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Iterative interactive concept training on visual content
GABRIEL ANDERSSON, MATS UDDGÅRD
Department of Signals and Systems
Chalmers University of Technology

Abstract
This thesis presents a novel method to quickly sift through the visual content (image
material) of a database in order to retrieve as much relevant material as possible.
The proposed model uses a combination of classification systems, image retrieval and
relevance feedback. Five different feature descriptors, known to be useful within im-
age retrieval, are extracted to later be inserted into a classification system. The
material is presented to, and corrected by, a user and can therefore be used as train-
ing data in future iterations. The training data is inserted to a supervised learning
classifier in order to search through the database. The most relevant material is
passed through the feedback loop allowing the model to learn concepts in a fast
manner.
The five feature descriptors that are commonly used within the field are the follow-
ing: histograms of oriented gradients, global color histograms, Haar wavelet transfor-
mations, edge detections using a Sobel filter and the final activations of a VGG-16
neural network.
In the classification system a classifier called Deep SVM (Deep Support vector ma-
chine) is used. In the proposed model it consists of 6 SVMs in order to create an
ensemble, where one is used for each kind of feature descriptor and the last SVM
is used to combine the result of the first order classifiers. Material in the search
space is passed through the system and the most relevant material is presented to
an expert user.
Evaluations and measurements were performed on the model in two settings. Firstly
as a parameter benchmark in order to find the most appropriate setting for the
intended use of retrieving all the relevant visual material in a crime investigation
case. Secondly as an image retrieval comparison with other studies by using a small
training set as query material. The parameter benchmark shows that the model
is capable of retrieving the majority of relevant material within a small number of
iterations. The study comparision shows that even though the model is designed to
have sets of images as query data, the size of the sets does not have to be greater
than 10 in order to outperform the related approaches.
The contributions of the thesis consist of the following: Using a Deep SVM in
combination with relevance feedback to perform an image retrieval results with great
performance and a complete retrieval within a low number of relevance feedback
iterations. Content-based image retrieval has previously been performed with one
image as query material while this thesis presents a method of using a set of images
for the task in order to achieve a higher abstraction level.
Keywords: Machine learning, Ensemble learning, Image analysis, Content-based im-
age retrieval, Relevance feedback, Semantic gap, Feature extraction, Neural network,
Support vector machine, Deep SVM
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1
Introduction

Digital video and image files are normally important evidence in criminal investiga-
tions, and the amounts of images and videos that constitute the evidence are larger
now than ever [1]. The computer forensics community has ever increasing problems
with this continued growth of information and in investigations, the amount of data
to be examined is often problematic [2, 3, 4]. In order to effectively help the inves-
tigators in their tasks of organizing and prioritizing evidence, methods to scrutinize
the data in an efficacious manner is vital. In investigations pertaining relevant dig-
ital information quickly and effectively material is of importance, as evidence can
be of large quantities. Methods focused on grouping material by some collective
attributes are often found to be efficient. There are several of these attributes that
can be correlated to the information obtainable in visual content, such as in images
and video. Which images that are relevant might differ from case to case, it would
be a good praxis if the investigators could define their own respective grouping set-
ting for each separate case. By letting the investigator define some form of concept
by directly specify image examples as relevant and non-relevant an algorithm can
be trained to recognize a concept queried by an investigator.

1.1 Problem definition

Within digital forensics, the amount of investigation material has grown exponen-
tially while the workforce still grows at a linear pace. In order to handle larger
amounts of material, algorithms need to be designed to handle large amounts of
data in favor of the user. The purpose of the different cases that the forensic investi-
gators handle varies in-between investigations. Because search engines and methods
of retrieving material have a static behavior, the handlers adapt their behavior to
the currently used search engines. The workflow and usage areas of an algorithm
should be specified by a handler and the behavior of the algorithm should adapt to
the need of the user and should do so in a generic manner.

As described above the problems that this thesis approaches are the following:
• The material of the investigations are not handled fast enough and the time

needed to handle it needs to be reduced.
• There are no image retrievals that fit the current need and to have an algorithm

that adapts its behavior to the user is crucial.
• Using search methods that are good at certain things does not cut it. An

image retrieval method that works for the general case is to prefer.
The standard use case of such a system that solves these issues can be described as:

1. The algorithm presents a set of images based on previous knowledge of the
search preferences to the user.

1



1. Introduction

2. The user specifies which of these images that are relevant to the current case
and which are not relevant.

3. The algorithm adapts the search criteria based on new knowledge.
4. Repeat from item 1.

The entire procedure can be continued and each iteration refines the search criteria
and after a while, the database of material should be exhausted of relevant material.

1.2 Goals

The aim of this project is thus to:
• create an algorithm that helps to identify relevant images in a database which

should be subjected to a user defined concept, a dynamic general concept
search engine.

• exhaust the database of relevant images faster than an independent user or
random search.

• put more emphasis on trying to minimize the number of false negatives than
the false positives, in the search as to lower the risk of neglecting images that
would be of importance to the operator. False negatives being images that
are classified as non-relevant while being relevant, and false positives being
non-relevant images but predicted as relevant.

1.3 Delimitations

In the scope of this thesis choices were made to be able to propose a functioning
model that solves the problem specified in Section 1.1. The aim is to create a
dynamic general concept search engine with following delimitations:

• Some parameters of the model need to be chosen empirically since all settings
are missing support from previous papers. However there are some choices
that are made more elaborately, e.g. parameter benchmarks are performed in
order to find the optimal setting.

• The classification method chosen will be binary since this will be enough in the
scope of this project. The classifier will not be tested towards other methods
of classifying.

• Only five different feature descriptors will be used, as the proof of concept of
a general learner is central and not how the addition or omission of certain
parts changes this function. By using five different feature descriptors makes
it possible to get the distinction and variation sought for in a general sense.

• The data used from relevance feedback will be limited to only consist of which
images that are truly relevant and which that are not. Even if it is possible to
use more data this will be the case.

2



1. Introduction

• The selection process of images in the search of relevant ones is not covered
by the scope of the thesis and is therefore performed as a random search.

1.4 Contributions

A classification method is used as a generic image retrieval system to help quickly
identify and learn user defined concepts which are previously unknown to the system.
The implementation of a Deep SVM, described in Section 4.4.1, with relevance
feedback, described in Section 2.2 to perform image retrieval with a low false negative
rate within a low number of relevance feedback iterations. An attempt to use both
weak and strong learners in the same ensemble to enhance performance in terms
of a more generic classification. In this report a new content-based image retrieval
(CBIR) method is tested that uses more than one image as the query to achieve a
higher abstraction level and boost performance.

1.5 Organization of thesis

Chapter 2 Theory presents the basic and central concepts in the scope of
the thesis such as CBIR and relevance feedback. An introduction
to the datasets used and information of why different formats
and color ranges are important in this thesis.

Chapter 3 Image analysis theory introduces the relevant parts of image
analysis. What an image feature is and the different feature
descriptors that are implemented.

Chapter 4 Machine learning theory describes supervised learning, what
classification is and which methods that are used.

Chapter 5 Method explains how the proposed model is constructed and
how evaluations were performed in order to test the model. The
evaluations split between parameter benchmarks and study com-
parisons with other CBIR models.

Chapter 6 Results presents the obtained results of evaluations described
in Chapter 5.

Chapter 7 Conclusion discusses the results presented in Chapter 6. From
these discussions possible extensions on the model are presented
as well as how some functionality of the model can be extracted
for external usage.

3
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2
Theory

In this chapter the theory of the key concepts behind this thesis are presented. Here
content-based image retrieval is explained as well as the difficulty of closing the se-
mantic gap. The idea of relevance feedback is introduced as it is a key module in
the thesis. Lastly the different datasets used in evaluations are presented accom-
panied with a brief introduction to how images are stored digitally. The chapters
Image analysis theory andMachine learning theory extends theory in their respective
branches.

2.1 Content-based image retrieval

Content-based image retrieval (CBIR) is a term referring to techniques used in com-
puter vision, where the goal is to find images with similarities in large databases.
Given a query that is presented to the system, the output would be a set of im-
ages extracted from the total set which have the highest resemblance to the query.
Content-based refers to the information stored in the image itself and not, as is
the case in tag-based image retrieval (TBIR), the metadata of the image. CBIR is
therefore a viable approach if either the metadata is non-existent or the classification
is of some other variety than what the metadata can give. A situation when CBIR
might be good to use is when the visual content of the semantic nature or there are
reoccurring objects in several different images. In modern CBIR systems there are
four reoccurring major parts [5]:

• Feature extraction, where the raw features are recovered.
• Feature reduction, the recovered features are used to reduce feature dimen-

sionality and storage space usage.
• Ranking, systemize the images so that the system can categorize the images

in the dataset depending on resemblance to the query.
• Finally relevance feedback, the final feedback given by an expert user if needed

correcting the algorithms predictions.
A large problem in image retrieval is that the query image might hold information
easily perceived by a user but hard to concretize in pixel data and features, this
problem is called the semantic gap. It can be said to be the difference that arises
when two different linguistic representations try to describe the same object. This
is a relevant issue whenever the perspective of a human is tried to be represented
by a computer. This, commonly known as the semantic gap, is bridged by functions
that interprets the pixeldata of the image for the computer so it can get a concept
of the object and recognize what it perceives [6].

5



2. Theory

2.2 Relevance feedback

A way to avoid the problems that arise when dealing with the semantic gap is to
use relevance feedback. Relevance feedback can be said to be the direct interaction
between a user and a machine in learning. The user reviews and corrects the predic-
tions that the machine has made. The machine can in return use this information
to re-evaluate the predictions that were made. The process is in general that a user
is presented with a number of images by a machine learning algorithm. Images that
the algorithm has tried to label with the help, or occlusion, of some pretraining.
These images are re-evaluated by the user and corrected by her if the corresponding
label happens to be falsely assigned and acknowledged otherwise. With these ad-
justments to the data the to the data the retrieval process is refined in an attempt to
make future classifications better. These two parts are then iteratively carried out
as the algorithm keeps searching through the dataset for the required images [7].
There are different kinds of relevance feedback methods, the three most common
are explicit, implicit and blind (pseudo) feedback [8]. Using explicit feedback means
that a user, knowingly of that her actions will affect how future material will be
presented, indicates the relevance of the material presented to it. The first of the
other two feedback variations is implicit which either means that the users behavior
is observed or that the user is unknowing that the feedback are used as relevance
feedback for the system. The other is pseudo relevance feedback which is a form
of automated feedback that uses the first query as relevant results. In view of the
situation of investigations having a need for the user to review all images in any
case, explicit feedback is the best viable option. The explicit feedback is used to
create a continuous data confirmation and thus creating more reliable data in each
iteration.

2.3 Image formats

There are several file formats available and different ways to store images, such as
uncompressed and compressed raster formats as well as vector formats. When an
image is stored with a raster format it is represented by a grid of pixels with a depth
depending on the information of the image. The most common way to store image
information is to use a 24-bit RGB pixel, where RGB is an abbreviation for red
green and blue. Each 24-bit pixel has three equally sized channels of 8 bits, which
makes each color channel range between 0 and 255. This results in approximately
16.8 million different combinations for colors, where a human can perceive about 10
million [9]. A computer screen usually operates at the described color setting. The
size of the file simply depends on how many of these pixels that are stored, i.e. the
size directly depends the dimensions (width and height) of the image. As the sizes
may vary, some images can become expensive to process. Because of this it can
be prudent to downsize the image to a smaller number of pixels and thus avoiding
unnecessarily large amounts of data. Downsizing can be especially useful since high
pixel information is not always equivalent to good performance [10]. There are
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2. Theory

several different color spaces, of which some are used in image analysis. The most
commonly known being RGB which is an additive color range where each channel
is a color incorporated with light intensity. It is based on generated light and the
addition of these to create the color spectra. The use of additive color combinations
of red, green and blue are useful in technology as television sets and computer
screens, the different channels of RGB are visualized in Figure 2.1. As humans tend
to react more on the hue and saturation of an image than color they are considered
rather inept in image analysis [11, 12].

Figure 2.1: The different channels of the color space RGB. The left image is the
original image and the other three show each independent channel. From the left:
Red, green and blue channels. The brighter the pixel the higher color value since
RGB is an additive color space. Best viewed in color.

2.3.1 Hue, saturation, value

Hue, saturation and value, abbreviated as HSV, is a color space in line with RGB.
The difference is that HSV is a cylindrical representation of RGB, where RGB is
mapped as a cube where the channels r, g and b can be interpreted as the often
named x, y and z axes. The HSV can be mapped cylindrically where hue is the
degree position of the cylinder, saturation is the radius and value is the height.
HSV is considered to be a color space that is a closer representation how a human
perceives the world and thus also often used in the field of CBIR and image analysis
as a whole. The different color channels can be seen in Figure 2.2.

Figure 2.2: The different channels of the color space HSV. From the left: All color
channels are active, only the hue channel, only the saturation channel and only the
value channel. Best viewed in color.
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2. Theory

2.3.2 YCbCr

This representation is composed to work towards human perception where the lumi-
nance component (Y) can be seen as analogous to the brightness or light component
and the two chroma (Cb and Cr) filling out the color spectra [13]. The three channels
can be seen in Figure 2.3. The color information is not always as vital for human
perception as the brightness is. The human retina has three types of photoreceptor
cells where two are commonly referred to: The rods, that are very sensitive to light
and can be triggered by a single proton, and the cones, that are less sensitive to
light but reacts differently to individual wavelengths of light. A human has ≈ 120
million rods and ≈ 6 million cones. The number of photoreceptors is somewhat of
an indicator of which channel in YCbCr that affects human perception the most.
The luminance is often used in edge detection since it conveys textures, illuminates
the shapes of objects and portrays depth in images [14, 15].

Figure 2.3: The different channels of the color space YCbCr. From the left: full
image, the luma channel (Y) and the two chroma channels (Cb) and (Cr) in that
order. In the luma channel edges are abstracted from the color compositions. Best
viewed in color.

2.4 Datasets

Datasets are used to evaluate and compare the performance of a proposed model
with other studies. This is often done for CBIR systems as well as classification
systems. Examples of evaluations that uses datasets are plain recognition, image
retrieval and image classification. To be able to evaluate and compare with several
recent papers [16, 17, 18, 19], one of the datasets used in the thesis is the dataset
Corel-1000. This set comes with its limitations as it is relatively small in comparison
with the huge datasets used to train deep neural networks. Neural networks such as
GoogLeNet [20], AlexNet [21] and VGG-16 [22] are designed to compete in the
ImageNet Large Scale Visual Recognition Competition (ILSVRC) [23], a yearly
object detection contest where 1000 object categories are present. Since the goal of
the thesis is to learn general concepts and not to detect objects another dataset was
used: The dataset Places205, designed by MIT, described in Section 2.4.2.
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2. Theory

2.4.1 Corel-1000

The Corel set is an image dataset often cited and used in validation of different
CBIR systems [24]. The dataset is a low resolution set composed of 80 classes
(concepts) with 10.800 images in total. Due to the size of the dataset a subset,
called the Corel-1000 dataset, is used to compare the proposed method with related
CBIR approaches [16]. The Corel-1000 dataset is a subset of the Corel dataset which
contains 1000 images, composed by 10 classes with 100 images in each class. The
images in this dataset are of the sizes 64× 96 and 96× 64 pixels depending on their
orientation. The 10 classes are referred to as Africans, Beaches, Buildings, Buses,
Dinosaurs, Elephants, Flowers, Horses, Mountains and Food.

2.4.2 Places205

Places205 is a dataset produced by MIT and collaborators in the search for ever
better human-reaching performance with machine-learning.
The MIT places205 is chosen to be part of the evaluation of the algorithm presented
in this thesis since it has a large variety of images and classes and is a well-known
dataset [25]. It is a repository of millions pictures, labeled with scene semantic
categories and attributes. The dataset consists of 205 sceneries with an average of
12000 images in each class. The different sceneries of the dataset places205 can be
seen in Table A.1 in the appendices. The table lists all the names of the categories.
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3
Image analysis theory

This chapter introduces and explains how images can be represented in more ways
than the rasterized formats that simply consists of the pixel data. The chapter
introduces and dives into some of the different content representations that can be
used as well as what features and feature descriptors are. The theory behind the
feature descriptors within the scope of the thesis is explained.

3.1 Visual features

Features in image processing are embedded information in either the picture itself
or the meta-data concerning the picture. These features are extracted and used to
solve various problems in computer vision, machine learning and pattern recognition.
There are myriads of methods to extract features from an image and which one that
suits the problem at hand varies. Commonly used features for CBIR are those
that describe color, texture and shape. When the features have been extracted the
resulting data are called feature vectors. The length of the feature vector varies,
depending on the image being processed, the method used for description and the
detail in which the features are extracted.

3.2 Feature detectors and descriptors

Feature detectors are usually built towards detecting either global features or local
features. Global feature detectors are often color or texture oriented and make de-
scriptions based on all pixel data in the image. These are good at identifying similar
images but can have a hard time to distinguish between foreground and background
of an image as they work with the whole image and thus usually fail to find local
nuances and differences. They are often built to output a feature vector with the
focus on a number of properties of the image involving all the pixels. In contrast, the
local feature detectors focus on key points in the image and try to describe these and
sometimes the area of pixels around these. Local feature detectors are often used
to locate and recognize identical objects which may be skewed and transformed
in some way in different images. The result is often several vectors representing
the points of interest in the image. These attributes come with a cost, local feature
detectors are often expensive in terms of computational power and data storage [26].

A feature descriptor is used when the interest points have been identified or detected
as previously stated. The descriptor creates a set of vectors based on this information
which can be used in the proposed retrieval model. In image processing and image
analysis, one uses feature descriptors to facilitate the transfer from an abundance of
features that are derived from images to a subset or transformation of these features
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3. Image analysis theory

to create a more manageable dataset. Depending on the scope of the project the raw
features one would get from the feature descriptors can become too large to handle
and work with. To minimize this problem, the feature descriptors can be said to
carry out dimensionality reduction on the data. Without any form of reduction
of the actual information size, there would be a large requirement on memory and
computational power.
Feature descriptors can, based on their performance, also be divided into either
weak learners or strong learners. A weak learner is a feature descriptor that has
an average precision higher than random chance towards a certain category. If the
data were constructed of two classes with equally large categories a weak learner
should have a precision just above 50%. A strong learner, in contrast, is a feature
descriptor with a much higher precision which on its own can discern a majority of
the images, this can e.g. be a deep convolutional neural network. Note that there
are not a clear distinction here since the classification of a feature descriptor as a
weak or strong learner is not only which method that is used but which dataset it
should be applied on.

3.2.1 Histogram of oriented gradients

Histogram of oriented gradients (HOG) is a feature descriptor used for object de-
tection in the fields of image processing and computer vision. The idea is that a
local object shape and appearance can be described by the distribution of intensity
gradients, or edge directions. The HOG computes the first order gradient, as these
capture contour and some texture information. This is all done on the locally domi-
nant color channel which usually is the gray channel. Then a pooling method is used
where the image is divided into a number of cells in where the gradient orientation is
acquired. The orientations are distributed in a fixed number of bins or possible ori-
entations. The different magnitudes determine the result of the gradient histogram.
When these has been evaluated the cells are grouped into blocks which creates a film
over the “surface” of the cells of the image thus creating a new normalized gradient
oriented image. The blocks are set to overlap thus each cell are accounted for sev-
eral different calculations over different blocks. The normalized blocks are referred
as HOG descriptors. The descriptor is essentially the concatenation of these local
histograms. Examples of how the gradient orientations are put into bins can be seen
in Figure 3.1. The HOG is well suited for human detection according to [27].

Figure 3.1: Examples of how the directions of gradients are binned in two images.
The images are split up into cells with directional histograms. The number of
histograms is substantially larger than when used in the thesis.
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3.2.2 Global color histogram

A color histogram is a representation of the color distribution in an image. The color
histogram method counts the number of pixels with similar attributes and stores
them in a number of bins. There are no specific sizes for the bins, though there is a
max size based on the current color range used. The size used is dependent on the
performance of using fewer bins in contrast to the computational cost of using more
bins. In image analysis, it is common to use HSV for this histogram, which would
result in three dimensions of bins, one for each color channel. In the Figure 3.2,
two examples of putting colors into bins are visualized, one with high and one with
low resolution. When calculating a global color histogram (GCH) one does not take
smaller patches of the image and calculate the concentration of information locally,
instead it is calculated over the image as a whole. This approach can be insensitive
where the objects might be different but the color characteristics are not. Two
completely different images can still contain the same GCH values due to that the
images have similar color settings.

Figure 3.2: The HSV color channels of the image to the left are binned into
two histograms (H=blue, S=green and V=red). The left uses one bin per level of
the color channels and the right histogram is grouped into a substantially smaller
number of bins.

3.2.3 Wavelet transform

In this thesis, a Haar Wavelet transform was implemented, the simplest of wavelets.
Haar-like features are a type of digital image features which are used in object recog-
nition [28]. The wavelet was implemented by first taking the differences and means
of each pixel to its neighbors. This is done once per pixel in horizontal calcula-
tions and once in vertical calculations, the values are then divided into the different
rectangles. The signal is decomposed into a subset of signals representing different
elements, approximations of the image and intensities in the different directions and
orientations. So for each time the wavelet transforms the image a couple of smaller
ones are created with a dimensionality of 2. This makes it possible for a wavelet
with an image of size 256 ∗ 256 to be minimized 8 times (28 = 256). In Figure 3.3 a
representation of the wavelet transform for the three first levels is presented.
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Figure 3.3: From left to right is shown representations of the different levels of
wavelet transform, original image, one level applied, two levels applied and three
levels applied respectively.

3.2.4 Convolutional neural network activations

The field of Artificial neural networks emerged with the McCulloch and Pitts neuron
in 1943 [29]. The idea was to simulate the human brain, where there are about 1011

nerve cells, or neurons, that through a symphony of signals communicate information
from and to other neurons. This is achieved by creating nodes for the neurons and
edges interconnecting the different neurons to simulate the axons and dendrites.
Dendrites work as a form of input to the neurons which have different intensities
in their signals, in artificial neural networks modeled using weights. The neuron,
or soma, then sums up the inputs into an output which then the axon can signal
forward to other neurons and so forth. From the basis of this simple adaptation,
the simulated neural network is created. In the simplest form, a neural network
is composed of a single layer of neurons. These are presented with an input with
weights, which are analogous to the intensity of the signals measured frequency in
the animalistic brain. The neurons then process these values into a response or
output.

3.2.4.1 Convolutional neural networks

In this thesis a subset of the field of artificial neural networks is used; convolutional
neural networks (CNNs). A CNN is a type of a feedforward neural network that tries
to simulate the animal visual cortex. A feedforward neural network is an artificial
neural network wherein the connections between the units do not form any cycles or
loops. A multilayer feedforward network is composed by, an input layer, an output
layer and zero or more “hidden” layers. In this simple illustration the first layer, the
input layer, receives the first number of inputs to be processed by the neurons. this
is then sent to the next layer as inputs and the chain continues until the final layer
outputs the final result for the whole neural network.

3.2.4.2 Network components

The architecture of a convolutional neural network is not static, which results in that
the design may vary a lot between different networks. The most common building
blocks are convolutional layers, pooling layers and fully-connected layers. They are

14



3. Image analysis theory

variations of multilayer perceptrons which are designed to use minimal amounts of
preprocessing. In addition, an often used unit is the rectifier linear unit. The CNNs
are constructed by using several different components, some of the most commonly
used ones are the following.

The convolutional layer is the backbone of a CNN. They are composed of a set
of learnable filters, also known as kernels, with their distinct size of receptive fields.
They traverse the whole area of the image, convolved across the height and width
of the input, all the while computing the dot product. The combination of the filter
locations produce a 2D activation map for each filter and all 2D activation maps are
stacked for each filter which creates the output matrix of the layer.
The pooling layer is essentially a non-linear down-sampling of the input image.
This is done by some algorithm where max pooling is one of the most commonly
used ones. It splits the input into several smaller non-overlapping rectangles and
then outputs the max value from these regions. The idea is to periodically insert
pooling layers in between the convolutional layers, in so doing reducing the num-
ber of parameters as the size decreases and thus lessen the amount of computation
needed for the network. This also helps to reduce the risk of overfitting.
The rectifier linear unit, known as ReLU, which applies a non-saturating ac-
tivation function to increase the nonlinear properties of the network. This is done
without directly affecting the receptive fields of the convolutional layer. The general
idea is to reduce the time it takes to train the network while still retain the general-
izing nature of the network. It checks the values of the input layer and if the value
is below 0 sets it to 0, and otherwise sets it to 1.
The fully-connected layer is normally the last couple of layers in a CNN. The
layer is completely connected to the previous on meaning that the activations of all
the neurons in previous layers connect to all neurons in the next layer. These layers
constitute the high-level reasoning of the network.
The softmax activation function is normally used to produce the final output
of the CNN where a loss function is set to determine how to penalize the network
if prediction deviates from the actual labeling. A softmax function is designed to
use a probabilistic interpretation of the activation values and then normalize them.
which very is useful when the output is applied to a cross-entropy loss.

One of the hardest parts is to configure a CNN based on these layers to create a
well versed and functioning network. In this thesis the VGG-16 [22] is implemented.
How the VGG-16 is built by using all these different layers in their convolutional
neural network is shown in Figure 3.4. Transfer learning is a method where one
use pretrained CNN models and then just remove the last output layer, and extract
the features directly from the fully-connected layers [30]. To be able to use the
network for the purpose of a feature descriptor modifications were made. The final
fully-connected layer as well as the softmax layer, the loss layer, are both omitted
as can be seen in Figure 3.4.

15



3. Image analysis theory

Figure 3.4: Top: A simplified visualization of the VGG-16 CNN. Bottom: The
modification done in this thesis.

3.2.5 Edge detection histogram

The set of edge detectors is a group of different methods that aim to identify strong
shifts in images, which could signify discontinuities in the image [31]. A common way
is to use the channel representing the light of a color space to find the discontinuities,
like the luminescence (Y) as mentioned in Section 2.3.2. The name edge detection
is based on the relevant points that signify discontinuities which are called edges.
There are two distinct methods commonly used in edge detection. These are the
search based and the zero-crossing based edge detection. The first method, the
search based, looks for the local directional maxima of the gradient magnitude,
often using a first-order derivative expression to compute this. Examples of these
are the Roberts, the Sobel and the Prewitt operator. All these edge detectors utilize
convolutional masks in order to calculate the gradient. The result of Sobel edge
detection is shown Figure 3.5. Zero-crossing based, the other method, uses second-
order derivative expression to find where there is a jump of values, the zero-crossing
of the image. An example of these is the Laplacian operator, which often is used
with an approximate convolutional mask [32]. The identification of these edges can
be used to find more relevant objects and shapes in the images, which can be used
to build predictions on [33].

Figure 3.5: Edge detection, to the left a gray image of the original, to the right a
image showing the edges found using Sobel edge detection
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This chapter introduces key concepts within the machine learning subfield of out
thesis. It will start with a brief overview of machine learning theory and how su-
pervised learning works. The chapter will continue with the classification in general
and the basic ideas of Support vector machines. It will then conclude with the key
feature of ensemble learning and Deep support vector machines.
Machine learning is a field in computer science focused on methods where the com-
puters learn without being explicitly programmed. Thus it can be said to be the
study and construction of algorithms that can learn from data and make predictions
based upon it. In order for a person to learn about something new, the person looks
back on previously learned knowledge and machine learning algorithms do not dif-
fer from this pattern. A famous quote that describes machine learning by Tom M.
Mitchell is “A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E” [34]. Machine learning is applied to
several different subjects in a number of different fields. Even though there are sev-
eral learning methods and utilities of machine learning this thesis will only handle
the concepts of supervised learning and classification.

4.1 Supervised learning

Supervised learning is a training method for a computer program, where labeled
data is explicitly used. Labeled data is a group of samples x ∈ X composed of some
form of information, distinguishing the samples xi where i = {1, ..., t} and labels
yi ∈ Y, or targets, corresponding each to one sample. The labeled data is usually
split into three different sets: A training set, a validation set, and a test set. The
training set is used to train an algorithm towards a certain concept by generating a
function based on the data. If presented some unknown data this function should be
able to categorize the data into correct labels. So presented with a set of samples xj
where j = {1, ..., s} it should predict the correct labels yj. The validation set is then
applied to get an idea of how it is performing and to see if further changes are needed
to get an acceptable result. If one tries multiple approaches, this should determine
which to use if the learning algorithm performs as anticipated. The last part of the
labeled data, the test set, is then used to check what a possible expectation of the
algorithm could be when presented unlabeled data.

4.2 Classification

Classification is a general problem in pattern recognition where some form of input
value should result in an output value which is representing the label of the element.
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The research behind classification is extensive and many different fields are working
with classification. The choice of which classification method that should be used
varies depending on the data. It is of note that no one classifier suits all cases
and no one classifier outperforms every other in every other case as per the “no
free lunch” theorem from Wolpert and Macready [35]. The most basic form of
classification is binary classification where the data is separated into two categories,
for instance as relevant and non-relevant. The input to these algorithms is often
referred to as feature vectors, xi. The number of dimensions of these vectors might
vary in-between different feature descriptors, which the classifier must be able to
handle.

4.3 Support vector machines

A Support vector machine (SVM) is essentially a supervised learning model where
data is analyzed for classification and regression analysis. It can be said to be a
non-probabilistic binary classifier since new examples are assigned to either of two
categories. The way an SVM works is that the training data used is mapped in a
way that separates the different categories by an as large margin as possible. The
margin are between a boundary and the data points are measured geometrically
and therefore distance functions are designed in various ways to attack this kind of
problems. A data point of a set is considered as a p-dimensional vector (composed of
p numbers) and the goal is to be able to separate the data with a (p-1)-dimensional
hyperplane.

SVMs are good at handling feature vectors of both small and large numbers of
dimensions, are fast at classifying and are relatively tolerant to noise, this type of
classifier is used in this thesis [36, 37, 38], but all datasets are not easily divided by a
linear model. Due to this, the Kernel trick was invented. A non-linear classification
implicitly mapping their inputs into a different dimensional feature space.

SVMs can be used for classification, regression and outlier detection, but since the
thesis has its focus within classification the theory covering the other two use cases
will be omitted.

In order to classify a SVM constructs a hyperplane, or a set of hyperplanes in higher
dimensional spaces, that can be used to classify data points depending on which
side of the hyperplane they reside. As a hyperplane have two sides the classification
is binary and thus the label set becomes defined as Y ∈ {1,−1}. The optimal
hyperplane wTx + b = 0, as seen in Figure 4.1, is found when the given training
data is separated with an as large margin γ = 1

||w|| as possible. This means that it
will also be found when minimizing ||w|| or by simply minimizing wTw.

Given training data points, or vectors, xi ∈ Rp, i = 1...n and the respective label
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yi ∈ Y the primal (4.1)

min
w∈Rp,b∈R

wTw

subject to
∀j: (wTxj + b)yj ≥ 1

(4.1)

can be constructed.
As soon as a stable hyperplane has been found the test set can be classified by simply
checking which side, of the hyperplane, the data points end up on by computing the
label value (4.2)

yi = sign
(
wTxi + b

)
. (4.2)

The larger the distance from the hyperplane to a point the more certain the predic-
tion is that the data point belongs to a certain category. Hence the data points that
are within the margin of the hyperplane have the most uncertain predictions. This
can, in fact, be used in order to calculate some certainty that a data point belongs
to a class or not. If the distance between two data points and the decision boundary
compared is of different sizes, the point with the greater distance is more probable
to belong to the desired category [39].

Figure 4.1: A simplified visualization of how data is linearly separable in a two
dimensional space. Best viewed in color.

4.3.1 Kernels

Kernels define the Cartesian product between vectors, which can be used to get a
real value. In order to create a kernel one defines a function K from the Cartesian
product of the feature space to a real value (K : X × X → R). This real value
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can subsequently be used to evaluate a distance value. Depending on the chosen
kernel the distance between different points vary and thus the choice of a kernel can
improve the results for different datasets. Kernels in SVMs are different methods of
how the hyperplane is generated for the SVM and thus gives different ways of sepa-
rating the data. The most common ones are the linear and the radial-basis function
(RBF) kernels. If the data is linearly separable a linear kernel is the straightforward
approach. An example of a kernel that could solve the problem if this is not the
case is the RBF. The RBF kernel is a fast approach that often works, as long as
the feature space is not too large. Different kernels are used to make data points
linearly separable in their own dimensional spaces, causing the decision boundary
in the original feature space to be, and appear, non-linear.

4.4 Ensemble learning

Ensemble learning methods use a setup of different learning methods which are then
combined to achieve a better predictive behavior than if using a single one. There
are several things to be taken into consideration when implementing. The different
feature descriptors need to show some form of diversity in their representations
otherwise it will only create multiple calculations for the same information which
would risk overfitting [40, 41]. One can use the Condorcet jury theorem as an
example of this methodology, “If each voter has a probability p of being correct and
the probability of a majority of voters being correct is P, then p>0.5 implies P>p.
In the limit, P approaches 1, for all p>0.5, as the number of voters approaches
infinity” [42, 43]. There is great potential with the use of several classifiers. It is
important use different feature descriptors so they yield results based on independent
data, else the idea of using more classifiers becomes redundant [44].

4.4.1 Deep support vector machine

A Deep support vector machine (Deep SVM) is model aimed to enhance the perfor-
mance by using multiple SVMs by positioning them in layers, inspired by deep belief
networks [45] and other stacking generalization approaches using SVMs [46]. The
idea is to build layers of SVMs where the output of the previous layer becomes the
input of the next layer. The use of more layers gives new possibilities in classifica-
tions which cannot be achieved with single, however complex, kernel functions. One
example of this is the XOR function which can not be solved with a single SVM but
can be when using layers of SVMs. The structure can be perceived in Figure 4.2,
where the initial box, presenting the different feature vectors to the classifying sys-
tem. The first layer of SVMs receives the feature vectors as input and the output
of the first layer becomes the input of the following layer, called meta-level feature
vector. The number of classifiers in the first layer is only restricted by the number
of feature vectors presented to the system, which is an arbitrary number. The SVM
in the final layer, in the figure called “Meta SVM”, presents the final result of the
system.
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Figure 4.2: A simplified sketch of how a Deep SVM classifies data. The test data
is passed through the first order classifiers and the output of those is the input for
the Meta SVM. The output of the Meta SVM is the distance from the decision
boundary that the entire classification system has created.

The training of a Deep SVM is performed in several steps, as presented in Figure4.3.
The first step is to perform a K-fold split on the training data, T = {T1 ∪ ...∪ TK},
that is applied to the classification system. All the first layer classifiers (first order
classifiers) are then trained with the training subset T c1 = T \ T1, in order to use
the remaining subset of the training set T1 as a test set. The output of the first
order classifiers then becomes the training subset for the second order classifier
T1meta . This process is repeated K times to produce the full training set for the
second order classifier Tmeta. When the K-fold process has been completed the first
and second order classifiers can be trained with the full training set T and Tmeta
respectively. The process of training a single SVM is described in Section 4.3.
This setup takes much more time to train than when just using a single SVM. The
reward is an estimator that is capable of a more abstract level of classification.
There is a drawback to having two layers and creating estimation by using the K-
fold process. In order to make estimations for relevant one data point another one is
required to be in a different cake piece of the split. The same rule goes for the non-
relevant datapoints. This means that the smallest training set for such a classifier
is of size four (two relevant and two non-relevant data points). Even if this is a
minimum size, the training process might be inconsistent if the training set is to
small. Having a to small training set might cause the decision boundary might flip
completely based on what training data is used. To avoid the training data to be
inconsistent the number of folds can be increased, but to perform a 5-fold one needs
five relevant and five non-relevant images. In other words the classifier works better
with larger training sets were data overlaps can occur.
Which kernel functions that the different classifiers have in the Deep SVM does not
matter since each unit is independent of the other ones. The selection of kernels in
the first order classifiers depends on which feature vectors that they have as input.
The classifier at the second layer, however, separates an n number of dimensions if
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there are n classifiers in the first layer since they have all produced an estimated
distance to a decision boundary. Due to the low level of dimensions and the values
of the input vector should be positive if a point is predicted correctly, a linear kernel
is often possible to apply.

Figure 4.3: A simplified sketch of how a Deep SVM is trained. The Meta SVM
needs approximations of how the first order classifiers treat the training data in
order to fit its own decision boundary.
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This is where the methodology of the thesis is presented. Related approaches are
presented as well as how the proposed model is structured. In the end of the chapter
there is a presentation of how evaluations are performed and what the evaluations
are.

5.1 Related approaches

The approach of modeling a system presented in this thesis is, to our knowledge, still
untested. There are however several papers that implement different components
of the proposed model. Most content-based image retrieval (CBIR) systems use a
set of different feature descriptors that are proven to be good at finding equalities
or similarities between images. The system is then presented with a single query
image in order to find matches in a database. The images in the database are
compared to this query image and the similarities are calculated which is usually
some distance measure. If a certain threshold is crossed the images are labeled
as similar [16, 17, 18], e.g. calculating the Euclidean distance and sorting the data
having the most similar data points first. Other CBIR systems have created a feature
vector from extracting certain feature descriptors, trained a neural network with a
subset of the data and use the classifier to retrieve images [19]. There are other
implementations where the use of relevance feedback is used in conjunction with the
feature descriptors to even further increase performance, in light of the difficulty to
identify feature descriptors that are good at “understanding” concepts [47].

5.2 Proposed model

This thesis presents a model that uses relevance feedback and CBIR in order to
categorize a search space of unlabeled data in an iterative and a more efficient
manner. The material that has been verified or recategorized by the user through
relevance feedback in previous iterations can be used by the model to present better
matches in future iterations. The unlabeled search space will in other words shrink
as the labeled set for training will grow.
As mentioned in Section 5.1, the proposed model slightly deviates from other setups.
Yet, the general structure is the same as most CBIR systems use. The proposed
model consists of three modules; one for matching, one for feature extraction and
one that handles relevance feedback. When a search iteration is initiated the match-
ing module fetches a training set and information about the current search space
from the feature extraction module, makes elaborate predictions about the material
and passes the most accurate information to the relevance feedback module. The
relevance feedback module processes the information, requests feedback from the
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user, passes the ground truths on to the feature extraction model, that updates the
search space with new information, and then terminates the iteration which allows
a new one to be started. The communication between the modules during a search
iteration can be seen in Figure 5.1.

Figure 5.1: The system consists of three modules; matching, relevance feedback
and feature extraction. Here the workflow for the model during a single search
iteration is presented.

5.2.1 Relevance feedback module

There are numerous ways of using relevance feedback in order to improve CBIR and
to categorize material. In Section 2.2 the different ways of relevance feedback are
divided into three categories and they are referred to as explicit, implicit and blind
feedback. In order to make elaborate guesses the model needs to have validated
data in its training set and as mentioned in Chapter 1 all the case material has to
be handled by an investigator in order to build a case. The model has therefore
been designed to use explicit feedback in the end of each search iteration.
The feedback that the model receives from the user gives the module information
about which images that were correctly categorized and which images that were
falsely categorized as negatives and positives. The information of which images
that have been categorized as false negatives or positives could be used in order
to improve classification in some direction, but due to limitations of the scope the
information from the relevance feedback reduced to only consist of ground truths.
Since the model is designed to deplete the search space of relevant images, the only
information that is drawn from relevance feedback is the knowledge of which images
that are relevant and non-relevant for the specific case. This knowledge is passed
on to the feature extraction module and the search iteration is then terminated as
seen in Figure 5.2.
The information that the relevance feedback module receives from the matching
module is overly simplified to reduce calculations. The material that is received is
sorted to have the most relevant images first and the least relevant images last. The
material is however only labeled as relevant and non-relevant. To present all the
material at once would be overwhelming for the user and the model would not need
to learn iteratively. To present the top-k images is a common method within CBIR,
and the number of images that are presented could make it easier for the user to
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Figure 5.2: The relevance feedback module is the intermediator of the user and
the rest of the model. When the feedback is given by the user the search iteration
can be terminated.

oversee the material. The number 20 was arbitrarily chosen and was empirically
manageable. An extension to this top-20 approach in order to improve classification
was to also to present some images from the other extreme; the bottom-k images.
With the intent to avoid presenting to much information to the user it sufficed with
5 images. Resulting in that the user could quickly give feedback to 25 images in
total every iteration. The setting of which images and how many of each group of
images that are presented each iteration was not easy to set. This decision paned
out to be made using measurements and is described in Section 5.3.2.

