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Abstract 

The aim of this M.Sc. thesis is to evaluate the potential of using machine learning to 

support concept phase decisions to balance the thermal properties of an automobile. 

With the use of computer scripts, the relevant measurement data is extracted from 

repositories and is used to train an artificial neural network which can identify the 

importance of the different parameters that are involved in tuning the vehicle thermal 

attributes.  

After data for several car models has been used to train Machine Learning (ML) tools, 

this configuration used in predicting parameters affecting engine under hood thermal 

behaviour. A neural network based ranking procedure which may make it possible to 

reduce the order of concept decision space is also proposed. After several vehicle 

families gone through this prediction phase, a clustering of vehicle classes may allow 

for prediction and optimisation of new families, if errors due to assumptions and 

underlying mathematics are quantified.  

The project has the added benefit of allowing Volvo Car Corporation (VCC) to reuse 

the large amount of data which are seldom used after the initial project delivery date. 

Measurements collected in VCC’s wind tunnels are the main source of data for this 

thesis but the open-source script based method can be used on other type of data from 

other disciplines.  

A possible outcome of the thesis might be recommendation for updated procedures in 

creating and storing data to easier integration into machine learning based 

investigations.  

 

Key words: Machine learning, heat exposure protection, artificial neural networks, 

vehicle thermal properties, vehicle families, polynomial kernels, linear kernels, 

prediction, quantification of errors, regularization, radial basis functions, k-means, 
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Abbreviation 

 

ANN ............. Artificial Neural Network 

BEV .............. Battery Electric Vehicle 

CAC ............. Charged Air Cooler 

CC ................ City Cycle 

CFD .............. Computational Fluid Dynamics 

CON ............. Change of NRMSE 

CPU .............. Central Processing Unit 

FFNN............ Feedforward Neural Network 

HCTR ........... Hill Climb with Trailer 

ICE ............... Internal Combustion Engine 

ML................ Machine Learning 

MSE ............. Mean Squared Error 

NRMSE ........ Normalized Root Mean Squared Error 

NVH ............. Noise Vibration and Harshness 

OPM  ............ Object Process Methodology 

RBF .............. Radial Basis Function 

RBFN ........... Radial Basis Function Network 

RDE .............. Real Drive Emissions 

RL ................ Road Load 

RLTR ........... Road Load with Trailer 

SHC .............. Steep Hill Climb 

SUV .............. Sport Utility Vehicle 

SVC .............. Support Vector Classification 

SVM ............. Support Vector Machine 

SVR .............. Support Vector Regression 

VCC ............. Volvo Car Corporation 

 

  



 

 

  

Notations 

 

 

Roman upper case letters 

𝐃 Matrix stabilizer  

F Function calculating the output of an ANN 

𝐺 Gaussian function 

𝐆 Matrix with Gaussian function between input data and centers for the RBFN 

𝐆0 Matrix with Gaussian function between different centers for the RBFN 

𝐽 Number of element in the input data 𝐱 

K Kernel function 

N Number of training data sets 

W Power 

 

Roman lower case letters 

b Bias 

𝑓 Activation function 

𝑘 Number of clusters in 𝑘-means clustering algorithm 

m Number of neurons in a hidden layer. 

n The index of the data set. 

𝑟 Constant in support vector machine kernels 

v Signal from node before activation function 

𝑤 Weight (normal) 

𝐰 Weight (vector) 

𝑤𝑖 Weight for input signal 𝑖 
𝑤𝑖𝑗  Weight for input signal 𝑖 to node 𝑗 

𝐱 Input data 

𝐱(n) The 𝑛𝑡ℎ set of training data 

𝑥𝑖 The 𝑖𝑡ℎ input in 𝐱 

𝑦 Output data 

 

Greek upper case letters 

ℰ  Regularized cost function 

ℰ𝑠 Empiric cost function 

𝛺  Regularization function  

 

Greek lower case letters 

𝛾 Constant in support vector machine kernels 

𝜂 Learning rate 

𝜁 Signal from node after activation function 

𝜏 Torque of crankshaft 

𝛍i Vector for the center of a radial basis function 

𝜔 Angular velocity of powertrain crankshaft 
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1 Introduction 

1.1 Background 

The automobile industry is going through changes due to the increasing complexity of the 

product portfolio. The need to handle customer demands as environmentally as possible with 

products which have the highest possible quality and with least financial burden as possible; 

as well as doing this in a very short time is a real challenge.  

 

In facing multiple challenges, traditional methods employed early in the development phases 

are growing too hard to manage due to the numerous degrees of freedom, as well as number 

of dimensions involved. Occasionally, the complexity is handled by means of prioritising 

concepts, which may leave plausible concept solutions out of the concept design space due to 

lack of knowledge on a product which in fact is aimed to arrive to the market years later.  

 

For a new complexity there are new tools to consider. Many challenges faced by the 

information technology industries are handled using Machine Learning principles. Machine 

Learning, therefore, is a strong candidate to populate and validate concepts. In this sense the 

automotive industry can embrace the complexity, because innovations are through exploiting 

this complexity. 

1.2 Aim of the study 

During the early phases of product development there is a need to make decisions based on 

simplified models to determine in what direction the development should align. Today these 

decisions are made by experts based on the years on experience they possess. For this 

purpose, many tools are at hand at Volvo Car Corporation (VCC). For instance, the technical 

planning is done based on a functional disposition framework, where every system & 

component is connected to the customer needs instead of mere engineering performance 

cursors. The object process methodology is a means to establish the processes affecting 

objects in the above described framework. For further information the reader is advised to 

follow Törmänen [2]. As an example the Steep Hill Climb (SHC) test procedure is explained 

from the Object Process Methodology (OPM) point of view below. The schematic shows the 

traditional method used to determine if certain parts of the car will stay in the acceptable 

range when the car is subjected to the SHC-test. The schematic is depicted in object process 

methodology conventions.  

 
Figure 1.1.  OPM schematic of SHC-test performed in a wind tunnel to determine if a 

critical system temperature will stay within an acceptable range.  
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VCC has been performing wind tunnel tests under many years leading to a huge database for 

several car classes. By means of machine learning (ML), the need for resource-intensive wind 

tunnel tests can be minimized: 

 

 

 
 

Figure 1.2. OPM schematic of ML usage to determine if a critical temperature will stay 

within an acceptable range. 

 

With an appropriate ML technique, predictions of the temperature of the given car part may 

be performed with an acceptable margin of error, saving both time and money. This study 

aims to prove this as a possible method and to examine different methods for prediction.   

1.3 Literature study 

Compared to products which VCC is introducing nowadays to the market, vehicle models of 

20 years ago are rather simple in system configuration. Vehicles are now connected and 

partially autonomous, they are also much more efficient. In the course of last 20 years, the 

industry have tested and built-up a lot of know-how. Although the high expertise involved, 

the complexity of the products are not allowing simple formulations to describe complex 

system-of-systems behaviour. As an example, propulsion systems get much more complex 

and the count of components constituting a whole internal combustion engine increases with 

every model year. To handle this new complexity, new methods are proposed. In [3], tools to 

handle Big-Data are recommended to tackle internal combustion engine complexity, due to 

the fact that lean manufacturing and other traditional 6 Sigma processes for waste reduction 

are still reactive strategies and will not provide break-through impacts on automotive original 

equipment manufacturers. 

 

Theoretical information and instructions on how the ML tools should be constructed was 

taken mainly form Simon Haykin’s book [4] but also from lecture materials from different 

universities available online [5], [6], [7]. Implementing these tools in a technical system 

required more technical papers [8], [9], [10]. Zhang, [8], uses machine learning to model a 

complex phenomenon like internal combustion engine emissions. It is shown that although it 

is not amenable to a simple formulation, there is a structure in the emissions data set which a 

computer quantifies mathematically.  
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During the course of the project the prospect of ranking the input parameters with different 

methods were explored [11], [12]. 

1.4 Method 

This work is performed at the VCC Vehicle Propulsion- 97100 Propulsion Strategy & 

Innovation Department. The study is started with a literature study. Simultaneously, surveys 

with the staff from VCC Environment and Fluid Dynamics Centre, Thermodynamics group is 

conducted. In this way, related test procedures, databases, test set-ups and vehicle families 

are listed. Following the creation of access to databases, a sub-set of the thermodynamic test 

results are created locally. Principles of thermodynamic behaviour, as well as contemporary 

automotive systems are studied. Parallel to this, the study involved benchmarking several 

Python based tools for ML purposes.  

 

Additionally an ANN tool is scripted from scratch to comprehend the process thoroughly.  

In the course of the study, the detail in the models are increased. Benchmarking methodology 

made it possible to devise the optimum error/activation functions for the task in hand. After a 

working ANN set-up prescribed, methods from literature are used to sort the wind tunnel test 

parameters in their importance. This set-up used further to cluster vehicle classes using ML.   

 

Python version 2.7 was chosen as the primary programming language because of its open 

sourced nature and the ML tools available. The chosen tool for this project is the Scikit-learn 

module. These tools are complemented with python tools scripted from scratch by the author 

of the M.Sc. thesis. 
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2 Theory 

2.1 Machine learning 

Machine learning (ML) is a discipline in computational science, where algorithms make 

predictions by means of inferred conclusions based on a set of data, instead of using analytic 

or numerical approaches. The principle is based on features (which are chosen to sufficiently 

describe the system at hand) through which a statistical algorithm will “learn” via a process 

of pattern recognition. In that way the code is able to describe a system without an explicit 

programming [6]. 

 

2.1.1 Supervised vs unsupervised learning 

Two of the most basic categories of machine learning are supervised and unsupervised 

learning. In both categories 𝑁 sets of training data 𝐱(𝑛), 𝑛 = 1,2, … 𝑁 will be studied, but 

only in the case of supervised learning will these sets of data have a corresponding 

label, 𝑦(n).  

 

Unsupervised learning uses the distribution of the data to either clustering them into groups 

or determines odd cases which differ substantially from the majority of the data. Supervised 

learning uses algorithms to connect a new set of data with the right label y. It is referred to 

either classification or regression depending on the nature of the label 𝑦. Discrete labels can 

be separated by classification, while continuous labels are approximated with regression [13]. 

2.2 Artificial neural networks 

Artificial neural networks (ANN) or just neural networks are computational models based on 

the workings of the human brain. These networks are collections of connected nodes which 

regulate flow of signals among each other in a very similar fashion to how brain cells work. 

Because of the similarities between ANN and the human brain, the nodes in the network is 

often referred to as neurons, a synonym for nerve cells. Many network architecture organise 

the neurons into layers where the first and last layers are referred to as input and output layer 

respectively and any layer between them are referred to as hidden layers. 

 

 
Figure 2.1          Illustration of a simple artificial neural network with one hidden 

layer with signals among the nodes. 
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Neural networks are often used in machine learning where a large number of inputs and the 

corresponding outputs are known, but the exact relationship between them are unknown. By 

initialising an ANN and training it with the known data, a relationship structure may be 

prescribed without knowing the underlying physics. The network can then be trained with 

new data and new results can be predicted. As ANN is trying to prescribe a relationship, it is 

important to quantify the amount of error created. In this study, methods based on literature 

study will be devised to handle the error.  

 

2.2.1 Feedforward neural network 

Feedforward neural network (FFNN) is arguably the simplest type of artificial neural 

networks. The neurons are organized into different layers where signals only can be sent in 

one direction. The signal 𝑥𝑗 from the 𝑗𝑡ℎ  neuron in the previous layer are multiplied with a 

weighting value, 𝑤𝑗. The sum of all the multiplications are then inserted into an activation 

function together with a constant bias, 𝑏 and the result is fed to the next layer in the network. 

 

 
Figure 2.2.  Illustration of a neuron in a feedforward neural network. 

 

The output signal 𝜁𝑖 from neuron 𝑖 can be computed as 

𝑣𝑖 = ∑ 𝑤𝑗𝑥𝑗

𝐽

𝑗=1

+ 𝑏,          𝜁𝑖 = 𝑓(𝑣𝑖) 

 

(2.1) 

 

The connection among the different layers are based on the choice of activation function and 

the weighting value saved in the weight-vector 𝐰. Some authors add the bias term 𝑏 to the 

sum, while other authors combine weight and bias by adding an extra weight and an input 

that is equal to 1. The properties of the network is based on the number of hidden layers, the 

number of neurons in those layers and the activation function used in each layer.  
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The choice of activation function varies depending on the range of the wanted output but 

easily differentiable activation functions in the following table are the most common: 

 

Table 2.1.  List of common activation function for a feedforward neural network. 

Name Formula  Range Differential function 

Logistic 
𝑓(𝑥) =

1

1 + 𝑒−𝑥
 

(0,1) 𝑓′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)) 

 

Hyperbolic tangent 𝑓(𝑥) = tanh(𝑥) (−1,1) 𝑓′(𝑥) = 1 − 𝑓(𝑥)2 

Identity  𝑓(𝑥) = 𝑥 (−∞, ∞) 𝑓′(𝑥) = 1 

 

The reason why easily differentiable activation functions are common is due to the fact that 

they allow the system to be trained with backpropagation. By calculating the output, of the 

FFNN, for a random set of input data 𝐱(𝑛), the weight of the signal between node 𝑖 in one 

layer and node 𝑗 in the next layer can be updated: 

 

 𝑤𝑗𝑖
𝑛𝑒𝑤 = 𝑤𝑗𝑖

𝑜𝑙𝑑 + 𝜂𝛿𝑗𝑥𝑖 

 

(2.2) 

 

Here 𝜂 is the learning rate, 𝑥𝑖 is the signal from the previous node and  𝛿𝑗 is the error signal 

for node j. This is done for all elements 𝑤𝑗𝑖
  in 𝐰. The error signal depends on the differential 

of the nodes activation function and the error between the systems predicted output and its 

expected output for input data 𝐱(𝑛). By repeating this process for different 𝐱(𝑛), a value for 

𝑤𝑗𝑖
  which minimizes the error in the prediction can be reached by a gradient descent method. 

