
Inner Source In Product Projects
A Multiple Case Study Within A Company

Master’s thesis in Software Engineering

Jakob Csörgei Gustavsson
Peter Eliasson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017

Inner Source In Product Projects

A Multiple Case Study Within A Company

Jakob Csörgei Gustavsson
Peter Eliasson

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Inner Source In Product Projects
A Multiple Case Study Within A Company
Jakob Csörgei Gustavsson & Peter Eliasson

© Jakob Csörgei Gustavsson & Peter Eliasson, 2017.

Supervisor: Eric Knauss, Department of Computer Science and Engineering
Advisor: Maximilian Hristache & Sima Nordlund, Ericsson
Examiner: Regina Hebig, Department of Computer Science and Engineering

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Inner Source In Product Projects
A Multiple Case Study Within A Company
Jakob Csörgei Gustavsson & Peter Eliasson
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Background: Inner source is the concept of applying open source development
practices in the context of a company. Reported benefits of using inner source include
higher-quality software and more efficient reuse of software components. While the
field of inner source research has explored the traits of inner source projects whose
resulting software is to be used internally, research is lacking for inner source projects
that have an external party as the end customer, which we call product projects.

Aim: In this thesis, we identify three especially interesting aspects of using inner
source to develop product projects: feature prioritization, license issues related to
third party products, and how to market the inner source project inside the company.

Method: We investigate how two large inner source projects at Ericsson han-
dle these aspects of inner source by performing a multiple case study with semi-
structured interviews as the primary method of data collection and thematic analysis
for data analysis.

Results: Through analysis of the case study we identify key practices regarding the
three aspects of inner source software development under study.

Conclusions: Based on the results in this thesis, we outline directions for future
research on the topic of inner source in product projects.

Keywords: Case study, inner source, internal open source, customer-facing inner
source, thesis.

v

Acknowledgements

We would like to express our thanks to everyone that was involved in this project.
In particular, the following people for their help and support in making this thesis
possible:

• Eric Knauss, supervisor at Chalmers University of Technology: For the guid-
ance and academic expertise he has provided.

• Maximilian Hristache & Sima Nordlund, supervisors at Ericsson: For always
being available for support and questions whenever it was needed.

• The JCAT and UI SDK project members: For always being happy to lend
their valuable time for our interviews and follow-up questions.

• Sebastian Blomberg & Joel Severin: For being opponents and providing peer
review feedback on multiple occasions.

• Ulf Hansson: For reviewing and giving feedback.

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Research Questions . 4
1.4 Scope/Limitations . 4
1.5 Thesis Outline . 4

2 Related Work 7
2.1 Open Source . 7
2.2 Inner Source . 8
2.3 Inner Source Classification Framework 12

3 Methodology 15
3.1 Case Company: Ericsson . 15
3.2 Pre-Study . 16
3.3 Methodology Motivation . 16
3.4 Multiple Case Study . 17

3.4.1 Cases . 18
3.4.2 Data Collection: Semi-structured Interviews 19
3.4.3 Data Analysis: Thematic Analyis 21
3.4.4 Project Classification . 25

3.5 Validation Workshop . 26

4 Results 29
4.1 Project Classification . 30

4.1.1 JCAT . 30
4.1.2 UI SDK . 32

4.2 RQ1: How Are Features Prioritized In Inner Source Projects? 34
4.2.1 Step 1: Elicitation . 36
4.2.2 Step 2: Delegation of Implementation 37
4.2.3 Step 3a: Core Team Implements 38
4.2.4 Step 3b: Community Implements 39

ix

Contents

4.2.5 Discussion . 42
4.3 RQ2: How Are License Issues Related To The Usage Of Third Party

Products Handled In Inner Source Projects? 43
4.3.1 Inner Source Project Implications 44
4.3.2 Using Third Party Products 46
4.3.3 Discussion . 49

4.4 RQ3: How Can An Inner Source Project Spread Awareness Of Its Ex-
istence Within The Company Where It Is Developed? (Discoverability) 50
4.4.1 Project Finds People . 50
4.4.2 People Find Project . 51
4.4.3 Top-level Support . 53
4.4.4 Inner Source Program . 54
4.4.5 Discussion . 54

4.5 Validation Workshop . 56
4.5.1 Inner Source Developer Responsibilities 56
4.5.2 Inner Source FOSS Evaluation Process 57
4.5.3 Inner Source Platform . 57

5 Discussion 59
5.1 Threats to Validity . 59

5.1.1 Construct Validity . 59
5.1.2 Internal Validity . 60
5.1.3 External Validity . 60
5.1.4 Reliability . 61

5.2 Future Work . 61

6 Conclusion 63

Bibliography 65

A Appendix 1 I
A.1 English Interview Guide . I
A.2 Swedish Interview Guide . III

x

List of Figures

2.1 Inner source-related publications by organization. (Capraro & Riehle,
2016) . 11

3.1 A hierarchy chart of codes extracted from the transcripts, created
using the NVivo tool. Each box represents a code, and nested boxes
indicate codes that are part of a hierarchical tree structure of codes.
For example, the “Project vision” box (top left) is part of the “Prior-
itization” box, indicating that the “Project vision” code was placed
under the “Prioritization” code. 23

3.2 Codes written on post-it notes are grouped into potential themes on
a whiteboard, allowing easier iteration and overview. 24

xi

List of Figures

xii

List of Tables

2.1 Classification framework for inner source projects. (Capraro & Riehle,
2016) . 12

3.1 People interviewed for the study, their experience, and their title in
the project. 19

4.1 Overview of the identified themes by research question. 29
4.2 Classification of the case projects along governance and objective di-

mensions, following an inner source project classification framework
by Capraro & Riehle (2016). 30

xiii

List of Tables

xiv

1
Introduction

In this thesis, we aim to further explore the topic of inner source in collaboration with
a case company. In particular, the thesis aims to examine aspects of inner source
that are seen as interesting when including external customers into an inner source
project, an area where little previous research has been performed. The thesis was
carried out at Ericsson, which was selected due to previously having shown interest
in inner source (Torkar et al., 2011) and its large size (roughly 116000 (Ericsson,
2017)), making it more likely to find inner source projects there compared to a
smaller company.

The remainder of this section starts by introducing the background leading up to
the definition of the inner source concept. Following that is the problem statement
in which we highlight the current lack of research regarding inner source projects
used directly by a customer, and how we aim to fill this research gap. The problem
statement is then condensed into three research questions, tailored to investigate
aspects that should be taken into consideration when an external customer is in-
volved. The thesis scope and limitations are then discussed, followed by a summary
of the key results obtained in the study. Finally, the outline of the remainder of the
report is presented.

1.1 Background

The successes of open source projects, such as the Linux Kernel, PHP, MySQL,
Wordpress and Firefox, have in recent years opened the eyes of major software com-
panies to the benefits of the open source model of software development. This can
for example be illustrated by the fact that 85% of pull requests submitted to repos-
itories on GitHub in 2016 were submitted to repositories run by an organization,
a growth of over 760% from 2013 (GitHub, 2016). Open source software develop-
ment is characterized by frequent releases, highly modular architectures, dynamic
decision-making structures that can change based on fleeting requirements, and users
being treated as co-developers (Robles, 2004). The last characteristic is essential to
the open source way of development, in which users are encouraged to submit new
features, bug fixes, file bug reports, write documentation, etc. Having users act as

1

1. Introduction

developers can also result in access to a larger spread of expertise in the community,
increasing the likelihood that there exists a developer in the project that is already
familiar with any given issue. Additionally, the need for a modular architecture in
order to facilitate contributions from newcomers further drives the technical quality
of the software.

Several different authors have argued that lessons can be drawn from the develop-
ment model used by open source communities and that it is possible to transfer best
practices found in these communities to software development carried out in the
context of a company (Asundi, 2001; Mockus et al., 2002; Fitzgerald, 2011); this is
commonly referred to as inner source (Stol et al., 2014). Although inner source is
a relatively novel concept that lacks comprehensive research (only 43 scientific pub-
lications have been published on the topic in 15 years, with the oldest dating back
to 2002 (Capraro & Riehle, 2016)), a number of major software companies, such
as HP (Dinkelacker et al., 2002; Melian, 2007), Philips (Wesselius, 2008; van der
Linden, 2009; Lindman et al., 2010), Nokia (Lindman et al., 2013), IBM (Vitharana
et al., 2010), Google (Whittaker et al., 2012), Microsoft (Asay, 2007) and Ericsson
(Torkar et al., 2011), have found success through applying the concept. Capraro &
Riehle (2016) identify a number of major benefits from implementing inner source
such as cost and risk sharing across organizations, the ability to make better use
of competences missing at component providers, faster time-to-market, and a wider
openness and availability of knowledge.

1.2 Problem Statement

Although there is some literature in the inner source field, it is far from extensive.
Indeed, in a recent literature survey performed by Capraro & Riehle (2016), the
number of inner source-related publications was found to be 43 in total. In the same
survey, Capraro & Riehle (2016) identify that most aspects of inner source are still
in need of additional research in order to extend and validate current proposed ideas
and frameworks. Furthermore, they find it unlikely that the field of inner source
research can be seen as fully explored; instead, additional research is suggested in
order to better establish the inner source field itself.

Most publications on the topic of inner source focus on internal inner source projects,
which we define as inner source projects that are exclusively used internally. As this
is the most common type of inner source project, we will henceforth use “inter-
nal inner source project” and “inner source project” interchangeably, and clearly
note when another type of inner source project is intended. Examples of what
can be regarded as internal inner source projects are found in literature describing
Philips (Wesselius, 2008; van der Linden, 2009), Microsoft (Asay, 2007), Google (Whit-
taker et al., 2012), HP (Dinkelacker et al., 2002) and IBM (Vitharana et al., 2010).
For example, the inner source project at Philips (van der Linden, 2009) is a shared
product platform, which is then extended by multiple individual product teams

2

1. Introduction

to fit the needs of their own product. The end products in this example involve
some external customer, but the inner source project itself (i.e. the shared product
platform) does not.

This same structure, as can be seen in the examples above, of isolating the inner
source project from external customers seems to generally repeat itself in most liter-
ature on the area. It would, therefore, be interesting from an academic perspective
to explore aspects of inner source projects related to the inclusion of external cus-
tomers, projects which we will henceforth refer to as product projects. This interest
was also expressed from an industry perspective by the case company studied in
this thesis. In a context with an external customer, some issues might be regarded
as of higher importance than if the project was developed for an internal customer.
For example, usage of third party products might prove more problematic as certain
licenses require making the product source code available to users of the product,
which is naturally more sensitive if the user is external to the company.

Three aspects in particular were, in collaboration with the case company, identified
as interesting when an external customer is involved: feature prioritization, a subset
of legal issues regarding software licenses, and discoverability. The three aspects are
further defined below:

• Prioritization pertains to how feature requests and feature submissions made
to an inner source project are handled in practice. The term prioritization
should be taken to mean any of the following:

– how features are prioritized against each other during elicitation,

– how the dedicated developers decide if they should take an elicited feature
or if it should be delegated,

– and how it is decided if an implemented feature should be accepted or
not, based on need and alignment with the system as a whole.

• Legal issues regarding software licenses focuses on the notion that when
contributions are made, the licenses of included third party dependencies have
to be in accordance with the license of the final product. Making sure that no
code is included from license-incompatible third parties is therefore essential
for any commercial software.

• Discoverability is aimed at better understanding how an existing inner source
project can spread awareness of itself within the organization, constituting the
first step in the process of attracting new users and contributors to the project.

3

1. Introduction

1.3 Research Questions

The following research questions have been chosen to explore the three aspects of
inner source in product projects that were outlined in the problem statement:

RQ1. How are features prioritized in inner source projects?

RQ2. How are legal issues related to the usage of third party products handled
in inner source projects?

RQ3. How can an inner source project spread awareness of its existence within
the company where it is developed? (Discoverability)

The concept of third party products may in this thesis be assumed to be synony-
mous with third party software or third party libraries. The terms will henceforth
be used interchangeably. The aspect of discoverability in RQ3 relates to how po-
tentially interested employees of the company in question can become aware of the
project’s existence, not how to make employees interested in using or contributing
to the project; the latter aspect is covered extensively in literature (Wesselius, 2008;
Stol et al., 2014; Capraro & Riehle, 2016). The term discoverability will be used
occasionally throughout the thesis to refer to RQ3.

1.4 Scope/Limitations

The legal issues considered for this thesis are focused exclusively on aspects regarding
licenses, as we believed this to be the most common legal problem encountered when
handling third party software. Other aspects, such as rules and practices pertaining
to trade compliance, are such seen as out of scope and will not be discussed in the
thesis.

1.5 Thesis Outline

The rest of this thesis is structured as follows:

• Section 2 provides a background on topics discussed throughout the thesis.

• Section 3 presents the used methodology and a motivation of why the employed
methodology was chosen.

• Section 4 shows the results of the case study, in which interviews conducted
with employees of the case projects have been analyzed. At the end of the re-
sults of each research question, a discussion is given. This section also provides

4

1. Introduction

results of the validation workshop that was conducted.

• Section 5 discusses potential threats to validity and gives recommendations on
future work.

• Section 6 summarizes and concludes the thesis.

5

1. Introduction

6

2
Related Work

In this section, we provide additional background to topics relevant for the remain-
der of the thesis. The section starts by introducing open source, followed by an
introduction to inner source. Finally, an inner source classification framework is
presented.

2.1 Open Source

Open source software is software that comes with its source code attached, and with
which the copyright holder has attached a license that may permit the studying,
modifying, distributing and reselling of the software for any purpose (Perens, 1999).

Open source development practices differ significantly from those in the corporate
world (Gurbani et al., 2006). One example of this difference is in the process of
eliciting requirements. In corporate software development, requirements are found
and decided on through the involvement of many disciplines such as marketing,
business intelligence, research and development, management, and possibly more.
Decisions are made based on business need and in a search for company profit. How-
ever, in open source projects, the users of the software are typically the developers
themselves. Consequently, these projects rely on the developers to come up with
requirements; since they are users, they themselves are expected to best know which
features are needed and which bugs are the most critical to fix.

Another example in which open source software differs from corporate development
is in its open and globally distributed development process, which increases coordi-
nation and communication (Fitzgerald, 2011). The secret behind the coordination
model is in its structure of having a core team of expert developers who write the
majority of the code. These developers are supplemented by a large number of
additional coders and bug-fixers from the user population, increasing productivity
without significantly impacting technical debt. When it comes to communication,
the community of an open source project coordinates through informal means such
as e-mail, forum posts, and version control systems.

Raymond (1999) shows a real-world example of successfully applying typical open

7

2. Related Work

source development practices as he describes the development of the “fetchmail”
client. In the same paper Raymond (1999) also establishes the cathedral and bazaar
analogy, which is a recurring analogy within the open source and inner source fields.
The cathedral in the analogy describes a company with a traditional top-down struc-
ture where only an exclusive group of software developers, such as the developers of
a software product, have access to the source code. The bazaar, on the other hand,
is Raymond’s analogy for software developed over the internet, to which anyone can
contribute. Raymond credits Linus Torvalds of Linux Kernel fame for inventing this
process, and coins the expression Linus’s law, which in its succinct form can be for-
mulated as: “given enough eyeballs, all bugs are shallow”. The intention behind this
expression is that in a bazaar project such as the Linux Kernel, there are enough de-
velopers of different expertise that any found bug will have at least one community
member finding the solution trivial. This aspect is also the core difference between
the cathedral and bazaar styles of development. Cathedral projects employ groups
of dedicated developers to hack away at tricky bugs and development problems until
there is some confidence that they are all fixed, which leads, in Raymond’s words, to
long release intervals and eventual disappointment when it turns out the releases are
not perfect. In contrast, bazaar projects release frequently, and subsequently “[...]
[bugs] turn shallow pretty quickly when exposed to a thousand eager co-developers
pounding on every single new release” (Raymond, 1999).

2.2 Inner Source

Recently, Wesselius (2008) used the same cathedral and bazaar analogy as Ray-
mond (1999) when describing how internal software development processes at Philips
Healthcare changed to incorporate certain open source practices. Wesselius likens
the teams using these adopted practices to the bazaar, residing within the other-
wise regular ways of working, seen as the cathedral. By encouraging the creation
of an internal community that makes it possible for teams to share changes made
to common assets, some of the same benefits as seen in open source projects can
be observed also in the more closed company setting. The alteration of open source
practices to be used within a company setting is what is referred to as inner source
(Stol et al., 2014).

Despite the fact that inner source is based on the software development practices
used in open source, the company aspect requires the open source practices to be
tailored slightly in order to fit. Capraro & Riehle (2016) present a qualitative model
that characterizes inner source based on four elements, extracted from surveying the
inner source field:

• Open environment: Project artifacts such as code and documentation are
open, external contributors are invited, and an open communication is estab-
lished through the use of e.g. forums.

8

2. Related Work

• Shared cultural values: Developers in inner source identify with the inner
source projects they are involved in and the inner source community of those
projects, rather than only the product or component they mainly work on.
Furthermore, inner source projects typically welcome anyone who is willing to
contribute and judge contributions meritocratically (Riehle et al., 2009).

• Communities around software: Communities, “an informal organization
of individuals that communicate and collaborate with each other” (Capraro &
Riehle, 2016), form around inner source projects and cross-organizational unit
boundaries. The community is a key element of inner source.

• Inner source development practices: For example participatory reuse,
which Capraro & Riehle (2016) define as developers contributing back to the
software which they are reusing. Another example is the practice of different
organizational units coming together to create inner source components which
they have a shared interest in.

Riehle et al. (2009) suggest that some of the major benefits of implementing open
source practices in an organization, i.e. implementing inner source, are as follow:

• Volunteers and motivated contributors: If a developer voluntarily joins
a project, it likely means he or she is motivated to contribute. A highly
motivated developer generally produces higher quality code than one who is
not motivated.

• Better quality through quasi-public internal scrutiny: When all code in
a project is visible to anyone in a large circle of people, there is more incentive
to produce high-quality code as it can lead to positive effects on one’s status.

• Broad expertise: As anyone can contribute to the project, this will lead to
developers of different expertise being able to contribute. This can be stated
through the previously mentioned Linus’s law in its succinct form: “given
enough eyeballs, all bugs are shallow” (Raymond 2001).

• Broad support and buy-in: Developers from across several development
units will give rise to more support for the project from e.g. management.

• Better research-to-product transfer: Product developers can be inte-
grated into research projects, which helps to bridge the gap between research
and product development.

Common roles in an inner source project can be identified by examining case studies
conducted in companies utilizing the inner source way of working. Projects that
eventually become inner source projects are usually not started by management as
a strategic project but are rather grassroots movements by individuals, teams or
organizations (Melian, 2007). The person or persons who initiated the project then
become the benevolent dictator (Gurbani et al., 2006), a term which is commonly
found in open source projects (Mockus et al., 2002) such as the Linux kernel, where

9

2. Related Work

this role is assumed by Linus Torvalds (Raymond, 1999). As open source projects
often subscribe to the idea of meritocracy (Riehle et al., 2009) where the most able
and experienced developers organically receive the most responsibility, contributors
who become experts in an area of the project may be promoted to so-called trusted
lieutenants (Gurbani et al., 2006). The benevolent dictator along with the trusted
lieutenants form a core team who together steer the project. This structure is
commonly seen in both open source projects and inner source projects.

One success factor of starting an inner source project and making it attractive to
contributors and users alike is to have an initial product that solves a concrete
problem, a so-called seed product (Stol et al., 2014). The idea that at least a basic
implementation is needed before attempting to build a community was also noted
by Raymond (1999), but in the context of open source projects:

“It’s fairly clear that one cannot code from the ground up in bazaar-
style. One can test, debug and improve in bazaar-style, but it would be
very hard to originate a project in bazaar mode. Linus [Torvalds] didn’t
try it. I didn’t either. Your nascent developer community needs to have
something runnable and testable to play with.”

There are in principle two models of adopting inner source by an organization as
observed by Gurbani et al. (2010): infrastructure-based inner source and project-
specific inner source. In infrastructure-based inner source, the organization in which
inner source is adopted provides critical infrastructure to facilitate inner source de-
velopment such as web servers, mailing lists, code repositories, etc. An example of
an infrastructure that can house inner source projects is GitHub (likely the enter-
prise version GitHub Enterprise in the context of an organization), or the similar
software known as SourceForge which Gurbani et al. (2010) mentions as an example.
Gurbani et al. (2010) suggests that the infrastructure-based inner source model may
be successful when the candidate projects are primarily discrete software packages
such as compilers, shells or utility applications. In project-specific inner source, the
idea is that some organizational unit takes over a critical resource, or a shared as-
set, and makes it available to the larger audience. Gurbani et al. (2010) argues that
this model is appropriate when the software is a primary technology of the company,
along with perhaps being relatively immature and still evolving, and that the cost of
redevelopment outweighs the cost of commonality. Stol et al. (2014) classified inner
source programs at nine companies in accordance with these two models and found
that seven of them were infrastructure-based and two were project-specific, suggest-
ing that the infrastructure-based model is more widely used than the project-specific
one.

The inner source concept is further expanded upon by Capraro & Riehle (2016), who
introduce a distinction between inner source projects and inner source programs.
The definition of an inner source program considers inner source at a larger orga-
nizational scale, encompassing the infrastructure-based and project-specific models
previously mentioned. The inner source project concept regards individual projects.
The definitions for inner source programs and inner source projects follow below,

10

2. Related Work

where IS should be understood as an abbreviation for inner source:

“An IS program is a coordinated effort of an organization to run and
maintain one or multiple IS projects.” (Capraro & Riehle, 2016)

“An IS project is a software project with the goal to develop and maintain
IS software.” (Capraro & Riehle, 2016)

Figure 2.1: Inner source-related publications by organization. (Capraro & Riehle,
2016)

A number of major software companies have attempted to develop, or are developing,
software using inner source, an assertion which is strengthened by the summary by
Capraro & Riehle (2016), presented in Figure 2.1, which shows the available inner
source publications that were conducted in collaboration with a company. As can be
seen, many of the world’s largest software companies are doing inner source, such as
HP (Dinkelacker et al., 2002; Melian, 2007), Philips (Wesselius, 2008; van der Linden,
2009; Lindman et al., 2010), Nokia (Lindman et al., 2013), IBM (Vitharana et al.,
2010), Google (Whittaker et al., 2012), Microsoft (Asay, 2007) and Ericsson (Torkar
et al., 2011). At Google, for example, all source code is kept in a single repository to
which all developers have read access, and are encouraged to contribute (Whittaker
et al., 2012). In addition, developers at Google are allowed to allocate 20% of
their time for projects outside of their immediate responsibility. This may lead to
volunteering, which according to Riehle et al. (2009) may result in more motivated
developers who in turn produce software of higher quality than developers who are
not motivated.

Most literature in the inner source field discuss projects that are internal only. One
exception is the study of the Forge.mil project hosted at the United States Depart-
ment of Defense (Martin & Lippold, 2011). That project is described by Capraro
& Riehle (2016) as both an inner source and a partner source project, the latter
meaning an inner source project that also includes external partners and is there-
fore not exclusively internal. However, the Forge.mil project is never described in
much detail. Instead, the focus of the paper is on discussing the cultural resis-
tance to open source development practices and how the project still managed to
successfully implement inner source.

11

2. Related Work

2.3 Inner Source Classification Framework

The distinction between inner source programs and inner source projects, as de-
scribed in the previous section, is expanded upon by Capraro & Riehle (2016) in
their proposal of a framework for classifying inner source programs and inner source
projects. As this study does not discuss the larger scope that is inner source pro-
grams, the remainder of this section will instead present the parts of the framework
that are relevant for classifying inner source projects. However, it should still be
noted that the framework can be used to classify inner source programs.

Governance Objective
Single Organizational Unit Exploration-oriented
Multiple Organizational Units Utility-oriented
All Organizational Units Service-oriented

Table 2.1: Classification framework for inner source projects. (Capraro & Riehle,
2016)

In order to classify an inner source project, the framework proposes two dimensions
as shown in Table 2.1. The governance dimension regards who is responsible for the
project from an organizational perspective, while the objective dimension describes
what the aim of the project is, again as seen from the organization hosting the
inner source project. Each of the dimensions further consists of three classes. The
governance classes are synthesized from previous inner source research, whereas the
objective dimension uses the same classes for inner source project objectives as found
suitable for open source projects (Nakakoji et al., 2002).

The three classes of the governance dimension range from being controlled by a
single unit to a fully distributed ownership: single organizational unit, multiple
organizational units, and all organizational units. The governance classes are further
defined as follows, where IS should be understood as an abbreviation for inner source:

“Single organizational unit: The IS project is explicitly governed by
one single organizational unit.

Multiple organizational units (governance board): The IS project
is governed by a board formed of multiple organizational units.

All organizational units: The IS project is not governed by a select
group of organizational units. The ISS [Inner Source Software] compo-
nent is seen as a commodity. Governance and ownership is shared be-
tween all organizational units in the organization.” (Capraro & Riehle,
2016)

The objective dimension is the aim (Capraro & Riehle, 2016), or the primary goal
(Nakakoji et al., 2002) of the project. The three classes used for classifying the
objective of an inner source project are the same as Nakakoji et al. (2002) suggest for

12

2. Related Work

classifying the primary goal of open source projects: exploration-oriented, utility-
oriented, and service-oriented. The definitions used for the inner source project
framework are:

“Exploration-oriented: The IS project aims to make innovation ac-
cessible to the whole program-wide IS community. Nakakoji et al. [2002]
note that due to their ‘epistemic nature’ such projects usually have high-
quality requirements. Contribution of feedback (e.g., via mailing lists)
is particularly important for an exploration-oriented project.

Utility-oriented: The IS project aims to fill an immediate need in func-
tionality. Typically, the developers of the initial code are an individual
or a small party who ‘cannot find an existing program that fulfills their
needs completely’ [Nakakoji et al. 2002]. Utility-oriented projects usu-
ally have only a small project-specific community or their community
exists as part of a larger community (e.g., if the utility-oriented project
is part of the ecosystem of another IS project).

Service-oriented: The IS project’s main goal is to provide ‘stable
and robust services’ to end-users of the ISS software [Nakakoji et al.
2002]. Service-oriented projects typically produce business critical ISS
software components, have high quality requirements, and are conserva-
tive against rapid changes [Nakakoji et al. 2002].” (Capraro & Riehle,
2016)

The above definitions of the objective dimension are somewhat ambiguous in that
the goal of a project could fulfill multiple of these definitions. Especially the defi-
nitions for service-oriented and exploration-oriented projects above may seem very
similar to each other; they both even contain the same wording of high-quality re-
quirements. However, what is perhaps not evident in the quoted definitions above,
as given by Capraro & Riehle (2016), is that the original definitions by Nakakoji
et al. (2002) also include differences in how strictly community contributions are con-
trolled. In an exploration-oriented project, code contributions are rarely accepted
from the community; instead, the project is primarily developed by a small num-
ber of expert programmers in a manner similar to the cathedral phase described by
Raymond (1999). In a service-oriented project, code contributions are more likely
to be incorporated into the project. Still, a service-oriented project does not fully
embrace a bazaar-style of development as such rapid changes could potentially make
it difficult to provide a stable service. Finally, the utility-oriented project does often
encourage a bazaar style of development, meaning contributions are usually accepted
more liberally than the other two (Nakakoji et al., 2002).

13

2. Related Work

14

3
Methodology

The method employed for this study was divided into a pre-study, a primary multiple
case study, and a workshop to validate the findings from the primary study. The
pre-study was conducted together with the case company to identify shared goals
for the outcome of the study, in order to ensure that the study would be beneficial
to both the case company and the academic field. The pre-study was also used to
guide the design of the remaining research.

The structure of this section mirrors the structure of the study. First, Ericsson is
introduced as the case company for the study. Following that is a section on the
pre-study. A motivation for the primary study method is then presented, followed
by a section describing the case study. Finally, the approach taken for the workshop
that was held to help validate the findings is described.

3.1 Case Company: Ericsson

The case company selected for the study was Ericsson. Ericsson is among the
largest ICT (Information and Communications Technology) companies in the world,
ranking at 23rd based on revenue (Fortune, 2016), and employing more than 116000
people in many locations across the globe (Ericsson, 2017). The study was carried
out at Ericsson’s office in Gothenburg in Sweden.

A strong reason for selecting Ericsson as the case company for the study was that
Ericsson had already shown interest in using inner source for software development.
For example, this interest can be seen in their involvement in existing inner source-
related research (Torkar et al., 2011), and later reinforced in discussions both before
the study was started and during the early parts of the pre-study, as presented in the
next section. Additionally, the benefits of inner source are arguably more interesting
for companies of a fairly large size, as it likely increases the chances of enough people
gathering around a project to form a community.

Ericsson was also seen as an appropriate case company due to its similarities with
other companies at which inner source studies had been previously conducted. These
similarities were expected to help to mitigate the risk that the related research might

15

3. Methodology

not be applicable in the studied context. For example, Ericsson is, like many other
companies that have adopted inner source such as Microsoft, IBM, and Philips, a
globally distributed company that is focused on software and with a large num-
ber of employees (Ericsson 116000, Microsoft 121000, IBM 380000, Philips 46000)
(Wikipedia, 2017).

3.2 Pre-Study

A pre-study was conducted due to some uncertainties in the expected outcome of the
primary study, how the outcome would fit with the current inner source research, and
to investigate the current state of inner source adoption at Ericsson. The goal of the
pre-study was to answer these uncertainties and to guide the remaining research in a
direction that would prove beneficial to Ericsson and the inner source research field.
Additionally, the pre-study provided opportunities both for getting to know and for
practicing using research methods that would later be used in the primary study,
meaning some potential validity concerns could be addressed before the primary
study started.

The first activity of the pre-study was a workshop held with four Ericsson employ-
ees (two line managers, one developer, one system test architect) and our academic
supervisor. The workshop had little formal structure and instead focused on an
exploration of the topic of inner source at Ericsson. The workshop was not tran-
scribed, but notes and some documents were collected throughout the session. The
primary outcome of the workshop was the realization that Ericsson was already run-
ning multiple inner source projects. In addition, the interest of knowing differences
between product projects and internal inner source projects was brought up, which
guided the formation of the three research questions.

Other than the workshop, multiple informal meetings were held to broaden the
understanding of Ericsson’s inner source initiative and to help in identifying what
group of people would be suitable for further interviews. The people involved in
this part were mostly those related to the organization within Ericsson for which
this thesis was carried out. Two interviews were also conducted with employees
associated with one of the inner source projects that were identified in the workshop.
Although an interview guide was prepared for these interviews, it did not match the
guide used later in the study, and as such these interviews were not included as data
for the primary study.

3.3 Methodology Motivation

When selecting a research method, there are primarily two paradigms to take into
account: methods relying on quantitative data and methods relying on qualitative

16

3. Methodology

data (Runeson & Höst, 2009). Runeson & Höst (2009) summarize quantitative data
as “numbers and classes”, while qualitative data is described as “words, descriptions,
pictures, diagrams etc”. The objective of the research method can be categorized
as exploratory, descriptive, explanatory and improving. The description of these
four objectives is presented by Runeson & Höst (2009) as follows, interpreted from
Robson (2002):

“Exploratory — finding out what is happening, seeking new insights
and generating ideas and hypotheses for new research.

Descriptive — portraying a situation or phenomenon.

Explanatory — seeking an explanation of a situation or a problem,
mostly but not necessary in the form of a causal relationship.

