

Process and environmental systems analysis of the BioBuF concept

Outline

- Conventional adipic acid production
- Process and environmental systems analysis in BioBuF
- Some environmental systems analysis results
- Assessment of processes in early development stages

Conventional adipic acid production

• Production from fossil resources $\rightarrow KA \text{ oil}^1$

¹A. Shimizu, K. Tanaka, and M. Fujimori. *Chemosphere - Global Change Science* 2.3-4 (2000), pp. 425–434.

Process flow diagram of the BioBuF concept

Lutein Adipic acid Lignin derivative Utilities Residues + CO. Heat Nutrients Water 0, GROT Residuals Waste water CO₂ organic matter Microalgal Anaerobic GROT Digestion Cultivation Processing Nutrients (liquid fraction/ bio-Raw Sugars solids) biogas Microbial Cell Lysine **Bioelectro-Biomass** Factory for Adipic chemical Systems Fractionation Sugars, amino Acid Prod. **Nutrients** acids & minerals **Bioconversion of** Heat & Power Adipic Acid Separation Lignin-Derived Separation Production Chemicals Heat + Carotenoids Lipids/fatty acids Aromatic chemicals Adipic acid By products Water Electricity CO₂ steam + residuals

CHALMERS

Information flow in the project - 1

- 1. Modelling based on experimental, lab-scale data
- 2. Process integration
- 3. Economic and environmental analysis
- 4. Feedback to development

Information flow in the project – 2

- Development of systemic communication protocols → Maximize output from research of biorefineries
 - Lab scale → Experimental and in-silico data for enzyme selection, metabolic engineering and bio-reaction networks, biomass fermentation, anaerobic digestion, fractionation and lignin characterization, and bio-electrochemical systems
 - 2. Process scale \rightarrow Conceptual to rigorous process modelling and design of upstream and downstream separation technologies
 - 3. Plant level \rightarrow Process integration for material and energy recovery using scenario based and superstructure approaches
 - 4. Economic and environmental assessment level \rightarrow Operating and capital cost estimations, and environmental assessment using LCA

Life cycle assessment (LCA) framework

Previous LCAs of adipic acid production

- ecoinvent process for adipic acid production^{2,3}
 - Global warming ≈ 25 kg CO₂-eq/kg adipic acid produced
 - Elimination of N_2O emissions \rightarrow 75% reduction of global warming
 - Switch to renewable resource \rightarrow 10% reduction of global warming
- Production from cyclohexene using H₂O₂⁴
 - Fossil-based feedstock but no use of HNO₃
 - Global warming ≈ 6 kg CO₂-eq/kg adipic acid produced
- Production from aromatic compounds via fermentation⁵
 - Both fossil-based and bio-based feedstock, no N₂O emissions
 - Global warming reduction \rightarrow 9 to 17 kg CO₂-eq/kg adipic acid produced
- ² H.-J. Althaus et al. Tech. rep. ecoinvent report No. 8. EMPA Dübendorf, 2007.
- ³ E. Svensson et al. 10th Conference on Sustainable Development of Energy, Water and Environment Systems. 2015.
- ⁴ Q. Wang et al. *Chemical Engineering Journal* 234 (2013), pp. 300–311.
- ⁵ J. van Duuren et al. *Biotechnology and Bioengineering* 108.6 (2011), pp. 1298–1306.

System description - 1

⁶ R. Aryapratama and M. Janssen. Under review at Journal of Cleaner Production. 2017.

System description - 2

- Pretreatment
 - Acid-catalyzed \rightarrow SO₂
 - Alkaline $\rightarrow \text{NaBH}_4$
- Additional fuel use \rightarrow Fossil, biomass
- Fermentation yield
 - Concentration of product
 - Lignin use \rightarrow As fuel, as product

Acid-catalyzed pretreatment

- Bio-based pathway \rightarrow Significant environmental benefits
- Hotspots \rightarrow Downstream, GROT pretreatment, enzyme production

Alkaline pretreatment

- Higher impacts when compared to the acid pretreatment
- Hotspots \rightarrow NaBH₄, downstream processing, GROT neutralization

NaBH₄ production and use

Switch to biomass use for energy purposes in NaBH₄ production

Scenario	GWP change [%]
Base case	-22
1	-32
2	-19
3	-32

• Change in dosage of NaBH₄ in pretreatment step

What have we learned?

- Technology
 - Moving from fossil-based to bio-based adipic acid production creates environmental benefits
 - Moving from fossil-based to bio-based adipic acid production may also lead to environmental burden shifting
 - Acid-catalyzed pretreatment performs better than alkaline pretreatment
- Methodology
 - Using data from large LCA databases can result in misleading results
 - Assessment of the complete biorefinery concept
 - Quantifying the benefits of integration of processes into an overall biorefinery concept

Prospective LCA

- Definition → "Studies of emerging technologies in early development stages, when there are still opportunities to use environmental guidance for major alterations"⁷
- Appropriate methodological choices need to be made
 - Technology alternatives
 - Foreground system
 - Background system
- Incorporating scale-up in LCA for technology under development
- Simulation and LCA

⁷ R. Arvidsson et al. Under review at Journal of Industrial Ecology. 2017.

Thanks for your attention

Project partners:

Financed by:

