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ABSTRACT
Monolayers of transition metal dichalcogenides are direct gap semiconductors, which have attracted much
attention in the recent past. Due to a strong Coulomb interaction, they possess strongly bound electron-hole
pairs, with binding energies of hundreds of meV which is an order of magnitude larger than in conventional
materials. Here, we investigate the microscopic origin of the homogeneous linewidth and coherence lifetime
of excitonic resonances in monolayer molybdenum disulfide, taking exciton phonon scattering and radiative
recombination into account. We find a superlinear increasing homogeneous linewidth from 2 meV at 5 K to
14 meV at room temperature corresponding to a coherence lifetime of 160 fs and 25 fs.
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Introduction
Atomically thin transition metal dichalcogenides (TMDs) have attracted much attention in current research.
While bulk TMDs are indirect semiconductors, monolayer TMDs possess direct band gaps at the K and
K ′ valleys in the Brillouin zone.1–4 In contrast to conventional semiconductors, TMDs are characterized
by an extraordinarily strong Coulomb interaction giving rise to the formation of excitons and even trions
with binding energies in the range of several hundreds of meV.5–8 As a result, their optical spectra are dom-
inated by excitonic effects.9, 10 The homogeneous linewidth of excitonic resonances has been investigated
experimentally11, 12 and theoretically,13 pointing out that in tungsten based TMDs, dark exciton states where
electron and hole are located at different high symmetry point in the first Brillouin zone are located ener-
getically below the optical bright ones. Thus they contribute to the homogeneous linewidth as an efficient
scattering channel.

In this work, we present a microscopic study on the elementary processes behind the observed homoge-
neous linewidth in monolayer molybdenum disulfide. In particular, we investigate the influence of radiative
recombination11, 13, 14 and exciton-phonon scattering13, 15 including their dependence on temperature.
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Theoretical Model
The starting point of our study is the calculation of the absorption coefficient16

α(ω) =
ω

nc0
=(χ(ω)) =

ω

nc0
=
(

jσ−(ω)

ε0ω2Aσ−(ω)

)
, (1)

with the light frequency ω, the refractive index n, the vacuum speed of light c0, the vector potential of the
incident lightAσ−(ω), the vacuum permittivity ε0, and finally the optical susceptibility χ(ω) = jσ− (ω)

ε0ω2Aσ− (ω) .
The latter is determined by the current density jσ−(ω) = j(ω) · (1,−i). Here, we restrict the study to one
excitonic transitions at the K-point, which are excited by right-handed circular polarized incoming light.
The optically induced current reads

jσ−(ω) =
∑
q

(Mσ−∗
q ϕµqP

µ
0 (ω) + c.c.), (2)

with the optical matrix element σ
M −

q and the Fourier transform of the microscopic polarization P0(ω). The
latter stands for the more general excitonic polarization PQ(ω), where Q is the Fourier component of the
electron-hole center-of-mass motion in real space. The appearing excitonic wavefunction ϕµq depends on
the momentum q for the relative motion of the electrons and holes in real space and the exciton state µ and
can be obtained by solving the Wannier equation17–19

h̄2q2 ∑
ϕµ − V exc µϕ + E ϕµ = Eµϕµgap , (3)

2m q q,k q+k q q
0

k

with the excitonic energy Eµ and the excitonic part of the Coulomb interaction V excq,k .

The absorption coefficient from Eq. (1) is determined by the microscopic polarization in the excitonic
basis which will be discussed in the following. Our quantity of interest is the microscopic polarization in the
electron picture †vPk1,k2 = 〈ak ac 〉

1 k2
with electron annihilation (creation) operators (†)λ

ak with momentum
k and band index λ = c, v, from which we will obtain an expression for the excitonic polarization later.
Applying the Heisenbergs equation of motion ih̄∂tPk1,k2 = [H,Pk1,k2 ], we can determine the temporal
evolution of the microscopic polarization µPk1,k2

which will be transformed into the excitonic picture later.
The appearing Hamilton operator 13H = H0 +Hc−l +Hc−c +Hc−ph which we take from includes (i) the
interaction-free contribution H0 that contains the dispersion of electrons and phonons, (ii) the carrier-light
interaction Hel−l , (iii) the carrier-carrier interaction Hc−c, and (iv) the carrier-phonon interaction Hc−ph.

The first step is to compute the equation of motion for the microscopic polarization †vPk1,k2 = 〈ak ac 〉
1 k2

,
which results in the so called semiconductor Bloch equation17, 20

ihe¯
ih̄∂tPk1,k2 = (εc(k2)− εv(k1))Pk1k2 + Mcv ·A(1− fh − fe )δk ,k∑ m k2 k1 k2 1 2∑

+ V renomk1,k2,k(fe, fh)Pk1,k2 − (1− fek −2
fh exc
k1

) Vk1,k2,kPk1+k,k2+k∑k ( ) k ( )
+ gcα Sα ˜+ α

k2,k2−q k1,k2−q,q Sα vα ˜α
,q k k − −q −

1, 2 q, gk1+q,k1,q Sk1+q,k2,q + Sk1+q,k2,−q .
q,α

(4)
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ih̄∂tS
vcα
k1+q,k2,q =
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+
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h
k1+qP

vc
k1,k2

)(1 + nαq). (6)

Here in both equations, the first line describes the oscillation of the phonon assisted quantities with the
renormalized band gap energy and the phonon energy Eαq . The second line accounts for the formation of
bound electron hole pairs. The last three lines in both equations stem from the electron phonon interaction.
Here terms proportional to the phonon occupation nαq account for phonon absorption processes, whereas
terms proportional to 1+nαq account for phonon emission processes. Further terms proportional to electron/
hole occupation fe/h describe in-scattering processes, whereas terms proportional to 1−fe/h describe out-
scattering. The blocking factor accounts for the Pauli principle, which means that scattering only occurs, if
the final state is empty. In the following we will a assume a undoped material under low excitations, where
we can neglect density dependent effects.

The next step is to transform the equations of motion for the microscopic polarizations and the phonon
assisted polarizations to the excitonic picture. Therefore we first introduce center of mass coordinates

k1 = q +
mh

mh +me
Q = q + βQ (7)

k2 = q− me

mh +me
Q = q− αQ. (8)

with the Fourier component of the relative motion q and the Fourier component of the center of mass
motion Q. The next step is to write the microscopic polarization in center of mass coordinates Pq,Q as
a decomposition of excitonic eigenfunctions Pq,Q =

∑
λ ϕ

λ
q,QP

λ
Q, where we assume that the exciton

wavefunction does not depend on the center of mass momentum ϕλq,Q = ϕλq. For the equations 4, 5 and 6
we obtain

Here, we treated the upcoming hierarchy problem (2-point quantities couple to 4-point quantities via
Coulomb interaction) within the Hartree Fock approximation.17 The first line is known as the optical Bloch
equation, where the first term describes the oscillation of the microscopic polarization with the band gap
energy and the second term contributes to the optical excitation of a the microscopic polarization with an
external electric field. The Kronecker delta accounts for the vanishing photon momentum, meaning that
only polarizations with same electron and hole momentum can be excited optically. The phase space filling
factor blocks the optical excitation when electron and hole densities are excited. The second line contributes
to the Coulomb interaction, where the first term renormalizes the band gap energy. The second term leads to
the formation of bound electron hole pairs. The thirds line, stemming from the electron phonon interaction
couples the microscopic polarization to so called phonon assisted polarization †Sα v

k ,k ,q = 〈ak ack bα〉
1 2 1 2 q and

S̃α †v= 〈a ac b†αk1,k2,q k1 k2 q 〉. For these quantities, we derive again a equation of motion
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ih̄∂tP
µ
Q =(

h̄2Q2

2M
+ Eµ)PµQ +

ih̄e

m

∑
q

ϕ∗µq Mcv
q ·AδQ,0

+
∑
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gµλαq′
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)
(9)

ih̄∂tS
µα
Q+q′,q′ =

(
h̄2(Q + q′)2

2M
+ Eµ + Eαq′

)
SµαQ+q′,q′ +

∑
λ,q′

gµλα−q′
(
1 + nαq′

)
PλQ (10)

ih̄∂tS̃
µα
Q+q′,−q′ =

(
h̄2(Q + q′)2

2M
+ Eµ − Eα−q′

)
S̃µαQ+q′,−q′ +

∑
λ,q′

gµλα−q′ n
α
−q′P

λ
Q. (11)

Equation 9 describes the equation of motion of the excitonic polarization for the µ’th exciton state. It
oscillates with the kinetic energy h̄2Q2

2M and the exciton energy Eµ, which we obtained as a solution of the
Wannier equation, equation 3.

The second term in equation 9 describes the excitonic polarization to an incoming electro magnetic
field. The third term describes the coupling to the phonon assisted excitonic polarization via exciton phonon
coupling. The exciton phonon coupling element reads

gµλαq′ =
∑
q

(gcαq,q−q′,q′ϕ
Lµ
q ϕRλq−βq′ − gvαq+q′,q,q′ϕ

Lµ
q ϕRλq+αq′). (12)

Here, we made the assumption that the exciton phonon coupling does not depend on the center of mass
momentum of the excitonic polarization. However, since we are interested in the broadening of the optically
accessible excitonic polarization, this treatment is exact.

In the equations 10 and 11 the first term describes the oscillation of the phonon assisted excitonic
polarization with the kinetic energy h̄2(Q+q′)2

2M , the excitonic energy Eµ and the phonon energy Eαq . The
second term, stemming from the exciton phonon coupling, couples the phonon assisted polarizations to the
excitonic polarization. To obtain an expression for the dephasing of the excitonic polarization, we treat the
system of coupled differential equation 9, 10 and 11 within the Born-Markov approximation.17, 21

Restricting ourself to the energetically lowest lying 1s exciton, we obtain

γ1s
Q =

π

h̄2

∑
q,α

|g1sα
q |2((1 + nαq)δ(

h̄(Q + q)2

2M
− h̄Q2

2M
+ ωαq ) + nα−qδ(

h̄(Q + q)2

2M
− h̄Q2

2M
− ωα−q)),

(13)

with the phonon frequencies ωαq =
Eα

q

h̄ . Here the term proportional to 1 + nαq indicates the emission of
phonons, whereas term proportional to nαq indicates the absorption of phonons.

To compute the radiative dephasing rate we have to solve the Maxwell-Bloch-Equations self consis-
tently. We start with the inhomogeneous wave equation

(∇2 − n2

c2
∂2
t )E(r, t) = µ0∂tj(r, t), (14)

which can be derived from the Maxwell-Equations. Here E(r, t) is the electrical field, j(r, t) the current
density in the material, n is the refractive index of the surrounding medium and c the vacuum speed of
light. For the following we assume that the electric field propagates in z-direction and is right handed
circular polarized. As solution we obtain19

Eσ−(t) = E
σ−
0 (t− z

c
)− cµ0

2
jσ−(t− |z − z0|

c
), (15)
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with Eσ−0 (t− z
c ) the homogeneous solution and the second term being the inhomogeneous solution of the

wave equation describing the effect of the current density in the material to the electric field. Next we insert
E = −∂tA and Fourier transform the equation with ∂t → −iω. Thus we obtain

A(ω) = A0(ω) +
icµ0

ω
j(ω). (16)

The macroscopic current density can be expressed in terms of the microscopic polarisation

jσ−(ω) =
∑
qµ

(Mσ−∗
q ϕRµq Pµ(ω) + c.c.). (17)

Thus we end up with a expression for the vector potential

A(ω) = A0(ω) +
icµ0

ω

∑
q,µ

(Mσ−∗
q ϕRµq Pµ(ω) + c.c.). (18)

This expression of the vector potential includes the incident vector potentialA0(ω) which can be controlled
experimentally and the in the 2d-material induced vector potential icµ0

ω

∑
q,µ(M

σ−
q ϕRµq Pµ(ω) + c.c.).

To find an expression for P (ω), we take Eq. 9 and set Q = 0, since only transitions with vanishing
center of mass momentum contribute to the macroscopic current density. A Fourier transformation leads to

h̄ωPµ(ω) = EµP (ω) +
ieh̄

m

∑
q

Mσ−
q (1− feq − fhq )ϕLµq A(ω). (19)

Combining both equations 18, 19 and neglecting off-resonant terms with respect to a rotating wave
approximation,17 we obtain an equation for the microscopic polarisation

Pµ(ω) =
ieh̄
m

∑
q(1− feq − fhq )M

σ−
q ϕLµq A0(ω)

h̄ω − Eµ − iγµrad
, (20)

where we identified the radiative dephasing rate

γµrad =
h̄2e2µ0c

ωm2 n1+n2

2

|
∑
q

Mσ−
q ϕR∗µq |2. (21)

Numerical Results
Here, we will give numerical results for the homogeneous broadening in monolayer molybdenum disulfide.
The bandstructure is treated in effective mass approximation with parameters obtained from.22 Longwave-
lenght acoustic phonons are treated in Debye approximation with parameters obtained from.23, 24 Optical
phonons are treated in Einstein approximation with parameters from.23, 24 The electron phonon coupling for
both phonons modes is treated in an effective deformation potential approximation, which was obtained by
fitting an effective deformation potential model to ab initio electron phonon scattering rates.23, 24 The os-
cillator strength of the optical matrix element was adjusted to experimental data25 following the procedure
given in.11 In general TMDs exhibit a complex quasi particle bandstructure,22, 26 resulting in a complex
exciton band structure as well, including dark exciton states far beyond the light cone13, 27 or spin forbidden
exciton states.28 Further exchange coupling plays a significant role in understanding the complex valley
physics in these materials.29, 30 However in this study, we will focus on the weak excitation limit where
only exciton phonon coupling and radiative recombination are contributing to the homogeneous linewidth.
In tungsten based materials, exciton states where a hole is placed at the K point and an electron is placed
at a Λ point in the 1. BZ are known to be efficient relaxation channels13 since they are located energeti-
cally below the optical bright state. Here in molybedenum disulfide these state are located approximately
150 meV above the bright states. That is why these states are neglected in the following.
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Figure 1. Calculated homogeneous linewidth of the 1s A exciton in monolayer MoS2 as a function of temperature. The
total linewidth (red) consists of a contributions due to radiative recombination (blue), optical phonon scattering (yellow)
and acoustic phonon scattering (orange).
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Figure 2. Phonon scattering rates at 50 K (a) and 300 K as a function of the exciton kinetic energy in monolayer MoS2.
The total scattering rate (red) consists of optical phonon scattering (yellow) and acoustic phonon scattering (orange).
As a comparison, the blue line shows the scattering rates of electrons in this material.

In figure 1 we show the homogeneous linewidth (half width at half maximum) of the 1s A exciton in
monolayer molybdenum disulfide as a function of temperature. The linewidth increases from approximately
2 meV at 0[K] to 14 meV at room temperature. We find a temperature independent broadening due to
radiative recombination of approximately 1.9 meV. Acoustic phonons give a linear increasing contribution
and optical phonons a super linear increasing. Fitting the data with an effective model

γ(T ) = γ0 + αT +
β

exp( h̄Ω
kT )− 1

, (22)

we find γ0 = 1.88 meV, α = 37 meV
K and β = 5 meV. The computed linewidth corresponds to a coherence

lifetime of 160 fs at 5 K and 25 fs at room temperature.

In figure 2 we show the scattering rates for the 1s A exciton at 50 K (a) and at room temperature (b)
in dependence of the exciton kinetic energy Ekin = h̄2Q2

2M . Further we show the corresponding electron
phonon scattering rates, which are in good agreement with recent theoretical studies.23, 24, 31 We obtain
scattering rates in the range of 5-17 ps−1 at 50 K and 16-27 ps−1 at 300 K. We find for both temperatures
a general decrease with increasing exciton energy except a short increase for very small exciton energies
and a more pronounced increase at the optical phonon energy h̄ωopt = 50 meV. The first increase can be
explained by the enabled emission of acoustic phonons and the enhanced absorption of optical phonons.
The large increase at the optical phonon emission energy results of the enabled emission of optical phonons
at this energy. The general decrease of the scattering rates can be explained by the exciton phonon coupling
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element equation 12. It depends on the corresponding electron phonon matrix element and on the overlap
of initial and final exciton wavefunction. To understand the influence of the pure electron phonon coupling
element, we have a look on the electron phonon scattering rates. They exhibit a general increase with the
electron kinetic energy and a sharp increase at the optical phonon energy. So the general decrease of the
exciton phonon scattering rates at high kinetic energies originates from the overlap integral of initial and
final exciton wave function. They differ by α(β)q′ with the phonon momentum q′. Since for higher exciton
energies in general larger phonon momenta are required to fulfil the δ-distribution in equation 13 the overlap
integral decreases for increasing exciton kinetic energy.

Conclusion
We have presented a microscopic model revealing the origin of the homogeneous linewidth and coher-
ence lifetime of excitonic resonances in monolayer molybdenum disulfide. We take into account radia-
tive and phonon-induced non-radiative relaxation channels. We find a superlinear increasing homogeneous
linewidth from 2 meV at 5 K to 14 meV at room temperature corresponding to a coherence lifetime of 160 fs
and 25 fs.
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