5.2.2 Matching module

As a search iteration is initiated the matching module begins with retrieving training
data from the feature extraction module. This training data consists of relevant and
non-relevant images that can be used to fit the classifier of the model. When the
classifier is set up, the search space can be retrieved from the feature extraction
module and then be explored. The search space is processed in one batch at a
time to avoid performing predictions for more images than necessary. When the
exploration of material has resulted in a sufficient amount of material, the material
is sorted from most to least relevant and then passed on to the relevance feedback
module with labels of the material being relevant or not. In Figure 5.3 there is a
visualization of the workflow of the matching module during a search iteration.
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Figure 5.3: The matching module performs the initial work of a search iteration.
At this point the feature extraction module provides with a training set and details
about the search space.

5.2.2.1 Classifier

As mentioned in Section 1.3, there was no plan to compare how well different classi-
fiers would perform in this thesis. Since having many dimensions can result in more
general predictions, a classifier that scales well is preferable. A classifier that is capa-
ble of handling a high number of dimensions is the Support vector machine (SVM),
see Section 4.3. Comparative studies such as [48], [49] and [50] have deemed SVMs
as classifiers that continuously show good results in different implementations.
In the field of CBIR there are myriads of different feature descriptors that are used
and the more feature descriptors one can combine, the more general the classifier
can become. As mentioned in Section 1.3 the number of different feature descriptors
used in this thesis is limited to five. This solely because adding or removing feature
descriptors could improve performance in a general sense, but there was not enough
time to cover the subject. In order to combine these five feature descriptors a tree of
SVMs were created; one for every feature descriptor and one that treats the output
of the different SVMs as input. Read more about the classifier structure Deep SVM
in Section 4.4.1.
As mentioned in Section 5.1, most CBIR systems can quantify certainty of relevance
by using a distance function in order to sort the material from most to least relevant.
SVMs are geometrical tools that create a decision boundary in some dimensional
space to split the categories so they can be categorized depending on which side
they are of the decision boundary. Due to the fact that the relevance feedback
module expects the material to be sorted the certainty of the classification needs
to be quantified. Instead of using the sign function, Equation (4.2), to determine
the category of an image, the matching module can use the distance between each
data point and the decision boundary, a quantification method that is mentioned in
Section 4.3, to see how probable it is that some image belongs to a certain category.
This gives the matching module the possibility to sort the data from the most to the
least relevant and the categories of the data points can still be predicted by using
the sign function later on.
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5.2.2.2 Training data

The training data used to fit the classifier is mainly intended to have been categorized
recently by a user. As mentioned in Section 5.2 the search space (the unlabeled
material) shrinks as the labeled set grows for every iteration. The labeled data is
used to create a training set in order to fit the classifier and make new predictions.
In the first iteration however, there is no labeled set to work with and therefore no
training set for the classifier. When the classifier can not be fit the exploring of
the search space is not possible. Instead of locking the workflow of the proposed
model the matching module instead selects some material at random (without any
predictions) to pass on to the relevance feedback module which creates some labeled
data to use in future iterations.
In order to fit an SVM at least one relevant and one irrelevant data point is necessary
and in order to fit a Deep SVM it is necessary to have two relevant and two irrelevant
data points, due to how it is trained (see Section 4.4.1). When selecting material
from the search space at random there is no guarantee that enough material is
sampled in order to fit the classifier correctly within a certain number of iterations.
To work around this issue the possibility to install an initially predefined training
set was introduced. The initial training set is used in combination with the labeled
data, that will slowly grow with every search iteration. A justification to add such a
training set to the model is that in most cases when a person knows what to look for
it has some previous knowledge of how such material would appear. When having a
predefined training set with at least 2+2 relevant and irrelevant images, it is always
possible to fit the classifier and the search space will be explored. This results in
being able to perform actual predictions and having better odds of finding more
relevant material to improve the training set even more.
Not having enough training data results in the incapability of fitting the classifier
correctly, but having too much training data would force the classifier to take too
much time to fit the best possible decision boundary for the data. Since the size of
a search space could theoretically be infinitely large, the labeled set would also go
towards infinity as the number of iterations increases. To prevent the labeled set
to become too large an upper size limit was set to 500 data points. No evaluation
or research was put into this number. Instead it was selected by the intuition of
having a training set of that size (500 data points) it should be possible to present
a small portion of material with some certainty. Having an upper limit of training
material adds the possibility of two things: The time spent training the classifier is
done in the same amount of time every iteration and by sampling a subset from a
large labeled set allows the decision boundary to shift in-between iteration.

5.2.2.3 Exploring search space

After the search space has been received from the feature extraction module the
exploration loop can begin. In this loop the classifier in the matching module is
used to categorize the material and calculate the distances from the data points to
the decision boundary. As mentioned in Section 5.2.2, this is done in batches. The
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batches of the search space are selected at random, i.e. a subset is sampled from
the search space. When a batch of material has been selected the feature extraction
module provides the feature descriptors for the material in the batch. The material
is presented to the classifier and receives a calculated distance from the classifier.
In order to avoid sampling batches until the entire search space is depleted every
search iteration, three stopping conditions were introduced. The first rule was im-
plemented to eliminate the risk of an infinite sampling loop. If a sampled batch
only would contain material that already has been run through the classifier during
the same iteration, the search is over. This stopping condition only exists because
of how the batches are selected from the search space and will therefore not be
evaluated in the same manner as the other two. The second rule is called Early
stopping: If no relevant images seem to be found, stop the iteration and make the
relevance feedback module present the least relevant images. When 200 data points
have been passed through the classifier and none of them are categorized as rele-
vant the material with the largest distance from the decision boundary is tallied
up. Finally, the third rule is called Threshold: Meaning that a number of images
has to be further away from the decision boundary than a certain value. This value
is initially set to 1 until at least one image in a sampled batch has been passed
through the classifier during the same search iteration. As soon as this occurs the
limit changes to a function value depending on the search space size and how many
unique images that has been sampled during the search iteration. When using the
stopping condition Threshold the value of the threshold (5.1)

Threshold =
{
unique images only 1

otherwise n−xlog(x)
n

, (5.1)

where n is the search space size and x is the number of sampled images, is calculated
in the beginning of each exploration iteration.

5.2.3 Feature extraction module

The feature extraction module is really not a part of the workflow during a search
iteration. It is, however, a necessary supporting module that centralizes the con-
trol of information regarding search space, predefined training sets and the feature
descriptors that are extracted. It provides the matching module with information
about the search space during search iterations and delivers a training set in order
for the classifier to work. The feature extraction module updates the search space
with ground truths when the relevance feedback has been received and makes sure
that the presented data can be used as part of the training set.
When the matching module is exploring the search space, the feature extraction
module ensures that the feature descriptors of the material that is about to be clas-
sified are extracted. The process that occurs in the background is visualized in
Figure 5.4. If the feature descriptors for a data point are not extracted, the module
extracts them and stores them in the databases for future use as well. As mentioned
in Section 1.3, only five different feature descriptors are extracted and used. The
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weak learners were picked from the classes of feature descriptors mentioned in Sec-
tion 3.1, where two were oriented towards shape, and one each for texture and color
respectively. The convolutional neural network was chosen as the strong learner
with the potential to categorize well on its own and the VGG-16 was chosen as it
had a good performance in ILSVRC-2014 and is open for use.

Figure 5.4: The feature extraction module centralizes the control of information
transferred between the modules of the proposed model. The feature extraction
module provides data to the matching module and updates the search space with
information that is passed on by the relevance feedback module.

5.2.3.1 Histogram of oriented gradients

The histogram of oriented gradients (HOG) are implemented using the algorithms
developed by scikit-learn [51]. The HOG is presented with an image that is
converted into a single color channel, gray in this case. In the installment from
scikit a number of parameters need to be set. The parameters are the following:
The number of pixels per cell and cells per block are selected to determine how
large the pooling squares become. The number of orientation bins is selected as well
to set how many possible gradients that should be in the output for each block as
described in Section 3.2.1. In this implementation 8 orientations were used, with
32-by-32 pixels per cell and 4-by-4 cells per block. When the convolution is complete
the final step is to collect the data from all the blocks and create a feature vector.

5.2.3.2 Global color histogram

The Global color histogram is based on the one proposed in [47]. The color range
of the image is changed to Hue, Saturation and Value (HSV). The intensities of the
channels are then stacked depending on which values they have and divided into a
number of predetermined bins. In this project they are set as 24, 12, 6 respectively,
instead of the 8, 4 and 2 which are used in Wang et al. implementation [47].
Every bin is summarized with every other bin in the other two channels which
gives 24*12*6=1728 different combinations which are divided by the total number
of interest points as,

H(i) = ni
N

where (i = 1, 2, ..., 1728), (5.2)
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where ni number of interest points, N is the total number of interest points and i
is the possible combinations of the bins. H(i) is used to create one of the feature
descriptors used by the classifier described in Section 5.2.2.1.

5.2.3.3 Wavelet transform

The Haar wavelet transform has good performance at a cheap computational cost
compared to many other wavelet transforms explained in Section 3.2.3. In the
proposed model, 3 levels of transformation is used. The first decomposition is done
by applying two filters on the rows and columns of the original image. This results in
four new images where one is the average of the image and the other three represent
details. This is done twice more as it is a 3 level decomposition. At the end the
values from all these resulting matrices are placed in an array to form the feature
vector, the implementation is based on the one proposed in Wang et al. [47].

5.2.3.4 Convolutional neural network activations

In the proposed model a pretrained neural network is used. The network is the
16-layer network used by the VGG team in the ILSVRC-2014 competition [22], also
called VGG-16. The network is presented with a 256 × 256 image as input which
is processed by the entire network. The feature descriptors are extracted from the
activations of the last fully-connected with 4096 neurons, as per Section 3.2.4. The
vectors are concatenated into a feature vector presentable to the SVM described in
Section 4.3.

5.2.3.5 Edge detection histogram

The Sobel edge detector is implemented with four directions. The directions are
horizontal, vertical, 45◦ and 90◦. In addition, a non-directional edge filter is added.
The pixels are put into different numbers of bins that represent the quantitative
states of the pixel counts of the images in their respective orientations. The locations
without edges are also formed into a separate bin. The edges found in the image
are binned as detailed in Section 3.2.5. The output is a feature vector of values,
describing the shapes shifts present in the image.

5.3 Evaluation of model

Performing evaluations on a larger scale often demand that labeled datasets are used,
whilst the proposed model is designed to have a user standing by each iteration. This
section covers how these evaluations were performed in order to achieve the results
presented in Chapter 6.
The feature extraction module, Section 5.2.3, is described as a system that will
extract the necessary feature descriptors for material evaluations in real time. How-
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ever, to reduce the number of factors that alter time taken while processing material,
the feature descriptors of the search space are extracted before all evaluations begin.
The evaluation is divided into two parts: How benchmarks are performed in order
to achieve the optimal settings for the proposed model and how the model com-
pares with other CBIR studies. Because the model requires that a user performs
the arduous task of peer-reviewing the predictions of the model every iteration, a
simulation of the user was created in order to retrieve data from evaluations.

5.3.1 Relevance feedback simulation

Relevance feedback is, as the proposed model suggests in Section 5.2.1, used to
help the model mount the semantic gap. A user peer-reviews the presented images
each iteration and makes corrections where necessary to make sure that the entire
dataset is labeled correctly. To do this on large data sets is both time consuming
and would take quite a toll on the user. There is also no guarantee that a user will
label the same image as the same category in two separate settings while searching
for the same material. Since the evaluations are run on datasets that already are
labeled this risk of mistakes can be reduced by instantiating a user simulation. The
relevance feedback simulation takes the role of a user that communicates with the
relevance feedback module. This way, time is saved and no user needs to be present
in order for the evaluations to be performed.
The simulated user will not be mislabeling images because of negligence or exhaus-
tion as a human would. A normal user would fail to label material correctly in the
same extent as a simulated one would. However, the error rate for a “trained” hu-
man is extremely low, comparable to the best neural networks that compete in the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC), e.g. GoogleNet [52].
In this case a “trained” person refers to a person that is aware of the situation and
well versed in classifying images. Yet, this still means 4% misclassification compared
to 0% that is derived when a user is simulated using the labels of a dataset. The
data sets presented in Section 2.4 are very diverse and in some cases a simulated
user would categorize the material differently than an ordinary one would. This is
however not a problem rooted in how the simulated user works but how the datasets
are designed and categorized to begin with.

5.3.2 Parameter benchmarks

The presentation of the proposed model in Section 5.2 covers the most part of how
the optimal implementation is designed. What it does not cover is if some of the
design decisions are good or not. For example in Section 5.2.1 the selection of images
to present to the user is mentioned but not elaborated. There are two stopping
conditions introduced in Section 5.2.2.3 which need to be evaluated to see how they
effect the performance. The five feature descriptors covered in Section 5.2.3 also
need to be evaluated. Not only in combination but how they perform on their own,
as well as the effect of the training sets mentioned in Section 5.2.2.2. In other words,
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how much the behavior of the model can change depending on training set sizes. To
summarize, the parameter benchmarks are the following four evaluations:

• The effect of presenting different sets of images to the user for relevance feed-
back (Section 5.3.2.2).

• The effect of pruning the search space during the search iterations (Sec-
tion 5.3.2.3).