Improving — trying to improve a certain aspect of the studied phe-
nomenon.” (Runeson & Höst, 2009)

As our study primarily had an explorative objective, the choice of methodology was
directed towards either a case study or a survey; although the latter is descriptive,
it could also have fit our goals of trying to find out the state of things. However,
because several aspects of inner source product projects were unknown at the outset,
a survey was ultimately unfit as the questions asked in a survey should not be
changed during the course of a study. In contrast, a case study may be changed and
improved upon as more information emerges and more knowledge about the subject
is obtained. For these reasons, case study was selected as the research method.

The performed case study was a multiple case study, where each project constituted
a separate case in the study. By clearly separating each project into its own case,
we believed that the cases would be more concrete, making the findings in each
case easier to generalize as their contexts would be more clearly defined. Indeed
by regarding each project separately, we believed that it would be possible to bet-
ter describe and generalize the findings of each case by relying on the classification
framework for inner source projects proposed by Capraro & Riehle (2016). In ad-
dition, we thought the multiple case study approach would better optimize time
spent when not all teams could be interviewed during the same time period, which
was deemed fairly important due to indications from the pre-study that some teams
might be harder to reach. A multiple case study allows for more flexibility in this
sense as the analysis of each case can be done more separately than if all projects
were seen as part of the same case.

3.4 Multiple Case Study

This section describes the multiple case study that was performed in order to answer
the research questions by investigating existing inner source projects at Ericsson.

17

3. Methodology

The section starts by introducing the selected case projects (JCAT and UI SDK)
in order to establish a context for the reader. Following that is a section on semi-
structured interviews, representing the primary data collection method used for the
case study. The thematic analysis method is then presented both generally, as well
as how it was implemented in this study to analyze the interview data. Finally, the
project classification section describes how the cases were classified according to the
classification framework for inner source projects (Capraro & Riehle, 2016).

3.4.1 Cases

The selected cases for the case study were two projects within Ericsson that had
already adopted an inner source way of working. These projects were discovered dur-
ing the pre-study, where it was noted that no global listing of inner source projects
seemed to exist. As such, inner source projects were picked that were known by our
contacts at the company, rather than a more careful selection of cases. Both projects
were exclusively internal, i.e. they did not have any external customers but rather
produced a framework or a library that was used in other products. The cases are
further described in this section, aiming to provide the reader with a better under-
standing of the context where these projects operated, as well as a short overview
of what the projects are about.

Java Common Auto Tester (JCAT)

JCAT is a Java-based test automation framework developed for use within Erics-
son. It is based on the open source frameworks JUnit and TestNG, extending these
frameworks with the additional functionality needed in the testing of Ericsson prod-
ucts. It is currently the inner source project in Ericsson with the largest community,
with over 10,000 unique active users. JCAT provides functionality to interact with
products and technologies inside Ericsson in order to write automated test cases
for these products. The framework also makes it possible to subscribe to both syn-
chronous and asynchronous responses (such as alarms, alerts, and notifications) from
the products via its interfaces. JCAT is independent of any product development
organization. The idea is that organizations within Ericsson that develop a prod-
uct use the JCAT framework and write their own extensions to it, further enabling
testing for their own specific product.

Attached to JCAT (but also independent of the same) is a set of so-called common
libraries. These are Java-based libraries that provide some useful set of functionality
and may or may not be a plugin to JCAT itself. Common libraries leverage the JCAT
community but are not an integral part of the framework.

18

3. Methodology

User Interface Software Development Kit (UI SDK)

The UI SDK is a framework for building JavaScript web applications and web UIs.
The project is split into three sub-projects: the Client SDK, the REST SDK and the
Help SDK. The Client SDK is the primary and largest part of the project and consists
of a large collection of components used for web UI and web application development,
with each component split into a separate module hosted in its own code repository.
The REST SDK details guidelines for implementing REST interfaces and the Help
SDK serves as a rendering engine for online documentation.

The UI SDK was initially created for a product called Ericsson Network Manager,
which at the time was being developed within the product development unit (PDU)
“NAM”. As the product matured and was later released, the UI SDK transitioned
into an inner source project that encouraged contributions also from outside the
PDU. However, the UI SDK and its core team are still strongly associated with the
original PDU NAM, in that it is this unit that employs the core team.

3.4.2 Data Collection: Semi-structured Interviews

ID Project Experience In Project Title In Project
J1 JCAT 5 years Architect
J2 JCAT 1 year Senior Developer
J3 JCAT 1 year Senior Developer
J4 JCAT 5 years Lead Developer
J5 JCAT 10 years Upper Manager
U1 UI SDK 4 year Upper Manager
U2 UI SDK 3 years Senior Developer
U3 UI SDK 8 years Architect
U4 UI SDK 4 years Senior Developer

Table 3.1: People interviewed for the study, their experience, and their title in the
project.

As the primary part of the data collection for the case study, it was decided to
use semi-structured interviews. The decision to use semi-structured interviews was
based on the need for a data collection method that was primarily exploratory,
as to align with the goal of the overarching study. In addition, many key people
were known to be located in offices in different countries, which made it infeasible
to physically meet them. Techniques like observations, which require a physical
presence, were therefore deemed inappropriate. Interviews, on the other hand, are
generally easier to conduct in such a setting as they can just as well be performed
over communication tools like Skype.

19

3. Methodology

The first step of the data collection was to determine how many, and who, to inter-
view in each project. The number of people to interview was decided on a flexible
project-by-project basis and ended up being slightly different between the projects.
In practice, new interviews were scheduled until it was seen that most points brought
up in an interview had already been brought up in a previous interview. This was
doable as interviews for each project were performed within a fairly narrow time
span, making it possible to maintain a good memory of what had been said in
earlier interviews. It was further believed that the role had a greater impact than
the number of people interviewed, as most people in the project might simply not
be aware of the issues investigated. The interview subjects were as far as possible
chosen to be similar between the different cases, while also covering multiple roles.
Table 3.1 summarizes the people that were interviewed for the study. The table does
not include names of the people interviewed as to preserve anonymity. Some titles
were also slightly altered, again to protect the anonymity of the people involved in
the study.

The interviews were conducted according to general guidelines for semi-structured
interviews given by several authors in the field (Hove & Anda, 2005; Runeson & Höst,
2009; Seaman, 1999; Taylor et al., 2016). An interview guide was prepared for use in
the interviews (see Appendix A), both in English and in Swedish as some interview
subjects were more familiar using the latter language. Before each interview, the
interview subjects were informed of their absolute anonymity and the confidentiality
of the information they provided. This is both in line with ethical guidelines for
research and likely makes the subject more confident in being able to speak freely
without fear of repercussions (Seale et al., 2004). As part of the pre-interview
process, the intent of the research was also explained to the subjects. Audio for each
interview was recorded with explicit consent from the interviewee and transcribed
fully. In many cases, it was possible to obtain a video recording of the interview,
which helped better the understanding of the context that might otherwise get lost
in an audio-only recording. Additionally, notes were taken during the interviews to
serve as quick reminders of what had been brought up by interviewees.

All interviews were conducted by both authors together, as using two interviewers
provides a number of benefits (Hove & Anda, 2005). First, it makes the subjects talk
much more. Hove & Anda (2005) performed an experiment where they interviewed
the same subjects with both one and two interviewers and compared the results. It
turned out that the interviewees talked on average 59% more when two interviewers
conducted the interview, suggesting that more information could be retrieved by
using two interviewers. Second, two interviewers will in most situations ask more
questions than one would, simply as two people have more brain processing power
than one. This can be used for coming up with follow-up questions on what the
subject says, again leading to more information being collected. Third, it is often
easier to conduct interviews since interview roles can be divided. For example, one
interviewer primarily asks the questions while the other one listens intently to what
is being said and attempts to come up with follow-up questions. This division works
well because it is difficult to both listen to answers and at the same time plan for
how to ask the next question in the interview guide. Lastly, two interviewers may

20

3. Methodology

discuss their interpretations of what was said and come to new insights that else
could not have been found.

Since both the authors of this study were inexperienced in interviewing, a technique
for iteratively improving interviewing technique as described by Taylor et al. (2016)
was used, in which interview recordings were transcribed shortly after the interviews
had happened, especially for the initial ones. This has the effect of making oneself
aware of how one conducts interviews and where questions may be unclear. For
example, it was found early on that it might be necessary to explicitly ask for both
title and role, rather than only the title, in the cases where an answer to both was
interesting. Furthermore, transcribing allows the interviewer to both clearly see,
and enable reflection over, where more probing of the subject’s answers should have
happened and more generally how the interviewer’s skill could be improved.

3.4.3 Data Analysis: Thematic Analyis

To extract meaningful results from interview transcripts, it is necessary to perform
an analysis of the data. How such an analysis is best performed depends on multiple
factors. For example, the data analysis technique differs when performing an analysis
of quantitative data as compared to analysis of qualitative data (Runeson & Höst,
2009). For this study, the collected data was purely qualitative since it only consisted
of answers to open or semi-open interview questions. The objective of the data
analysis was to extract new knowledge and to explore the general areas surrounding
the research questions for the study. For analyzing data with these preconditions,
the general method consists of first coding the data and then to arrange the codes
into more general themes, following a method called thematic analysis (Runeson &
Höst, 2009).

The thematic analysis performed in this study was performed as to closely follow
the clearly defined process proposed by Braun & Clarke (2006). Although the paper
focuses on the area the area of psychology, it was seen that the process would transfer
fairly well also to other fields. By following a well-defined process, it is also possible
to mitigate one of the perhaps most common criticisms against the method, namely
that thematic analysis is sometimes seen as a method without any specified process
(Braun & Clarke, 2006).

The remainder of this section is structured following the six phases suggested in
the aforementioned thematic analysis paper, though we decided against including
the last phase (“producing the report”). Further, we also decided to include a
“prerequisite” phase. It should also be emphasized that thematic analysis is not
generally performed linearly from the first to the last phase, instead it is often the
case that one moves back to a previous phase multiple times throughout the process
(Braun & Clarke, 2006).

21

3. Methodology

Prerequisites Phase

As a prerequisite to performing thematic analysis, Braun & Clarke (2006) propose
that the data should be categorized into two sets: data set and data corpus. The
data set is the data used for the analysis, while the data corpus encompasses the
entirety of the collected data. For this study, the data set that was used for the
analysis was the transcripts created from the semi-structured interviews. The data
set was chosen to only include interviews for multiple reasons, but primarily because
audio recordings were available for the interviews, minimizing the risk of researchers
interpreting the data already before the analysis. Additionally, not all people that
took part of meetings or presentations were explicitly asked by the researchers to
take part in the study. As such, including them could have been problematic from an
ethical standpoint. The data corpus included the data set and extended it with some
additional material, such as the documentation collected for the project classification
described in a later section.

Phase 1 - Familiarizing Yourself With Your Data

To perform an analysis it is important to be familiar with the collected data set,
which for a data set of interview transcripts means reading and rereading the tran-
scripts (Braun & Clarke, 2006). We did this by going through the transcripts one
at a time for each case. Every transcript was read by both of us in order to better
remember what was said in that specific interview. This process was helped by the
fact that both researchers had been present for each interview, meaning that tran-
scripts were already familiar to the researchers, as well as the fact that transcribing
had been performed by the researchers themselves.

Phase 2 - Generating Initial Codes

After having familiarized ourselves with the data set, each transcript was coded
in a computer-based tool for qualitative data analysis called NVivo. The coding
process was performed on a single computer with both researchers present, as to
enable a better shared understanding of which code or codes each line corresponded
to. Codes were initially kept rather precise in order to not prematurely filter out
any relevant information. For example, codes were created both for “contribution
guidelines” and “code guidelines”, despite these concepts being highly related. As
more transcripts were coded it became clear that some codes could be removed or
merged with similar ones, while others still would require splitting old codes to fully
express the intention. Furthermore, some codes could already be identified as likely
being related. In those cases, the codes were added to a shared parent node, forming
a tree-shaped hierarchy. This entire process was performed in an iterative manner in
that reflection on which codes were appropriate happened continuously throughout
the coding process. In total, about 80 codes were created, visualized as a hierarchy

22

3. Methodology

Figure 3.1: A hierarchy chart of codes extracted from the transcripts, created
using the NVivo tool. Each box represents a code, and nested boxes indicate codes
that are part of a hierarchical tree structure of codes. For example, the “Project
vision” box (top left) is part of the “Prioritization” box, indicating that the “Project
vision” code was placed under the “Prioritization” code.

23

3. Methodology

chart in Figure 3.1.

Phase 3 - Searching For Themes

Figure 3.2: Codes written on post-it notes are grouped into potential themes on a
whiteboard, allowing easier iteration and overview.

The initial codes were, after all transcripts had been coded, organized and merged
to form overarching themes that should describe what the codes put into each theme
were about. This step is where the meat of the data analysis starts, i.e. where the
long list of codes, and the data they contain, are combined to tell a story of the
data and to find relationships between the themes themselves. In this step, it is
important to not discard anything, as it is still impossible to know which codes are
the most relevant and which are not (Braun & Clarke, 2006). Some codes did not
end up fitting into any of the found themes; these codes were instead placed in an
uncategorized theme named “Miscellaneous”. This organization of codes was done
by writing each code on a post-it note and then placing them on a whiteboard. This
allowed for a good overview of all codes, and an easy way to iterate on what themes
were most appropriate. Figure 3.2 illustrates this process, where themes of post-it
notes are grouped and circled by a whiteboard marker. The candidate themes were
then also transferred to the NVivo tool.

24

3. Methodology

Phase 4 - Reviewing Themes

The next step of the process is to review and refine the potential themes found in the
previous step. Some of the themes were found to, in fact, not be backed by enough
data points or too much contradictory data, and were subsequently discarded, while
some of the themes were merged to even broader themes on account of being too
closely related. This review step consists of two distinct subphases conducted at
different levels of data. The first level that needs to be considered is the actual
transcript extracts that form the codes of the themes. It is important that these
extracts are coherent and tell roughly the same story that the theme is supposed to
signify. If they do not, it needs to be considered if the theme should be discarded,
split into separate themes, or if the codes that contain incoherent extracts should
be moved to any of the other candidate themes. The second level of consideration
is whether the themes work in relation to the whole data set and in relation to each
other, and how well the themes seem to represent the data set. As part of this level,
it is necessary to re-read the entire data set, both to verify that the data matches
up well with the candidate themes and to code any data that was missed during
previous steps. The first time this phase was reached it was evident that some of
the themes did not fit in with the larger data set. This prompted a revisit to the
previous phase and a definition of new themes that would better fit the entirety of
the data set.

Phase 5 - Defining And Naming Themes

The final phase (again, we disregard the “producing the report”-phase) of the the-
matic analysis process is to define and name the themes, which at this point were
fairly stable. In this step the most important consideration is whether the themes
and their underlying data fit the overall story that is being told about the data set,
both in relation to the data set itself but also in relation to the other themes, in
order to ensure that there is not too much overlap between the themes (Braun &
Clarke, 2006). At the end of this step, one should be able to describe the scope of
each individual theme in a few sentences at most. If this is possible, the themes
are likely well-defined and of the correct size. This is also where the themes are
given their final names, although working names will have already been established
in earlier steps. A smaller presentation was held at the case company during this
final phase, which provided a good feedback opportunity on the finalized themes.

3.4.4 Project Classification

As a final part of the case study, the cases were also classified according to the
framework for inner source projects put forth by Capraro & Riehle (2016), described
in the 2.3 Inner Source Classification Framework section. Although the results from
the classification are not directly related to the research questions posed for the

25

3. Methodology

study, classifying the cases was done in an effort to provide additional context for
the reader. By knowing the types of projects that were part of the study, one can
hopefully better judge the applicability of the study on other inner source projects.
As defined by Capraro & Riehle (2016), the two dimensions that the projects were
classified on were project governance and project objective.

In order to perform the classification, data was primarily set to be collected from
passive data sources, such as documentation available for the projects. This was due
to a strong belief that such information would indeed be obtainable from the avail-
able documentation, and as such the valuable interview time was better spent on
the primary research questions. However, it was quickly discovered that interviewees
often brought up information that could be used for the classification, even without
any explicit questions being asked for this purpose. As interview data was seen as
likely being more current than the documentation, it was used whenever possible,
while the documentation was used in cases where either the data differed or there
was not enough data. As the classification was seen as mostly separate from the
primary results of the study, it was conducted in a slightly less methodical fashion.
Pre-defined search strings or databases were not used; instead the documentation
and interview transcripts were actively scanned to collect the necessary informa-
tion. After having classified the projects, the classifications were validated with at
least one team member of each project to make sure interpretations had been made
correctly. This validation was performed by email, where the framework definitions
were presented together with our classification (see 4.1 Project Classification).

It is worth noting that no classification was attempted for the overarching inner
source program at Ericsson. Although a rough estimate built on the data from the
cases studied might have been possible to create, it was decided that a classification
of the inner source program would require a larger picture than could be gained
from the projects that were investigated for this study.

3.5 Validation Workshop

As a final step of the study, a workshop was held together with Ericsson employees
in order to both validate the findings of the primary study and to provide discussion
opportunity for applying the findings to another project, called AAT, which plans
to adopt inner source in the future. The AAT project aims to provide an automated
acceptance test framework to be used by both internal and external users. In order
to facilitate such discussion, the workshop was structured in two parts. The first
part involved presenting the findings of the case study, the current state of inner
source adoption of the AAT project, as well as more technical concerns of inner
source project creation within Ericsson. The second part involved a brainstorming
session on questions raised during the first part of the workshop, which was a largely
unmoderated and involved a multitude of topics ranging from legal considerations
to architectural details of the AAT project. The workshop lasted for about one and

26

3. Methodology

a half hours.

Shared between all the participants was an interest in inner source, as well as some
connection to the AAT project. The following people took part of the workshop:

• Three employees from an internal DevOps organization experienced in inner
source implementation on the more technical level (i.e. creation of repositories,
firewall configurations, etc.) as well as legal aspects of third party product
handling.

• Multiple members of the AAT project: the project manager, two line man-
agers, an architect and an engineer.

• A line manager related to the AAT project but not part of it.

• An engineer that had previously worked with AAT.

The workshop was not transcribed; instead, documented by having both researchers
take notes of what was brought up. The notes were then discussed and combined
shortly afterward to get a shared understanding of what had been said. As such, the
results will be provided as a summary of three relevant areas discussed. No verbatim
quotes will be reproduced. As the workshop was primarily carried out as validation
of the case study, the discussion will mostly be focused on highlighting similarities
and differences between the findings in the workshop and what was found in the
case study.

27

3. Methodology

28

4
Results

Research Question Themes
RQ1 - How are features prioritized in
inner source projects?

Step 1: Elicitation
Step 2: Delegation of Implementation
Step 3a: Core Team Implements
Step 3b: Community Implements

RQ2 - How are license issues related to
the usage of third party products
handled in inner source projects?

Inner Source Project Implications
• License Less Important
• Users Responsible

Using Third Party Products
• Avoid Third Party Products
• License-aware Usage of Third

Party Products

RQ3 - How can an inner source project
spread awareness of its existence
within the company where it is
developed?

Project Finds People
People Find Projects
Top-level Support
Inner Source Program

Table 4.1: Overview of the identified themes by research question.

In this section, we present the findings from the analysis of the data collected
throughout the study. First, related to the research questions is a section on project
classification, in which the result of the inner source project classification is pre-
sented. After the classification section follows results for the three research ques-
tions, each question discussed separately. The section for each research question
begins with a summary of the findings, followed by the found themes (see 3.4.3
Data Analysis: Thematic Analyis) in more detail with supporting quotes. At the
end of each research question follows a discussion which highlights the main findings,
interpretations of the findings, and evaluation of the findings in the light of related
work. The final section presents the findings of the validation workshop. Table 4.1
provides an overview of the identified themes for each research question.

29

4. Results

Project Governance Objective
JCAT All Organizational Units Service-Oriented
UI SDK Single Organizational Unit Service-Oriented

Table 4.2: Classification of the case projects along governance and objective di-
mensions, following an inner source project classification framework by Capraro &
Riehle (2016).

4.1 Project Classification

The case projects were classified in accordance with the inner source classification
framework previously described in 2.3 Inner Source Classification Framework. As
presented in Table 4.2, the JCAT project is seen as having an all organizational
units governance whereas the UI SDK can be observed to be governed by a single
organizational unit. Both case projects have a service-oriented objective. The re-
mainder of this section provides the relevant data that was used in classifying the
projects.

4.1.1 JCAT

In this section, the classifications for the JCAT project is presented. It can be seen
that the JCAT project is governed by all organizational units (i.e. there exists a type
of collective ownership involving all stakeholders), primarily from how the project is
funded. The objective is classified as service-oriented, mostly due to the bazaar-like
handling of contributions and a strong commitment to backward compatibility.

Governance

The JCAT project is not explicitly owned by any single unit within Ericsson, but
rather owned and sponsored by the company as a whole. As such, JCAT is classified
as governed by all organizational units. This governance situation is explained in
the following quote where JCAT is said to be part of an Ericsson global tool list,
meaning that the sponsorship of the project is not tied to any specific organizational
unit or units:

“What helps here also is that there is a thing called global tool list.
Which means that these are tools that are centrally sponsored from the
R&D budget. There are only two test automation frameworks on this.
And of course JCAT is one of them.” (J5)

The same governance explanation was also found on the JCAT internal wiki page,
stating again that JCAT is an Ericsson global tool:

30

4. Results

“JCAT is an Ericsson global tool, so Ericsson makes sure that there are
sufficient resources assigned for development, maintenance and support
activities, so JCAT will not be abandoned and we have guarantees for
resolving bugs and implementing feature requests.” (Ericsson internal
JCAT wiki)

To clarify the ownership, the same person as above (J5) was asked if JCAT had a
single owner:

“No. Okay, it is a little bit ‘fluffy’ what is called unit, especially nowa-
days. You know the organization is just changing. Before there were
BUs (Business Units), and now it’s going to be business areas. But I
still consider this as the highest possible unit level, directly under Börje
[Ekholm, CEO of Ericsson]. Then from each of these current business
units, and future business areas, we have users.” (J5)

This can be understood to mean that JCAT is indeed not owned by any single unit
or group of units. Instead, the ownership of JCAT is shared across all units within
Ericsson.

Objective

The objective of the JCAT framework is classified as service-oriented, which can
primarily be seen in how contributions are handled, but also in the commitment to
backward compatibility. Outside contributions are both welcomed and encouraged,
but the JCAT core team thoroughly validates each such contribution before it is
accepted into the project:

“[...] we, the architecture team, both control the quality of submissions
to make sure that they don’t break the architecture, and also provide
architecture suggestions when a contributing user comes and asks ‘We
would like to implement support for this, is that a good idea?’ ” (J1,
translated from Swedish)

The project’s welcoming stance on contributions is further emphasized by another
team member, again with the condition that contributions can be verified to be of
sufficiently high quality:

“[...] if someone sees that they would like to contribute something back
to the community, then they’re free to go. It’s just going to go through
the review process to secure quality and backward compatibility and
such.” (J5)

The above quote also mentions backward compatibility, another factor fitting with
the high-quality requirements of a service-oriented project.

31

4. Results

4.1.2 UI SDK

The UI SDK is classified as governed by a single organizational unit, as it can be
clearly seen to be owned by one specific development unit. The UI SDK project has
a service-oriented objective as it provides a high-quality framework with a strong
backward compatibility focus, while also fitting with the controlled bazaar-style of
contributions that is common for service-oriented projects.

Governance

The UI SDK project is solely owned by the product development unit (PDU)
“NAM”, which also employs the core team and as such the UI SDK can be classified
as governed by a single organizational unit. In some of the interviews, the ownership
of the UI SDK was said to be the Ericsson Network Manager (ENM) project, which
is a large product developed at PDU NAM, and as such ownership by ENM and
PDU NAM can for the purpose of governance classification be seen as equivalent.
Following is part of an answer to a question on who the project’s stakeholders are,
which highlights this single-organizational ownership:

“Stakeholders will be both the ones paying our wages which is ENM at
the moment, and our community.” (U4)

The relation between the PDU NAM and the ENM is explained by one of the UI
SDK architects:

“My title is [architect] for PDU NAM. The role there is around support-
ing the development of PDU NAM products, primarily ENM.” (U3)

Further solidifying the classification of the UI SDK project as owned by a single
organizational unit is the following extract. This extract also mentions some per-
ceived drawbacks of the single-organizational ownership, as well as how the UI SDK
team wants to transition towards a less centralized ownership in the future, in order
to mitigate these drawbacks:

“In particular I think the perception of the UI SDK, [is] that it is some-
thing based out of PDU NAM. So, you know, there is that second barrier
there that people don’t want to contribute code to... outside of their own
organization structure. So they don’t necessarily feel ownership of the
UI SDK. They feel like it is a bit centralized within PDU NAM. That is
why we have to be more decentralized and more common if you like. And
in that way we hope we get greater, you know, community wide, global,
contributions, and rely less on ENM as a heavy contributor.” (U3)

The notion that the UI SDK project wants to move away from the current single
owner and towards a more decentralized and distributed project ownership model is
also highlighted by the following snippet:

32

4. Results

“[...] we are in a bit of transition in terms of team make-up as well. We
are starting to... Looking at other opportunities for more open model.
But I guess one of the key things we are finding is that we still need a
core team working on, sort of like the kernel of the SDK. And that is
something that we haven’t cracked yet. We would hope to work towards
a distributed core team, decentralized core team, that is sort of our next
evolution, and our next challenge if you like.” (U3)

Objective

The objective of the UI SDK is to provide a high-quality framework for developing
JavaScript-based user interfaces. The focus on high quality together with a fairly
open contribution process makes the UI SDK best fit into the service-oriented class
of inner source projects. Evidence for the aim of producing high quality software
is seen in how the UI SDK core team regards backward compatibility and stability,
exemplified in the following extract:

“Because in the framework we guarantee backward compatibility, and
since it is there... The only time we broke backward compatibility was
in the case of a bug. So we consider something backward compatible if
it’s a full decision and we advertise that a new version will be available,
or if something breaks and it was not intended to break like just some
function just handles differently. In that case we handle it as a bug.
But if it’s an architecture change, we try our best to make it backward
compatible. If we can’t, then we would advertise that we will release a
new major function, a bit like all the open source projects.” (U4)

This commitment to high quality is seen as evidence that the UI SDK is unfit for the
utility-oriented objective classification since such projects are unlikely to put much
effort into providing compatibility with older versions. Between the two remaining
classes, service-oriented and exploration-oriented, it can be seen that the UI SDK is,
and has been, part of both during its development. For example, the next version
of the framework is adopting new technologies, pointing towards an exploration-
oriented objective:

“So we are looking at a big evolution at the moment towards web com-
ponents. [...] it’s sort of a paradigm shift. If you started in a modern
project with backbone.js and told people you were using backbone.js
they would kind of scratch their head and say ‘well, that's a bit 2012,
2013’.” (U3)

This next version does not necessarily deprecate the old version though. In fact, the
UI SDK team is committed to also support older versions, again strengthening the
argument for an exploration-oriented or service-oriented classification. The following
quote highlights the UI SDK’s commitment to support older versions also once the
next version (“version 2”) is released:

33

4. Results

“We have this framework that we have been supporting for five years, and
we expect to have a version 2 now. We have kind of watched the miracle
and said: ‘There is a big paradigm shift, let's go on the bigger trends
and on the smaller trends’. And we are going to shift towards a new
platform now. But we intend to support the old platform throughout
the duration of version 2. So until version 3 in the distant unforeseeable
future, we will have support for v1 and v2.” (U3)

A differentiating factor between an exploration and a service-oriented objective is
whether the project is open to external code contributions, or if the project is primar-
ily developed by a smaller team. In the case of the UI SDK it is the former stance
that is taken, as described by (U3) in the following quote, making the objective
better classified as the service-oriented class:

“There is a contribution process. And we dedicate a certain amount of
capacity for supporting contributions. [...] There is a set of criteria, and
again the more times you have been through it the easier it is to fulfill
the criteria in terms of the tests you have to have, and quality of the
code.” (U3)

The classifications for both governance and objective were also confirmed by one of
the project members in a response to a follow-up email, as presented below. This
reply was in response to being presented with the classification framework definitions
of Capraro & Riehle (2016) and our initial classification of the UI SDK project, and
asked to provide their thoughts. However, it should be noted that the common
differences in how strictly community contributions are controlled, as expressed in
the underlying definitions by Nakakoji et al. (2002), were not explained:

“I agree that the UI SDK has the ‘Single organizational unit’ governance
status righty [sic] now but we are trying to move to multiple. Also, I
agree ‘Service-oriented’ is probably the best fit objective even though
any of these could be argued.” (U3)

4.2 RQ1: How Are Features Prioritized In Inner
Source Projects?

In the analysis of this research question, we found that feature prioritization happens
in three steps: elicitation, delegating the implementation, and lastly the contribution
from either the core team or the community.

1. Elicitation: In the first step, requirements and ideas for features are gathered
from various sources. Such ideas can come from either the core team itself or
the community. In the case of the core team, its members often have a long-
term vision of in which direction they want to take the project. To what extent

34

4. Results

this vision is validated with the community varies between the projects. In
the case when ideas come from the community, requirements are gathered by
the core team by talking directly to developers on site, seeking ideas from
the forum, and through community meetings in which representatives of each
major stakeholder group is invited to participate.

2. Delegating the Implementation: In the second step, it is decided whom
of either the core team or the community should implement a given elicited
feature. One of the most important factors is whether the feature will benefit
multiple stakeholders or not. If it does, it may be important enough to be
prioritized by the core team, and as such, the core team will implement it. On
the other hand, if the feature is more niche and specific to one stakeholder, it
may be pushed back to that stakeholder for her or him to implement. Another
reason for the core team deciding to implement the feature may be that it is
simply too complex for the stakeholder to handle, and it is better if the expe-
rienced (and full-time employed to work on the project) core team members
perform the implementation. However, a feature may still be prioritized by
the core team despite not meeting any of the criteria above if the feature has
been escalated and is requested by upper management. Finally, it is noted
that it is usually faster for the community member to implement the feature
herself or himself, provided she or he is experienced enough.

3a. Core Team Implements: Depending on the outcome of the second step,
different practices and techniques are employed. If the core team implements
the feature, it is seen that the feature is simply put on the backlog and pri-
oritized in an agile way depending on e.g. how many stakeholders seem to
benefit from its implementation.

3b. Community Implements: The practices are more involved when the im-
plementation is delegated to the community. First, as can be seen in both
projects, the core team provides mentoring to the contributing community
member to guide her or him in the right direction, and help with implementa-
tion and any questions that arise. Second, which is seen in JCAT, a technique
called 1/3-review is used that urges contributors to submit an initial code
skeleton for review before starting any real implementation. This has the ef-
fect of catching poor design decisions early in the process, and in the end
reducing the time the core team has to spend on the final review. Third, both
projects use code guardians, who are tasked to make sure that submitted code
is of high quality. Finally, well-defined code guidelines have been set up to
ensure both high quality and consistent acception and rejection criteria. Once
the contribution has been submitted, the core team needs to make sure that
the feature is of value, especially if it has not previously been validated with
the core team. At this stage, the feature is checked to be in line with the
core team’s overall vision of the project and so that it aligns with the overall
community’s needs. If it does not fulfill the latter criterion, the core team may
accept it anyway, or in some cases take it upon themselves to make the feature
more general to satisfy a broader need.