This process is referred to as “training” the system. The errors in prediction that remains in a 

trained system can be caused by the limits of the system or by the gradient descent 

converging to a local error-minimum instead of a global error-minimum. The number of 

hidden layer and the number of neurons in them effects how the network behaves.   
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Figure 2.3  Illustration of a feedforward neural network with one hidden layer. 

 

The output for a FFNN with one hidden layer and a liner activation function in the output 

layer can be expressed as the following function: 

 

 

𝐹(𝐱) = ∑ 𝑤𝑖
(2)

𝑓 (∑ 𝑤𝑖𝑗
(1)

𝑥𝑗

𝐽

𝑗=1

)

𝑚

𝑖=1

 

 

(2.3) 

 

During the project, the activation function in the first layer 𝑓 that was chosen as the logistic 

function due to the nature of the problem at hand. 

 

2.2.2 Radial basis function network 

Radial basis function networks (RBFN) are similar to a three layered FFNN with a difference 

in the process between the input layer and the hidden layer. The nodes in the hidden layer 

represents centers 𝛍𝒊 in the same space as the input parameters. The signal between the input 

layer and the hidden layer depends on the Euclidian distance between the input-vector 𝐱 and 

the vector for each of these centers 𝛍𝒊, ‖𝐱 −𝛍𝒊‖. This means that there is no weight-vectors 

and the activation function is a radial basis function that depends on ‖𝐱 − 𝛍𝒊‖.  

 

A common radial basis function is the multivariate Gaussian function: 

 

 
𝐺𝑖 = 𝐺(𝒙, 𝛍𝒊) = exp (−

1

2𝜎2
‖𝐱 −𝛍𝒊‖2) 

(2.4) 

 

 

where 𝛍𝒊 is the vector for the 𝑖𝑡ℎ center and 𝜎 is the standard derivation. The location of these 

centers can be chosen randomly or distributed more evenly with the aid of different 

algorithms.      

 

 

 
Figure 2.4. Illustration of a radial basis function network. 𝐺𝑖 is the Gaussian function with 

respect to the 𝑖𝑡ℎcenter, which has the coordinate 𝛍𝒊. 
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A network where the RBF has 𝑚 centers and has a linear activation function in the output 

layer has the following solution:  

 

 
𝐹(𝐱) =  ∑ 𝐰𝑖 𝐺(𝐱, 𝛍𝑖)

𝒎

𝒊=𝟏

 
(2.5) 

 

 

 

When working with RBFN, it is important to allow for a good coverage both for the input 

data and for the centers. Because the RBF depends on the Euclidian distance to the centers, 

these centers have to be well distributed and populated in relatively large numbers. In a 

system with a large number of input parameters, the same number of centers are often used. 

2.2.3 Regularization of ANN  

To prevent overfitting, regularization is an important mathematical operation[6]. It involves 

minimizing the regularized cost function ℇ, which is sum of the empiric cost function ℇ𝑠 and 

a regularization function Ω.    

 

 ℇ(𝐹) = ℇ𝑠(𝐹) + Ω(𝐹) (2.6) 

   

For an ANN problem, the empiric cost function will measure the error of the solver and the 

regularization function quantify how complex the solver is, by minimizing the sum of these a 

solution that balances accuracy and simplicity can be found. One advantage with radial basis 

function networks is that there is a very convenient way to analytically calculate a weight 

vector 𝐰 to be optimized according to regularization, instead of approximate it with 

backpropagation.  

 

Haykin [4] demonstrates the analytic solution for Eq. (2.6) with the solver F from Eq. (2.5) 

for the RBF network with linear activation function in the output layer.   

 

  

ℰ(𝐹) = ∑ (𝑦(𝑛) − ∑ 𝑤𝑗𝐺(𝐱(n), 𝛍𝐢)

𝑚

𝑗

)

2

+ ‖𝐃𝐹‖2 =

𝑁

𝑛

 

 

‖𝐲 − 𝐆𝐰‖2 + ‖𝐃𝐹‖2 

 

 

 

 

(2.7) 

 

Here 𝑮 is a 𝑁 × 𝑚- matrix with the element of the Gaussian function between the N input 

vectors and 𝑚 centers with the elements 𝐆𝑛𝑖 = 𝐺(𝐱(𝑛), 𝛍𝐢) , 𝑫 is a chosen matrix stabilizer 

that quantifies the complexity of F. With the right choice of 𝑫 can the regularization function 

can be rewritten as: 

 

 ‖𝐃𝐹‖2 =< 𝐃𝐹, 𝐃𝐹 >= 𝐰𝐓𝐆𝟎𝐰 (2.8) 
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where 𝑮𝟎 is a symmetric 𝑚 × 𝑚- matrix with the Gaussian function between the different 

centres and has the elements 𝐆𝑘𝑖 = 𝐺(𝛍𝐤, 𝛍𝐢). The weight w which minimizes Eq. (2.7) can 

be calculated by deriving the function with respect to 𝐰 and setting it to zero: 

 

 𝐆𝐓𝐆𝐰−𝐆T𝐲 + 𝐆𝟎𝐰 = 0 (2.9) 

   

from this, the minimizing weight vector can be calculated as: 

 

 𝐰 = (𝐆𝐓𝐆 + 𝐆𝟎)−1𝐆T𝐲 

 

(2.10) 

Instead of training, using regularization to compute the weight vector prevents a too complex 

solution that can lead to overfitting. Therefore for problems which require large number of 

iterations of the backpropagation, there is the possibility of saving computation time. 

Regularization can also be used in other ways in ANNs, when the complexity of the solution 

needs to be balanced with the accuracy. It is a matter of obtaining the proper regularization 

function Ω. 

2.3 Support vector machines 

Another way to perform supervised learning is the use of support vector machines (SVM). 

Unlike ANN, these machine learning models train during the predictions instead of training 

the system before making predictions. To determine the best predicted output, SVMs 

compares every test data 𝐱 and training data 𝐱(𝑛) with the aid of a kernel function 

𝐾(𝐱(𝑛), 𝐱). Support vector machines were used for both regression and classification in the 

M.Sc. project.  

 

For classification problems, the SVM looks at data in two classes with designation 𝑦 = 1 and 

𝑦 = −1. The predicted class for an input data 𝑥 is the sign of the multiplication of the kernel 

with the result 𝑦𝑛 and constant 𝛼𝑛, summed over all training data:  

 

 

𝑓(𝑥) = 𝑠𝑔𝑛 (∑ 𝑦𝑛𝛼𝑛𝐾(𝐱(𝑛), 𝐱)

𝑁

𝑛=1

+ 𝑏) 

 

(2.11) 

 

When there is more than two different classes the Python script will create multiple 

classifiers, so there is one classifier for every permutation of two classes [14], [15]. This is 

called support vector classification (SVC). 

 

Support vector regression (SVR) calculates the continuous label for the data set with the 

function: 

 

𝑓(𝑥) = ∑(𝛼𝑛 − 𝛼𝑛
∗ )𝐾(𝐱(𝑛), 𝐱) + 𝑏

𝑁

𝑛=1

 

 

(2.12) 

 

   

The value of the constants 𝛼𝑛 and 𝛼𝑛
∗   and the bias 𝑏 are optimized by the Python script in a 

way similar to regularization, minimizing the sum of the error and a quantifier for the 

complexity. The kernels which were used are displayed in Table 2.2 
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Table 2.2.  List of SVM kernels available in Python toolkit Scikit-learn. 

