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Abstract

Virtual commissioning is a method to test and validate a factory, plant or line in a virtual 3D-model before
physically building it. Incorporating virtual commissioning in automation projects, before physical commission-
ing, is a large and widely discussed research area today. This report presents the results and conclusions from
building a virtual commissioning model of a miniature smart factory that has not yet been built. The model has
been developed in ABB’s RobotStudio and has been shown to be useful when evaluating the physical construc-
tion, robot paths and PLC-program. By testing the PLC-program in the model in an early stage of the project
it has been possible to detect software errors that probably would have been found later at the commissioning
stage, where mistakes are much more costly and there is a lot of pressure to start production as fast as possible.
The report also covers the state of virtual commissioning including possibilities and challenges, by presenting
a research study including interviews with experienced people within the subject. The study together with
conclusions from developing the model shows that virtual commissioning is a topic that has a lot of potential
but is still in an early stage with some challenges to overcome. The main challenges are that building a virtual
commissioning model today is too time consuming and that the software available today need to be developed
further for easier use and connection between the virtual PLC and the VC-model.

Keywords:Virtual Commissioning, Automation, Virtual model, Software-in-the-Loop, Emulation, Simulation,
RobotStudio, Automation Builder.

5



Contents
1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theoretical framework 3
2.1 Virtual commissioning concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Planning strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4.1 Mechanical configuration of robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4.2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4.3 Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4.4 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5.1 High level modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5.2 Low level modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.6 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 Verification and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7.1 Validation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7.2 Acceptance tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Description of the Smart factory process 11
3.1 Production line 1: production and delivery of cardboard goggles . . . . . . . . . . . . . . . . . . . . 11
3.2 Production line 2: delivery of plastic goggle lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Methodology 14
4.1 Planning strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Visual planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.2 Project plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Robot programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3.1 IRB1200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.2 IRB910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Modelling of Smart factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.1 Low-level modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.2 High-level modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Communication protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Verification and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Final simulation 26

6 Challenges and possibilities of Virtual commissioning 29
6.1 Interview Jesper Halmsjö, ÅF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Interview Magnus Seger, ABB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Interview Anders Spaak, ABB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4 Compilation of interview answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Discussion 33
7.1 Discussion about how to build a VC model efficiently . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Discussion about verification of VC model and VFAT . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3 Sustainability and ethical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 Conclusions and future work 35
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6



8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A Flowchart IRB1200 39

B Flowchart IRB910 40

C RAPID code IRB1200 41

D RAPID code IRB910 45

7



1 Introduction

This section presents the background to this project and why it was initiated. Purpose, research questions to be
answered in this thesis and limitations of the project are also introduced.

1.1 Background

With a market that is constantly changing and fluctuating, a lot of countries have developed some sort of strategy
to raise their competitiveness. One example is Germany’s Industry 4.0, where 4.0 refers to the fourth industrial
revolution. With the strategy the goal is to develop a smart factory where everything is connected, closely related
to IoT (Internet of Things). By having every product in the production line carrying information about where
it is going and how, the factory can organize itself. The goal of Industry 4.0 is a production with shorter lead
times, fewer errors and more flexibility (1). Sweden’s counterpart to Industry 4.0 is called Smart industry and was
initiated in 2016 (2).

Project Smart factories is a project initiated by GTC (Göteborg tekniska college) and is a collaboration between
the industry and academy to contribute to the Smart industry strategy. The project aims to build up and spread
knowledge about industrial digitalisation. This is done partly by building a demonstrative miniature smart factory
as an exhibition at Universeum Science Centre. The factory will be used to show how technology and digitalisation
can be used in production. The project of building the factory is divided and performed by students at different
levels as thesis projects. The different projects include factory layout, programming of the automated process,
electrical design, building the physical factory and to perform a virtual commissioning to name some. The lastly
mentioned project, virtual commissioning, is the project that is covered in this thesis.

A virtual commissioning involves the development of a dynamic 3D-model of the factory which acts as a virtual
twin. In a virtual commissioning the entire factory is tested in a virtual environment by connecting the model to a
PLC (programmable logical controller). Virtual commissioning has been a growing research area the past decade
and the benefits of it compared to the conventional way with only a physical commissioning are many (3). The
code can be tested and debugged before even starting to build the factory and a lot of time that would be spent
on-site in the conventional process, is saved. This decreases the commissioning time and cost significantly. The
PLC- and robot-program used in the virtual environment is the same as the one used in the physical factory so once
they are validated the idea is to just transfer it to the physical factory when it is built. In experiments described
in (4) it has been estimated that by including a VC (virtual commissioning), it is possible to save 10-30% of the
commissioning time and increase the quality of engineering solutions.

1.2 Purpose

The purpose of this MSc project is to perform a virtual commissioning of the Smart factory, where the actual PLC-
and robot-code interacts with a simulated model of the factory. The main responsibility for the authors of this MSc
thesis is to build the model, to write the robot programs and perform simulations, whereas another thesis group
is in charge of writing the PLC-program. Ideally by performing a virtual commissioning the commissioning time
will be short, compared to the conventional way with only a physical commissioning, leading to less costs. Another
important aspect of a virtual commissioning is safety since different scenarios and robot paths can be tested in the
virtual environment. Furthermore this project will lead to more knowledge about virtual commissioning applied to
a real factory start up.

The main goal of this MSc project is to build a virtual commissioning model of the factory that can be used to test
the construction, robot paths and PLC code. The purpose is to show how a virtual commissioning of a small scale
factory can be done and to show the advantages and disadvantages of doing a virtual commissioning today. The
virtual factory will be used as a demonstrator to illustrate how digitalization can be used and is thus an important

1



part when increasing knowledge about the area.

1.3 Research questions

Several research questions naturally arise in this context. The most important of those are:

• How should a Virtual commissioning model be built in an efficient and structured manner?

• Which are the main components and which details can be left out in the virtual commissioning model?

• What are the most important parts to test in a virtual commissioning? How should the PLC code be
validated?

• Which are the major challenges when performing a VC today? What needs to be developed further and what
has to happen before VC will be common practice?

1.4 Delimitations

In this project the following delimitations had to be made:

• The physical commissioning will lie outside the time scope of this project and evaluation of it will therefore not
be a part of the project, even though that could yield in some interesting input to the results and discussion.

• This project only focuses on one specific software for development of the model, namely RobotStudio and
thus comparisons to and/or evaluations of other software will not be within the scope of this project.

• The design choices of the factory is not to be evaluated or decided by the authors of this thesis. Simulation
is usually used to decide on things such as placement of different parts and optimizing regarding different
parameters, but this will at most be a very small part of the project.