35

4. Results

4.2.1 Step 1: Elicitation

The first step of prioritizing features is the actual elicitation, in which features are
collected from various sources. In both JCAT and the UI SDK, ideas for features
and requests for features usually come from either of two sources: the core team or
the community. While the most common source of eliciting features seems to be the
community, the core team can also envision a roadmap of what needs to be done
and, in JCAT, suggest this to the community at a stakeholder meeting:

“You could say that the JCAT core team [...] who you could say suggest
a vision. A bit of an overview, like ‘we have to do this or this.’ Then
you put this forward at the stakeholder meeting and then people either
vote or give their opinion or how they solved similar problems. But it’s
often a very general vision.” (J4, translated from Swedish)

In the UI SDK, the overall vision decided by the core team is not explicitly validated
in collaboration with the community in the same way as in JCAT:

“So there is a core team. We do have a vision of what we want from
the UI SDK, and what it should do, and what technology we should
be moving on to. And still the core principles that we still have and
want to maintain, about building simpler and very modular framework,
that allows you to build your set of applications. So we have our core
principles, that is why it is important to have a core team and have
them understand what we are trying to do. And then you can evaluate
people’s requirements and see how best fit them with the UI SDK, and
those principles and how it best serves the wider community.” (U1)

As mentioned, while the core team comes up with an overall vision, the most re-
quirements and requests for features come from the community. This seems to be
done in a multitude of ways, with one of the most common being simply going out
and talking to developers that use and/or contribute to the project:

“There usually is someone... They go around to the different offices, or
sites as they are called, and ask what the problem is for people. Then
maybe someone says ‘we have lots of trouble connecting to this server
that is needed for this.’ Then maybe we say that we will add support for
running a local server.” (J1, translated from Swedish)

“[...] physically visit some of our bigger sites, some of the bigger prod-
ucts, that are using the UI SDK. Talk through with them what their
requirements are and see how can we take their requirements and build
them into something that can be useful for all.” (U1)

The UI SDK core team also arranges regular community meetings and workshops,
both to show and get feedback on new features, and to put community members to
work in researching new ideas:

36

4. Results

“So this is where a community evangelist and mature users and early
adopters are key as well, so now we try to involve them in more workshops
and get their opinion, and get them to start researching and looking into
the best possible solutions for things, etc.” (U1)

Similarly in JCAT, a monthly stakeholder meeting is held in order to collect thoughts
on current issues and how to move forward:

“Then each month we hold a JCAT stakeholder meeting where we talk
about what is hot for everyone and how the inner circle of JCAT devel-
opment is planning on moving forward, to let stakeholders have opinions
on what is important to them right now.” (J4, translated from Swedish)

Several of the interviewees, both in JCAT and the UI SDK, bring up project-specific
discussion forums as a way of getting ideas for features. There is an emphasis on
achieving an open and welcoming atmosphere on the forums, where anyone can have
their say:

“We are very careful to not be aggressive or critical on the forum, rather
we take in all the ideas we get, and it’s open and nice environment. That
people feel that they dare to write. It works well.” (J1, translated from
Swedish)

“In a normal scenario we communicate with the community via the fo-
rums that we have. There is a section in each one of the forums for
the libraries for recommending or introducing new requirements for the
libraries.” (U2)

4.2.2 Step 2: Delegation of Implementation

Once requirements and corresponding features have been elicited from either the
core team or the community, it needs to be decided who is going to implement the
feature. This is a key point in how inner source differs from traditional corporate
development; if a task cannot, or even should not, be taken on by the core team (see
4.2.3 Step 3a: Core Team Implements), it can be offloaded to the community (see
4.2.4 Step 3b: Community Implements). Selecting who should implement a feature
depends on many factors such how niche the feature is, whether the requesting
community member is experienced in implementing such a feature, among others.

One of the most deciding factors for if the core team should implement something
is if it will benefit many stakeholders:

“So basically if a lot of members in the community require a feature,
if we think that one feature would benefit a lot of members, we would
prioritize this feature.” (U4)

37

4. Results

Another valid reason for the core team to do the implementation is if the feature is
complex enough that a contributing user has neither the time nor the experience to
do it, the core team will put it on their backlog instead:

“If it’s a complicated thing that requires a lot of architectural work,
then people will generally realize that ‘eh this isn't worth trying to do
for us, we'll write it on the architects instead, or on some of the dedicated
developers.’ ” (J1, translated from Swedish)

“Or if it is something really complex and the person could have the skill,
but we see that ‘okay it's very complex,’ if someone not in the team does
this, we will know how it works. Like we could as well take it ourselves.”
(U4)

However, since the core team often already has a full backlog when new features are
requested, such features will be put on the backlog and dealt with at a later time. In
the case where the situation does not fall under any of the criteria listed above for
when the core team implements a feature, and it is of importance that the feature is
implemented on short notice, the request must come from upper management. Such
a situation is deemed by the JCAT team as a failure from some involved party, and
should ideally never arise:

“If we are to take care of something now, it will have to be escalated
as it’s called, that is it needs to come from a high boss saying ‘we need
this right now.’ Things like that should never happen and we view every
time it happens as a failure, maybe not always from our side, but from
somewhere.” (J1, translated from Swedish)

It is also noted, in relation to the previous quote, that it is generally faster for a
community member to implement something him or herself rather than requesting
the feature, provided that the implementing developer has the required expertise:

“So generally it’s always faster for people to contribute themselves if
they aren’t totally out in deep waters.” (J1, translated from Swedish)

4.2.3 Step 3a: Core Team Implements

In the case where it is decided that the core team should implement a feature, not
much changes compared to if the feature came from the core team itself. Generally,
the feature will go on the backlog and will then be prioritized in a seemingly agile
fashion according to, for example, how many stakeholders need it:

“[...] if you have some community members requesting for a feature and
we decide to take it, it would go to the backlog. Then either if it’s on
the bottom of the backlog and we lost sight of it, it means things getting
piled up on the top... yeah, that happens. Or it’s something quite major

38

4. Results

or that could benefit a lot of people, we try to keep it to the top. So
within a couple of sprints time it would be released.” (U4)

“We have to remain very agile. While we do have a roadmap of where
we would like the UI SDK to go, we have to be very mindful that we
have to respond if someone has a very urgent need for something. And
we have to be able to plan that into the next sprint, or take it in the
current sprint.” (U1)

In order to show off the features that are implemented, both projects organize demo
meetings which stakeholders and users can attend:

“[...] these community practice meetings that I talked about. For ex-
ample we have a number of large user groups that have meetings every
week where representatives for all user groups call in. We also sit there
and we can present some new stuff.” (J1, translated from Swedish)

“We run a demo every three weeks, and we work in a three week sprint
cycle. Our demo would be well attended by our stakeholders. So they
would come along for 15, 20, half an hour at most, and see what is new
and what we have been working on, and what contributions we have
gotten.” (U1)

4.2.4 Step 3b: Community Implements

There are primarily two cases in which the community will contribute a feature:
if it was pushed back to the community member by the core team (through step
2), or if it was dreamt up by such a community member in the first place, without
first consulting the core team. No matter which is the case, the same practices
are employed by the core team and the same principles apply for acceptance of the
resulting contribution.

Practices

Both projects employ some type of mentoring to contributors, partly as it has been
seen that a difficult part of managing the community is to compel developers to
make their first contribution; once the first one has been made, it gets easier:

“It’s not unusual that people who have made a contribution come back
to do another one. But making people do the first one, there is the
problem.” (J1, translated from Swedish)

To get around this, both teams seek to make the threshold for contributing as low
as possible, for example by mentoring:

39

4. Results

“There is also documentation for which the architect has the best knowl-
edge of certain areas, so if someone comes in and is going to contribute
functionality related to [my area], they talk to me. And if they have
something to do with [another area], they talk to [my colleague].” (J1,
translated from Swedish)

“[We] dedicate a certain amount of capacity for supporting contributions.
So it’s not something that, you know, that usually can be run. Unless a
team, outside the core team, is very mature and has previously delivered
several contributions, they are going to need a lot of support walking
through that process.” (U3)

“Then, if the person doesn’t have the skill or if it’s something which is
touching the barebone which is something that... If it could possibly go
wrong, we would try to mentor this person as close as possible so that
we really don’t meet any unforeseen side effect.” (U4)

On top of mentoring contributors, the JCAT team employs a technique which they
label 1/3-review. When a contributor has come up with a rough sketch of both
desired functionality and a program skeleton, they should contact the JCAT team
to verify that they are on the right track:

“What we are trying really hard now to solve the problem [of users
contributing poor features] is with something called 1/3-review. [...]
essentially it’s when you have finished the analysis and perhaps coded
a small code skeleton, that we need these classes etc. Before you have
built everything. Then we try to get involved so that we steer it, so that
when they have eventually implemented everything, it’s a much faster
process to go through it here. There are very few that come to review
and we say ‘no you can't put this in’, because we have solved it much
earlier in most cases. So that essentially never happens.” (J1, translated
from Swedish)

Both projects have trusted lieutenants (called code guardians) who help in reviewing
and maintaining overall code quality. It seems that in JCAT, these guardians (or
specialists as J1 calls them below) are each responsible for a part of the code base,
while in the UI SDK the guardians have a collective responsibility:

“It turns out pretty quickly that with a million lines of code, you can’t
take on the whole tool. Instead we have specialists. My speciality is for
example [this area], not so much the product side because I am quite
uninterested in that.” (J1, translated from Swedish)

“Because as the core guardian of the UI SDK, one of my... part of my
work is ensuring is that every component that is contributed to the UI
SDK maintains a quality standard, and also that it’s useful for everyone
and not only works in a particular use case.” (U2)

40

4. Results

Furthermore, both teams have rigorous code guidelines, enabling consistent feedback
across contributions:

“[...] we have rigorous guidelines for how code should look. If you are
throwing an exception in Java you should throw it like this, this is how
you log it and such. The fact that we have this written down enables us
to be very consistent towards people who try to contribute code. They
kind of do not get different comments each time they contribute; it’s the
same comment. If you break the same rules you get the same answer.”
(J1, translated from Swedish)

“There is a set of criteria, and again the more times you have been
through it the easier it is to fulfill the criteria in terms of the tests you
have to have, and quality of the code.” (U3)

Acceptance criteria

Once a contribution has been submitted, the core team will make a decision whether
it should be accepted, rejected, or if it is in need of modification first. First, features
that already exist will be rejected:

“What can happen is that someone skips [1/3-review] and then comes
with new functionality, and we say ‘this already exists.’ That has hap-
pened a few times. It’s always sad when it happens. We cannot do much
more than make it clear to everyone that 1/3-review is the standard [...]”
(J1, translated from Swedish)

Second, contributions that are not in line with the overall product vision will also
be rejected:

“[...] it needs to be in line with our direction. So for example, if someone
wants to add support for a tool which the board agreed that we are not
to that direction, then of course it won’t go through even if the code is
good quality.” (J5)

“The only reason we might not want a feature is that it doesn’t match
our UX, it is not compliant with our quality standards, [or] it is non-
compliant with backward compatibility like I explained previously.” (U4)

Third, contributions should ideally be in line with what the project community in
general needs.

“[...] when [someone] has developed a component that will be useful for
the community to have, what we would do is to encourage this person
to actually look at their code and make sure that it’s done in a generic
way.” (U2)

41

4. Results

As a part of aligning contributions with what the community wants, the core team
can at times help with this, likely because it may naturally be difficult for an indi-
vidual community member to know what type of functionality the community as a
whole is the most in need of:

“So we are trying to encourage people to do more themselves and con-
tribute it back into the UI SDK. And in some cases, they will do it, but
it will be very much for their product. The work we have then is making
it more widely appealing, or you know taking out the more product spe-
cific requirements that they put in or something and making sure that
it works for everyone.” (U2)

“When people actually [contribute] I would say the most common thing
is for the responsible for the project is to look at the review and often
not merge it straight away, but rather [clone it], patch it a little, re-write
it so it fits in the context, and then maybe merge.” (J4, translated from
Swedish)

4.2.5 Discussion

An interesting difference between the two projects is that the UI SDK does not
use a stakeholder board for deciding a long-term vision, while JCAT does. We
speculate that this difference could have an impact on how applicable the vision
that is decided upon is on each individual stakeholder; if the core team does not
decide the project’s long-term vision in consultation with the community, as is the
case to some extent in UI SDK, it is possible that requirements from the community
are lost to a greater degree than if the opposite was true. On the other hand, we
believe that having a stakeholder board where each stakeholder has his or her say
might lead to a larger spread of features and less certainty about what to do next.
In the same vein, not having a stakeholder board and instead mainly relying on a
single or a few stakeholders may result in a clearer vision which could make for a
more cohesive product.

A possible explanation for why JCAT has a stakeholder board while the UI SDK
does not might be because of differing governance structures. The fact that JCAT
is governed by all organizational units while the UI SDK is governed by a single
organizational unit is supported by our project classification (see 4.1 Project Clas-
sification), and may explain why JCAT needs to take more opinions and needs into
account when deciding on a way forward while the UI SDK primarily needs to adhere
to the requirements of its main stakeholder ENM. Of course, this does not mean
that the UI SDK ignores the wishes of its community, but when deciding on what
to do next, ENM may be more important to take into consideration.

The practice of 1/3-reviews appears to work very well for the JCAT team, and seems
like a practice that should be widely adopted. As already stated, it has the effect of

42

4. Results

catching contribution of unwanted features and those who are poorly architectured
before too much work is done that might be thrown away in the end. Moreover,
employing 1/3-reviews has a number of additional positive effects. First, the JCAT
team rarely has to reject features at the final review, which reduces the total review
work that the core team has to do as well as the amount of refactoring that a
contributor has to do due to poor architecture that needs to be revised. Second,
contributors waste less time on features that will never be accepted due to not being
in line with vision, already existing in some form, being too niche, or some other
reason.

In terms of communication channels, it was found that both projects make thorough
use of forums as a way of giving support and gathering requirements from the com-
munity, among other activities. This seems to imply that the findings by Fitzgerald
(2011), that forums are critical for open source projects, are transferable to inner
source projects.

Furthermore, the results for this research question confirm the observations by Gur-
bani et al. (2010) that a common structure of inner source projects is to utilize
trusted lieutenants (called code guardians in the explored cases) to monitor and
ensure quality of software components.

4.3 RQ2: How Are License Issues Related To The
Usage Of Third Party Products Handled In
Inner Source Projects?

The findings for the second research questions is presented in this section. The
section is structured into two primary themes, briefly summarized below and fur-
ther expanded upon in their respective subsections, followed by a discussion on the
results.

• Inner Source Project Implications: it can be seen that there are certain
implications for inner source projects when it comes to third party products
and the legal considerations required by the associated licenses. Specifically,
it can be discerned that the case projects do not seem to be required to handle
licenses as strictly as a product project would be and that it is the users of
the inner source project that are ultimately responsible for the licenses.

• Using Third Party Products: it can be observed that the two projects
take steps to make sure that third party product dependencies are handled
carefully if included.

43

4. Results

4.3.1 Inner Source Project Implications

It is seen in the analysis that being an inner source project implies two specific
differences in how legal aspects of licenses are considered, compared to product
projects:

• License less important: it is observed that it is of less importance to handle
licenses of third party products in inner source projects compared to in product
projects.

• Users responsible: it is seen that inner source projects cannot take respon-
sibility for their usage of third party products when the inner source project
is used in a product. Instead, the product using the inner source project must
assume that responsibility.

License less important

In general, licenses associated with usage of third party products are less of a concern
for an inner source project, precisely because the project is for internal use only.
However, there are still benefits in making sure that projects handle third party
products carefully, as doing so can prepare the project for potential delivery to
external customers in the future. The general concept is described by a JCAT
upper manager:

“What we’re doing here is inner source, which means we have different
requirements for trade compliance than the products [Ericsson in general]
are selling.” (J5)

The less strict need for handling licenses of third party products is further expanded
upon by the same JCAT core team member in the quote below. The quote also
mentions the fact that the core team errs on the side of caution. Furthermore,
the cautious approach to third party products taken by the JCAT team is thought
to make releasing the software outside of Ericsson a possibility also from a legal
standpoint.