Name Kernel function 𝐾(𝐱(𝑛), 𝐱) 

Linear kernel 𝐱T𝐱(n) 

Polynomial kernel 

of the 𝑗𝑡ℎdegree 

 

(𝛾𝐱T𝐱(𝑛) + 𝑟)𝑗 

 

Radial basis 

function kernel  
exp(−𝛾‖𝒙 − 𝒙(n)‖2) 

2.4 Clustering 

To get a favourable distribution of the centers in the RBFN and to examine the unsupervised 

learning results, it is possible to implement a k-means clustering algorithm. k-means 

algorithm divides 𝑁 sets of data into k different clusters, each with a center 𝛍. A set of data 𝐱 

is assigned to the cluster of which it has the smallest Euclidian distance,‖𝐱 − 𝛍‖, to. The 

algorithm determines the k centers, which minimizes the total Euclidian distance for the 𝑁 

sets of data to its assigned cluster center. The centers in the radial basis function network can 

be distributed with this algorithm. 

 

2.5 Thermodynamics -The need for cooling 

 

The first law of Thermodynamics prescribes rules for an energy balance on any arbitrary 

control volume; i.e., energy cannot be created nor destructed but only can be transformed. 

The second law of Thermodynamics states that heat always flows from warmer objects to 

cooler objects if no external force is applied. These are the essential principles which govern 

the behaviour of an internal combustion engine (ICE). An ICE therefore can only work 

between two finite temperatures. This leads to a necessity to dissipate heat due to production 

of work. To make this process as efficient as possible, cooling systems are designed. For 

common automotive applications, a liquid coolant circulates the engine, absorbing heat until 

it arrives at the radiator where the heat is dissipated to the ambient air.  

The above described process leads to different engine component temperatures, as well as 

high air temperatures downstream various heat exchangers. To quantify the systems and 

processes, experimental and computational studies are performed during vehicle 

thermodynamic development. Accordingly, this project is based on the data from wind tunnel 

measurements to balance and tune thermodynamic attributes of vehicles.  

 

Although the data is obtained from thermodynamic development projects, the reported 

method is generic in nature and as stated in the literature, may be applied to other disciplines 

in a similar fashion.  
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3 Problem formulation 

The powertrain for the vehicle is designed by the Vehicle Propulsion department and 

Thermodynamics group secures heat exposure prevention of the vehicle components when 

this powertrain is installed in a vehicle. In that sense, Thermodynamics group at the Volvo 

Car Corporation Environment and Fluid Dynamics Center owns the task of dissipating 

efficiently the excess heat energy from internal combustion engines. This thesis is set to 

determine the prospects of determining the functioning of the heat exposure prevention based 

on data from Thermodynamics group, using machine learning principles. This approach is 

expected to bring three advantages: 

 

1- Once the ML tool is at place, the operator does not need to know the all the 

underlying physics of the system in question. Using data, a black-box model can be 

prescribed relatively easy. The specialized tools like CFD require years of training but 

a black-box model is substantially straightforward.  

2- Specialized tools may need geometrical or non-geometrical data as inputs, which may 

not be available. Data-driven approach include effects from these inputs implicitly.  

3- Compared to other methods, ML-based approaches may provide with concept 

decision support faster due to the simplicity of the framework. 

 

Networks like those described in the previous chapter are used on data provided by 

Thermodynamics group from the Volvo Car Corporation Environment and Fluid Dynamics 

Center. To be able to work on without effecting the on-going projects, a sub-set of the huge 

database is created locally. The work process comprises choice of a Key Performance Index 

(e.g., a temperature or a power signal) and then training the ANN structures based on wind 

tunnel data. After the ANN have been tuned to predict the chosen KPI output with low error, 

other studies of sorting the features, clustering the data and model reduction can be 

performed. 

 

3.1 Data generation 

The data sets used were generated by Volvo Car Corporation’s wind tunnel facility in the 

Torslanda plant. The facility features an 8.15 meter fan that can generate winds up to 

250km/h [16]. All the data sets used where thermodynamics-and-cooling-performance tests 

performed during 2016. Five different car models where chosen due to their different 

properties and the availability of data.  

 

VCC wind tunnel is a state of the art facility which includes boundary layer suction slits and 

a moving ground. For a routine test, full-size test vehicle is placed on a balance and effects of 

studied design changes are quantified by their consequences in drag coefficient magnitude. 

Tests aiming thermodynamic performance constitutes analyse of logs from several 

thermocouples positioned in the vehicle under hood. Beyond these, parameters are also 

extracted from the vehicle on-board diagnostics software and from instruments in the wind 

tunnel. The parameters are recorded every second. The five cars are referred according to 

Euro Car Segment [17] and the type of fuel it uses.  
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Table 3.1. The codes for the cars used with the types of car and volume of the   

 engine compartment.  

Name Engine 

compartment 

volume  

Type of car 

E-Diesel Low Executive car 

E-Gasoline Low Executive car 

C-Gasoline Low Medium car 

J-Diesel High SUV 

J-Gasoline High SUV 

 

The low car is used to describe vehicles with relatively smaller engine compartments. Sedans 

and kombi vehicles have smaller engine compartment volume than that of SUVs. The 

Medium car is the smallest car in the collection, the two executive cars are larger and both 

belong to the same series of cars but use different fuels and therefore different engines. The 

last two cars are sport utility vehicles (SUV) with higher engine compartment volumes. The 

gasoline-driven SUV is a smaller model than the diesel-driven SUV.  

 

3.2 Key performance index 

A key performance index (KPI) is used as objective to train ML algorithms. Initially 

temperature of the coolant fluid after the radiator was examined. Due to excessive 

fluctuations in data that the ANN could not keep up with, a new KPI was devised. The KPI 

chosen was power and was determined by the engine speed multiplied with the torque of the 

crankshaft, a common method of determining the power exerted by the engine.  

 

As the wind tunnel measurements are performed at different boundary conditions as speed, 

inclination and temperature were altered, KPI from the each boundary condition alternatives 

were used as the output of the artificial neural networks.  

 

3.3 Wind tunnel tests 

The wind tunnel measurements are performed in standardized test routines which simulate 

different driving scenarios. Several tests are performed in different ambient temperatures to 

simulate the markets distributed into several world regions. As high power needs of the 

engine causes higher dissipated heat powers, tests which involve towing trailers are often 

performed with several trailers of different weights. Being another critical condition, tests 

simulating vehicle behaviour on inclinations are done with loads on rollers carrying the test 

vehicle in the wind tunnel. 

 

Some of the tests include a conditioning phase where the tunnel simulates running on a flat 

road surface at medium speed to heat up the engine and components. Afterwards, there is a 

soaking phase where the fan and the car engine is turned off.  A list of different tests with 

illustrations of speed and inclination can be found in Table 3.2 and an enlarged image of the 

SHC test with phases can be found in Figure 3.1. 
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Table 3.2, Describes the different test types of test procedures used for thermodynamic 

development. Illustration also shows of how the speed and inclination varied during the 

course of a single test.  