• How well the ensemble of learners performs compared to its parts (Section 5.3.2.4).
• The effect of using different kinds of training sets (Section 5.3.2.5).

Before specifying which metrics that are intended to be used in these evaluations,
the metrics need to be defined. The two more commonly used measures are (5.3)
and (5.4).

recall = True positives
True positives + False negatives (5.3)

precision = True positives
True positives + False positives . (5.4)

Often presented in pairs due to the fact that recall can reveal if the matching module
presents too many false negatives while precision can indicate if too many false
positives are presented.
A metric that measures the models effectiveness is the (5.5)

F1-measure = 2precision×recall
precision+recall

= True positives
True positives+ False positives+False negatives

2
.

(5.5)

The F1-measure is the harmonic mean of recall and precision [53], meaning that
recall and precision are equally weighted and that smaller values are punished more
than when using a normal average function.
The final metric to present is the accuracy (5.6)

accuracy = True positives+True negatives
True positives+True negatives+False positives+False negatives , (5.6)

which simply put is the total rate of correct predictions.
Apart from these metrics the evaluations include how long the calculations of an iter-
ation takes, how many images that are passed through the classifier in the matching
module and how many of the presented images that are relevant.
In order to make sure that the search space is explored and categorized correctly
and at the same time see how well the model performs at classification, two different
methods are used to calculate performance. In addition to the search space an
evaluation set, in complete disjunction to the search space, is used. The datasets
for the benchmarks and how they are constructed is presented in Section 5.3.2.1.
The benchmark evaluations are measured in two different ways.
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1. How well the model classifies an evaluation set each iteration. For the evalu-
ation set the following metrics are used:

• Recall
• Precision
• F1-Measure
• Accuracy

2. How well the model classifies the images that are presented to the user each
iteration. For the search space the following metrics are used:

• Accumulated recall
• Accumulated precision
• Accumulated F1-Measure
• Accumulated accuracy
• Retrieved relevant images
• Handled images
• Time taken calculating

When measuring the performance of classifying the search space the metrics are the
accumulated value of the performance so far during the search. This mean that after
iteration 20 the performance is measured on the 500 images that have received an
prediction by the proposed.
In order to retrieve a general trend, each evaluation setting is run five separate times
and the metrics during these runs are presented with the maximum, the minimum
and the geometric mean of each iteration. This allows the graphs that are presented
in this section to show how much the metrics varied depending on different factors,
such as image selection or how the decision boundary was fitted.
In all benchmarks, except for the one in Section 5.3.2.4 where the ensemble is eval-
uated against its parts, the classifier is implemented as proposed in Section 5.2.2.1
and will have use all five feature descriptors. In addition, all benchmarks, with the
exception of the one described in Section 5.3.2.5 where training data is evaluated,
the matching model will have a predefined training set of five relevant images and
50 non-relevant.
The evaluation of the model is intended to be fair and the performance to be mea-
sured in an as general way as possible, but still able to perform within a relatively
small time frame. The datasets for the evaluation are therefore constructed specifi-
cally for this purpose.

5.3.2.1 Datasets for benchmark

Since scenery datasets such as the dataset Places205, presented in Section 2.4.2,
have a broad base of image material and have a large variety of material within the
categories, Places205 is perfect for a parameter benchmark. However, due to the size
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of the dataset, the decision to only use a subset was made. Instead of using all 205
different scenery categories a subset of 23 classes was cherry-picked; all categories
with a name starting with the letter B. This gives a ≈ 4.3% chance that a randomly
selected image is relevant. Since only 25 images are presented per iteration using the
entire subset as a search space would cause the number of iterations to be ≈ 11000,
the search space was reduced a bit further. The search space during the benchmark
evaluations consists of 200 images of each category where one of the categories is
marked as relevant and the others are not. The choice of just using a part of the
dataset makes it hard to compare with other implementations of image recognition
implemented on this dataset. As well as the fact that the algorithm is designed to
be more lightweight and less time-consuming than the more usual approach of using
large deep neural networks.
In Section 5.3.2 an evaluation set is mentioned. The Evaluation set is constructed
by using 50 images, that are not represented in the search space, of each category.
This results in having an evaluation set of 1150 images with the same probability of
randomly selecting a relevant image as in the search space.
In addition to the 250 images of every category used in the search space and the
evaluation set, 250 images of every category were sampled in order to have material
for different predefined training sets. The different sizes of the predefined training
sets vary and how they are evaluated is presented in Section 5.3.2.5. The different
training sets are simply constructed to have a broad base of irrelevant images, sam-
pling some images from all categories that are not relevant, and the smaller sets of
relevant images are subsets of the larger sets of relevant images.
To make sure that the thesis covers a wider base of data, the benchmarks have
been performed with three different categories marked as relevant in three different
evaluations. These three categories are Bar, Baseball field and Bedroom. The three
categories does not have very much in common but some of the other categories in
the dataset might have some similarities. Having three different categories results in
having three different search spaces, three different evaluation sets and three different
setups of training sets. The data drawn from these categories will be presented in
parallel.

5.3.2.2 Classifier learning method

Since the proposed model is designed to acquire deeper understanding of a concept
for every passing iteration, it is important that what the model learns from is cho-
sen in an appropriate manner. In each iteration 25 images are presented and this
evaluation is designed to decide how these 25 images should be selected. The best
setting in this benchmark is used in the evaluations that are performed later. The
goal of the evaluation is to find a method that ensures that the model learns the
concept as fast as possible but still perform well enough in order to reduce work for
the user.
Four distinct settings were chosen that are representative for how the data can be
selected and still processes the dataset in an efficient manner. The different settings
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of the evaluation are
1. Top20+Bottom5: To present the 20 images that the classifier finds the

most relevant and the 5 images that the classifier finds the least relevant. As
mentioned in Section 5.2.1, this is the how the model is designed to present
material.

2. Top25: To present the 25 images that the classifier finds the most relevant.
3. Top20+Middle5: To present the 20 images that the classifier finds the most

relevant and the 5 images that are the closest to the decision boundary of the
classifier.

4. Top5+Bottom20: To present the 5 images that the classifier finds the most
relevant and the 20 images that the classifier finds the least relevant.

In order to make the different settings deviate as much as possible, the model pro-
cessed the entire search space every iteration. Thus making the selection of images
each iteration more predictable and the measurements of each setting are less di-
verged in between the five different runs.

5.3.2.3 Limiting search space

Evaluating the entire search space every iteration is not just time consuming but
also unnecessary since only 25 images are presented at a time. The stopping con-
ditions presented in Section 5.2.2.3 are therefore evaluated to measure their effect
on performance. As previously mentioned the first stopping condition – if a sample
from the search space only contains material that has been passed through the clas-
sifier the same search iteration the exploration is over – is always in use to prevent
the possibility of an infinite loop while exploring.
The four different settings evaluated in this benchmark are

1. All images: To stop after the entire search space is evaluated.
2. Threshold: To stop after enough images are classified to be above a decision

threshold specified in Equation 5.1.
3. Early stopping: To stop if 200 images have been sampled but none are on

the positive side of the decision boundary. In this case the relevance feedback
module presents the 25 images that are considered the least relevant.

4. Both rules: The additive result of using setting 2 and 3.
The intention of the evaluation is to measure the trade-of between correctness in
classification of the search space and time spent calculating instances to different
data points.

5.3.2.4 Feature descriptors

To determine how well the classifier performs as an ensemble compared to only using
its parts this evaluation has been constructed by using the first order classifiers
either by themselves or in unison. When only using one classifier in the first order,
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the second order classifier is given a linearly separable value in one dimension and
thereby just passes on the information. The purpose of this evaluation is to see
which feature discriptors that can discriminate which categories from the rest of
the dataset, but it is also intended to evaluate if different combinations of feature
descriptors will improve the performance of the model. Therefore the evaluation
handles 7 different settings:

1. HOG: Only using the first order classifier for the HOG descriptors (see Sec-
tion 5.2.3.1).

2. GCH: Only using the first order classifier for the GCH descriptors (see Sec-
tion 5.2.3.2).

3. WT: Only using the first order classifier for the Haar wavelet transform de-
scriptors (see Section 5.2.3.3).

4. CNN: Only using the first order classifier for the neural network activation
vectors as descriptors (see Section 5.2.3.4).

5. Edge: Only using the first order classifier for the edge detection histogram
descriptors (see Section 5.2.3.5).

6. All: Combining all the first order classifiers as intended and as in the proposed
model described in Section 5.2.

7. All-CNN: Combining all the first order classifiers with the exception of the
neural network activation vectors. This setting was added half-way through
the evaluation since the setting CNN almost performed as well as the setting
All.

5.3.2.5 Training data

Is it necessary to provide initial training data to the model in order to improve
classification correctness in order to learn a specific concept? If so, how much
difference would it make? This evaluation is designed to answer these two questions.
A comparison will be made between only having a predefined training set, only using
the data that is provided from the user during iterations and a combination of the
two. Different sizes of the pretrained data sets were also evaluated to see how it
effected the performance.
The different settings during the training data evaluation were the following:

1. To train the classifier once in the beginning with given data and use the same
classifier until the search space is empty.

2. To train the classifier every iteration with data given by relevance feedback
together with a predefined training set.

3. To train the classifier every iteration with data given by relevance feedback
only.

The predefined training sets were assembled by different number of relevant and
non-relevant images. The different sets were created after the different criterias:
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A. The training set consists of 5 relevant and 5 non-relevant images.
B. The training set consists of 5 relevant and 50 non-relevant images.
C. The training set consists of 22 relevant and 484 non-relevant images (thus

giving it the same relevance ratio as the search space).
D. The training set consists of 250 relevant and 250 non-relevant images (thus

making it contain more relevant images than the search space does).
Since there is no good and concise way to refer to these different settings, they will
in this section be referred to by their index in these two lists. The setting that only
uses a predefined data set of 5 relevant images and 50 non-relevant images is referred
to as setting 1B and the setting that solely uses data given by relevance feedback is
referred to as setting 3.
As mentioned in Section 5.2.2.2, the model uses at most 500 images taken from the
relevance feedback as training data. Those 500 images are intended to be as close
to evenly divided between relevant and non-relevant images as possible. Due to the
fact that the search space consists of 200 relevant images and 4400 non-relevant
images, the training data in setting 3 consists of at most 200 relevant images and
300 non-relevant. Whereas setting 2D will have at most 450 relevant images and
550 non-relevant images in its training set since the predefined data are added on
top of the data received from relevance feedback.

5.3.3 Study comparisons

Even though the proposed model is defined to become better at retrieving images
iteratively and continually increasing the query set, there is still value in seeing
how well a barely trained version of the proposed model compares with retrieval
methods from other papers. Most CBIR system are designed to have a single image
as a query, [16, 17, 18] among others, which is not possible with the proposed model.
A model that uses an SVM (see Section 4.3) as classifier would require at least two
(one relevant and one non-relevant) images in the query set in order to fit a decision
boundary. The proposed model uses a Deep SVM (see Section 4.4.1), that uses a
K-fold split in order to fit the decision boundary for the second order classifier, and
does therefore require at least four (two relevant and two non-relevant) images in
the query set. In order to have a fair comparison to the other studies the query set
must be kept small. There are however studies that uses a training to tackle the
challanges within CBIR [19]. A too small query set would be unfair towards the
proposed model and the query set size will therefore be balanced to compare with
the studies at hand.

5.3.3.1 The Corel-1000 evaluation

The Corel-1000 dataset is presented in Section 2.4.1 and is often used to compare
different image retrieval methods. This evaluation is intended to measure how well
the system handles the diversity of the different classes in a dataset. Given a query
image, present 20 images that are similar and the precision on that set of images
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is evaluated. The test is intended to be run with every image in the data set as
query image and an average for every class is taken. There are in other words 100
data points for each class, but as previously described in Section 5.3.3, the proposed
model requires at least two relevant images and two irrelevant images in the query
set, which results in 4950 different combinations of relevant images in the query sets.
Evaluating all combinations would be time consuming as well as pointless since the
performance of the model can be observed in a much smaller number of evaluations.
In order to test more combinations, the query set is sampled 500 times per class
instead of only 100 times. This results in an approximation based on around 10%
of all combinations of relevant images when having the smallest possible query set.
In order to calculate how much the different query sets differs during an evaluation
the variance of the result is calculated as well. When a query set is sampled the
system processes the rest of the search space and presents the n = 20 most similar
images. The retrieval precision for n images (5.7)

P (Qki , n) = 1
n

∑
e∈ξ(Qki )

δ(Φ(e),Φ(r))

∣∣∣∣∣∣∣
r∈Qki ,δ(Φ(r),k)=1,|ξ(Qki )|=n

, (5.7)

where Qki is the ith query set for category k, ξ(y) is the retrieved set for query set y.
Φ(x) is the category of image x, ∀images a, b : δ(Φ(a),Φ(b)) =

{
1 Φ(a) = Φ(b)
0 Otherwise

. In short P (Qki , n)
is the number of retrieved images that are relevant divided by the total number of
retrieved images. The average retrieval precision for category k (5.8)

ARPk = 1
m

m∑
i=1

P (Qki , n), (5.8)

where n is the number of retrieved images, k is the desired category and m is the
number of evaluations per category. As well as the total average retrieval precision
(5.9)

ARP = 1
t×m

t∑
k=1

m∑
i=1

P (Qki , n), (5.9)

where n is the number of retrieved images, m is the number of evaluations per
category and t is the total number of categories in evaluation. If briefly described
the ARP is simply what the average ratio is of the n retrieved images that are
predicted as relevant and actually are of the intended category after m evaluations
for every class.
In order to retrieve the variance for each evaluation the result is split into 20 equally
sized subsets of which ARP is measured on. The variance is then derived from those
and finally an average is calculated over the 20 variances for each subset.
Evaluation is run with t = 10 categories, m = 500 different query sets per cate-
gory and number of retrieved images n = 20 resulting in that the model calculates
distances to all the images in the dataset for at least 5000 times.
As mentioned in Section 5.3.3 the number of query images that will be used is
determined by how the well other papers perform at the task. The most common
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approach of CBIR is to use one query image and calculate a distance to other images
in some dimension space, which is done in [16, 17, 18]. There are other approaches to
the problem as well. In the case of [19], where the authors train a machine learning
classifier in order to find images of relevance. One might argue that the proposed
model is a combination of these two, where a small query set is fitted onto a classifier
and checks it towards the test set. Even though there are similarities to the other
models a fair comparison can not be made. In [16, 17, 18] the test set consists of
the Corel-1000 dataset minus the query image, in [19] the test set only consist of a
tenth of the Corel-1000 dataset, and in the proposed model the test set consists of
the Corel-1000 dataset minus the query set.
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6
Results

The proposed model as described in Section 5.2 is implemented and is presented in
this chapter. The results of the parameter benchmarks and the CBIR evaluations
that are introduced in Section 5.3 are presented here.