“Our situation as it is today is that we do not release binaries outsides
of Ericsson, still, we need to fulfill all legal requirements when it comes
to 3PP handling. In practice, it means that we’re very careful with
onboarding 3PPs and totally avoid restrictive licenses such as GPL.”
(J5)

The same cautious approach is also found in the motivation behind voluntary trade
compliance audits performed by the JCAT team, as explained by a top manager:

“As I said, since we are an Ericsson internal tool, it doesn’t have like
strong central trade compliance audit, we do it for ourselves just to make

44

4. Results

sure that everything is fine.“ (J5)

A concrete example of why licenses are handled with greater care than what is
perhaps strictly required is provided by another JCAT team member. The example
again highlights the fact that careful license handling can benefit the project long-
term, should it ever be used externally:

“I have even seen commercial licenses, which wasn’t a problem as we
had paid for the license. But we wanted to sell the code to a customer,
which made it impossible to sell the code as there was this commercial
dependency that we had the right to use but not sell.” (J4, translated
from Swedish)

Users responsible

Another implication observed in the analysis was that inner source projects cannot
absorb the responsibility for the third party products that are used within their
project; if an inner source project is used in a product, it falls on the product team
to ultimately verify that the third party dependencies of the inner source project
can be used within their product. Furthermore, it seems to be actively discussed
whether it could be changed so that the inner source project could, in fact, take on
the responsibility for their third party product usage.

In the following quote, a member of the UI SDK team likens the relationship between
the UI SDK and the products using it to the one between Lego bricks and a finished
Lego model. The UI SDK is used to build products, but it is itself never sold outside
of the company. On the other hand, the products using the UI SDK are in fact sold
externally and as such must carefully disclose and handle licenses for the parts that
were used to build the product. The UI SDK team can and do still help in the
process of satisfying legal policies by making it clear what third party products are
used in the project, but the ultimate responsibility remains on the product team
using the UI SDK.

“So basically we are the bricks and the applications are the model that
you build. When you’re going to sell the house or an airplane or your car,
you’re saying ‘what is inside?’ So as we provide the bricks, we just say
the bricks are using these libraries, but we are not selling the product, the
framework so far is only internal. However, all the applications using the
bricks should put in their documentation and should basically satisfy the
legal requirements. So it means, document the licenses properly etc. We
just make all the licenses, as you can see in our documentation, totally
transparent.” (U4)

Another UI SDK team member expresses the same sentiment in the quote below.

45

4. Results

The extract mentions the FOSS evaluation process1, which is an Ericsson process
related to verification of third party product license handling. FOSS in this context
may also be used in its more common way: an acronym for free open source software.
It will henceforth be clarified in which instances the FOSS evaluation process is
intended. Also mentioned in the quote is the benefit of this process becoming easier
as the inner source project is better recognized:

“Not only that, but if you want to use the UI SDK, including its FOS-
Ses, you have to do your own FOSS[-evaluation] is my understanding.
Because there are other users of UI SDK, you can point to precedence
there and say ‘look, it has been used here. It is low risk.’ ” (U3)

The same project member again confirms that the UI SDK is not currently re-
sponsible, and discusses their ambition of trying to absorb this responsibility in the
future:

“Yea we have some discussions about this with some of the [people re-
lated to the FOSS process]. Because at the moment the UI SDK is not
responsible. We wanted to take that responsibility away, it’s one of the
things you want to do, or the main thing you want to do as a framework
developer, is to make things, make life, easier for your users right. So
we wanted to centralize license handling so that every user of our frame-
work didn’t have to do their own FOSS-analysis. But we didn’t achieve
that so far. I believe the current state of play is that whoever wants to
use something has to do a [FOSS evaluation of] their particular project.”
(U3)

4.3.2 Using Third Party Products

It can be seen that both of projects have processes in place for proper handling of
third party product licenses. In essence, there are two different ways in which the
projects handles the usage of third party products:

• Avoid third party products: By attempting to avoid third party products,
and instead creating the functionality internally in the projects, it is possible
to circumvent much of the license handling otherwise required.

• License-aware usage of third party products: Although not including
any third party products might be the ideal solution from a licensing stand-
point, it is sometimes hard to avoid all such third party dependencies. This
calls for practices and methods for how licenses of such dependencies should
be handled when the dependencies are included. In our analysis, we see that
the responsibility for this third party license handling is primarily put on the
core team.

1Ericsson at all times strictly follows the legal requirements for FOSS license handling.

46

4. Results

Avoid third party products

One way to avoid having to deal with license issues due to third party products is
to simply not include such software in the first place. This is of course not always
a simple task; third party products are usually included for a reason. Nevertheless,
removing third party dependencies is what the UI SDK project has been attempting.
The opposite is observed in the JCAT project, where third party dependencies are
often preferred. In the case of the UI SDK, replacing dependencies on third party
products with code of their own also has other benefits according to the interviewees,
such as reduced size:

“Well, we kind of have a philosophy of build rather than buy. Which is
kind of an Ericsson-wide, I think, technology philosophy. But we try to
not include [3PPs, Third Party Products]. When we started, we would
have jQuery so we could use jQuery libraries. But overtime we actually
have swapped that out and we no longer depend on jQuery. Because
it is a really big, heavy, library. And you are bundling that with the
UI SDK, and we just felt like we weren’t using enough, and there were
things that we could do ourselves.” (U1)

Two other members of the UI SDK team echo the same idea of, if possible, building
solutions themselves rather than using third party products:

“But as we are fairly established at this point, it’s not very frequent that
we say ‘let's use this 3PP’ if you get me. If it is something that we are
actually able to implement ourselves, we do it.” (U2)

“Interviewer: So you kind of tried to avoid using libraries if
you can?

U4: Yes exactly. If something is available as native, why would you use
a wrapper?” (U4)

The JCAT project does the opposite, preferring third party dependencies over im-
plementing it themselves:

“Exactly the opposite for JCAT. First check what is available as 3PP,
then implement remaining.” (J5)

License-aware usage of third party products

Although there seems to be a concerted effort to avoid using third party products in
the UI SDK project, both the UI SDK and JCAT still occasionally decide on relying
on such external dependencies. The projects primarily put the burden of properly
handling these dependencies on the core team. In the UI SDK team, it is the trusted
lieutenants (or code guardians as they are called in the UI SDK) who take on the

47

4. Results

responsibility of ensuring that licenses of included third party components are usable
within the component that they oversee. In JCAT the responsibility is instead put on
the upper management, who in turn performs audits to ensure license compatibility.
Both processes rely primarily on an Ericsson-provided global tool called the Ericsson
Software Bazaar (Bazaar for short), which is an internal database of third party
software, the licenses they have associated, and a recommendation for whether each
license is usable in Ericsson software. Finally, build systems that allow for explicit
listing of dependencies, such as Apache Maven, are mentioned as helpful in the
license handling process.

That the responsibility for third party product handling in the UI SDK project is
put on the code guardians, is explained by a top manager in UI SDK:

“I suppose we have code guardians in the UI SDK. And we would review
everything, so we know everything that is in there.” (U1)

Another member of the UI SDK core team expands on the same topic, including
the entire core team in those responsible and clarifying that it is during the code
review process that licenses are verified:

“Code guardians, architect. Back in the team, we are responsible. Or
we judge ourselves responsible. Basically we will not accept code contri-
butions where the license is not clear.” (U4)

The JCAT team performs audits of the project. One trigger for these audits is that
some user from the community expresses a desire to release the framework to a
customer:

“Actually it usually happen as soon as anyone mentions ‘I would like to
release [MJE, a derived version of JCAT] to a customer, is that okay?’.
Then we usually check the licenses [...]” (J1, translated from Swedish)

Audits are also performed in the JCAT project before new third party dependencies
are added:

“For [JCAT] (where I’m the responsible person), we always perform audit
for all new dependencies.” (J5)

The responsibility is also handled differently in the JCAT project. Instead of the
shared responsibility assumed in the UI SDK project, only the top manager is seen
as responsible in the JCAT project. This is observed in the following quote by J5:

“The second thing is that for the JCAT framework, I mean the core part
and the community-managed common libraries, those which are mainly
maintained and developed by the JCAT program, for that part I am the
responsible as [upper manager].” (J5)

Both projects heavily rely on the Ericsson internal Bazaar tool for support in deci-

48

4. Results

sions regarding licenses. The tool provides usage recommendations for third party
products in regards to what licenses they have:

“There is a project called Ericsson Software Bazaar which keeps track of a
lot of third party libraries. They keep track of if [the third party libraries]
have reasonable licenses and gives recommendations if it should be used
or not. Keeps track of different versions and such.” (J1, translated from
Swedish)

Also build systems that explicitly lists dependencies are seen as important, as they
simplify the process of finding used third party products. This is explained by a
JCAT member as follows, where Apache Maven is one such build tool:

“What [third parties products] we use is easier [to see] as we are using
Maven. Then it is possible to see all dependencies there.” (J2, translated
from Swedish)

4.3.3 Discussion

The first part of the results for this research question describes the implications
associated with being an inner source project, in regards to license issues with third
party products. We believe these implications to be heavily associated to the case
company and that these implications, therefore, are unlikely to be shared among
inner source project at other companies. This belief comes from that the implications
seemingly are a result of how the Ericsson FOSS evaluation process is implemented
on a more global level. Unfortunately, the hypothesis that the implications are due
to Ericsson processes could not be verified within the scope of the study.

When it comes to handling licenses of third party products, it seems like the two
projects do this in somewhat different manners. In the JCAT project audits are
performed primarily by the upper management, whereas the UI SDK project makes
the license check a part of the code review process, performed by its trusted lieu-
tenants. Having the trusted lieutenants perform the reviews means the UI SDK
might potentially need fewer roles involved in accepting contributions. However,
doing so puts an additional burden on the trusted lieutenants in that they must
also be able to evaluate licenses themselves. Having such legal knowledge is perhaps
not as common for developers used to the more corporate style of development at
Ericsson, where license handling is generally left to a specialized license handling
team.

Another difference between the two projects is their stance on usage of third party
products. The UI SDK project attempts to limit their reliance on third party depen-
dencies as much as possible, whereas the JCAT project prefers using dependencies
over building the functionality themselves. A possible explanation that we see is the
fact that the JCAT project is built on third party projects already from the start
(i.e. JUnit and TestNG), and as such fully excluding external dependencies might

49

4. Results

never be possible. In such a case, where including some third party products is close
to unavoidable, we speculate that including also some additional dependencies is
less problematic as the need for proper handling is already mandated by the critical
third party dependencies. In the UI SDK, it might be more realistic to fully exclude
third party dependencies, allowing the project to avoid many of the license issues
that are associated with usage of third party products.

4.4 RQ3: How Can An Inner Source Project Spread
Awareness Of Its Existence Within The Com-
pany Where It Is Developed? (Discoverabil-
ity)

This section aims to answer the third research question. The main findings are listed
below and are expanded upon in their respective sections:

• Project finds people: the core team actively promotes and evangelizes the
project to expand the community.

• People find project: developers organically find the inner source project by
hearing about it from others.

• Top-level support: being supported and recommended by management
helps to spread awareness of the project’s existence.

• Inner source program: an inner source program providing common infras-
tructure and time allotted to working on inner source projects is desired.

4.4.1 Project Finds People

It can be seen that evangelism by the core team plays an important role in estab-
lishing and expanding the community surrounding an inner source project. This
active search for people seems especially important while the community is some-
what smaller, and seems to lessen as the project community grows and is able to
help spread the project. However, both the UI SDK and the JCAT project still
engage in various activities to attract new users and contributors, in spite of both
having large communities already.

An example of an activity performed early on by the UI SDK team was on-site
demonstrations:

“Actually that is a huge body of work that we did when we started out.
And we used to travel. Members of the core team used to travel to other

50

4. Results

product development units in Ericsson, so we have been all around the
world. To go and give a hands on demonstration of the UI SDK. Show
them how easy it is to use, and how much faster their development would
be, etc., etc. So you basically market the advantages of this product to
product managers and developers.” (U1)

“Around the time, sort of, the first wave of UI SDK, Version 1. when it
started to become something useful. We did a bit of a of a roadshow. It
was actually not so much myself but I did a bit as architect. I was more
involved in the very early evangelism around, you know, why we needed
the framework and so forth. And then I get involved whenever there is
discussion about common components and things like that.” (U3)

Also in the JCAT project the management actively seeks to promote the project to
anyone who may not be using it already:

“Then also we are out doing promotion, that’s primarily [J5]’s job. As
soon as he finds out that there is someone out there doing test automa-
tion and not using JCAT, he’s there talking to them.” (J1, translated
from Swedish)

In both JCAT and UI SDK, onboarding is also performed as part of the on-site
promotion with organizations that are interested in adopting the software:

“Then we run a short pilot. We have this professional services team who
can go, these people can go on site and do a proof of concept for that
product. Creating the first test cases together and see that it fulfills the
products requirements in terms of test automation.” (J5)

“We can be asked for support around the organization, so for onboarding
workshops we create two videos to release a lot of this work so that we
record one video and view the video instead of being there every time.”
(U4)

Another way of actively spreading awareness is through hackathons (programming-
related events usually centered around a predetermined theme), which in the UI
SDK is run by the core team:

“Within the actual building here we conduct hackathons and workshops
[...]” (U2)

4.4.2 People Find Project

As the project grows it becomes more common for people to find the project in
contexts other than the project actively marketing itself to them. The mechanisms
for this spreading are essentially the same for both JCAT and UI SDK, and mostly

51

4. Results

rely on that some employee that has experience with the projects mentions them
to other colleagues. For example, people may be in a meeting with a UI-designer
who says that the component being shown on the screen is part of UI SDK, thereby
planting a seed in the meeting participants’ minds that UI SDK may be a useful
tool:

“We are working very closely with UI-Designers. So when a UI-designer
shows a UX-screen, they will say this is available using this component
in the framework.” (U4)

People involved in the projects and their communities are further encouraged to
spread the word of the project to other members of their organization:

“[...] we of course always encourage the board members to share their
experience with JCAT among the other products in their areas. So that
is how usually people get to know about JCAT and this is how the word
spread.” (J5)

Furthermore, the people that like the software will naturally spread it on to their
peers, asking why they are not using this great product:

“[my colleague] is for example such a person that would absolutely con-
sider that if she finds someone who is doing test automation without
JCAT, she would ask the question ‘why aren't you using JCAT?’ Since
it’s good enough for people to like it, it spreads itself actually. But you
also need people like [J5] and [my colleague] and such that drive it.” (J1,
translated from Swedish)

Since JCAT is the largest inner source project in Ericsson and has been around for a
long time, it also naturally draws attention to itself. The somewhat unconventional
nature of the inner source development process also plays a role in attracting interest:

“[...] they naturally draw themselves to JCAT precisely because it’s the
most growing test automation framework at Ericsson. It’s hyped right
now, so it comes by itself. Developers naturally become interested in
it because we have a bit of a different model of how we work, instead
of this traditional ‘we have a budget, we follow the budget and made a
product’.” (J4, translated from Swedish)

Another point that is brought up in regards to having people find and use the
projects is the importance of keeping the software at a high quality level at all times
and focusing on what is important for its users. If users find the project and find
out that it is of subpar quality or does not solve the problem that the user may be
having, it will not be put to use.