Name Code Conditi

oning  

Note Illustration 

     

Steep hill 

climbing 

SHC Yes Drive up to a 

hill for a 

period of 

time 

 
Hill 

climbing 

with 

trailer 

HCT

R 

Yes Drive up to a 

hill with a 

trailer for a 

period of 

time 

 
Roadload 

with 

trailer 

RLTR No High speed 

with trailer 

from cold 

start. 

Continue 

until 

stabilized 

temperatures 

reached.  

 

City 

Cycle 

CC Yes Cycle of 

starts and 

stops. 

 
Roadload RL No High 

constant 

speed on flat 

road. 
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Figure 3.1 A close up of the three phases of a steep hill climb test. First the engine is  

  warmed up during the conditioning. Then the test starts, the speed is  

  decreased and inclination is simulated. Finally the engine is turned off and  

the cooling of the car is recorded.  
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4 Extraction of parameters from wind tunnel database 

The data generated from the wind tunnel experiments are saved in Microsoft Excel 

worksheets in a certain way. The first sheet contains the parameters’ name, a short 

description, name of the sensor that recorded the data and similar information, are registered 

in the file. Each of these Excel documents are around 1 GB in size.  

 

A problem which was encountered early on in the project was the lack of standardisation of 

this information set. Data generated from the same car had the same name and descriptions, 

but between different cars this name convention was not kept. Most of the information is 

collected by sensors which have to be mounted in the car prior to the experiment. The work-

intense process of installing these sensors caused that only the sensors the test designer asked 

for are installed This still means that most experiments comprise of data from between 350 

and 400 parameters logged once every second for between 4000 and 5000 seconds.  

 

4.1 Finding common parameters 

With the assistance of scripted Python-modules, the Excel sheets from each wind tunnel test 

are read and a list of measured parameter-descriptions are created. This list is then compared 

with all the other lists in the created database and parameters which are not present in all of 

the databases are removed. Due to variation in naming of the parameters, this comparison 

was done on the descriptions of the parameters at the first page of every Excel sheet. Some 

important parameters which were measured in all vehicle test cases but had different 

description tags, were treated as special cases to account for this inconsistency. Being 

parameters to assure the proper functioning of the tunnel, some parameters were removed as 

they lacked any real information content for the purpose of this thesis.  

4.2 Parameters 

A total of 42 parameters was used for as features for the machine learning framework.  

 Temperature measurements 

o Air after cooling fan 

o Air before and after CAC 

o Coolant before and after radiator 

 Wind tunnel control parameters  

o Ambient temperature 

o Inclination 

o Wind speed 

o Solar simulation intensity 

o Various temperatures 

 Vehicle geometry 

o Grill and spoiler area 

o Shutter area 

o Rolling drag 

o Rolling drag/velocity 

o Drag/velocity 

o Mass 

 Engine 

o Crankshaft torque 

o Engine rpm 
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The only parameter which was not taken from the wind tunnel database was the geometrical 

information of the cars: the area of the grill, the spoiler and the shutters behind them. These 

parameters control the airflow to the engine. 

 

 

4.3 Parameter ranking 

Due to the high-dimensionality of the input data, a ranking procedure is prescribed to sort the 

data in their importance. Ranking the input parameters allows for estimation how much 

impact each of the parameters have on the performance of the car by means of imposed 

changes in KPI. The method of ranking are done by measuring the imposed change in the 

normalized root mean squared error (NRMSE) [11], [8] 1 when a ML case is run with and 

without the concerned parameter.  

 

Mean squared error (MSE) is a method for estimating the error of a function by calculating 

the average difference between a set of expected data �̂�(𝑛) and a corresponding set of 

calculated data 𝑦(𝑛): 

 

 

MSE =
1

𝑁
∑(�̂�(𝑛) − 𝑦(𝑛))2

𝑁

𝑛=1

 

(4.1) 

As the name suggest is NRMSE a normalised root of the MSE:  

 

 
NRMSE =  

√MSE

�̂�𝑚𝑎𝑥 − �̂�𝑚𝑖𝑛
   

(4.2) 

 

With this normalization can different type of data be quantified equally and their error 

compared.  

 

The Change of NRMSE (CON)-test is performed by construction and training a machine 

learning-method to make a prediction of KPI. The NRMSE between the prediction and the 

experimental data is then calculated. Afterwards, one of the input parameters of the ML tool 

is removed and the tool is redone and trained to work with one less parameter. The NRMSE 

between the new prediction and the experimental data is then calculated. The parameter is 

then returned and another parameter removed in its place. The difference in NRMSE for the 

network with all parameters and the network with one parameter missing is that parameter’s 

CON-value.  

 

Depending on the goal of the ranking, two alternative CON-value based method can be 

utilized [11]. Large changes in NRMSE mean that the parameter is important while small 

changes mean the modified parameter does not affect the network at all. The alternative 

method is to single out the parameter which gives the largest decreases in NRMSE. A large 

decrease in NRMSE could possibly be a sign that this network would work better without this 

parameter. Both these methods will be considered. Following the ranking procedure, the 

                                                
1 [11] demonstrated Change of MSE, [8] recommended that NRMSE was used to determine the accuracy of 
networks prediction.  
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overall dimension of the ML-case can be reduced by omitting unimportant parameters. This 

is a way to reduce the order of the model as well as increase the speed of the remaining ANN.  

 

4.4 Creating neural network for prediction 

Conforming to ML practices, before inserting the parameters from the wind tunnel into the 

different neural networks, each of them are normalized to between 0 and 1 [8]. Data from 

cars different but investigated incorporating the same type of test, are combined into 𝑁 sets of 

training data, where 𝑁 is the combined number of time-steps for every test. The input data is 

saved in a matrix, while the output data is saved as a vector.  

 

In literature, input data is separated into different subsets as 70% training, 30% test set; 

alternatively 60% training set, 20% Cross-validation set and 20% test set [7]. 
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5 Results 

The trained networks are tested on a single vehicle test case at the wind tunnel. The results 

from a SHC test for the vehicle of class E with Diesel powertrain are plotted in all the 

subsections to allow for a comparison. SHC test procedure was chosen, because it was the 

most common vehicle test case in the studied database. 

5.1 First ML attempt with temperature signal as KPI 

Several wind tunnel parameters were investigated to be chosen as KPI and output of the 

various networks. Early tests were done using the temperature of the coolant at the radiator 

exit as KPI. The following graph was created with a FFNN with 15 neurons in the hidden 

layer. 

 

 

 

 
Figure 5.1 Experimental and FFNN predicted data for the temperature of the coolant  

when it leaves the radiator in a steep hill climb test   

  

The graph in Figure 5.1 shows the problem encountered while using a temperature as KPI to 

train the ANN. The FFNN prediction is able to approximate the coolant temperature with an 

acceptable margin of error. The NRMSE for this plot was 0.1053, recommended acceptable 

error is 0.08 [8]. Here the error depend a lot on the initial conditioning phase of the engine 

and the vehicle components which is done in every wind tunnel vehicle test cases.  Here it 

was observed that the network is not able to follow this initiation phase efficiently. Neither 

the designed FFN network was able to handle the fluctuations of the temperature signal. 

What it was able to do was predict the temperature accurately enough to determine what 

range the experimental temperature lies in which means the schematic in Figure 1.2 could be 

possible to achieve. 
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5.2 Updated KPI for ML 

After several discussions another KPI was chosen. Being a more direct signal for the engine 

behaviour, a new KPI, the power of the engine, was decided. The power is calculated by the 

torque 𝜏 of the crankshaft multiplied with the rotational speed 𝜔 of the crankshaft and a 

constant to transform to the unit horsepower: 

 

𝑊 = 𝜏 × 𝜔 ×
1

5252
 

𝜔 is also known as the engine’s rotations per minute (rpm). Because of spikes in the data, for 

this new KPI, a filter was also used one the data to smooth these out. With a Python routine, a 

median filter analyses the vector that is the output and changes the value of one element in it 

to the median of the surrounding elements.  

 

The rest of the results focus on power signal as an output. 

5.3 Prediction using feedforward neural network 

The result of a FFNN with 20 neurons in hidden layer resulted in a prediction that could 

handle the step-like nature of the key performance index, but the accuracy was not satisfying. 

Changing the number of neurons in the hidden layer did not result in greater accuracy.  

 
Figure 5.2. The experimental results for a Steep Hill Climb-run for the car from vehicle 

class E-Diesel. The predicted results from a feedforward neural network with 

one hidden layer is also illustrated. The FFNN used 20 neurons in the hidden 

layer. 

5.4 Radial basis function network 

With the radial basis function the center for the hidden layer were determined by a k-means 

clustering algorithm and the weight was calculated with Eq. (2.9). The entire set of the input 

data was feed to a k-means algorithm and k different clusters were formed. These centers of 

these clusters also functions as the centers for the RBFN. The number of centers and the 

dimension of the input vector are equal. The result are strongly different from the FFNN. 

Both the predictions for initial conditioning phase and the majority of the hill climb phase 

have achived a very close approximation. The spike the key performance index have at the 

start of the hill climb phase is the only part that the networks have problem while fiting. This 
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finding is conform with the results reported by Zhang [8] as the ANN method has known 

limitations for fast transient behavior.   

 
Figure 5.3. The experimental results for a Steep Hill Climb-run for the car E-Diesel. The 

predicted results from a radial basis function network is also illustrated.  

5.5 Support vector regression 

The SVR from the Scikit-learn module was performed with two different kernels governing 

the behaviour between the training data and test data. The result of the 3rd degree polynomial 

kernel is not able to follow the complexity of the data and only results in a constant value for 

SHC. The radial basis function kernel instead follows the experimental data accurately, as 

illustrated in Figure 5.4. 

 
Figure 5.4. The experimental results for a Steep Hill Climb-run with the predicted results 

from a support vector regression with an RBF kernel and a 3rd degree 

polynomial kernel.  

5.6 Accuracy and time 

To compare the accuracy of the different ways of predictions, five different ML test runs for 

each type of vehicle tests were randomly chosen and the NRMSE between the predicted KPI 

and the experimental data was calculated and displayed in Table 5.1 and Figure 5.5.  
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Table 5.1.  NRMSE for different prediction methods and different types of wind tunnel 

tests. The range of the error for each method is displayed at the bottom. 

Test Regularized 

RBFN 

Trained 

RBFN 

FFNN SVR with 

RBF kernel 

SVR with 

3rd degree 

polynomial 

kernel 

SHC 0.04 0.07 0.750 0.04 0.36 

RL 0.02 0.06 

 

0.175 0.05 0.31 

RLTR 0.02 0.19 0.326 0.07 0.56 

HCTR 0.04 0.05 0.187 0.04 0.34 

CC 0.03 0.09 0.126 0.04 0.11 

Range 0.02-0.04 0.05-0.19 0.12-0.75 0.04-0.07 0.11-0.56 

 

 

 
Figure 5.5.  The error from the different types of test for the different prediction methods. 

 

The results shows that for all the different types of vehicle tests, the greatest error is attained 

while using FFNN-predictions and the SVR with the 3rd degree polynomial kernel. The best 

predictions are done by the regularized RBFN and the SVR with RBF kernel. The different 

vehicle test cases reacted very differently with the trained RBFN, some were almost as good 

as the regularized version while others were worse. Only the regularized RBFN and SVR 

with RBF kernel accomplised an overall NRMSE of below 0.08 which was recommended 

[8]. 

 

The elapsed CPU-time for each of these ML predictions vary a lot depending on the metod 

used. In one case of N sets of data it takes less than 100 seconds to analyticaly calculate the 
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solution of the weight-vector, for the radial basis function network, with the help of 

regularization. After this, the network was trained and the prediction of one test took less than 

1 second. To perform predictions with SVR for the same sets of data it took 800 seconds for 

polynomial kernel and 4000 seconds for the RBF-kernel. This substantial time difference 

between a compuational and analytical solution would be even more important when the 

number of training sets becomes even higher.  

 

The general trend in the automobile industry is towards more time critical concept phase 

operations, thus fast & accurate concept studies are crucial. 

 

5.7 A comparison for all studied vehicle classes 

Figure 5.6 contains the SHC tests from all the different cars. The x-axis depicts the KPI for 

all test at the same point in the test cycle. The y-axis shows the temperature of the air after 

the engine fan; which is used here as an overall thermal representation of the engine 

compartment. The results from the experiment are shown together with the results from the 

RBFN and the SVR with RBF kernel.  

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Experimental results (●), RBFN predictions (■) and SVR with RBF kernel (▲) 

for different cars.   

 

The relationship between the performance of the car and temperature of the engine bay 

illuminates the differences between the different vehicle classes in a clear way. The two E- 

vehicle class cars are the sedan and kombi version of the same car and require about the same 

power for the same task but the gasoline engine generates more heat. The E-vehicle class 

Gasoline has more in common with C-vehicle class Gasoline, which also has a smaller engine 

compartment and uses the same fuel. J-vehicle class Diesel is the largest car, so that is would 

require the greatest amount of power to perform the same task. The reason for intermingling 

between the J-vehicle class Gasoline and the E-vehicle class Diesel is the author of this thesis 

not able to elucidate.  
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5.8 Classification 

Because of the range of different car models VCC have on the market, it would be useful to 

group them into classes to easier see patterns. This may help to determine in which areas the 

company may profit investing research and development operations. There are of course 

already classification based on design commonalities but as will be seen, the model of engine 

and type of fuel will have great impact on the performance of the automobile. Alternatively, 

the method reported here can be used with other data related to vehicle performance and 

elucidate patterns not obvious to the experts.  

 

The following graphs feature the relationship between the KPI and the temperature right after 

the automobile’s cooling fan to represent an overall indicator for the temperature of the 

engine compartment. A snapshot of the relationship is taken during the test-phase of the wind 

tunnel test i.e. after conditioning and before the soak phases. The graphs shows the 

experimental data and the predictions from the RBFN and SVR with RBF-kernel. 

  

The supervised classification problem was performed with SVC functions in the open-source 

Scikit-learn module of the Python. For the five cars described in Table 3.1, different methods 

of determining the classification problem are applied. On the following set of plots, the 

colour of the background indicates the cluster that the classifier classes that area as, while the 

colour of the data point indicates the known result. 

 

The data which was classified was data taken from the steep hill climb tests during the hill 

climb phase of the test sequence. The graphs shown uses a normalized temperature of the 

position behind the cooling fan of the engine compartment on one axis and the normalized 

KPI on the other.  

 

5.8.1 Vehicle classification using linear kernel 

The simplest kernel presented in Table 2.2 is the linear kernel, which results in some rather 

accurate results. 
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Figure 5.7. Data for the several Steep Hill Climb-runs during the 

hill climbing phase of the test. The results of 

experiment, prediction from RBF networks and SVR 

networks are shown. The y-axis is an indicator of the 

temperature in the engine room. The classification of 

the different cars are performed with SVC with a 

linear kernel 

 

As the work of Bäck [9] reports, the approximations comprising linear kernels are providig 

reasonable results. This may be an advantage for concept studies as the linear algorithms are 

faster than algorithms including higher order polynomials.  

 

5.8.2 Vehicle classification using polynomial kernel 

Classification with a polynomial kernel of the 3rd degree gives less accurate results than the 

linear kernel because some of the C-Gasoline data points does not fall within the C-Gasoline 

classification zone.  
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Figure 5.8. Data for the several Steep Hill Climb-runs during the hill climbing phase of 

the test. The results of experiment, prediction from RBF-networks and SVR-

networks are shown. The classification of the different cars are performed 

with SVC with 3rd degree polynomial kernel 

 

 

 

 

 

 

Additional ML tests pointed that the 5th degree polynomial kernel is able to place C-Gasoline 

in the right area, but the prediction with higher order polynomials gets a very complex form 

compared to the linear kernel. 
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Figure 5.9. Data for the several Steep Hill Climb-runs during the hill climbing phase of 

the test. The results of experiment, prediction from RBF-networks and SVR-

networks are shown. The y-axis is in indicator of the temperature in the engine 

room. The classification between the different cars are performed with SVC 

with 5rd degree polynomial kernel. 

 

A comparison between the linear and polynomial shows a difference in the upper right 

corner. Both polynomial kernels identify this area as belonging to C-Gasoline while the linear 

kernel assigns this area to E-Gasoline. Because this area is “empty” there is nothing to 

indicate what class it should belong to. This may be another output of this M.Sc. thesis that 

the company would invest more experimental resources proactively in line with the clustering 

results above.  

 

5.8.3 Vehicle classification using RBF kernel 

The RBF kernel worked very well for regression but its limitation is very apparent when it 

comes to classification. When a radial basis function is used in RBFN, a great amount of 

design space coverage is needed to provide accuracy. SVC puts one class as the default class 

and the rest covers an area around its training points. The size of these areas are determined 

by the parameter 𝛾 from Table 2.2. The greater the constant 𝛾, the smaller the standard 

derivation 𝜎.  In this sense we have problems in the areas where there is less amount of 

vehicle test data, thus VCC may try to distribute the experimental work accordingly.  
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 Figure 5.10. Data for the several Steep Hill Climb-runs during the hill climbing phase of 

the test. The results of experiment, prediction from RBF-networks and SVR-

networks are shown. The y-axis is in indicator of the temperature in the engine 

room. The classification between the different cars are performed with SVC 

with radial basis function kernel 

5.8.4 Vehicle classification using other vehicle tests than SHC 

SHC test was chosen because it had the largest amount of data and because it had the best 

and most clear limits between the classes in the temperature-KPI space. But one other wind 

tunnel test also gave similar results. In Figure 5.11 is the results for the Hill Climb with 

Trailer (HCTR) test is plotted.  
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Figure 5.11. Data for the several Hill Climb with trailer-tests during the hill climbing 

phase of the test. The results of wind tunnel experiments, prediction from 

RBF-networks and SVR-networks are shown. The y-axis is in indicator of the 

temperature in the engine room. The classification between the different cars 

are performed with SVC with linear kernel 

 

In this tests some pair of classes are closer to each other while others are positioned further 

apart. Due to the fact that wind tunnel tests for trailers of different weights are depicted here, 

there is a greater scatter between some of the classes than there was in the SHC test. 

 

The City-Cycle test did not result in this kind clear results in this KPI-temperature space, 

because the constant starting and stopping made prescribing a good reference point for ML 

impossible. The Roadload and Roadload with Trailer-tests were also not possible to allow for 

good data in this KPI-temperature space, because these tests were made in a wide range of 

higher speeds. The Roadload at 180 km/h and at 120 km/h from the same car are too different 

to create these groups. 

 

5.8.5 Classification for wind tunnel tests 

Analysing and classifying different tests from the same car also has merits because it would 

help determine in what temperature-power intersection different tests are positioned in.  
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Figure 5.12. Data for the several different types of tests with the E-Diesel car. The results 

are from wind tunnel experiments. The y-axis is in indicator of the 

temperature in the engine room. The classification between the different cars 

are performed with SVC with linear kernel 

 

 

 

 

 

 

 

 

 

 

Figure 5.13. Data for the several different types of tests with the E-Gasoline car. The 

results are from wind tunnel experiments The y-axis is in indicator of the 

temperature in the engine room. The classification between the different cars 

are performed with SVC with linear kernel 

 

 

Figure 5.12 and Figure 5.13 contain four of the wind tunnel tests from the car E-diesel and E-

Gasoline respectively. The classification by linear kernel is not as accurate as in the case of 

only SHC test. This is because these tests vary much more in their nature and the sample size 

is smaller. But is is still possible to distinguish an indication of where each class of  future 

wind tunnel tests will be placed in this space.   
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5.9 Clustering 

Figure 5.14 shows that a cluster analysis, using the k-means method are not able to accurately 

discerning the 5 different cars used in the analysis. Alternatively, if the number of clusters are 

set to 3 an interesting phenomenon is seen in Figure 5.15. 

 

 

 

   
Figure 5.14 k-means clustering for steep hill climb test with 5 clusters. 

 

 
Figure 5.15 k-means clustering for steep hill climb test with 3 clusters. 

 

In both Figure 5.14 and 5.15 the class designated as Class 1 consists of the gasoline fuel cars 

with low engine compartment volume, while Class 2 is the SUV designated J-Diesel with a 

large engine compartment volume. The remaining class or classes comprise of the cars E-

Diesel and J-Gasoline.    

 

k-means clustering 

k-means clustering 
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The rest of the vehicle classes are clustered into Class 3, which includes the two cars with the 

coolest engine temperature, the gasoline SUV and the low engine compartment volume diesel 

car. This Class 3 is somewhat hard to comprehend, due to the difference in these car classes, 

but the existence of classes 1 and 2 in their current format indicates that gasoline fuelled cars 

with low engine compartment volume and diesel fuelled SUVs can be effortlessly separated 

in the feature space of engine temperature and KPI. 