6.1 Parameter benchmarks

As mentioned in section 5.3.2 there are some parameters to evaluate in order to find
the optimal setting for the proposed model. The evaluations that are presented in
this section are:

• Classifier learning method: Described in Section 5.3.2.2 and presented in
Section 6.1.1.

• Limiting search space: Described in Section 5.3.2.3 and presented in Sec-
tion 6.1.2.

• Feature descriptors: Described in Section 5.3.2.4 and presented in Sec-
tion 6.1.3.

• Training data: Described in Section 5.3.2.5 and presented in Section 6.1.4.
The different metrics used in this evaluations are described in Section 5.3.2 but
some of the graphs are omitted in this thesis. The graphs that are omitted are
not included due to inconclusive results and insignificant differences in-between the
settings of the evaluations. In most cases, the information that is excluded by
removing some figures from the thesis can be derived by interpreting the results
in-between the metrics of different evaluations.
Recall that in Section 5.3.2.1 the datasets used for the evaluation is a subset of 23
categories drawn from the dataset Places205 (see Section 2.4.2) and all benchmark
evaluations are performed five times with three different categories as the target.

6.1.1 Classifier learning method

The entirety of this evaluation is introduced in Section 5.3.2.2 and the results
of the different settings are presented here. The four different settings of the
evaluation are to present the Top20+Bottom5, Top25, Top20+Middle5 and
Top5+Bottom20.
As mentioned in Section 5.3.2 the performance of the model is measured in two
ways. The performance on an evaluation set as well the performance over the entire
search space.

41



6. Results

6.1.1.1 Evaluation set

When classifying the evaluation set each iteration the measurements of the settings
ended up to be very similar. The performance of the first three settings were almost
identical. An initial performance peak in classifying the set that later on dropped
off. While the performance of the fourth setting deviated from the performance of
the others the measurements were about the same throughout all the iterations.

Figure 6.1: The recall rate on the evaluation set.

Independently of how images were selected the recall (see Figure 6.1) of the settings
only differed marginally. With an exception of the fourth setting that in some
manner deviated from the other ones. The precision of the fourth setting deviated
from the other settings, which can be seen in Figure 6.2. Due to the low precision
of the fourth setting, the F1-measure is low as well, which can be seen in Figure 6.3.
The cause of this is that the fourth setting had an higher number of false positives
than the other settings had.
An important observation to make is that towards the end of the evaluations all
four settings have the same training data and therefore classifies the evaluation set
accordingly. Having the complete training set results in an F1-measure around 0.32
when retrieving the category Bar and around 0.65 when retrieving the other two
from the remaining 22 categories in the evaluation set.
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Figure 6.2: The precison that the different settings had on the evaluation set
for the three different category searches. Note that the setting Top5+Bottom20
deviates from the other settings.

Figure 6.3: The harmonic mean of recall and precision, F1-measure, read on the
evaluation set over iterations. The performance of the first three settings peak early
and then drops towards the end of the evaluation.

The accuracy when using the different settings did not vary that much either. As
seen in Figure 6.4, the accuracy of the settings is around 85% when classifying the
category Bar and around 95% on the other two category evaluations. Just as with
the F1-measure, the accuracy measurements of the first three settings were higher in
the first couple of iterations and then dropped off towards the end of the evaluation.
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Figure 6.4: The accuracy of the different settings on the three evaluation sets.
Note how the accuracy of fourth setting varied more in-between evaluations than
the accuracy of the other three settings did.

6.1.1.2 Search space

The different settings deviated a lot more from each other when comparing how
the search space was classified compared to when the evaluation set was. The
first three settings stopped predicting images as relevant early on in comparison
with the fourth setting, resulting in the precision presented in Figure 6.5. At the
end of the evaluations the fourth setting had a precision of 15-25% in all three
categories while the other three settings could maintain a precision of about 80%
on the categories Bedroom and Baseball field. When classifying the third category,
Bar, all the settings had a rather low precision. In this category, the first setting was
the one showing the lowest precision. While the fourth setting had a relatively low
precision, it did produce the best recall over the different search spaces as seen in
Figure 6.6. When searching for the third category it took until the final iterations
before the last relevant images were retrieved. This is rather late if one would
compare with the settings, where the last relevant image was retrieved slightly after
the first half of the evaluation.
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Figure 6.5: The precision that the different settings had classifying the search
spaces for the three evaluation categories. Note how the setting Top5+Bottom20
continued to predict images as positives when they indeed were negatives throughout
the entire search.

Figure 6.6: The recall rate on the three evaluation categories. The recall is slightly
higher for those settings that continually present some of the bottom images in each
iteration.
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Figure 6.7: The number of retrieved images over iteration that the different settings
had while classifying the search spaces for the three evaluation categories. Note how
the category Bar is more difficult than the other ones to retrieve relevant images
from.

In terms of performance as an image retrieval system the setting of presenting a
majority of negatives is not to prefer. As seen in Figure 6.7, the number of retrieved
images by the fourth setting is a lot lower than the number for the other settings
over the entire run. Looking at the performance on the category Bar, there are some
iterations where the fourth setting has retrieved fewer relevant images than when
selecting images at random. This is only momentarily and the rate soon returns
to being slightly above that. Reading into the F1-measure in Figure 6.8 and the
accuracy in Figure 6.9, the data is out of favor of the fourth setting, but when
inspecting the values of the category Bar, the setting Top20+Bottom5 has a slightly
worse F1-measure and accuracy than the other settings.
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Figure 6.8: The F1-measure that the different settings had classifying the search
spaces for the three evaluation categories. An harmonic mean of the precision and
the recall.

The setting that will be used to select the set of images each iteration needs to be
picked in order to continue the parameter evaluation. When working with image
retrieval the model needs to have a high retrieval rate of relevant images early on
which causes the Top5+Bottom20 setting to not meet the preferences. To select be-
tween the remaining three settings one can recall what was mentioned in Chapter 1:
Investigation material needs to be retrieved in a quick manner and labeled correctly.
In other words the model needs to produce as few false negatives as possible. In all
three categories; the Top20+Bottom5 setting had a higher recall rate on the search
space throughout the evaluations (see Figure 6.6). This means that the first setting
is the most appropriate one to use in the following benchmarks.

Figure 6.9: The accuracy that the different settings had classifying the search
spaces for the three evaluation categories.
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6.1.2 Limiting search space

This parameter benchmark is described in Section 5.3.2.3 and evaluates the four
settings All images, Threshold, Early stopping and Both rules.
The metrics used in this evaluation is presented in Section 5.3.2. Recall that the
effectiveness of the model during search iterations is also measured in terms of time
taken and how many images that are processed each iteration in order to find the
best set of images to present to the user.
The Performance of the model is measured on an evaluation set as well as over the
entire search space.

6.1.2.1 Evaluation set

When measuring the performance on the evaluation set, none of the stopping con-
ditions affected the learning rate in any direction. The evaluation set was classified
in a similar manner by all the settings throughout the whole benchmark. Resulting
in that all settings have about the same values on all metrics, which is for instance
visible when inspecting the F1-measure in Figure 6.10. Since all settings followed
the same pattern the presentation of recall rate, precision and accuracy is omitted
in this section. However, the general trend of the measurements can be observed in
what is referred to as Top20+Bottom5 in Section 6.1.1.1.

Figure 6.10: The harmonic mean of recall and precision, F1-measure, read on the
evaluation set over iterations. All of the settings had performed similarly throughout
the evaluation.

Since the concept was learned, independent of which of these stopping conditions
that were used, the classification performance on the search space becomes more
important as well as how much time that is spent calculating distances to data
points each search iteration.
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6.1.2.2 Search space

During the search iterations, the condition Early stopping introduced a notable trend
compared to the condition Threshold in terms of correctness. As seen in Figure 6.11,
the precision, when prediction the search space, using the stopping condition Early
stopping gradually decreased, causing the precision of using both rules to decrease
as well. Since the selection of images near the decision boundary on the negative side
is delayed when using the early stopping condition, the material near the decision
boundary is predicted correctly due to more knowledge. Thus causing the recall to
stay higher than the other settings, as seen in Figure 6.12.

Figure 6.11: The precision of the different settings when classifying the search
spaces of the three evaluation categories. The early stopping condition appear to
have a negative impact on precision.

Figure 6.12: The recall rate of the different settings classifying the search spaces of
the three evaluation categories. The condition Early stopping may have a positive
effect on recall.
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If no stopping condition is used, the total number of handled images – when the
total search space is initially 4600 images – is (6.1)

Handled imagesmax =
4600/25∑
i=1

25i =
184∑
i=1

25i = 425500. (6.1)

The total number of handled images for the different stopping conditions settings in
relation to this number can be seen in Table 6.1. This indicates that the reduction
of total handled images when combining the stopping conditions is ≈ 80− 85% on
this dataset. Yet, the F1-measure levels were only reduced by 20-25% according to
the result in Figure 6.13.

Number of processed images; values are derived ratios of Equation (6.1)
Desired category All images Threshold Early stopping Both
Bedroom 1 0.4168 0.2918 0.1522
Bar 1 0.2537 0.5717 0.1862
Baseball field 1 0.3843 0.2770 0.1491

Table 6.1: The average of total images that are handled during a search for each
setting. The ratios of the value in Equation (6.1) are presented. The values are the
average of five evaluations for each setting.

When inspecting the number of handled images by the different settings per iteration
in Figure 6.14 it becomes clear how the reduction of handled images could vary
so much between the classes when using each condition solely. In the evaluation
of retrieving the category Bar the model finds more images that are predicted as
relevant in a more dense manner. This is why the early stopping condition does not
evaluate as true for most of the early iterations and why the threshold setting stops
exploring earlier every iteration than in the other two evaluation categories. The
two stopping conditions are so disjunct in terms of when their conditions are met,
that the combination of the two actually reduce the number of handled images in
the search for all three categories.
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Figure 6.13: The F1-measure that the different settings had when classifying the
search spaces of the three evaluation categories.

Figure 6.14: The number of handled images every iteration for the different set-
tings. Having both stopping conditions results in processing fewer images in all
three categories.

In terms of time taken there is a notable improvement when using a stopping con-
dition instead of handling all the images in the search space. The time that an
iteration takes varies a lot for the setting that only uses the condition Early stop-
ping, see Figure 6.15, while the time taken for setting that only uses the threshold
condition is just about the same throughout the entire search. Depending on which
category that the algorithm is looking for, the total time spent searching with the
two conditions seems to vary compared to each other and combining the two con-
ditions results in less time spent in all evaluations according to the measurements
in Figure 6.16. On average, the total time reduction when using both stopping
conditions compared with classifying all images every iteration was ≈ 60%.
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Figure 6.15: The time taken every iteration for the different settings. Having
both stopping conditions results in the lowest peak in terms of time taken in all
categories.

Figure 6.16: The total time taken for the different settings. There is a slight
correlation with the ratios of processed images presented in Table 6.1 and the time
taken ratios in these graphs.
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In the same line as the F1-measure results, the number of retrieved images was a
bit lower for the condition Early stopping (see Figure 6.17). When searching for the
category Baseball field, the early stopping condition seem to delay the full retrieval of
the category by about 80 iterations but when retrieving material from the category
Bar the Early stopping setting follows the trend of the other ones and retrieves the
relevant images at the same pace. This could be caused by the same reason that
was observed in Figure 6.14; the setting Early stopping often samples material until
no more unique images are found. It is however clear that the setting Both follows
the setting Early stopping in terms of how many relevant images that are retrieved
at a certain iteration.

Figure 6.17: The number of retrieved relevant images over iterations for the differ-
ent settings when classifying the three evaluation categories. The threshold setting
retrieves images in the same rate as processing the entire search space each itera-
tion. On the category Baseball field, the early stopping setting requires about 140
iterations to retrieve all 200 images.

6.1.3 Feature descriptors

This evaluation is described in Section 5.3.2.4 and a presentation of the evaluated
settings can be found there. The settings described are HOG, GCH, WT, CNN,
Edge, All and All-CNN.
The evaluation is performed with both of the stopping conditions that were evalu-
ated in Section 6.1.2 and the material that is presented in each iteration is, as the
evaluation in Section 6.1.1.2 suggests, a combination of the top-20 images and the
bottom-5.
Just like the previous parameter benchmarks, the performance is measured over the
entire search space as well as how a separate evaluation set is categorized.
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6.1.3.1 Evaluation set

Throughout all the metrics that were measured during the evaluation, the settings
that used CNN feature descriptors considerably outperformed the other settings. A
trend that is distinguishable in both the F1-measure (Figure 6.18) and the accuracy
(Figure 6.19) of the two settings that incorporate the CNN feature descriptor. There
was a slight difference between using only the CNN feature vector as a descriptor
and combining all the feature descriptors.

Figure 6.18: The F1-measure read on the evaluation set over iterations. Combining
the information in different feature descriptors seems to give equally good or better
results compared to the best single descriptor.

Figure 6.19: The accuracy of the different settings on the three evaluation sets.
The CNN feature descriptor performs better as an information vector than the other
descriptors.
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The value of combining different feature descriptors become more clear when omit-
ting the results of the fourth and sixth setting and only inspecting the remaining
four feature descriptors and the combination of those. The F1-measure of the re-
maining five settings can be seen in Figure 6.20. Which single feature descriptor that
performs the best depends on which category that the target is. For the category
Bedroom a better result is given when using the HOG descriptor while for the other
two categories the target concept is more distinguishable when using the GCH de-
scriptor. More importantly; the combination of the four descriptors performs better
or just as good as the best single descriptor.

Figure 6.20: A closer look on the F1-measure of all the settings that are not
handling feature vectors derived from a neural network. The combination of feature
descriptors results in equally good or better results compared to the best single
descriptor.

6.1.3.2 Search space

As mentioned in Section 6.1.3.1 the different target categories of the data sets are
more distinguishable when using the CNN activation vector during classification.
This is also evident in the F1-measure (Figure 6.21) and accuracy (Figure 6.22) when
classifying the search space. More interestingly the positive effect of combining the
first order classifiers become more clear in these measurements. When inspecting
the category Bar in the two figures the setting All outperforms the setting that only
uses the CNN activation vector as a feature descriptor.
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Figure 6.21: The F1-measure that the different settings had when classifying the
search spaces of the three evaluation categories. The F1-measure on the category
Bar is higher when combining all the feature descriptors compared with solely using
the CNN feature descriptor.

Figure 6.22: The accuracy of the different settings when classifying the search
spaces of the three evaluation categories. As in Figure 6.21, there seems to be have
a positive effect of combining feature descriptors.

All the different settings of feature descriptors do seem to be able to present some
distinguishability between the different categories. With the exception of the initial
rounds of searching for the category Baseball field with the setting WT, where the
results are in line with selecting images at random. The number of retrieved images
at a certain iteration is presented in Figure 6.23. Here the superiority of using
the CNN activation vector becomes even more clear: When retrieving the bedroom
class, the settings that use the CNN feature descriptor have retrieved the entire
target category at iteration 80 while the other settings can not retrieve the entire
class until the search space is depleted.
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Figure 6.23: The number of retrieved images that the different settings had when
classifying the search spaces. By introducing the CNN feature descriptors to the
classifier the concepts of the categories seem to be easier to retrieve.

The results of the setting that uses all the feature descriptors are considerably high in
terms of pace of retrieving images as well as with the F1-measure and the accuracy,
but combining feature descriptors does come with the drawback of fitting more
classifiers each iteration. Fitting more classifiers causes the total time taken to grow
accordingly. The total time spent computing predictions depended on how many and
which classifiers that were used and by using all six classifiers the time taken grew
accordingly. In Figure 6.24 it is notable that combining all five descriptors compared
to only combining four descriptors causes the computation time to grow to almost
the double. Given the performance of the CNN setting one might consider only
using this setting in the final evaluation, but as stated in Section 5.3.2 the classifier
is used as intended throughout the parameter benchmarks with the exception of this
evaluation.

Figure 6.24: The total time taken for the different settings. The more feature
descriptors that are used the more time it takes to train the classifying system.
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6.1.4 Training data

The results of the evaluation described in Section 5.3.2.5 are presented here. The
settings of the evaluation are listed in Table 6.2.

Evaluation settings; Classifier and training data setup

Setting Training Predefined training set
(relevant+irrelevant)

1A Only the first iteration 5+5
1B Only the first iteration 5+50
1C Only the first iteration 22+484
1D Only the first iteration 250+250
2A Every iteration 5+5
2B Every iteration 5+50
2C Every iteration 22+484
2D Every iteration 250+250
3 Every iteration 0+0

Table 6.2: The different settings evaluated in this benchmark. Deeper explanation
found in Section 5.3.2.5.

The metrics used for this evaluation are presented in Section 5.3.2 and are as men-
tioned performed on an evaluation set and the search space. The presentation of the
metrics will only consist of the average values of the five runs for each setting due
to the number of different settings in this evaluation. When the graphs included
minimum and maximum values for each setting the data became much harder to
understand and close to impossible to draw any conclusions from.
The model will during the evaluation use all of the stopping conditions described in
Section 5.2.2.3, present the top-20 images and bottom-5 images in the end of every
iteration as proposed in Section 6.1.2.2 and the classifier uses the full set of feature
descriptors as described in Section 5.3.2.

6.1.4.1 Evaluation set

Naturally the performance of the settings that only use a predefined training set
when classifying the evaluation set is same throughout all iterations. As expected
the performance increases when having more data to begin with. In terms of F1-
measure (seen in Figure 6.25) the performance of smaller training data sets are
superseded by the performances of bigger training data sets.
The settings that use training set data retrieved by relevance feedback did however
outperform the settings that did not. In the end of the search both the F1-measure
and the accuracy where about the same for setting 3 as for the setting 1D, but
at around iteration 25 in the settings that use relevance feedback (settings 2A-2D
and 3) have performance peaks that are considerably higher than at the end of the
search, which is noticeable in Figure 6.25 and Figure 6.26.
The biggest difference between the settings 2A-2D and the setting 3 was that during
the initial three to six iterations. The setting with predefined data could actually
perform a search while setting 3 could not. Not having any training data caused the
performance of setting 3 to be considerably lower than the performance of the other
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settings, but after the first couple of iterations the performance continuously rose
up to be in level with the settings 2A, 2B, 2C & 2D. Even though setting 2D had a
predefined data set of 250+250 relevant and non-relevant images their performance
on the evaluation set turned out to be level. Yet it took the setting 2D a few more
iterations to be on par with the settings 2A-2C and 3.

Figure 6.25: The F1-measure read on the evaluation set over iterations.

Figure 6.26: The accuracy on the evaluation sets. Using only training set data
from relevance (setting 3) achieves higher results than a predefined training set, that
has more relevant images than the search space (setting 1D) between iteration 10
and 80.
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6.1.4.2 Search space

The results of measuring how the different settings classified the search space were
not as indicating as the results that were observed when classifying the evaluation
set. The metrics precision, recall, F1-measure and accuracy gave relatively inconclu-
sive results. The values of the F1-measure of the evaluation (seen in Figure 6.27) do
however imply some trends. In the first couple of iterations of the search the settings
that use training set data extracted from relevance feedback begin to improve their
results while the other settings begins with a high performance that shortly after
decreases and then stabilizes.

Figure 6.27: The F1-measure that the different settings had when classifying the
search space. Having more data implies that the results become better.

In terms of how well the different settings perform these measurements do not imply
anything else than the more training data one has the better the result gets. The
number of retrieved images after a certain iteration, as visualized in Figure 6.28,
reflects the different sizes of traning data they had. By comparing the results of
setting 1D with setting 2D when searching for the category Bar in this figure, one
can see how the data from relevance feedback improved the result of retrieving
relevant material.
In the intended scenario, the search space is unlabeled and is therefore categorized
while the data is presented. In this setting the time taken to predict the category
of the images should be relative to how long it takes to correct poorly predicted
categories, which is not covered by the scope of the thesis. The time taken for each
of the settings to categorize the search space relative to each other is presented in
Figure 6.29. The impact of refitting the classifiers each iteration truly becomes clear
in this figure as well as how the size of the training set causes training the classifier
to take longer.
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Figure 6.28: The number of retrieved imaged over the search iterations. Solely
having 5 relevant images as training data (as in setting 1A and setting 1B) results in
the incapability of retrieving the full content of the search space until it is depleted.

Figure 6.29: The total time taken for the different settings of this evaluation.
There is a huge time difference between the training the classifier once and doing it
every iteration.
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6.2 Study comparisons

This section covers the results of the study comparison evaluations described in
Section 5.3.3.

6.2.1 The Corel-1000 evaluation

The results presented in this section are retrieved in accordance with the evaluations
described in Section 5.3.3.1. Recall that the evaluation is performed with t = 10
categories, m = 500 different query sets per category and number of retrieved images
n = 20.
The proposed model is adjusted to randomly sample the query data from the search
space and makes sure that the query set and the test set are disjunct before an
evaluation is performed. As mentioned in Section 5.3.3 the number of images that
the proposed model has in the training set was not decided on beforehand but was
instead selected by inspecting the results of the similar studies. To do so the same
evaluation was run with six different query set sizes: 2 + 2, 3 + 3, 4 + 4, 5 + 5, 7 + 7
and 10 + 10 relevant and irrelevant images.
The results of the evaluation on different sizes of query sets for the thesis model
is presented in Table 6.3 as well as in Figure 6.30. When having the smallest
number of query images and looking for the categories Africans and Beaches resulted
in an average retrieval precision that is below 10%. Whereas retrieving the same
categoriest when having the largest number of query images, the average retrieval
precision is above 80%.

Average precision (%); n = 20
Category r + i (IICTVC query set)

2 + 2 3 + 3 4 + 4 5 + 5 7 + 7 10 + 10
Africans 05.66± 0.08 21.57± 0.31 48.03± 0.35 69.55± 0.49 84.59± 0.41 94.58± 0.06
Beaches 07.18± 0.12 14.63± 0.21 43.16± 0.41 48.62± 0.21 73.96± 0.26 81.57± 0.06
Buildings 11.53± 0.15 37.63± 0.70 68.10± 0.38 84.40± 0.25 95.77± 0.08 99.11± 0.01
Buses 61.64± 0.51 78.88± 0.65 97.65± 0.08 99.63± 0.01 100.0± 0.00 100.0± 0.00
Dinosaurs 99.06± 0.02 99.54± 0.02 100.0± 0.00 100.0± 0.00 100.0± 0.00 100.0± 0.00
Elephants 34.78± 0.49 63.56± 0.44 89.32± 0.17 93.45± 0.08 98.27± 0.01 99.24± 0.00
Flowers 49.79± 0.57 61.30± 0.64 96.54± 0.06 91.45± 0.12 99.66± 0.00 99.75± 0.00
Horses 63.02± 0.22 76.85± 0.57 92.50± 0.06 94.49± 0.05 97.73± 0.01 98.33± 0.01
Mountains 13.25± 0.15 41.41± 0.72 73.58± 0.69 87.83± 0.33 97.38± 0.02 99.02± 0.00
Food 10.01± 0.35 35.53± 0.42 68.73± 0.67 84.91± 0.17 93.97± 0.08 98.18± 0.01
Average 35.59± 0.01 53.09± 0.04 77.76± 0.02 85.43± 0.02 94.13± 0.01 96.98± 0.00
n - number of images retrieved.
r - number of relevant images in query set.
i - number of irrelevant images in query set.

Table 6.3: Precision when retrieving 20 images from the Corel-1000 set with dif-
ferent query sets. Note that the variance decreases as the query set increases from
six images to more. IICTVC is short for the name of the thesis.
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Figure 6.30: Precision when retrieving 20 images from the Corel-1000 set with
different query sets presented in a graph. The query size affects the performance.

In both the Table 6.3 and the Figure 6.30 it is notable that the more query images
the better the retrieval of the intended category becomes. This is somewhat in line
with correlation that a separate image retrieval paper has found. The more query
images that were used the better results were received until a certain point on their
dataset; using six images as a seed for a performed search resulted in a detection
rate of 60%, with ten images the rate turned out to be around 85% [54]. In the
paper detection rate is described as the ratio of relevant images that are perceived
by the model as relevant, a description that is very similar to how average retrieval
precision is described in this evaluation and the values are somewhere near the result
given by the test of different query sizes. Using 3 relevant and 3 irrelevant images
as query set resulted in a precision of ≈ 53% and using 5 relevant and 5 irrelevant
images resulted in a precision of ≈ 85%. When selecting a query set of two relevant
and two irrelevant images in a randomly generated manner, the model only finds
the necessary categorical characteristics in some cases. This results in that the
model retrieves zero relevant images in some iterations and sometimes the number
of relevant images rises to being more than 15 or 20 images.
Given the results of the inspected papers, mentioned in Section 5.3.3.1, the query
sizes that are used to compare with were set to 3+3 and 5+5 relevant and irrelevant
images. The comparison of the precision@20 evaluations can be seen in Table 6.4
and Figure 6.31. When the query size of the proposed model is set to 3 + 3 the
model performs slightly better than the model described in [16], yet slightly worse
than the models in [17, 18, 19]. When the query set of the proposed model is set
to 5 + 5 the performance of the proposed model supersedes the models of the other
papers.
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Average precision (%); n = 20
Category Wang, James

Z. et.al. [16]
Subrahmanyam, M
et.al. [17]

Nagaraja, S
et.al. [18]

ElAlami,
M.A. [19]

IICTVC
(3 + 3)

IICTVC
(5 + 5)

Africans 47.50 69.75 56.00 72.60 21.57 69.55
Beaches 32.50 54.25 60.00 59.30 14.63 48.62
Buildings 33.00 63.95 58.00 58.70 37.63 84.40
Buses 36.30 89.65 94.00 89.10 78.88 99.63
Dinosaurs 98.10 98.70 98.00 99.30 99.54 100.0
Elephants 40.00 48.80 66.00 70.20 63.56 93.45
Flowers 40.20 92.30 88.00 92.80 61.30 91.45
Horses 71.90 89.45 78.00 85.60 76.85 94.49
Mountains 34.20 47.30 58.00 56.20 41.41 87.83
Food 34.00 70.90 54.00 77.20 35.53 84.91
Average 46.77 72.50 71.00 76.10 53.09 85.43
n - number of images retrieved.