“I would say, a project doesn’t advertise itself [...] When an application
is going to be developed you need to spread the word that using this
framework you will make. [...] The framework allows you to have dif-

52

4. Results

ferent very key principles. First we guarantee that everything we have
on the framework is brand compliant. So all the UX that we use, all
the buttons, colors, etc. is brand compliant. So you will never have to
question; if you use a color, is this the right color, if you use a button,
is this the right shape. So we provide this.” (U4)

4.4.3 Top-level Support

One aspect that could be very impactful for discoverability is top-level support,
which both projects say they have received. Specifically, both projects have been
selected as the recommended tool for their respective area by executives high up in
the organization. This made usage of the projects more common, and attracted new
users and contributors:

“[...] we have actually had a decision from the highest boss at Network
Products, which has 12,000 employees under him, that if you are doing
test automation then [MJE, a customized version of JCAT for the Net-
work Products division] is the one to go with. And MJE is based on
JCAT. That makes it so that the poor people that want to keep using
some other tool has to answer to the same silly question over and over
again: ‘Why aren’t you using MJE?’ [...]. It has the effect that when
we say ‘Can’t you use MJE?’ and they say ‘No,’ then we say ‘but the
highest boss said that we should do it, so now we’ll have to talk about
this’.” (J1, translated from Swedish)

“It’s something that we have been benefited by the actual mandate
through management that actually recommends using the [UI SDK].”
(U2)

In both cases, the support was not something that was actively sought by the
projects, but rather something that was given to the projects for their perceived
quality and the benefit of them being inner source:

“They have realized it on a company level, they did when they merged
these new network products, earlier there were a lot of small organiza-
tions. . . It’s terribly expensive to have a lot of employees doing approx-
imately the same thing. So we, who were the biggest, said that we can
become even bigger and swallow all these people and become very big
instead. So they said ‘okay, go for it!’ ” (J1, translated from Swedish)

Monetary compensation based on the number of users was not observed in any of
the projects:

“[JCAT] had more-or-less same budget when it had 100 users as it gets
now with 3500.” (J5)

53

4. Results

“Interviewer: Do you get extra budget the more users you have,
and like that?

U3: No. Not at this stage.” (U3)

4.4.4 Inner Source Program

Another aspect that was brought up multiple times was the need for a centralized
inner source initiative at Ericsson. Currently, JCAT and the UI SDK are two sep-
arate projects with two separate communities, tools, etc. surrounding them. The
interviewees generally see the lack of such a centralized repository as something that
negatively impacts discoverability of various inner source projects at Ericsson:

“I think what we are missing in Ericsson is an inner source portal. Or
a platform. It is something we have spoken about before here, but we
just, again, we don’t have the bandwidth to kind of drive this or to build
this.” (U1)

The Google concept of 20% time is also brought up in multiple interviews. The
purpose of 20% time is to allow employees to spend up to 20% of their time to
work on tasks that are not directly related to their primary task. This 20% time
is seen as something that could help in giving the inner source projects additional
contributors, as the current perception is that most employees are too busy with
their ordinary work tasks that they are unable to contribute to other projects.

“I think it is an area that is lacking. I had thought in the past about
things like, you know, Google’s 20% time. If we had something like that,
where developers were encouraged to spend 20% of their time, and you
know in their [yearly performance goals]. Be given scores for having
fulfilled their 20% time as inner source contributions. [...] to make
something more generally usable it could take 3-4-5 times as much effort
to make something generally usable than to have something that you
can hack into your own particular application. So the extra overhead
requires a lot of effort, and teams often don’t have time for it. And they
don’t have any strong motivation to share something.” (U3)

4.4.5 Discussion

It is interesting to see that both projects seem to have gone through similar phases of
how awareness of their respective projects are spread. At the outsets of the projects,
they had to rely primarily on their core teams for marketing, for example by doing
on-site demonstrations. However, as time has passed and the projects have grown
in size, they seem to put more and more of the marketing responsibility on the
community. This result is not unexpected; the larger the community of an inner

54

4. Results

source project grows, the more people will potentially talk to their peers about the
project they are involved in, in turn potentially recruiting new developers, users or
even organizations to the inner source project’s community.

It may be tempting to draw the conclusion that a primary cause of the UI SDK
budget not being correlated to the amount of users or contributor it has is that it is
classified to be governed by a single organization, as covered previously. However, as
can be seen in the findings for this research question, there exists no such correlation
for JCAT either, which is governed by all organizational units. Therefore, no such
conclusion in relation to the governance classification can be drawn.

As mentioned in the related work section, previous research by Riehle et al. (2009)
suggests that one of the benefits of implementing inner source is that an organization
can enjoy broader support and buy-in of projects. This is confirmed by the findings
of this research question, as both projects have received support from upper man-
agement and have in fact been chosen as the recommended tools for their respective
domains in the divisions where they are used. A possible explanation for why inner
source development practices could lead to the project receiving support from upper
management might be that when the community grows, the collective adoption of
the software and experience using it also grows. Once enough developers become
accustomed to using a tool or other piece of software for some purpose, it logically
does not make sense for top management to advise or recommend another tool, as
such a recommendation would require all developers using the inner source tool to
learn a new tool, costing valuable resources. Furthermore, since one of the core
aspects of inner source is that essentially anyone can contribute to the project (Stol
et al., 2014), the software will evolve according to the developers’ needs and possi-
bly become ubiquitous. This notion has been observed by Capraro & Riehle (2016),
suggesting that inner source enables “bottom-up collective intelligence,” which ac-
cording to Capraro & Riehle (2016) can translate into community members making
the inner source software more fit for their needs by making contributions.

The need for a central repository platform is something that was brought up by
many of the interviewees and is also part of in the infrastructure-based model of
adopting inner source as described by Gurbani et al. (2006). In general, it seems that
the infrastructure surrounding inner source development at Ericsson is somewhat
lacking, with no central portal to host inner source projects (which can also provide
marketing opportunities) and no centralized solution for communication in such
projects like forums. It should be noted that while JCAT and UI SDK both make
good use of forums, they have both researched and implemented the use of their
respective forum software (they use different ones) inside the projects rather than
having been recommended by management to use an Ericsson-supported solution.
Another point related to the infrastructure of inner source development is that
there is no time specifically allocated to work on inner source projects from a global
direction, for which the 20% time as implemented by Google Whittaker et al. (2012)
is brought up as a possible solution by many interviewees. Since one of the most
hindering factors for involvement in inner source project seems to be a lack of time,
such a solution could indeed be worth considering.

55

4. Results

4.5 Validation Workshop

In this section, the outcome of the validation workshop is presented. The three areas
in particular were discussed, presented below:

• Inner Source Developer Responsibilities: The members of the workshop
see additional responsibility put on the developers of an inner source project.

• Inner Source FOSS Evaluation Process: The aforementioned FOSS pro-
cess (an Ericsson internal process for evaluating license compatibility) is also
brought up in the workshop. It was discovered that the inner source projects
might be able to absorb more of the burden of this process than what was
thought from the case study.

• Inner Source Platform: The current progress of developing an inner source
program is presented. The implementation likens that of an infrastructure-
based inner source program (Gurbani et al., 2010), but is limited to one division
within Ericsson.

4.5.1 Inner Source Developer Responsibilities

During the workshop it was mentioned multiple times that developers who work with
inner source software will be required to take on additional responsibility. In partic-
ular, discussion centered around the need for developers in inner source projects to
be aware of licenses and the associated legal issues. Workshop participants indicated
that the reason for this need is the possibility that the inner source software might
be exported to a customer in the future. The AAT project (the project that served
as discussion point for the workshop), in which selling to an external customer is
already part of the roadmap, was presented as a potential inner source project, and
is as such a project where developers would be required to consider these additional
aspects from the start.

Discussion

The discussion during the workshop mirrored much of what has already been men-
tioned in 4.3.3 RQ2 discussion; when exporting an inner source project to an external
customer, legal requirements become more strict. During the workshop it was gen-
erally thought that the developers of the inner source project should be the ones
responsible for these requirements. Precisely who the developers are and what meth-
ods would be used to control the legal issues was never further specified. Although
putting the responsibility on each individual contributor might be possible, we be-
lieve that this would be both impractical to implement in practice and that it would
increase the barrier of entry for new contributors. Instead, it seems to us like this

56

4. Results

responsibility should be absorbed by the core team, as is done in both the JCAT
project (through audits) and the UI SDK project (during code reviews). However,
a difference between the two projects investigated in the case study and the AAT
project discussed during the workshop is that the AAT project already involves an
external customer.

4.5.2 Inner Source FOSS Evaluation Process

The Ericsson FOSS evaluation process, i.e. the process used internally at Ericsson
in order to validate license compatibility of third party products before they are
exported to external customers, and how it relates to inner source projects were
two of the primary concerns expressed by the members of the DevOps organization.
Currently, it is observed that inner source projects are not doing these evaluations;
instead, product projects have to apply for the FOSS audits also for the inner
source projects they depend on. As an example it was mentioned that evaluations
have been performed for the UI SDK by request of the AAT project, which is
currently including the UI SDK project as a dependency. It was further explained
that reviews of dependent projects would speed up if inner source projects applied
for FOSS evaluations of their own. This increase in speed would come from that
the evaluation process of the dependent project can then rely on the results of the
already performed evaluation for the inner source project. It is also emphasized
that the FOSS evaluation is a time-consuming process, especially if done for the
first time, and that possible time savings would be beneficial.

Discussion

It can be seen that what is said by the workshop participants contradicts some
statements made in this thesis’s interviews in that FOSS evaluations are allegedly
both possible and advantageous to perform by inner source projects. It should be
noted that the people interviewed for the case study never asserted that this was the
case, rather they assumed that this was how it worked. We see this as an additional
indication that introducing a global inner source program could be beneficial, as we
believe it would make it easier to spread best practices, such as performing FOSS
evaluations, to the entire inner source community.

4.5.3 Inner Source Platform

A presentation was held on how inner source infrastructure is currently provided
within the division on a more technical level. It was seen that there is no global
effort to provide an inner source process and that the technical infrastructure used
for other projects was not suitable for the collaborative nature of inner source.
The mentioned technical limitations primarily concerned network firewalling and

57

4. Results

partitioning, making it impossible for employees outside an organization to access
projects within it. In order to solve these problems, the DevOps organization created
their own process to allow projects to set up an inner source infrastructure. The
new process helps in using and connecting already existing global tools to form a
complete inner source infrastructure for a project including repository hosting, a
community platform and build servers. The process for inner source infrastructure
is currently limited to the organization owning the DevOps organization. Although
this enclosing organization is large, it is not currently on the global corporate level.
Trying to get this process adopted also as a company global process was mentioned
as a future goal.

Discussion

The lack of a global inner source program is once again brought up, as mentioned
previously in the discussions regarding both license considerations (see 4.3.3 RQ2
discussion) and discoverability (see 4.4.5). However, this time it is seen that an
inner source program might be beneficial also from a more technical perspective.
Namely that inner source project creation is difficult for reasons such as firewalls and
other network security considerations. The process that was created by the DevOps
organisation closely matches the infrastructure-based inner source model Gurbani
et al. (2010) in which technical infrastructure is provided for the projects. However,
as in the infrastructure-based model, the support from the DevOps organization is
limited to providing the technical foundation, the projects are otherwise left mostly
to themselves. It might be worth considering if this is sufficient support for the inner
source projects, or if additional resources should be provided. For example, if the
projects that are made inner source are often a prime technology of the company,
then the project-specific model might prove better suited Gurbani et al. (2010).

58

5
Discussion

In this section, we discuss the potential threats to validity and gives recommenda-
tions on future work. Note that discussions on the results for the research questions
are given in the respective results section.

5.1 Threats to Validity

In this section, potential threats to the validity of the study are presented. The
framework employed is the one proposed by Runeson & Höst (2009), which covers
four different types of validity: construct validity, internal validity, external validity,
and reliability.

5.1.1 Construct Validity

Bjarnason et al. (2014) define construct validity as “how well the chosen research
method has captured the concepts under study”, and refers to how suited the
methodology is for the task. Steps taken to mitigate this threat are outlined in detail
in 3.3 Methodology Motivation, though a few points can be brought up to exemplify
the efforts. First, interview subjects were ensured full anonymity and confidentiality
of their answers. This has the effect of establishing a climate of trust in which the
interviewees are comfortable in giving their sincere opinion on things. Furthermore,
it helps in mitigating reactive bias, i.e. that participants should not be afraid of
facing repercussions from e.g. management for statements made in an interview.
Second, the interview guide was validated with a researcher at Chalmers Univer-
sity of Technology to make sure that relevant questions were asked and that the
guide was not constructed in a way that was not in line with best practices. Third,
interviews were if possible conducted in the interview subject’s native language in
an attempt to reduce misunderstandings; else it was verified that the interviewee
was proficient enough in English as to not cause misunderstandings due to language
barriers.

Another issue to do with construct validity that was discovered late in the process

59

5. Discussion

is that of interview subject selection in regards to RQ2 on license issues with third
party products. It could have been a good idea to complement the conducted project
member interview with interviews with legal experts in the dedicated third party
products organization within Ericsson. Such interviews would have laid a sounder
legal base and would likely have strengthened our conclusions for the second research
question. Furthermore, documentation on processes that regards third party prod-
uct inclusion could, in addition to the interview data, have been acquired to further
strengthen the findings. As mentioned in 3.4.2 Data Collection: Semi-structured
Interviews, we attempted to mitigate this threat by interviewing project members
that we suspected had some knowledge of this aspect.

5.1.2 Internal Validity

If conclusions are drawn in which not all factors are taken into account, or some
factors that may influence the outcome are unknown, then there may be a threat
to internal validity present (Runeson & Höst, 2009). Although this thesis attempts
to draw some conclusions of why things are the way they are, it is not the primary
objective of the thesis; as detailed in 3.3 Methodology Motivation, the objective is
exploratory rather than explanatory. Nevertheless, one type of internal validity that
can be discussed is that of researcher bias. We believe that the bias in this study is
low, mainly due to being carried out by two researchers rather than one and being
supervised by a university researcher with whom ideas were discussed, iterated on,
and refined. Moreover, findings were discussed with the aforementioned researcher
and submitted to peer review seminars conducted at the university in further efforts
to take in more viewpoints and ensure that those of the researchers were not the
only ones considered.

5.1.3 External Validity

External validity refers to the extent which it is possible to generalize the findings
of the study (Runeson & Höst, 2009). Runeson & Höst (2009) argue that for a
case study “the intention is to enable analytical generalization where the results
are extended to cases which have common characteristics and hence for which the
findings are relevant”, which should be taken to mean that the findings of a case
study can be generalized to similar cases. This notion is taken into account by
in detail describing the case company and the cases inside the company which the
case study aimed to study. Furthermore, the classification framework by Capraro
& Riehle (2016) aids in the generalizability of the results. In the consideration of
whether the findings in this study can be applied to a given inner source project, the
inner source project in question can be compared to the classification of the study’s
cases. If the classification of the inner source project matches one of the cases, the
findings for that case may be more applicable due to that similarity.

60

5. Discussion

Another issue to take into account is that the study was only carried out at Ericsson.
Attempts were made to validate the findings with similar companies but ultimately
were not successful. This fact limits the study in that the findings are sensitive
to cultural, company political, regional, and managerial factors. Furthermore, only
two cases were studied which also hinders the generalizability of the results. Also
here attempts were made to find more suitable cases, but these too were unsuccess-
ful. More cases studied would have provided opportunities to contrast the findings
between the cases to a greater extent and increased the validity of the results.

5.1.4 Reliability

This type of validity is about ensuring that if another researcher attempted to con-
duct the same study using the provided methodology, the results should be similar
or even the same (Runeson & Höst, 2009). Reliability was addressed by meticulously
describing the methodology, including an anonymized interviewee list, the interview
process, the way in which thematic analysis was conducted, and by including the
interview guides (both the English and Swedish versions, see Appendix A) that were
used through all interviews in the case study.

5.2 Future Work

This thesis contributes to the field of inner source research by identifying three as-
pects that are especially important when applying inner source development prac-
tices to product projects, i.e. projects that have an external customer as the end
receiver of the software. These three aspects have not been previously brought up in
literature and were in this thesis explored by performing a case study on two large
inner source projects at Ericsson. The aspects can be used in future research in the
inner source field. We recognize the following areas where future research could be
conducted.

Validate findings with product project
While the findings in this thesis sought to explore aspects of inner source devel-
opment that may be interesting from the viewpoint of a product project, it does
not validate these findings with an actual product project. It could, therefore, be
interesting to study how some of the findings presented in this thesis might be imple-
mented in a product project and how well these findings translate from an internal
inner source project to a product project.