 

5.10  Sensitivity study 

The results of the RBFN predictions above shows that the method can recreate data 

accurately.  This approach may allow for sensitivity studies as well as predictions. If it is to 

be used for future predictions of overall thermal behaviour of concept vehicles, the technique 

has to be able to handle changes in the data in a reasonable way. In Figure 5.16 the same data 

has been feed to the network while one parameter has been changed. The area of the grill in 

the front of the car are changed in intervals of 5% and the results plotted. 

 

 
Figure 5.16 Predictions of KPI by RBFN when the area of the cars grill increases in  

  small intervals 

 

 

The plot shows that up until a change of 14%, the plot shows reasonable results but at 20% 

increase and above the results are becoming more and more unreliable due to the nature of 

extrapolation. One important factor to consider here is that when the grill area changes the 

airflow to the engine, some of the input parameters that are feed to the network would also 

change. Which means that the data in Figure 5.16 is reasonable but not necessarily accurate. 

 

 

5.11  Ranking of parameters  

In the concept phase, the automotive industry does not have endless means to handle every 

possible concept candidate. For that reason priorities are devised by means of educated 

guesses, system studies based on similar vehicles or concurrent analysis. This being a 

common practice in the industry, most of the time based on expert point of view [12].  
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When a ML framework is at place and working below strict error levels, this tool can be used 

further to rank the elements of the feature space in their importance based on changes they 

infer to the KPI. In this way, a Reduced Order Model (ROM) of the system at hand can be 

produced.  

 

The CON-test was implemented on the RBFN and every parameter as tested but the results 

were inconclusive. Sung [11] presented two ways the importance of neither of them does 

reasonable fit into our results. The greatest changes in NRMSE are presented in Table 6.2 as 

percentage of the NRMSE for all the parameters. 

 

Table 6.2  

% of NRMSE Parameter removed 

77% Tunnel dew-point temperature 

86% Coolant temperature before the radiator 

100% All parameters present 

103% Rolling drag 

104% Wind speed 

106% Dynamometer speed 

 

Incorporating the first method of designating the largest changes as the parameters with the 

most impact on the output, the largest change came from the “Tunnel dew-point 

temperature”, which is a reference temperature used to calculate the humidity in the tunnel. 

This does not fit in with what the most important parameters could be considered to be.  

 

The alternative method to see the greatest occurring decreases in NRMSE as a precursor that 

the parameters were bad/unimportant for the data does not fit with the second parameter 

“Coolant temperature before the radiator”; seen by experts as a very important parameter. 

This is only a small subset of the problem with this test, but no reasonable results could be 

deduced.   
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6 Conclusions 

Automotive industry has years of experience with recycling. However, the recycling of data 

is relatively new. This thesis aimed to give an insight on usage of tools from ML framework 

to achieve efficient reutilization of content in databases in Volvo Car Corporation. The focus 

of the present work was laid upon vehicle thermodynamic development databases.  

 

With the use of open-source computer scripts, the relevant thermodynamic measurement data 

was extracted from VCC repositories and used to train ML tools, which could thereafter 

predict parameters involved in tuning the vehicle thermal attributes. In this training, different 

ANN network topologies where used. Two of the methods, RBFN and SVR with a RBF 

kernel, predicted the designated output parameter with a high degree of accuracy. By 

calculating an analytical solution for the weight-vector, the RBFN would complete a 

prediction at a fraction of the time it took the SVR to perform the same task. The SVR 

belonged to the Scikit-learn module of Python. Additionally, to be able to ameliorate 

predictions, SVM based approaches are tested while plugging in several types of linear/non-

linear kernels. While a RBF kernel was required for the regression analysis, a much simpler 

linear kernel was sufficient for the classification of different cars and tests with SVC. 

 

To help the concept leaders in choosing ML tools for development, elapsed CPU-time per 

ML method, additional to accuracy, was also reported in the M.Sc. thesis.  

 

Using vehicle engine power as an output signal, an ANN based approach allowed for 

accurately predicting the behaviour of the system and permitted to test ML tools further, as 

these reached a max < 8% prediction error. Following reaching this literature-conform ability 

of deployed machine learning techniques to predict an arbitrary chosen key performance 

index, it was deemed that the effects of the internal combustion engine operation in the 

engine room could also be modelled likewise.  

 

When the same type of wind tunnel tests from different vehicles are compared, a clear 

separation among the different cars could be seen in the 2 dimensional space of power and a 

temperature which serves as a reference for the temperature of the air in the engine 

compartment. This was also true for the same car with different types of test. Following the 

predictions using ANN, other tools for clustering both the experimental and ML based results 

are run. In this way, patterns depending on vehicle classes and wind tunnel test conditions are 

identified. As every step of the study amount of error introduced is constantly monitored, it is 

expected that these regions of vehicle clusters also constitute concept candidates which are 

not yet tested in the wind tunnel.  

 

Additionally, methods for ranking the salient parameters affecting under hood thermal 

behaviour are presented. The CON-test was unable to find any reasonable relationship 

between a parameter and the NRMSE when that parameter was not taken into consideration. 

This indicates that this method is not yet suitable to be used to reduce the order of the model 

to shorten the time it needs to proceed. One reason for this might have been the coupling 

between the parameters, because both the humidity of the air and a reference temperature 

used to calculate the humidity was inserted as inputs to ANN so that the importance of 

humidity might have been overstated. 
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6.1 Future work 

In a paper, Sung [11] compared three different methods which could be used to rank 

importance of input parameters of an artificial neural network. Of these ranking methods, the 

change of MSE appeared to be the most promising for the type and size of the problem Sung 

et al. investigated. This was not the case for this M.Sc. project and alternative methods should 

be explored.  

 

The lack of accurate results from the feedforward neural network (FFNN) should not be 

viewed as a reason to dismiss the method, but as an indicator that more complex versions of 

the FFNN might be needed. Several hidden layers and a larger number of neurons in these 

layers might give more accurate results, but would require more time for the training phase 

than the radial basis function networks. Because the RBFN depends on the distance from 

centers in the space of the input parameter, RBFN could have greater problems when the 

distance from these points grow. If this makes it less useful for projections for new concepts 

needs to be examined.  

 

All the input data used in this M.Sc. study came directly from the wind tunnel or was 

geometric information of the cars. The combination of crankshaft torque and engine rpm was 

only one of many physical calculations that could be done to reduce the order of the problem 

and possibly improve the accuracy of the prediction [18]. 

 

Classifications were performed in only 2 dimensional feature space. More extensive 

classification should be possible and may be used to determine relationships of more complex 

nature. Factor(s) common to the most popular automotive products could be identified and 

replicated in future concepts. Areas in the investigated feature space where VCC may profit 

introducing new products could be identified to fulfil customer demands.  

 

Since it has been possible to predict vehicle thermodynamic attributes using ML based 

approaches, the method developed for this M.Sc. study is directly applicable to other 

engineering disciplines; for instance BEV battery thermal conditioning, aerodynamic analysis 

and model reduction, emission abatement and RDE, physics informed ML for turbulence 

modelling, NVH are areas that application of ML will have clear benefits. 
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