• Servo drives and communication modules will not be included in the simulation model.
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2 Theoretical framework

This section presents the background theory behind different virtual commissioning concepts and the steps needed
to perform a virtual commissioning. Different strategies and concepts on how to plan a project in general and
a virtual commissioning project specifically are also presented which are used as a base for planning of this MSc
project. Since programming of the robots is also within the scope of this project, some background theory of robots
and robot-programming is also presented.

2.1 Virtual commissioning concepts

Virtual commissioning (VC) is a way of testing the control program and the construction of a manufacturing system
in a virtual environment, before physical commissioning (5). The concept has been a research area for several years
and is a growing topic among manufacturers around the world. The expected benefits from performing a virtual
commissioning are less debugging and correction during physical commissioning, which is usually a critical and
stressful period of a project. Mistakes found during commissioning, either in the construction or control program,
could result in high costs and long commissioning times.

In (6) a VC project is identified as three interconnected subsystems: 1. the mechanical design (including actuators,
sensors and behavioural description of the system), 2. the control system, including input and output signals and
3. the connections between the sensors/actuators and the control.

There are four different constellations when performing a commissioning of a plant (5):

1. real plant and real controller, the traditional way of testing the control program during physical commissioning.

2. real plant and virtual controller ("Reality in the loop")

3. virtual plant and real controller, usually referred to as HiL (Hardware in the loop), where the real controller
is needed in advance but a VC can be performed before building the physical plant.

4. virtual plant and virtual controller, usually referred to as SiL (Software in the loop), where no real controller
is needed in advance.

When referring to virtual commissioning, one of the constellations 3 or 4 in the list above is used.

To perform a virtual commissioning, a model of the system is needed which has to be connected to either a
simulated or real controller, usually a PLC (programmable logical controller). One way of designing the virtual
model is described in (7) and consists of splitting the model into two separate parts: a physical model (geometric
model with kinematics for programming of motions) and a logical device (a behavioral model that interacts with
the PLC). This makes is possible to have a concurrent design process and according to (7) the design process
consists of four steps; 1) process design, 2) physical device modeling, 3) logical device modeling, and 4) system
control modeling. The process design step is done first, and the other steps can be done concurrently.

2.2 Planning strategies

One type of planning strategy widely used today in product development as well as in many other situations is
Visual planning, which originates from the lean philosophy (8). The lean concept has its roots in Japan and the
Toyota production system where the main goal is to reduce waste, where waste in this context can refer to loss of
time and resources for example. The most used visual planning tool originates from the Toyota production system
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and is a planning tool that is easy to use and where tasks and deliverables are organised in time and shown on a
physical board. Regular meetings are held to update the involved people on progress and delays (9). One of the
pros of using visual planning is that the involved people get a better understanding of what is happening in the
project. Furthermore it has been shown that a higher degree of cross functional collaboration has been achieved
together with a better workload distribution among the involved (9). The cons on the other hand are that it can
be hard to see causal links between tasks and/or deliverables and that all involved have to be quite centralized
geographically for this planning strategy to work (9).

In today’s society, an increasing amount of components and systems are digitalised to be accessed from anywhere
through the internet. This is true also when talking about planning strategies, where various planning tool software
have been developed, based on the principles described above. Instead of having a physical board, the board is now
digital and online, but with the same appearance and functionality as the physical counterpart. One pro of using
a digital board compared to a physical, is that you can store history regarding for example late deliveries, which is
harder when using a physical board. Another advantage with the digital board is that you can update the board
from anywhere at any time, which can be convenient when working in larger projects. A digital board makes the
planning activities accessible for all people involved from their own computer.

2.3 Data collection

Data about the plant is required to be able to build the virtual commissioning model, but also to test the validity
of it. Data collection includes identification of relevant input parameters to the model, collecting information to
represent these parameters, converting raw data, and documentation for future use and reference (10). The data
can be divided into three categories: A) Available, B) Not available but collectible and C) Not available and not
collectible (11). Category C data can be estimated but it is important to be careful when handling data of this
category. One useful technique when the data is estimated is to apply a sensitivity analysis to it.

Data that is required to perform a virtual commissioning are in general (6):

• Extended 3D model including geometries, kinematics, electrics, electronics and controller programs.

• Layout with exact placement of equipment.

• Material flow involving SOP (Sequence of operations) and dependencies between different processes and
operations.

• Control system. This may be the real control system (PLC) or an emulation software to test the model with.

• Detailed information about the inputs and outputs of the plant.

• Definition of extra functionality such as a safety system.

• Communication protocols for example between the control system and the simulation model.

2.4 Robots

The first industrial robots were introduced in the 1960’s, and today they are becoming increasingly common in
industry and other fields such as health care (12). The definition of a robot is according to (12) a mechanical
manipulator that is flexible and can be re-programmed to perform different tasks. In (12) it is mentioned that
there are two main parts in the definition: 1) a mechanical manipulator and 2) it is flexible and able of performing
a variety of different tasks. One reason why robots today is used instead of humans are health issues, where for
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example robots can work in places containing radioactive radiation or in other environments that would not be
possible or healthy for human beings. Another aspect of this is monotone or heavy tasks where operator injuries may
occur (12). Another reason why robots are becoming increasingly used is because of higher quality- and production
requirements, where the robot can be superior to a regular worker since they never get tired and they can repeat
the same task over and over again, with high accuracy and repeatability. Of course some of the properties that
make the robot superior also make it flawed in certain situations. A robot only does what it is programmed to do,
which is good in most cases but if something unpredictable happens the robot cannot always cope with it and it is
believed that a human worker generally has an advantage in those situations (12).

2.4.1 Mechanical configuration of robots

A robot consists of links and joints where there are two different kinds of joints: prismatic joints move in a linear
motion and rotational joints that move in a rotational manner between two links. The links are the static structural
parts that acts as a connection between the joints. The energy needed to make a robot move the joints is most
commonly electrical, but pneumatic and hydraulic solutions also exist (12). Robots are often split into five main
categories which are cartesian, cylindrical, spherical, horizontal articulated and vertical articulated robots. How a
robot is categorized depends on which type of joints the robot consists of, the orientation of the links as well as the
order of the joints (12).

2.4.2 Controller

The controller of the robot acts as the brain of the system and is where the signals from all the encoders positioned
in the joints are gathered to get position and orientation. The controller calculates the end-effector position and
orientation by using the orientation of the single joints, the length of the links between the joins and the assumption
that the links between the joints are rigid (12). That the joints are assumed rigid is a simplification and means that
no bending occurs in the links. Two of the reasons why it is possible to consider the links between the joints to be
rigid are that most of the industrial robots today still have links that almost experience no deflection within their
specific load capacity and because the error margin that you get by deflection of the links is so small compared to
the joint stiffness (13).

2.4.3 Movements

Robots mainly have two strategies of moving, where the first is called point-to-point movement. The controller
executes this movement by calculating how it needs to reconfigure the joints to reach the target point. Depending
on the controller manufacturer and what kind of code they have implemented, the controller either calculates first
how fast each of the joints need to change so that all joints finish at the same time, or it does not do this and the
joints will in most cases finish their movements at different times (12). One thing to keep in mind with the basic
point-to-point movement when different speeds are used for the joints to make them finish at the same time, is that
for short distances the robot moves more or less linearly. The other strategy for moving the robot is by continuous
path control and here the robot should follow a defined path between the points, managed either by defining many
points along the path with a small distance between them or by using continuous interpolation to make the robot
follow the defined path (12).

2.4.4 Singularities

A problem that may occur when programming robot paths is singularities. There are different kinds of singularities
where some depend on joints aligning, for example if joint number four and joint number six align there will occur
a singularity problem, sometimes referred to as wrist singularity (14). The problem that occurs when joint number
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four and joint number six align is that the joint movement does not have a unique solution (the result of a rotation
of 7 degrees in axis four is the same as a rotation of 7 degrees in axis six) and can be countered by an opposite
movement in one of the other axis (14). Other singularities that may occur is for example that a very small
movement will require infinite speed of a joint or that the robot tries to reach outside its work area. What typically
happens when moving into or close to a singularity is reduced movement and can lead to a reduction of speed since
the movement in an arbitrary direction cannot be done. This problem is also known as losing a degree of freedom
(15; 16).

2.5 Modelling

Building up the virtual factory or modelling the factory consists of two phases called high level modelling and low
level modelling, described in this section.

2.5.1 High level modelling

High level modelling is the process of composing the virtual commissioning model from already created mechatronic
parts. These parts are called low level components and should be fully functional with the necessary sensors and
actuators. If a library with all necessary low level components already exists, the creation of the VC-model is
fairly easy, with some additional effort on setting up an I/O-system and dragging the low level components into
the correct place in the 3D-environment, according to the defined layout. Robot models is an example of usually
pre-existing low level components created by the vendor, that can be imported into the high level model.

2.5.2 Low level modelling

Low level modelling is the creation of mechatronic models based on CAD data created either by the manufacturer
or the plant designers. The low level modelling can be divided into three different stages: geometrical modelling,
functional modelling and electrical modelling (5).

Geometrical modelling
After the CAD data has been imported to the simulation software, some adjustments might be necessary as a first
step. When importing CAD data into the simulation software, the model might be unstructured and thus the first
step is to create an appropriate hierarchical structure for the model. This involves manual structuring of CAD data
into objects, sections and components. Another step that needs to be taken either before importing the CAD data
or inside the simulation software is simplification of CAD parts. Usually the CAD components are unnecessarily
detailed for a simulation which can cause too much load on the CPU and inaccurate simulations. Some simulation
software has integrated simplification tools but if it is not sufficient manual work may be necessary to remove
selected unnecessarily parts of the models. Features that may be removed to reduce the complexity of the model
are holes, bosses or labels whereas parts that may be removed from the model are small or other selected parts and
hidden invisible parts (5).

Functional modelling
The functional modelling step includes adding kinematics and sensor functions. The software usually has integrated
functionality to add movements such as translations, rotations and gripping or sensor functions of different variants
such as optical, inductive, capacitive or light barrier. The sensors and actuators have to be manually placed on
specified geometries. The functional modelling step results in functional parts such as cylinders, sensors, tools such
as grippers etc.

Electrical modelling
This is the last step of the low-level modelling and results in a complete mechatronic model including inputs and
outputs on actuators and sensors. These outputs are to later be used when communicating with a control program.
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The software may have a graphical interface, making it easy to add and edit the signals and get an overview of the
design.

2.6 Communication

During the late 1970’s and the beginning of the 1980’s protocols and means to connect automation devices where
developed. In the beginning, most protocols were brand specific meaning that only devices from the same brand
could be connected to each other. This was seen as a problem and a need to develop a generic way to be able to
connect devices regardless of the manufacturer arose. In the late 1980’s this was realized by using the same local
area network used by regular computers to also connect different automation devices regardless of manufacturer by
development of the Open System Interconnection (OSI) standard. OSI is not a communication protocol itself but
defines a standard framework for communication protocols (17). New communication protocols began to develop
fast and became widely used to be able to decentralize bigger systems and by this being able to have distributed
nodes which for example leads to less wiring and easier rebuilds to name two of the benefits (18).

There are three main types of topologies for how a network between different nodes can be set up; star-, ring- and
bus network. Depending of what kind of topology is being used there are pros and cons regarding for example
redundancy. Using a ring network instead of a bus network would result in redundancy if the wire between two
nodes breaks or is removed, since the signal can still make it to all the nodes and the network can in that case be
seen as working like a bus network. On the other hand using a ring network as opposed to a bus network requires
an extra wire from the "last" node to the "first". In Figure 1 the different layouts together with some more pros
and cons can be seen (19).

+ High fail safety 

+ Less collision 

+ Easy do connect

   disconnect units

   during operation 

- Much cable 

- All traffic through 

  Hub or Switch 

+ Easy installation 

+ Easy to rebuild 

+ Less cable 

- Requires advanced

  rules for communication 

- Slow when much traffic 

- Everything will fail if a

  communication wire 

  breaks 

+ High fail safety 

+ Can work even if a

   wire breaks 

- Hard to rebuild 

- All traffic goes 

  through all nodes 

Node Hub

Star Network

Bus Network

Ring network

Figure 1: Different topologies with pros and cons.
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In the beginning of the 21th century Ethernet based buses were introduced which were welcomed by the industry.
Two of the reasons were because this new technology allowed the use of regular network cables and routers and
access points could be used instead of more expensive special equipment. The performance also got better with
the Ethernet based solutions and can nowadays reach speeds up to 1 Gbit/s (19). When mentioning different
communication protocols and their speed, where speed usually refers to the response time, it is common to make
a distinction between soft and hard real time. Hard real time has a faster response rate than soft real time and
when hard real time communication is used no packet loss is allowed whereas in soft real time some packet loss is
allowed (20). Another definition is that hard real time signals must be correct and meet the deadline every time
and soft real time is when the deadline can be missed occasionally without making the system unreliable (17). In
Figure 2 the difference between TCP/IP, traditional fieldbuses and Industrial Ethernet response time range can be
seen as well as an approximation of the difference between soft and hard real time in relation to response time.

