

Cross-correlation between impact categories in LCAs of forest biomass-based products

Matty Janssen, Magdalena Svanström & Rickard Arvidsson Environmental Systems Analysis, Chalmers University of Technology, Göteborg, Sweden

1. Motivation

- LCA can be used to evaluate technologies under development for the production of forest biomass-based products
- There are however many such technologies, and the number of fossil-based products that can be replaced is also very large
- There is thus a need to screen multiple product-technology combinations to identify promising alternatives, and LCIA may be simplified by selecting a number of relevant impact categories

3. Results

- The most used impact categories in the selected studies were Global warming (GWP; 100%), non-renewable energy use (NREU; 94%), acidification (AP; 56%), renewable energy use (REU; 50%), eutrophication (EP; 39%) and photochemical ozone creation (POCP; 33%)
- Correlation results show that:
 - NREU strongly correlates with GWP

based on statistical analyses^{1,2}

2. Method

- The studies used in this cross-correlation analysis of LCA impact results were selected from a review of 101 papers by Røyne et al. (2016)³ and two additional papers^{1,4}. These studies used at least 2 midpoint impact categories, and used impact categories that were applied in more than 25% of all studies.
- In total, results from 18 papers were analysed
- Results were normalized per study and per impact category: $x_{i,j,k} - \min x_{i,j}$
 - $n_{i,j,k} = \frac{k}{\max x_{i,j} \min x_{i,j}}$ with: i=study, j=impact category, k=scenario
- Correlation factors were calculated using the Pearson method

- REU strongly correlates with EP, AP and POCP, and does not correlate with GWP and NREU
- EP strongly correlates with AP
- Outliers can be explained by the use of a specific technology (e.g. CCS) or product (e.g. biological fertilizer) in a system

4. Conclusion

- Normalization of impact results per study enabled the comparison of LCAs with different functional units
- In many cases impacts are not correlated due to system specifics
- Energy use does not explain all impacts, as suggested before⁵
- Other product categories and feedstocks will be included to widen the scope of the analysis

GWP [kg CO ₂ –eq]	EP [kg PO ₄ –eq]	AP [kg SO ₂ –eq]	POCP [kg ethyleq]	REU [MJ–eq]	NREU [MJ–eq]	
Type of product Chemicals						GWP
 Construction 	Corr:	Corr:	Corr:	Corr:	Corr:	[kg
 Energy 	0.688	0.625	0.454	0.186	0.78	

References

- M. Janssen, C. Xiros and A.-M. Tillman. *Biotechnol Biofuels* 9 (2016), p. 53.
- Z. J. N. Steinmann et al. *Environ Sci Technol* 50.7 (2016), pp. 3913–3919. [2]
- F. Røyne et al. *J Clean Prod* 116 (2016), pp. 90–99. [3]
- P. Gontia and M. Janssen. J Clean Prod 131 (2016), pp. 475–484. [4]
- M. A. J. Huijbregts et al. *Environ Sci Technol* 44.6 (2010), pp. 2189–2196. [5]

