity | 0.94209 0.97461  0.97369 0.013422 0.02128 0.0023552
Sensitivity | 0.67949  0.60256  0.54701 0.012821 0.064103 0.008547
Accuracy 0.96983 0.97874 0.97577 0.021382 0.011791 0.014765
X OI 2 Specificity | 0.97496  0.98462  0.98094 0.021622 0.011956 0.014271
Sensitivity | 0.47009  0.40385 0.4594 0.08547 0.096154 0.15171
Accuracy 0.848 0.88705  0.91567 0.035706 0.031136 0.020098
FS 5 Specificity | 0.85188  0.88828  0.91787 0.03655 0.03095 0.020533
Sensitivity | 0.48077  0.76282  0.70726 0.019231 0.070513 0.014957
Accuracy 0.9293 0.94592  0.94462 0.013903 0.00607 0.0087289
Ol 5 Specificity | 0.93298  0.94841  0.94777 0.014315 0.0064127 0.0091061
Sensitivity | 0.57479  0.70726  0.64103 0.036325 0.014957 0.025641
Accuracy 0.95796  0.96231 0.98503 | 0.0062067 0.0065904 0.0061802
X FS 5 Specificity 0.96228 0.96666 0.98861 | 0.0076085 0.0073285 0.0072799
Sensitivity | 0.55769  0.54701  0.65171 0.057692 0.008547 0.040598
Accuracy 0.96616  0.98171  0.97908 0.022343 0.0081478 0.012129
X 0I5 Specificity | 0.97096 0.9856 0.98293 0.025622 0.0089288 0.011595
Sensitivity | 0.55128  0.61325  0.59188 0.21795 0.0021368 0.13034
Accuracy 0.91859 0.95933  0.95464 0.041521 0.0088961 0.0081744
FS 10 Specificity | 0.92051  0.96228 0.95721 0.041844 0.0082841 0.0078795
Sensitivity | 0.73504  0.65812  0.69658 0.042735 0.11966 0.081197
Accuracy 0.84547  0.87744  0.94092 0.048378 0.067792 0.0070158
OI 10 Specificity | 0.84598 0.879 0.9437 0.049981 0.069666 0.0077016
Sensitivity | 0.82265 0.75641  0.67949 0.10043 0.089744 0.012821
Accuracy 0.98604  0.99196 0.992 0.0065258 0.0014282 0.0019144
X FS 10 Specificity | 0.98828  0.99527  0.99495 | 0.0076133  6.2286e-05  0.00094661
Sensitivity | 0.78419  0.69017 0.6859 0.061966 0.07906 0.14744
Accuracy 0.97734 0.98934 0.98865 | 0.0057585 0.0032211 0.0012079
X OI 10 Specificity 0.98118 0.9943 0.99293 | 0.0071821 0.0029644 0.0015955
Sensitivity | 0.62393  0.49786  0.57479 0.068376 0.11325 0.036325
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Table F.11: Cross-validation results for logistic regression, patient 39.

Table F.12: Cross-validation results for SVM, patient 39.

Method: Logistic Regression
KDE Red ni o1
Accuracy 0.79471 0.1113
Specificity | 0.79886 0.11353
Sensitivity | 0.42521 0.036325
Accuracy 0.87392 0.079555
X Specificity | 0.87678 0.079273
Sensitivity | 0.3547 0.20085
Accuracy 0.84191 0.087776
FS 2 Specificity | 0.84685 0.090181
Sensitivity | 0.39744 0.064103
Accuracy 0.91745 | 0.00073311
OI 2 Specificity | 0.92167 | 0.0016701
Sensitivity | 0.51923 0.019231
Accuracy 0.91945 0.047267
X FS 2 Specificity | 0.92194 0.048879
Sensitivity | 0.51282 0.17949
Accuracy 0.97471 | 0.00047874
X OI 2 Specificity | 0.97734 | 0.00075169
Sensitivity | 0.49786 0.11325
Accuracy 0.83249 0.08299
FS 5 Specificity | 0.83699 0.085661
Sensitivity | 0.4359 0.10256
Accuracy 0.91655 0.0097469
Ol 5 Specificity | 0.92248 0.011812
Sensitivity | 0.36966 0.09188
Accuracy 0.92085 0.049799
X FS 5 Specificity | 0.92412 0.050302
Sensitivity | 0.34829 0.040598
Accuracy 0.8599 0.0886
X OI5 Specificity | 0.86144 0.089826
Sensitivity | 0.55342 0.1688
Accuracy 0.85732 | 0.0027235
FS 10 || Specificity | 0.86057 | 0.0039049
Sensitivity | 0.55769 0.057692
Accuracy 0.85443 0.016026
oI 10 Specificity | 0.85728 0.015389
Sensitivity | 0.58547 0.029915
Accuracy 0.84004 0.047934
X FS 10 || Specificity | 0.84304 0.048174
Sensitivity | 0.30983 0.07906
Accuracy 0.87063 0.070346
X OI 10 || Specificity | 0.87297 0.070738
Sensitivity | 0.44231 0.057692

Method: SVM, Trees: 10, 30, 50
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KDE Red I e “3 a o1 o2 o3 o4
Accuracy 0.98962  0.98962 0.94126  0.94126 0.0017891 0.0017891 0.0371 0.0371
Specificity 1 1 0.94547  0.94547 0 0 0.039471 0.039471
Sensitivity 0 0 0.56838  0.56838 0 0 0.12393 0.12393
Accuracy 0.99434  0.99434 0.96365 0.96365 | 0.00077758  0.00077758 0.024179 0.024179
X Specificity 1 1 0.96582  0.96582 0 0 0.025891 0.025891
Sensitivity 0 0 0.61752  0.61752 0 0 0.22863 0.22863
Accuracy 0.866 0.90232  0.95538 0.90391 0.027592 0.051029 0.014879 0.044028
FS 2 Specificity 0.86726  0.90716  0.96031  0.90875 0.02674 0.053826 0.013694 0.046079
Sensitivity | 0.75641 0.47436  0.49145  0.46368 0.089744 0.14103 0.047009 0.074786
Accuracy 0.9683 0.86488  0.91537  0.91903 0.0046532 0.050604 0.0066436 0.0076046
Ol 2 Specificity 0.9734 0.86863  0.91955  0.92358 0.0060664 0.051968 0.0057878 0.0070856




F. Appendix 6: HMS Patient 39 result

Sensitivity | 0.49145  0.51923 0.51923 0.48077 | 0.047009  0.019231  0.019231  0.019231
Accuracy | 0.96133 095228 0.97467 0.94541 | 0.029003  0.024458  0.0065285  0.027744
X | FS2 || Specificity | 0.96646 0.95607 0.97693 0.94788 | 0.030302  0.025201  0.0068272  0.028347
Sensitivity | 0.076923 0.29274  0.5641  0.51923 | 0.076923  0.014957 0.10256 0.019231
Accuracy | 0.94234  0.89892 0.97009 0.96774 | 0.018935  0.035287  0.00091819  0.00030745
x OI2 || Specificity | 0.94551  0.90074 0.97286 0.97015 | 0.019357  0.036547  0.0011987  0.00076503
Sensitivity | 0.36538  0.54274 0.48077 0.52564 | 0.13462 0.23504 0.019231 0.14103
Accuracy | 0.98466  0.9846  0.94396 0.89211 | 0.0031679  0.0021803  0.0093899  0.064616
FS5 || Specificity | 0.99467  0.99358 0.94916 0.89654 | 0.0053333  0.00042231  0.011826  0.067871
Sensitivity | 0.038462 0.13248 0.47436  0.51282 | 0.038462  0.021368 0.14103 0.17949
Accuracy | 0.98431  0.974  0.93776 0.80062 | 0.0014928  0.0057205  0.0067233  0.074458
OI5 || Specificity | 0.99464  0.98423 0.94319 0.80484 | 0.0033066  0.0075599  0.0054764  0.07383
Sensitivity 0 0 0.42521  0.39744 0 0 0.036325  0.064103
Accuracy | 0.99377  0.98785 0.96072 0.93685 | 0.00021367  0.0021321  0.016733  0.040606
X | FS5 || Specificity | 0.99943 099292  0.9638  0.94 | 0.00056668 0.0031188  0.017826  0.041626
Sensitivity 0 0.1047  0.4359  0.39744 0 0.049145 0.10256 0.064103
Accuracy | 0.99083  0.98508 0.97108 0.94272 | 0.00022538  0.0027501  0.0052942  0.0042765
X O15 || Specificity | 0.99647  0.9907  0.97478 0.94461 | 0.0010059  0.0035405  0.006132  0.0047676
Sensitivity 0 0 03312 0.59188 0 0 0.053419 0.13034
Accuracy | 0.98962 098896 0.94106 0.90441 | 0.0017891  0.0011282  0.019049  0.059074
FS 10 || Specificity 1 0.99933  0.94522  0.9086 0 0.00066667  0.020555 0.0606
Sensitivity 0 0 0.55769  0.51923 0 0 0.057692  0.019231
Accuracy | 0.98962  0.98896 0.90802 0.86364 | 0.0017891  0.0011282  0.035805 0.02929
OI 10 || Specificity 1 0.99933  0.91207  0.86789 0 0.00066667  0.035268  0.030109
Sensitivity 0 0 0.51923  0.43162 0 0 0.019231 0.12393
Accuracy | 0.99415  0.99415 0.96436  0.94425 | 0.00058961 0.00058961  0.010227  0.030339
X | FS10 || Specificity | 0.99981  0.99981 0.96711 0.94633 | 0.00018889 0.00018889  0.010556 0.031334
Sensitivity 0 0 0.48077  0.59615 0 0 0.019231  0.096154
Accuracy | 0.99434  0.99396 0.91243 0.90409 | 0.00077758 0.00040164  0.055238  0.0068112
X | O110 || Specificity 1 0.99962  0.9152  0.90649 0 0.00037779  0.055331  0.0069956
Sensitivity 0 0 0.41453  0.47009 0 0 0.029915 0.08547
Table F.13: Post-processed results for KNN, patient 39.
Method: KNN, Neighbors: 2, 5, 10
Original Veto 1 Veto 2
KDE | Red 1 12 M3 | p1 12 13 | P 12 13
TP | 2 2 2 | 2 2 2 | 2 2 2
FP | 14 0 0|13 0 0] 5 0 0
FN | 0 0 0] o0 0 0| o 0 0
TP | 0 0 0] o0 0 00 0 0
X FP | 2 0 0ol o 0 oo 0 0
FN | 2 2 2 | 2 2 2 | 2 2 2
TP | 2 2 2 | 2 2 2 | 2 1 2
FS2 || FP | 25 54 9 | 21 36 8 |10 26 4
FN | 0 0 0] o0 0 0] o0 1 0
TP | 2 2 2 | 2 2 2 | 2 2 2
or2 || Fp | 31 6 14 | 24 6 9 | 14 4 6
FN | 0 0 0| o 0 0| o 0 0
TP | 0 0 00 0 00 0 0
X | Fs2 || FpP | 11 4 3] 2 2 0] 2 2 0
FN 2 2 | 2 2 2 | 2 2 2
TP | 1 0 0| 1 0 0] 1 0 0
x o2 || FP | 10 5 31 2 0] 1 0 0
FN | 1 2 2 |1 2 2 |1 2 2
TP 2 2 | 2 2 2 | 2 1 2
FS5 || FP | 33 13 2 | 23 9 2 |11 1 0
FN | 0 0 0] o0 0 0] o0 1 0
TP | 2 2 2 | 2 2 2 | 2 2 2
oI5 || FP | 20 8 13 | 16 8 10 | 8 6 8
FN | 0 0 0] o 0 0o 0 0
TP | 0 0 00 0 00 0 0
X | FS5 || FP | 4 2 1]o0 1 0] o0 0 0
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Post-processed results for random forest, patient 39.

Table F.14

Method: Random Forest, Trees: 10, 30, 50
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Table F.15: Post-processed results for logistic regression, patient 39.

Method: Logistic Regression
Original | Veto 1 | Veto 2
KDE Red

TP 2 2 2

FP 73 31 16

FN 0 0 0

TP 0 0 0

X FpP 11 5 2

FN 2 2 2

TP 2 2 1

FS 2 FP 52 34 19

FN 0 0 1

TP 2 2 2

OI 2 FpP 33 27 21

FN 0 0 0

TP 0 0 0

X FS 2 FpP 10 5 4

FN 2 2 2

TP 0 0 0

X OI 2 FpP 8 4 2

FN 2 2 2

TP 2 2 2

FS 5 FP 59 37 18

FN 0 0 0

TP 2 2 2

oI5 FP 37 24 17

FN 0 0 0

TP 1 1 1

X FS 5 FpP 11 3 2

FN 1 1 1

TP 1 1 0

X oI5 FP 17 2 1

FN 1 1 2

TP 2 2 2

FS 10 FP 63 41 18

FN 0 0 0

TP 2 2 2

OI'10 || FP 63 31 17

FN 0 0 0

TP 2 2 1

X FS 10 || FP 15 5 3

FN 0 0 1

TP 1 1 0

X OI'10 || FP 17 3 2

FN 1 1 2

Table F.16: Post-processed results SVM, patient 39.
Method: SVM, kernel: rbf, linear, BoxConst: 1, 100
Original Veto 1 Veto 2

KDE | Red K1 H2 M3 pa K1 B2 p3 22 M1 p2 M3 p4
™ | 0 0 2 2 0 0 2 2 0 0 2 2
FP 0 0 22 22 0 0 17 17 0 0 11 11
FN | 2 2 0 0 2 2 0 0 2 2 0 0
TP 0 0 1 1 0 0 1 1 0 0 1 1
X FP | O 0 6 6 0 0 5 5 0 0 3 3
FN 2 2 1 1 2 2 1 1 2 2 1 1
TP 2 2 2 2 2 2 2 2 2 2 2 1
FS 2 FP | 45 38 24 41 36 27 16 26 27 12 11 20
FN | O 0 0 0 0 0 0 0 0 0 0 1

LXX




F. Appendix 6: HMS Patient 39 result

NRolotaomalaRolaoloval-wv G olalolowaloaa
NJolcoamjomalaSolaTolonaloacnlaBolafolo~aloaa
N oclonalo~a|-o oo alo- oo Nlooaloo a|looa|looa
Noolo~a|lH~ dloo oo Nloon|loo oo oo oo alooa
NRHolovwaloralaBoclaSocjlowalmn ~la G ol olow a|—in ~
™ a » ~ N
NQVolocaanjonmalaGgolaRolovaloralmBolmPolow af— o~
NRoloaalmaAlnococlomalo- oo Nlco oo aloo oo
NDolomajo~alooc o~ alocoa|locoo oo a|oo oo oo
NG ool acwaladoBoloralwR -lafolaBoloo =8~
aSocoralooalaRolaRolovaloralaF ol olor~ al~8 ~
NBoclot Ao Alvnooclomwaloncloo oo oo aloo oo
Y oclotaw- oo~ alcoa|jlcoad|lcoa|oo oo oo™
[a APl [S VI~ <Py a Wi/l [P a WAl | R a Vil | P a PRl [ R APl [P AW~ [ a W/l [ P a Tl | s B a P
SaCTCTE | T ETy | R I ey | R S Y | R I Y | o R GO CI oo R CI CO | S R E Y | I T 0 | S N ST ey [ S R S e
=) = o =)
o~ o~ ™ 0 0 0 0 S S S S
— wn — wn — w0 —
0 = 19} =
o = o e o < o o o = o
x = x x = x

LXXI



F. Appendix 6: HMS Patient 39 result

LXXII



G

Appendix 7: GTCS Seizure data

Table G.1: GTCS statistics describing seizure onsets, duration, pre-processed du-
ration and standard deviation.

Patient Start Stop Seizure time | Max STD
7 2008-09-12 01:39:19 | 2008-09-12 01:40:24 01:05 0.9105
7 2008-09-12 02:27:33 | 2008-09-12 02:28:38 01:05 0.7794
7 2008-09-12 03:18:07 | 2008-09-12 03:18:55 00:48 0.9730
7 2008-09-12 04:10:15 | 2008-09-12 04:11:30 01:15 0.9850
7 2008-09-12 04:57:25 | 2008-09-12 04:58:30 01:05 0.9499
7 2008-09-12 06:36:23 | 2008-09-12 06:37:23 01:00 1.0004
7 2008-09-12 08:02:13 | 2008-09-12 08:03:10 00:57 0.7671
7 2008-09-12 09:10:30 | 2008-09-12 09:11:39 01:09 0.9995
7 2008-09-12 10:54:45 | 2008-09-12 10:55:55 01:10 0.8906
7 2008-09-12 16:08:43 | 2008-09-12 16:09:47 01:04 0.9057
7 2008-09-12 18:18:49 | 2008-09-12 18:19:39 00:50 0.6503
22 2009-10-09 00:33:35 | 2009-10-09 00:34:37 01:02 0.6873
22 2009-10-09 01:20:50 | 2009-10-09 01:21:53 01:03 0.6453
22 2009-10-09 03:11:45 | 2009-10-09 03:12:51 01:06 0.9897
22 2009-10-09 03:54:00 | 2009-10-09 03:55:06 01:06 0.9953
22 2009-10-09 04:22:03 | 2009-10-09 04:23:16 01:13 0.6233
22 2009-10-09 04:47:37 | 2009-10-09 04:48:52 01:15 0.6622
22 2009-10-09 05:08:20 | 2009-10-09 05:09:34 01:14 0.6438
22 2009-10-09 05:50:52 | 2009-10-09 05:52:03 01:11 0.6297
48 2012-05-03 18:59:02 | 2012-05-03 19:00:13 01:11 0.8280
48 2012-05-03 21:41:23 | 2012-05-03 21:43:13 01:50 0.7839
55 2014-12-11 02:51:06 | 2014-12-11 02:52:17 01:11 1.4824
55 2014-12-11 09:59:26 | 2014-12-11 10:00:15 00:49 1.8422
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