1 µs 10 µs 100 µs 10 ms 100 ms 1 s 10 s1 ms

Building technology, control and automation levels, 
trouble-free processes, storage systems

Conveying systems, simple controls, majority of all 
automated systems

Machine tools, fast processes, robots

High dynamic processes, electronic drives

TextResponse time / jitter

Hard real time Soft real time

Industrial Ethernet Traditional fieldbuses TCP/IP

Figure 2: Response time comparison between different communication protocols.

When Ethernet based buses became common, new protocols had to be developed where one of the main reasons
was because the common measures to avoid data collision inside the Ethernet standard caused irregular time de-
lays (21). Three common Ethernet based buses used today are EtherCAT, ProfiNet and EthernetIP. When using
Ethernet based buses one benefit is that it is usually quite easy to integrate it into the regular network. ProfiNet
for example has three different communication services, TCP/IP for communicating with higher level systems,
ProfiNet RT to communicate in real time with other automation applications and lastly ProfiNet IRT which is the
fastest service with a response time in the sub-microsecond range (22).
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2.7 Verification and validation

Verification and validation is needed to assure that the simulation model has a certain level of accuracy depending
on the demands of the model. To differentiate between verification and validation two usual definitions are:

• Validation: are we building the right system?

• Verification: are we building the system right?

This means that verification is a way of assuring that the model is correct according to some sort of specification
and validation is a way of assuring that the model is accurate enough according to the user demands of the model.
This also means that validation is a way of testing the specification itself and that the user defines if the model
is satisfactory. There is thus no certain way of knowing when a model is validated but it is more about reaching
a certain level of confidence that the model will serve its purpose. Balci O. says in (23) that model verification
is ‘ensuring that the computer program of the computerized model and its implementation are correct’ and that
validation is ‘substantiation that a model within its domain of applicability possesses a satisfactory range of accuracy
consistent with the intended application of the model’. In (24) Sargent R.G divides the system into the real world
and the simulation world and describes how verification and validation is an iterative process closely connected
to the model building process. Figure 3 shows a simplified picture of how the validation, verification and model
building can be interconnected in a simulation project. For a more detailed version of Figure 3, the reader is
referred to (25).

Figure 3: Presenting how model building, verification and validation can be interconnected in a simulation project.

The process is mainly built on five steps; modeling, specifying, implementing, experimenting and hypothesizing. The
first step, modeling, is where a conceptual model is developed based on the real system. The real system includes
theories of the system and data about the system relationships, which the conceptual model is validated against
in the conceptual model validation step. The conceptual model is a mathematical, logical or verbal representation
of the system. A detailed simulation model specification is then created which thoroughly describes how the
conceptual model should be implemented in a computer system and how the software design should look. The
specification is verified against the conceptual model and when it is satisfactory the implementation process begins
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where the simulation model is developed. The simulation model is the conceptual model implemented in a computer
system and it is verified against the model specification. When the simulation model is satisfactory, experiments
are applied to it to yield data which is compared to data from the real system in the operational validation step.
The operational validation is performed to ensure that the model output behavior is accurate enough for the models
intended purpose. The verification and validation process is iterative and repeated until a satisfactory model is
developed.

2.7.1 Validation techniques

In (24) Sargent describes some of the most common validation techniques used for simulation model checking:

• Animation: The behavior of the model is graphically displayed and reviewed.

• Comparison to other models: one example is that simple results from the simulation model is compared to
results from an analytic model.

• Event validity: does events occur as often in the model as they do in the real world?

• Extreme condition tests: the model should give a reasonable output result for any extreme case. For example
if a production site simulation receives zero input material the output should usually be zero as well.

• Face validity: People that have deep knowledge about the system are asked whether the model and its
behavior is reasonable.

• Historical data validation: If data exists parts of it can be used to build the model and parts of it used to
compared the results from the model.

2.7.2 Acceptance tests

Traditionally in automation projects the testing is mainly carried out as a two-step process where the first step
is a FAT (Factory acceptance test) which is an acceptance test in the development environment. The test is
carried out by the supplier. The FAT is to make sure all components function and that all data sheets, manuals,
electrical schemes exists. The FAT documents should fully cover the specification of the system. When the FAT
is satisfactory a SAT (Site acceptance test) is carried out by the user on site after complete installation. The SAT
should repeat the FAT to control that nothing has been damaged while shipping (26) and ensure that the factory
is fully functional for start of production.

When including a VC in an automation project a third acceptance test should be included before the FAT and
SAT, namely a VFAT (virtual factory acceptance test). The VFAT is carried out in the virtual environment to
test the PLC-logic, placement of components, functionality of components etcetera. By including a VFAT a lot of
software- and construction errors can be found before ordering parts and before commissioning. When the VFAT
is completed the parts can be ordered and the factory built for FAT.
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3 Description of the Smart factory process

The Smart factory will produce cardboard virtual reality goggles and consists of two production lines where one of
the lines delivers plastic lenses and the other produces and delivers cardboard goggles. A conceptual model of the
factory is shown in Figure 4.

Figure 4: Conceptual model of the factory, as seen from above.

As can be seen each production line has been divided into modules with a total of five in the whole factory. Since
the factory is only used to demonstrate technology, the process is not optimized for cycle time in any way. It
is instead intended to be visual for the viewer with a lot of movements and actions, that may sometimes seem
unnecessary. The two production lines are further described in the subsequent subsections.

3.1 Production line 1: production and delivery of cardboard goggles

Module 1: cardboard storage, robot, printer and scanner
The first module mainly consists of two storage units containing a number of cardboard sheets (approximately
600), one ABB IRB1200 robot, a printer and a scanner. The production of cardboard goggles starts with the robot,
which is equipped with a suction cup tool, picking up a sheet from one of the storage units. The sheet is then
transferred to a realign-station where the robot places the sheet in a fixture and performs a retake operation. The
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retake operation and the fixture is used to ensure consistency of the orientation of the sheet for the subsequent
operations. When the robot has performed the retake operation and the sheet is correctly oriented the sheet is
transferred to the printing station. The robot moves the sheet three times with a linear movement in front of the
printer, for the printer to print two QR-codes plus one additional print of text decided in advance by the customer.
The QR-codes are printed to make the sheet act as an information carrier throughout the process, and the codes
are therefore verified to be correct by the scanner before the sheet is passed on to the next module. If the QR code
cannot be read by the scanner the sheet is scrapped and the customer gets to order a new product.