Table 6.4: Precision when retrieving 20 images from the Corel-1000 the different
studies and the proposed model with two different query set sizes.

Seeing that the proposed model performs this well compared to other CBIR methods
is a good result. Yet it is still important to remember that having more query images
reduces the risk of only having outliers as query data. The effect of this was noticed
more often when the query set size was set to 2 + 2 and 3 + 3, but considerably less
when the query sets were larger than that. The other studies handles all images in
the same category as an equal influence which gives the proposed model an upper
hand in this evaluation. The results are however still interesting since the proposed
model is designed to have much larger training/query sets in order to function as
intended.

Figure 6.31: Precision when retrieving 20 images from the Corel-1000 the different
studies and the proposed model with two different query set sizes had. (A): Wang,
James Z. et.al. [16], (B): Subrahmanyam, M et.al. [17], (C): Nagaraja, S et.al. [18]
and (D): ElAlami, M.A. [19].
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The results of the evaluations that are presented in Chapter 6 were based on how
the proposed model, described in Section 5.2, initially was designed. With this in
mind the achieved results and measurements are discussed here. In this chapter the
possible improvements of the proposed model are discussed as well as how knowledge
extracted from the results can be used in other system designs.

7.1 Discussion of results

The performance of the model was best in the first half of a search during all pa-
rameter benchmark evaluations. This is noticeable when inspecting the learning
method benchmark, Section 6.1.1.1. If the training set that is acquired at the turn-
point – when the model stops to predict images as relevant – is persisted, would the
performance of the model on the entire search then become better? The difference
would probably not be noticeable when inspecting the measurements on the search
space since the model has already started to predict the rest of the search space
as irrelevant images. This would however mean that training set makes the model
perform well on the independent evaluation set and the rest of the search space can
be predicted as non-relevant without taking up additional computational power. In
every evaluation there has however always existed some outliers that were found
after the turnpoint described earlier but in most cases became false negatives. Our
iterative model could in other words not prevent this from happening. In the same
section, Section 6.1.1, one setting had a lower count of false negatives; the setting
called Bottom20+Top5. When evaluating the performance on the search space the
recall for this method was higher than for the other ones. This would reduce the
risk of any false negatives, but using this setting would result in not reaching the
turnpoint mentioned earlier due to positive predictions until the end of the evalua-
tion. Meaning that the matching module has to keep on adapting to the given data.
On top of that the rate of retrieving relevant images that this setting will always be
lower than for the other settings, which makes it less of an appropriate setting for
image retrieval.
To search the entire search space, as the model in evaluation in Section 6.1.1 did, was
never intended but since the focus of the thesis was to create a lightweight iterative
model that can retrieve images, optimization became a second priority. Then again,
the intention was to model something that reduced time spent per image so the two
stopping conditions were applied. Since the combined pruning of the search space
barely affected how the pace of how the matching module learned, more work could
be done to reduce the time spent. To see what would happen to the performance if
the classifier in the matching module would, as mentioned earlier, stop adapting its
decision boundary to data after a certain point would be interesting. In Figure 6.10
this turnpoint is around iteration 20 and 40 depending on the category. The time
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taken of the different settings in Figure 6.29 implies that the total computational
time could be reduced by 75-80% by not adapting at some point.

By only using the activation vector of a CNN as a descriptor resulted in a time
reduction of about 50% compared to when using the complete set of different feature
descriptors as input to the deep SVM, yet the performance of the two settings were
about the same. Due to the difference in performance of the two settings it would
be interesting to replace the other feature descriptors with activation vectors from
other neural networks that have been trained for other purposes. Combining the
activation vectors might have the same effect as combining the features used in this
thesis. The measurements presented in Section 6.1.3 do indicate that there are some
improvements when using an ensemble of classifiers compared to only using its parts.
Especially in Figure 6.20 where the performance was noticeably increased by using
the feature descriptors in unison. A trend that would be interesting to evaluate

In the final parameter benchmark, the training set evaluation in Section 6.1.4, it
became clear that if the refitting of the classifier was omitted the time taken was
drastically reduced (see Figure 6.29). The time taken was reduced but the perfor-
mance of the model never improved. When only using training data that is retrieved
from relevance feedback, the model would perform equally well at the evaluation set
as a model that also use a predefined training set with 250 relevant and 250 irrel-
evant images (see Figure 6.25). The data derived from the search space might be
a subset actually represent the essence of that category, i.e. the model removes the
outliers of a category from that subset. This could be used to not only fine-tune
a training set intended for some specific image retrieval, but also to bring forth
the material that represent semantic gap between human and machine learning in
different datasets. The outliers that are not included in such a search defines what
either the model could not see or what the person has put in a category that does
not fit the description by mistake.

The productivity of the proposed model was also shown in the evaluation that was
performed on the Corel-1000 set in Section 6.2. Even though the model is designed
to improve the training set in an iterative manner, it behaved surprisingly well with
small query sets. This procedure was never tested on the same dataset that the
benchmarks performed on but doing so might give some interesting results. It was
interesting to see that the proposed model could produce a similar precision as the
neural network model proposed in [19] when having a query set of 5 relevant and
5 irrelevant images while the model described in that paper uses a training set of
900 images. However, the evaluation was not fair to all parts. The model, that
uses an ANN to categorize material, uses a test set of 100 images while the test
set used for the proposed model was substantially larger. Having a small query set
allowed the deep SVM to fit immediately and classifying the a dataset is done rather
quick compared to calculating individual distances. Just as having more than one
image as a query allows the model to ignore outliers and can still find images that
are defined as matches. Outliers that the papers [16], [17] and [18] have to include
in their results. This evaluation will however give future studies the possibility to
compare with a multi image query-based CBIR approach on the Corel-1000 set.
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7.2 Future work

Some improvements have been mentioned previously in this thesis, but in this section
all the viable future improvements are listed and discussed. The different ideas of
improvements are split up into two parts; how the model can be improved and the
possible usage areas outside the scope of the thesis.

7.2.1 Model improvements

The different model improvements included in this section are time investments that
can be performed in a near future.

7.2.1.1 Scaling to bigger datasets

A future feature for the system would be to create a search algorithm that improves
the way images are selected for each iteration based on previous predictions. As
of now the procedure to select images is to randomly sample a predefined set size
from the search space. Problems arise as the datasets become larger. Some form
of sorting can minimize the time spent searching for the relevant images as well as
improve the rate in which they are located. The algorithm can for example, either
sort the material after how relevant it was predicted to be in previous iterations or
in how the folder structure of the database is composed. This would thus reduce
the size of the viable search space and allow larger parts of the unknown set to be
evaluated faster as well as the material that is located in the same folders is ensured
to be examined at some point.

7.2.1.2 Improvements to the relevance feedback loop

In the proposed model, the number of images predicted as relevant and irrelevant
each iteration is set to 20 and 5 respectively. This is in no way based on previ-
ous studies or research and was set based on empirical testing by the authors. To
optimize the performance of the algorithm in conjunction with the user, considera-
tions should be made in how many images should be presented each iteration. The
number of images presented might be decreased or increased, depending on result
of studies, to enhance the performance and improve the user experience.
In the proposed model the relevance feedback module, described in Section 5.2.1,
only updates the search space with which images that are relevant and which are
not. This when knowing exactly which images that were mistakenly perceived as
relevant and non-relevant by the matching module. If this information were to be
used, it would be possible to “move” the decision boundary. One example is that it
is possible to weight each data point in order to make them more impactful in how
the classifier makes decisions. If an image is falsely categorized as a non-relevant
one, it could be inserted into the dataset as two data points instead of one. If the
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two data points are close to a decision boundary this would increase the cost of
ending a training session at this point.
As seen in the results the performance of the model will decrease as the number of
relevant images in the search space becomes exhausted. As this is a controlled envi-
ronment this can not be proven for untested datasets. If presented to unknown data,
that the algorithm does not find any relevant material after a couple of iterations it
does not mean that relevant images are exhausted. There is however much to gain
with cutting the retraining short as mentioned in Section 7.1. To stop the retrain-
ing and assume that all remaining images are non-relevant when the algorithm only
finds non-relevant images seems to be the approach that is more time-efficient and
maintains the performance of the model.

7.2.1.3 Selection of feature descriptors

In this thesis, not too much effort was put into selecting the best suited feature
descriptors since the case is of the general nature and instead feature descriptors
were chosen based on the idea that in order to create a more general classifier, more
feature descriptors would be added. There are however feature descriptors that
perform better or worse in these situations.
In the results of the feature descriptor benchmark, Section 6.1.3, the setting that uses
the CNN activation vector is seen outperforming the settings that use on of the other
feature descriptors by a large margin. Even if the margin is far more narrow when
presented towards the category Bar. Instead of mixing weak and strong learners.
One could for example combine the activations of the final fully connected layers of
several neural networks that have been trained towards different datasets and use
them as an ensemble. By doing so a wider base of strong learners is used.
In the proposed model, all classifiers are always present and their predictions are
always taken into account. If there would be cases where some of these classifiers
do not contribute or even might reduce performance by misclassifying, it might be
beneficial to shut them down. During the parameter benchmark, in Section 6.1.3,
some of the feature descriptors were found lacking in performance on certain sets.
The improvement being to reduce time calculating that is of no use for the matching
module by terminating certain parts of the classifier.

7.2.2 Miscellaneous usage areas

Besides from improving the proposed model by adding different features there are
some possible usage areas outside of the domain of the thesis that were considered.

7.2.2.1 Dataset improvement

As mentioned in Section 7.1 the images that represent the essential bits of a concept
are selected early on during a search space exploration and the outliers that are
selected later on seem ruin classification results. This information could be used
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to design a smaller training set specialized for a certain cause. In the scenario of
a system that often uses a large dataset in order to solve some machine learning
problem or an image retrieval problem, the feature previously described could be
applied. To stop a search at the point where the classifier performs the best, as
described in Section 7.2.1.2, could result in receiving a smaller dataset that can
train a classifier faster for the intended purpose and the classifier maintains its
performance.
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A
Complete list of categories in the

dataset MIT places205

Letter Scenery name

A Abbey, Airport terminal, Alley, Amphitheater, Amusement park, Aquarium, Aqueduct, Arch, Art
gallery, Art studio, Assembly line, Attic, Auditorium, Apartment building

B

Badlands, Ballroom, Bamboo forest, Banquet hall, Bar, Baseball field, Basement,
Basilica, Bayou, Beauty salon, Bedroom, Boardwalk, Boat deck, Bookstore, Botanical
garden, Bowling alley, Boxing ring, Bridge, Building facade, Bus interior, Butchers
shop, Butte, Bakery

C

Cafeteria, Campsite, Candy store, Canyon, Castle, Cemetery, Chalet, Classroom, Closet, Clothing
store, Coast, Cockpit, Coffee shop, Conference center, Conference room, Construction site, Corn
field, Corridor, Cottage garden, Courthouse, Courtyard, Creek, Crevasse, Crosswalk, Cathedral,
Church

D, E Dam, Dining room, Dock, Dorm room, Driveway, Desert (sand), Desert (vegetation), Dinette,
Doorway, Engine room, Excavation

F Fairway, Fire escape, Fire station, Food court, Forest path, Forest road, Formal garden, Fountain,
Field (cultivated), Field (wild)

G, H Galley, Game room, Garbage dump, Gas station, Gift shop, Golf course, Harbor, Herb garden,
Highway, Home office, Hospital, Hospital room, Hot spring, Hotel room, Hotel (outdoor)

I, J, K, L Ice cream parlor, Iceberg, Igloo, Islet, Ice skating rink, Inn, Jail cell, Kasbah, Kindergarden
classroom, Kitchen, Kitchenette, Laundromat, Lighthouse, Living room, Lobby, Locker room

M, N Mansion, Marsh, Martial arts gym, Mausoleum, Medina, Motel, Mountain, Mountain snowy, Music
studio, Market, Monastery, Museum, Nursery

O, P, Q Ocean, Office, Office building, Orchard, Pagoda, Palace, Pantry, Parking lot, Parlor, Pasture,
Patio, Pavilion, Phone booth, Picnic area, Playground, Plaza, Pond, Pulpit

R Racecourse, Raft, RailRoad track, Rainforest, Reception, Residential neighborhood, Restaurant,
Restaurant kitchen, Restaurant patio, Rice paddy, River, Rock arch, Rope bridge, Ruin, Runway

S
Sandbar, Schoolhouse, Sea cliff, Shed, Shoe shop, Shopfront, Shower, Ski resort, Ski slope, Sky,
Skyscraper, Slum, Snowfield, Staircase, Supermarket, Swamp, Stadium (baseball), Stadium
(football), Stage, Subway station, Swimming pool

T Television studio, Topiary garden, Tower, Train railway, Tree farm, Trench, Temple (east Asia),
Temple/ (south Asia), Track, Train station

U, V, W,
X, Y, Z

Underwater (coral reef), Valley, Vegetable garden, Veranda, Viaduct, Volcano, Waiting room,
Water tower, Watering hole, Wheat field, Wind farm, Windmill, Yard

Table A.1: A complete list of all the categories in the set places205 by MIT. The
sceneries in bolded text were used in the parameter benchmark.
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