Validate findings with another company
As mentioned in the discussion to the inner source project implications found as part
of RQ2, we believe that some of these implications are specific to the case company
that was part of this study. As such, it would be interesting to validate this belief

61

5. Discussion

with another company in order to investigate if this is the case, and if so to what
extent the implications are shared or not shared between multiple companies.

Classify additional inner source projects using the framework by Capraro
& Riehle (2016)
The classification framework by Capraro & Riehle (2016) that was described and
used in this thesis proved useful both in the understanding of the studied cases and
in the analysis and the activity of contrasting the aforementioned cases. In the
light of these experiences, it may be of value to classify more inner source projects
using the framework, as well as to study the prevalence of each of the classes. Such
studies may provide value both to the field of inner source research and to the studies
themselves if additional analysis is performed in conjunction with the classification.
This same sentiment is repeated by the original authors of the framework.

62

6
Conclusion

In this thesis, we have presented the analysis of a case study which explored two
cases at Ericsson. This analysis did not reach any generally applicable best practices.
However, the findings from the research questions clearly indicate good practices in
prioritization, license issues with third party products, and how to market an inner
source project inside a company. The findings of these aspects are summarized
below.

For prioritization of features, according to the definition given in the problem state-
ment, it can be seen that this is performed in three steps: elicitation, delegating
work, and actually implementing the feature. Elicitation is performed either by the
core team coming up with features or the community requesting them. Feature re-
quests from the community can come from for example forums, stakeholder boards
or by talking directly to the core team on site. The step of delegating work is where
it is decided if the core team or the community should implement the elicited fea-
tures. The core team often performs the implementation if it is seen, for example,
that the feature will benefit many stakeholders or if the feature is too complicated
to be feasible for the community to implement. The community implements the
feature if it is too niche to be of use to other stakeholders, or if the community
member is experienced enough to handle the implementation him or herself. When
it comes to implementation, a notable practice to facilitate contributions from the
community is that of the 1/3-review, in which contributors are urged to contact the
core team once a code skeleton and a rough sketch of the system has been drawn
up in order to validate current progress. When it is decided that the core team
should implement a feature, it can be observed that the feature is prioritized loosely
according to agile practices.

Two themes are found for the aspect of the license issues related to the usage of third
party products. First, it can be seen that there are certain implications for inner
source projects when it comes to third party products and the legal considerations
required for their associated licenses. Specifically, inner source projects are not as
strictly required to handle license issues as a product project would be1. This is
assumed to be specific to the case company, but it could not be verified within the
scope of the study. Second, it can be observed that the two projects take steps to

1Ericsson have the procedures in place to fully follow all legal requirements.

63

6. Conclusion

make sure that third party dependencies are handled carefully if included. Code
reviews and audits are performed in order to control what third party components
are used in the inner source projects. The preferred strategy for third party product
handling differs between the two projects. In the UI SDK, the strategy is to simply
avoid such dependencies in the first place, and rather rely on internally written code.
In JCAT however, the opposite is the case; first check what is available as third party
products, and then implement any remaining functionality that is needed.

In terms of discoverability, four aspects were discovered that aid or could be of use
in marketing an inner source project: project finds people, people find project, top-
level support, and inner source program. It can be seen that in the infancy of the
studied cases, it was to a greater extent the core teams who took on the responsibil-
ity of spreading awareness of the projects, for example through hackathons, giving
demos on site, and conducting presentations. As the projects matured and the com-
munities around them grew, more marketing responsibility could be delegated to
the community members who spread the word to their peers. Support from upper
management was brought up as a key point in both studied cases, both of whom
have been recommended as the preferred tool within their respective domains. An-
other facet of top-level support is that of correlation between project budget and
the number of users. Such a correlation is found in neither of the projects despite
its existence being reasonable to assume, especially for JCAT which is classified to
be owned by all organizational units. There also seems to be a lack of a central in-
ner source platform where inner source projects and their related community pages,
such as forums, can be hosted and where it is also possible to explore which inner
source projects are available in the organization.

64

Bibliography

Asay, M. (2007). Microsoft office experiments with open source (development).
[Online; accessed April 12th 2017].

Asundi, J. (2001). Software engineering lessons from open source projects. In Pro-
ceedings of the 1st Workshop on Open Source Software Engineering, Toronto, ON,
Canada.

Bjarnason, E., Runeson, P., Borg, M., Unterkalmsteiner, M., Engström, E., Regnell,
B., Sabaliauskaite, G., Loconsole, A., Gorschek, T., & Feldt, R. (2014). Challenges
and practices in aligning requirements with verification and validation: a case
study of six companies. Empirical Software Engineering, 19 (6), 1809–1855.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative
Research in Psychology, 3 (2), 77–101.

Capraro, M. & Riehle, D. (2016). Inner source definition, benefits, and challenges.
ACM Computing Surveys (CSUR), 49 (4), 1–36.

Dinkelacker, J., Garg, P. K., Miller, R., & Nelson, D. (2002). Progressive open
source. In Proceedings of the 24th International Conference on Software Engi-
neering, (pp. 177–184). ACM.

Ericsson (2017). Company facts. [Online; accessed April 13th 2017].

Fitzgerald, B. (2011). Open source software: Lessons from and for software engi-
neering. Computer, 44 (10), 25–30.

Fortune (2016). The fortune 2016 global 500. [Online; accessed May 5th 2017].

GitHub (2016). The state of the octoverse 2016. [Online; accessed April 12th 2017].

Gurbani, V. K., Garvert, A., & Herbsleb, J. D. (2006). A case study of a corpo-
rate open source development model. In Proceedings of the 28th international
conference on Software engineering, (pp. 472–481)., 1134352. ACM.

Gurbani, V. K., Garvert, A., & Herbsleb, J. D. (2010). Managing a corporate open
source software asset. Commun. ACM, 53 (2), 155–159.

Hove, S. E. & Anda, B. (2005). Experiences from conducting semi-structured in-
terviews in empirical software engineering research. In 11th IEEE International
Software Metrics Symposium (METRICS’05), (pp. 10 pp.–23).

65

Bibliography

Lindman, J., Riepula, M., Rossi, M., & Marttiin, P. (2013). Open source technology
in intra-organisational software development—private markets or local libraries.
In J. S. Z. Eriksson Lundström, M. Wiberg, S. Hrastinski, M. Edenius, & P. J.
Ågerfalk (Eds.), Managing Open Innovation Technologies (1 ed.). (pp. 107–121).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Lindman, J., Rossi, M., & Marttiin, P. (2010). Open source technology changes
intra-organizational systems development-a tale of two companies. In European
Conference on Information Systems.

Martin, G. & Lippold, A. (2011). Forge.mil: A case study for utilizing open source
methodologies inside of government. In S. A. Hissam, B. Russo, M. G. de Men-
donça Neto, & F. Kon (Eds.), Open Source Systems: Grounding Research: 7th
IFIP WG 2.13 International Conference, OSS 2011, Salvador, Brazil, October
6-7, 2011. Proceedings (pp. 334–337). Berlin, Heidelberg: Springer Berlin Heidel-
berg.

Melian, C. (2007). Progressive open source the construction of a development project
at Hewlett-Packard. Economic Research Institute, Stockholm School of Economics
(EFI).

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open
source software development: Apache and mozilla. ACM Transactions on Software
Engineering and Methodology (TOSEM), 11 (3), 309–346.

Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., & Ye, Y. (2002). Evolution
patterns of open-source software systems and communities. In Proceedings of the
International Workshop on Principles of Software Evolution, IWPSE ’02, (pp.
76–85)., New York, NY, USA. ACM.

Perens, B. (1999). The open source definition. Open sources: voices from the open
source revolution, 1, 171–188.

Raymond, E. (1999). The cathedral and the bazaar. Knowledge, Technology &
Policy, 12 (3), 23–49.

Riehle, D., Ellenberger, J., Menahem, T., Mikhailovski, B., Natchetoi, Y., Naveh,
B., & Odenwald, T. (2009). Open collaboration within corporations using software
forges. IEEE software, 26 (2), 52–58.

Robles, G. (2004). A software engineering approach to libre software. Open Source
Jahrbuch, 2004.

Robson, C. (2002). Real world research (2nd ed.). Blackwell Publishing.

Runeson, P. & Höst, M. (2009). Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14 (2), 131–164.

Seale, C., Gobo, G., Gubrium, J. F., & Silverman, D. (2004). Qualitative research
practice. Sage.

Seaman, C. B. (1999). Qualitative methods in empirical studies of software engi-
neering. IEEE Transactions on software engineering, 25 (4), 557–572.

66

Bibliography

Stol, K.-J., Avgeriou, P., Babar, M. A., Lucas, Y., & Fitzgerald, B. (2014). Key
factors for adopting inner source. ACM Transactions on Software Engineering
and Methodology, 23 (2), 1–35.

Taylor, S. J., Bogdan, R., & DeVault, M. L. (2016). Introduction to qualitative
research methods: a guidebook and resource, volume 4th. Hoboken, New Jersey:
John Wiley & Sons.

Torkar, R., Minoves, P., & Garrigós, J. (2011). Adopting free/libre/open source
software practices, techniques and methods for industrial use. Journal of the
Association of Information Systems, 12 (1), 88–122.

van der Linden, F. (2009). Applying open source software principles in product
lines. Upgrade, 10 (2), 32–41.

Vitharana, P., King, J., & Chapman, H. S. (2010). Impact of internal open source
development on reuse: Participatory reuse in action. Journal of Management
Information Systems, 27 (2), 277–304.

Wesselius, J. (2008). The bazaar inside the cathedral: Business models for internal
markets. IEEE Software, 25 (3), 60–66.

Whittaker, J. A., Arbon, J., & Carollo, J. (2012). How Google tests software.
Addison-Wesley.

Wikipedia (2017). List of the largest information technology companies. [Online;
accessed May 5th 2017].

67

Bibliography

68

A
Appendix 1

A.1 English Interview Guide

Pre-Interview:

• Our study

– Inner source at Ericsson (with Sima Nordlund)

– Investigate three especially interesting aspects of inner source by inter-
viewing people in inner source projects at Ericsson

∗ The three are: prioritization, legal issues (licenses) and discoverabil-
ity

• Explain that your answers will be confidential, you will be anonymous

• Is it okay if we record this interview?

– Transcribed, used as data for the study

Intro:

• What is your role and title, and what do they entail?

• How long have you been at your role and how long at Ericsson?

• What is your experience with open source and/or inner source?

RQ1. How are features prioritized in inner source projects?

• Who are the stakeholders of the project?

– Core Team?

• How is the direction in which to steer the project decided?

I

A. Appendix 1

– Stakeholder meeting, roadmap

• How are feature requests prioritized?

– Difference between “core team” and non-”core team”?

• What are the inclusion criteria for new contributions?

– Feature bloat (i.e. non-generic functionality, features not in line with
project vision)

– Contributions planned in advance, or evaluated when implemented

RQ2. How are legal issues related to the usage of third party products
handled in inner source projects?

• How is it decided which third party products or libraries are allowed inside
the software, in the sense that it doesn’t contain restrictive licenses?

– OSS license compatibility

– Trade compliance

– Ericsson Bazaar

• Who is responsible for ensuring only allowed third party products or libraries
end up in the software?

– If lieutenants: How they are chosen?

– Who is responsible if it should happen anyway?

• How does the vetting process work concretely? (e.g. I want to contribute
changes, how are they verified not to violate any licenses/trade compliance/etc.)

– Code review by “trusted member”

– Continuous Integration test

RQ3. How can an inner source project spread awareness of its existence
within the company where it is developed?

• How important is getting new contributors and stakeholders to this project?

• What is the project’s strategy for making employees aware of its existence?

– What is the difference between finding new users and new contributors?

• Are there any incentives from “above” to find additional users and/or contrib-
utors?

II

A. Appendix 1

– Money from stakeholders?

• What could be improved in order to make more employees aware of the project?

Outro

• Is there anything that we forgot to ask? Anything else you think we should
know?

• Anyone else we should talk to?

A.2 Swedish Interview Guide

Pre-Interview:

• Our study

– Inner source på Ericsson (med Sima Nordlund)

– Undersöka tre speciellt intressant aspekter av inner source genom att
intervjua folk med i inner source-projekt på Ericsson

∗ De tre är: prioritering, juridiska aspekter (licenser) och discoverabil-
ity

• Förklara att dina svar kommer vara konfidentiella, du kommer vara anonym

• Är det okej om vi spelar in den här intervjun?

– Transkriberad, används som data i studien

Intro:

• Vilken är din roll och titel, och vilka uppgifter har du?

• Hur länge har du haft den här rollen och hur länge har du varit på Ericsson?

• Vad är din erfarenhet med open source och/eller inner source?

RQ1. How are features prioritized in inner source projects?

• Vilka är projektets stakeholders?

– Core team?

• Hur bestäms det i vilken riktning projektet ska tas?

– Stakeholdermöte, roadmap

III

A. Appendix 1

• Hur prioriteras feature-förfrågningar?

– Skillnad mellan “core team” och non-“core team”?

• Vad har ni för kriterier för att ta med nya contributions?

– Feature bloat (dvs. icke-generisk funktionalitet, features som inte är i
linje med visionen)

– Contributions som planerats i förväg, eller evaluerad när det implementeras

RQ2. How are legal issues related to the usage of third party products
handled in inner source projects?

• Hur bestäms det vilka tredjepartsprodukter eller bibliotek som ska tillåtas i
produkten, när det gäller att de inte ska innehålla restriktiva tredjepartsli-
censer?

– OSS-licens kompatibilitet

– Trade compliance

– Ericsson bazaar

• Vem är ansvarig för att se till att tredjepartsprodukter eller bibliotek inte
kommer in i produkten?

– Om “trusted lieutenants”: hur väljs de?

– Vem är ansvarig om det skulle hända ändå?

• Hur fungerar urvalsprocessen rent konkret? (t.ex. Jag vill bidra med någon
förändring, hur verifieras det att de inte bryter mot licenser osv?)

– Code review av “trusted member”

– Continuous integration test

RQ3. How can an inner source project spread awareness of its existence
within the company where it is developed?

• Hur viktigt är det att få in nya utvecklare och användare i detta projekt?

• Vad är detta projektets strategi för att uppmärksamma anställda om dess
existens?

– Vad är skillnaden mellan att hitta nya användare och nya utvecklare?

• Finns det några incitament “uppifrån för att få in nya användare eller utveck-
lare?

IV

A. Appendix 1

– Pengar från stakeholders?

• Vad kan förbättras för att uppmärksamma fler personer på att projektet finns?

Outro

• Har vi glömt att fråga något? Något annat du tycker att vi borde veta?

• Någon annan vi borde prata med?

V

	List of Figures
	List of Tables
	Introduction
	Background
	Problem Statement
	Research Questions
	Scope/Limitations
	Thesis Outline

	Related Work
	Open Source
	Inner Source
	Inner Source Classification Framework

	Methodology
	Case Company: Ericsson
	Pre-Study
	Methodology Motivation
	Multiple Case Study
	Cases
	Data Collection: Semi-structured Interviews
	Data Analysis: Thematic Analyis
	Project Classification

	Validation Workshop

	Results
	Project Classification
	JCAT
	UI SDK

	RQ1: How Are Features Prioritized In Inner Source Projects?
	Step 1: Elicitation
	Step 2: Delegation of Implementation
	Step 3a: Core Team Implements
	Step 3b: Community Implements
	Discussion

	RQ2: How Are License Issues Related To The Usage Of Third Party Products Handled In Inner Source Projects?
	Inner Source Project Implications
	Using Third Party Products
	Discussion

	RQ3: How Can An Inner Source Project Spread Awareness Of Its Existence Within The Company Where It Is Developed? (Discoverability)
	Project Finds People
	People Find Project
	Top-level Support
	Inner Source Program
	Discussion

	Validation Workshop
	Inner Source Developer Responsibilities
	Inner Source FOSS Evaluation Process
	Inner Source Platform

	Discussion
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Future Work

	Conclusion
	Bibliography
	Appendix 1
	English Interview Guide
	Swedish Interview Guide