Module 2: input and stamp
After the QR codes have been printed and verified the robot transfers and places the sheet at the inlet of a rolling
stamp which is where Module 2 starts. The inlet consists of an ultrasound sensor letting the PLC know that a sheet
has arrived. When the sensor is active and the robot has moved away from the inlet, the cardboard sheet is pushed
by an actuator into the rolling stamp where the goggles are cut out. The motors of the stamp cylinders are activated
when the sheet has reached a second sensor close to the stamp. The cylinders act both as a stamp and a transporter
of the sheet so that the rotation of the stamp cylinders will move the sheet forward to Module 3. The velocity of
the inlet actuator has to be chosen carefully and cannot override the speed that the stamp will move the sheets with.

Module 3: output and delivery of cardboard sheet
After the sheet has been stamped it is transported by a conveyor towards the delivery. At the start of the output
transporter there is a third ultrasound-sensor letting the PLC know that the sheet has arrived which activates the
transporter. At the end of the transporter there is an actuator and another sensor telling the PLC that the sheet
has arrived at the actuator. The transporter is then turned off and the actuator flips the cardboard sheet into a
delivery box where the customer may pick it up. The delivery box is equipped with a sensor to make it possible to
count the number of sheets in the box. This is to be able to know if the box is full.

3.2 Production line 2: delivery of plastic goggle lenses

Module 4: Flexlink conveyor system
The delivery of lenses starts with a conveyor system delivered by Flexlink. It contains five pallets moving around
on a ellipse-shaped conveyor. The pallets carry boxes containing 50 lenses each, positioned in three rows. The
pallets, which are plastic, contains a number of metallic pieces mounted on the bottom which are used to activate
inductive sensors that are positioned at certain positions of the conveyor.

The conveyor system contains two stops controlled by the PLC which are used to stop the pallets at specific
positions. One stop is placed at the position where the box should be for the robot to pick a lens, and one stop is
placed a short distance before the picking position so that the subsequent pallets will not hit the pallet that the
robot is picking from. A collision could create some unwanted movements and the robot might not be able to pick
the correct lens.

An inductive sensor and a fixing device is placed at the picking position. The sensor indicates that the pallet is in
correct position and is thus used as a check before fixating the pallet. The fixating device raises the pallet a few
millimeters from the conveyor belt and fixates it, so that no unwanted movements from the conveyor belt disturbs
the picking operation. When the box is fixated the robot is allowed to pick a lens.

Aligned with the two stops there are two inductive sensors which are used when programming the Flexlink system.
They can be used to trigger when to stop the pallets, to count how many pallets have passed a stop and so on.
The control program is written so that after one lens has been picked from a box the pallets move one entire lap
until the same box stops at the picking position again. This is done until the box is empty and then the process
continues with picking the first lens in the next box. When all boxes are empty some manual re-filling of the boxes
is needed.

Module 5: SCARA robot, Eton conveyor system and delivery The fifth module consists of a SCARA robot standing
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on a table, a lens fixture on the same table which is to be moved up and down by an actuator and a conveyor
system delivered by Eton systems which transfers the lenses to the delivery on a conveyor with a height of two
meters.

When the box is in correct position for picking a lens and an order has been placed the SCARA-robot will receive
a signal to pick a lens from the box. The robot uses an electrical clamping tool to pick the lens which is then
placed on a fixture on the robot-table. When the lens is in place and the robot has moved to its home position,
an actuator raises the fixture towards the Eton conveyor-system. This movement transfers the lens to one of the
carriers hanging from the conveyor. The Eton system receives a start signal from the PLC, indicating that the
robot is in a safe position for the carrier to move, and transports the lens to the delivery position. To receive the
lenses the customer needs to scan the QR-code on his/her sheet and place his/her hands in the delivery station
which will activate a sensor telling the Eton system to drop the lens. When the customer receives the lens the last
step is an assembly station where the goggles will be manually assembled by the customer.
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4 Methodology

In this section the methodology is presented that was followed to fulfill the goals and to answer the research
questions of this thesis.

4.1 Planning strategy

To make use of all the benefits of virtual commissioning and be effective when building the virtual model, it has
been important to work both together with the other groups and suppliers to gather information and specifications.
To spread and acquire information to other groups, a common vision and plan is required.

4.1.1 Visual planning

This MSc project is a part of the larger scale project Smart factories, which includes several other thesis workers,
companies and institutions. All thesis workers are more or less dependant on each other and thus a good planning
tool is necessary to work efficiently. Project Smart factories utilizes a planning tool called YoLean based on the
LEAN concept. It is a visual tool where every user puts up digital post-its on a digital board. The post-its have
different colors depending on its character, i.e if it is a milestone, activity, a meeting or something else. The activities
should be possible to carry out in 3-5 hours and they should be planned one week ahead while the milestones are
larger tasks and may be planned to be finished further away in time. The activities may also be connected to a
specific milestone. The board is open to everyone involved in the project which makes it easy for groups depending
on each other to plan together. The concept is also based on weekly meetings where everyone involved meets to
discuss how the past week went, what should be done the next week in terms of activities and milestones and what
everyone needs from each other to reach their goals. This tool makes it easy to discover and correct problems early
and make the project work more efficiently.

The authors of this thesis have been mostly dependant on one more thesis group, namely the group responsible for
the PLC program. Therefore at the start of the project it was important to set up milestones regarding the practical
work together with them. The smart factory was in the beginning of the project divided into different modules
and sections, making it easy to set a milestone for when each module should be done by each group. Milestones
regarding the report was also included in the planning tool even though it is not relevant for other groups.

4.1.2 Project plan

The beginning of the project consisted of a planning- and design-phase where data collection and decision making
about the factory process flow was done. Everyone involved in the development of the factory need to have the
same information so a mutual document folder including all the documents describing the system was needed,
which had to be continuously updated throughout the project. The document folders include I/O-lists, flowcharts,
layout plan, CAD-parts, component lists etcetera. This was the first phase of the project, the design phase. Next
phase was the modelling phase where the static model is further developed to a dynamic model, module wise
according to the modules in Section 3. The parts need to have the correct input- and output signals according to
the design plan and I/O-lists. Following the modelling phase was the testing phase where the factory was tested
through simulations. This was done throughout the entire project by testing each part separately early on and then
together with other parts later on and lastly with the real and final PLC code. Figure 5 shows a principal plan of
how the project has been performed. The blue boxes are tasks that involves the authors of this thesis whereas the
grey boxes are tasks performed by other people.
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Figure 5: Principal chart of the planning process of the project.

Throughout the entire project the design, modeling and testing phases have been concurrent and iterative so that
the factory has been tested part by part and if a test reveals that some part of the design needs to be changed we are
back in the design phase, making changes in the design, modelling it and testing it again. The PLC programmers
have been working in parallel with the modelling and testing, to increase the efficiency of the project, both by
the ability to test parts of the PLC code early on and by having a platform, the dynamic model, for common
understanding of the process among the groups. After the programming and testing is done and satisfactory, the
factory is to be built.

4.2 Data collection

The Smart factory has not yet been built and data about the factory was therefore gathered via technical spec-
ifications, asking companies about their products and at some points where data could not be found it was esti-
mated/guessed. The layout was handed out in an early phase of the project and has since then been constantly
updated, which has required consistent communication to make sure the latest version of the layout and component
list is available. Due to layout changes there has been a lot of re-work when building the virtual commissioning-
model.

4.3 Robot programming

This section describes how the robots in the factory have been programmed and how they communicate with the
PLC.

4.3.1 IRB1200

The IRB1200 is a 6 axis robot, in this project used for handling the cardboard sheets. The process consists of
picking the sheet from one of the storages, performing a re-take procedure, passing the printer and scanner and
then placing the sheet at the input of the stamp. If one of the QR-codes shows to be faulty the sheet is instead
placed in a scrapping bin. A flowchart of the process can be found in Appendix A. Figure 6 shows a 3D view of
the robot together with the surrounding environment.
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Figure 6: 3D view of robot together with its surrounding environment.

As can be seen there are quite a lot of components in a small area and it is important to verify that the placements
of all components are valid. More specifically it is important to make sure that the robot can reach all of its targets
without any collisions and without moving into singularities. RobotStudio has a feature called collision checking
where different collision sets can be defined which was used to validate the created paths.

The robot is equipped with a vacuum gripper used to pick up the sheets and an UGR500 ultrasonic retro-reflective
sensor from IFM to measure the distance to the sheets while they are in the storage. A vacuum guard is connected
to the tool and is used in the picking-operations, detecting whether the sheet is attached or not.

From the moment that the sheet is being transported from the storage until it is placed on the input of the stamp,
a trap routine is active. A trap routine is a routine in the robot controller that monitors a condition for a specified
time during operation and if during this time the condition for the routine is met the program will execute the set
routine in the robot. In this case the IRB1200 will have a trap routine that monitors so that if the vacuum for the
sheet disappears for some reason and the vacuum guard goes low the IRB1200 will stop executing and print an error
message on the pendant. This is so that the program at any time will stop execution if there is no sheet to work with.

Work objects
A work object is a coordinate system, mostly used to simplify programming and jogging of the robot. A work
object coordinate system consists of a user frame and an object frame where the object frame is related to the user
frame and the user frame is related to the task world frame. When a work object is defined it is attached to the
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specified object in the simulation model. Robot targets can then be defined within the work object that the robot
is working on, and if the object in the model is moved, the work object and targets moves with it. This means that
the targets will not have to be redefined every time some object around the robot is moved. When having work
objects it is also possible to jog the robot within the work object coordinate system instead of within the world
frame.

In this MSc project it was decided that four work objects were sufficient to have:

• Wobj_fixture

• Wobj_Printer

• Wobj_input

• Wobj_magazine

The work objects were defined so that if it is found later that the component attached to it has to be moved the
targets do not have to be changed within that work object . This makes it possible to make smaller changes in the
layout without having to re-program the robot, thus making the robot program more flexible for changes.

Handshake with PLC
In parts of the program where the robot has to interact with the PLC it is important to have a handshake procedure.
A handshake is used to make sure that both the PLC and the robot has the same information before performing a
task. The robot acts as slave and PLC as master, which means that the robot is passive, waiting for the PLC to
start communication.

The handshake is performed before picking a sheet from one of the storages, before printing, before scanning, after
scanning to see if a satisfactory print have been achieved and when the sheet is placed at the stamp input. Figure
7 presents a flowchart showing a general handshake procedure. It will be slightly different depending on which
operation is going to be performed.
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Figure 7: Flowchart showing the general handshake procedure.

The PLC data bits are used to indicate which operation is going to be performed, where the different operations is
shown in Table 1 and the strobe is used to indicate when the robot or PLC is allowed to read the bits.

Value data bits Event/Process
0 Pick left storage
1 Pick right storage
2 Reset offset picking position (if storage is refilled)
3 Printing
4 Scanning
5 QR code ok
6 QR code not ok (scrap product)
7 Robot moved from stamp input

Table 1: Presenting the different values and corresponding event/process of the bits used for communication between
the robot and PLC.
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There is one strobe on both the IRB1200 side and PLC side, and one set of data bits on each side as well. When
the PLC strobe is high the robot is allowed to read the data bits. When the bits are read the robot sets the same
bits and sets its strobe high indicating that the PLC can read the bits. If the PLC gets the same bits back as it
sent it replies with setting the PLC strobe low. When the robot read that the PLC strobe is low, it resets its own
strobe and starts with the process indicated by the data bits. The handshake is thus done.

4.3.2 IRB910

In Production line 2 a IRB910 Scara-robot is used for handling lenses. The movement consists of picking a lens
from the box that is at the picking position and placing it in a fixture where it will be transferred to one of the
Eton carriers. In Appendix B a flowchart of the IRB910 process is presented.

The SCARA-robot acts as slave in the same way as the IRB1200 and thus the PLC is master. A handshake is
needed for the SCARA-robot before picking a lens and before putting it in the lens fixture, to guarantee that there
will be no collisions between either the robot and the lens fixture or between the robot and one of the product
carriers. The handshake is also used for the robot to know which lens to pick. The PLC keeps track of which
lens position index, ranging from 1 to 50, that the robot should pick from. When the path is safe for the robot to
move the PLC sets the data bits to the correct index and sets the strobe allowing the robot to read the bits. The
different handshake operations for the SCARA-robot are shown in Table 2.

Value data bits Event/Process
1 Pick lens at index 1
2 Pick lens at index 2
. .
. .
. .
50 Pick lens at index 50
51 Put lens in fixture

Table 2: Presenting the different values and corresponding event/process of the bits used for communication between
the SCARA-robot and PLC.

Handshake number 51 is finished when the robot has moved to a safe home position and triggers the PLC to send
a signal to Eton that a carrier may be sent down to position for transferring the lens to the Eton system. When
the carrier is in a proper position and the robot is in a safe position the PLC activates the lens fixture actuator
which moves the lens fixture up to hand over the lens to the product carrier.

19



Figure 8: SCARA-robot and surrounding environment.

The robot program is not flexible for mistakes such as misplacement of lenses or missing lenses. This is because
there are no sensors mounted on the tool. Sensors could detect if a lens has been picked up or to use a search
operation to find a product. The program is thus based on exact placement of the lenses, but if a lens is missing
in one of the boxes this will instead be indicated by an ultrasound sensor placed on the table next to the the lens
fixture.

4.4 Modelling of Smart factory

As mentioned in Section 2 modelling is a big and crucial part of a virtual commissioning project and has thus
been the part where the majority of the time and effort has been spent in this project. The modelling process is
described in this section.

4.4.1 Low-level modelling

In this project the CAD-model was created and delivered by the mechanical engineers. The CAD-models were im-
ported to RobotStudio where some parts needed transformation, to become dynamic/electrical parts. RobotStudio
has a feature called SmartComponent which enables the user to create low-level components within the software.
A smart component contains one or more child smart components such as logic gates (AND, OR, NOT etc), logical
expressions, sensors of different kinds, attachers, detachers and manipulators among others. It is a combination of
these that makes up the part or function needed for the wanted application. RobotStudio has a graphical interface
where drag-and-drop programming can be done to easily be able to create I/O-signals and connect the different
child components.

For the IRB1200 robot a suction cup tool is going to be used and thus had to be defined in RobotStudio for
simulation. How this tool was modelled will now be presented to show an example of how modelling can be done
in RobotStudio. The suction cup 3D-model can be seen in Figure 9. It consists of eight suction cups and a built
in "vacuum guard" used for knowing if a sheet is attached to the tool or not.
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Figure 9: 3D-model of vacuum tool.

In the VC model the tool consists of an attacher to attach objects, detacher to detach objects, a line sensor attached
to the 3D-model, used to simulate the vacuum guard and a SR-latch to set an output signal saying if a sheet is
attached to the tool or not. The graphical design view of the vacuum tool can be seen in Figure 10.

Figure 10: Internal logic of robot vacuum tool.

The Smart component’s input signal, diAttach, is connected to a real output port on the robot internal DeviceNet
device and the output signal doAttached is similarly connected to one of the input ports of the DeviceNet device.
Connections between different components, such as robots, tools and PLC, are done in what is called Station logic,
which can be seen as a virtual wiring between devices/components and the example with the vacuum tool is shown
in Figure 11.
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Figure 11: Connections between IRB1200 robot and vacuum tool.

The view in Figure 11 is different from the Design view in Figure 10 but still represents I/O-signals and connections.
The user can thus choose which view is the most convenient to work with.

For other more complex parts such as the stamp more logic was needed, since there are more parts connected to
each other and more dependencies to handle. The movement of the input device before the stamp depends on
the position of the robot and placement of the sheet. An angular velocity has to be transferred from the PLC to
the model and transformed into a linear velocity for the sheet when taken over by the cylinders. The start of the
cylinders is also dependent of the placement of the sheet.

Another problem is to create "physics". In reality the sheet would automatically be brought into the stamp by the
cylinders, but since no physics engine is included in RobotStudio this movement has to be explicitly programmed
with logical expressions and several other smart components making the modelling part very complex even for
modelling simple movements.

4.4.2 High-level modelling

Since the static model was imported as an assembly with all parts in their correct place there was no need for
placement of parts except for some minor adjustments. The high-level modelling part mostly consisted of creating
signals and connections between the PLC and other components. This was done in a Smart component called
ConnectivitySmartComponent, where all PLC signals needed in the model were defined. The signals need to have
the same name in the simulation model as in CodeSys, which is the PLC-programming environment, to be able to
connect to them. ConnectivitySmartComponent is what establishes a connection between the virtual PLC and the
model of the factory.

Figure 12 shows how the ConnectivitySmartComponent looks. VAC500 is a variable used to connect to the correct
address of the virtual PLC via TCP/IP.
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Figure 12: View of how the ConnectivitySmartComponent looks like.

The inputs and outputs defined in ConnectivitySmartComponent are the inputs and outputs to the PLC. The
PLC signals are connected to one of the robots, the stamp, an actuator or some other components in order to get
the correct functionality. Boolean signals are defined in the model as digital inputs/outputs and int/doubles are
defined as group inputs/outputs.

4.5 Communication protocols

In the physical factory most of the communication between devices such as sensors, robots and actuators will go
through Profinet. The exceptions to this are the servo drives for the cylinders in the rolling die cutter that will
communicate with the PLC using EtherCat and some other, mostly diagnostic features, are sent via TCP/IP to
the supervising system of the factory. Even though the majority of the devices communicate via Profinet as stated
above and it would be favorable to be able to emulate this, this will not be done in this project because this would
require all the nodes and devices to be emulated and have a compatible protocol on how the different devices should
interconnect. This is not available today for all the devices. An example of what is meant by having a compatible
protocol is how time should be handled between the different devices being emulated. Should they run free or be
synchronized, should time slices be used or not, etcetera. All these kinds of options have to conform between the
different devices and what has been found is that it is only a few manufacturers that even supply emulators for
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their products and that there probably is no easy way to connect devices from different manufacturers.

In this project the PLC, the robot controllers and the control panel have been emulated while the other devices,
parts and movements such as sensors, product carriers etcetera have been simulated inside RobotStudio. The virtual
PLC is a standalone part of Automation Builder (27), in which the virtual PLC is configured. The configuration
includes which CPU that should be used and what modules such as I/O- and communication- modules the system
will have.

Automation Builder is also where configuration such as IP-addresses of a Profinet module is configured and where
variable names can be connected to hardware addresses for easy use in the programming phase. When configuration
of the hardware is done and it is time to start programming Automation Builder will start CODESYS v2.3 where
the configurations from Automation Builder and all the necessary libraries needed will be loaded. When the
programming is completed and it is time to load the program into the virtul PLC the first thing to do is to start
an emulator from Automation Builder. After it is started the program can be loaded into the emulator from
CODESYS where the protocol used to load the code into the emulator is the same that would be used for the
physical PLC, namely TCP/IP. The virtual PLC is now loaded with the program and it is time to connect the
virtual model built in RobotStudio to the virtual PLC. Figure 13 shows a visual compilation of how all devices and
applications are connected.

VirtualDevice

VirtualDevice

PanelBuilder VirtualDevice

AutomationBuilder
RobotStudio

CODESYS

PLC
Drive
 
...

Virtual 
Robotcontroller

SmartComponent

Webservices

TCP/IP

TCP/IP

Figure 13: Coupling between different applications.

To connect to the virtual model created in RobotStudio a SmartComponent developed by ABB is used. The smart
component works as a sort of plugin in RobotStudio which makes it possible to establish a connection between the
Virtual PLC and the SmartComponent inside RobotStudio using Windows Communication Foundation (WCF)
NamedPipes. The virtual robot controllers are also standalone processes outside RobotStudio and communicate
through an ABB developed protocol, in the virtual robot controllers as in the real controller there is the possibility
to connect to the controller through different web services which will be used later in the physical factory by the
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supervising system to get information from the controllers. In the factory there should also be a Human Machine
Interface (HMI) of a control panel, the HMI is connected to the virtual PLC in the same way as it would with a
real PLC by using TCP/IP.

4.6 Verification and validation

The model has been divided into different modules, introduced in Section 3 and one good approach is to test the
model components separately and then in modules, before testing the entire factory. Each component has thus
been tested separately to verify that their internal behavior functions before connecting them to other parts of
the model. In RobotStudio this can be done by manually triggering inputs to the components and verify that
movements and other signals are accurate. When a component is verified to function correctly, it can be added to
the high level model which then has to be verified as well. Some parts of the model had to be verified by studying
the technical specification. By working in modules both in the model and in the PLC-program it has been possible
to test small parts of the program before the entire model is completed. When one module in the simulation model
has been verified it has been possible to test the PLC-code of that module.

The last part of verification and validation in this MSc project has been to perform a VFAT where the entire virtual
factory was tested and validated. In the VFAT the entire process flow was checked and compared to the process
specification. Furthermore the most obvious cases are considered that could happen in the physical factory such
as breakdowns, emergency stops, parts that stop to function etcetera.
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5 Final simulation

The results from the VFAT shows that the model is functional and the communication with the virtual PLC works.
The model can visualize a completely automated process from an order being placed to a sheet and plastic lens
being delivered to the customer. It can handle several cases such as when there is a need for refill of material, when
one of the boxes are empty on the Flexlink conveyor and when QR-codes are faulty. Figure 14 shows the VFAT
protocol that was used as a checklist for the VFAT in this MSc project.

26



Function What should be checked? Test OK Not OK Comment
Stn1.Elipse Does startorder from Elipse work? Check that PLC receives startorder and

starts process
x

Stn1.PLC Programstart PLC Check that PLC starts the process x

Stn1.Sensors magazine Does PLC handle empty/not empty 

magazine?

Check that correct process is running

depending on sensor signals
x

Stn1.Tool IRB1200 Does the tool work? Check that robot can pick and release

sheet
x

Stn1.Tool IRB1200 Does robot handle if vacuum guard goes 

inactive

Routine that checks vacuumguard and

sends error signal  
x

Stn1.Printer Does printer work? Scan print
x

Elipse handles printer

Stn1.Scanner Does scanner work? Check status signal from elipse
x

No signal received

from Elipse
Stn1.Sensor input Is start signal set depending on sensor 

signal and robot status signal?

Check sensor signal, robot signal and

PLC signal
x

Stn1.Actuator input Does communication between PLC and 

actuator work?

Check PLC signal, movement of actuator

and and input signals to PLC
x

Stn1.Stamp Does program handle if stamp stops 

movement while sheet is in stamp? 

Checkpoint
x

Not implemented in

RobotStudio model
Stn1.Stamp Does communication between PLC and 

servo work?

Check signals and movement of stamp

cylinders
x

Stn1.Sensor output Is start signal set depending on sensor 

signal?

Check sensor signal and PLC signal
x

Stn1.Actuator output Does communication between PLC and 

conveyor work?

Check PLC signals and movements of

conveyors
x

Stn1.Sensor flip Is stop signal and actuator start signal 

set depending on sensor signals?

Check sensor signal and PLC signal
x

Stn1.Actuator flip Does communication between PLC and 

actuator work?

Check PLC signal, movement of actuator

and and input signals to PLC
x

Stn1.Elipse Is sheet delivered to customer? Check signal sent to elipse when flip is

up
x

Stn1.Robot handshake Does handshake between robot and PLC 

work?

Check flowchart and signal exchange
x

Stn1.Scrapping Does PLC and robot handle faulty QR-

codes?

Check PLC signal to robot and robot

movements
x

Stn1.Robot Does robot start in a safe state? Check trap routine. Robot can not move

until it is within a certain area
x

Stn2.Elipse Does start order work? Check that PLC receives startorder and

starts process
x

Stn2.Flexlink conveyor Does start of conveyor work? Check PLC signal and conveyor

movements
x

Stn2.Flexlink stops Does communication between PLC and 

stops work?

Check signals and movement of stops
x

Stn2.Flexlink stops Are the stops in correct position? Check if plates are stopped? x

Stn2.Flexlink inductive

sensors

Are sensors in correct position? Checkpoint(sensor before pick pos.,

plate in pos. and at pick pos.)
x

Stn2.Flexlink cylinders Does communication between PLC and 

cylinders work?

Check PLC signal, cylinder movements

and input signals to PLC
x

Stn2.Robot Does the tool work? Can robot pick and drop lens? x

Stn2.Robot Does the robot pick correct lens? Check communication between robot

and PLC and robot movements
x

Stn2.PLC Does the program handle if a box is 

empty?

Check if lens position is reset and

another box selected

x

Stn2.PLC Does the program handle if all boxes are 

empty?

Check PLC signal and conveyor

movements
x

Stn2.Sensor lens fixture Is sensor in correct position? Check sensor signal when lens is in

fixture

x

Stn2.Actuator lens fixture Does communication between PLC and 

actuator work?

Check PLC signal, movement of actuator

and and input signals to PLC
x

Stn2.Eton Does eton start signal work? Check eton signal and movements x

Stn2.Eton Does the "Clear" signal work? Check signal and position of carriers x

Stn2.Eton Does the "Drop" signal work? Check signal and if lens is dropped x

Stn2.Eton Does the "Carrier at delivery" signal 

work?

Check signal and position of carriers 
x

Stn2.Eton Does the "Carrier at picking position" 

signal work?

Check signal and position of carriers 
x

Stn2.Elipse Is "delivered"-signal set when lens is 

dropped?

Check PLC signals and if lens is dropped
x

Stn2.Delivery Is sensor in correct position? Checkpoint x

Stn2.Handshake Does handshake between robot and PLC 

work?

Check flowchart and signal exchange
x

Stn2.Robot Does the program handle if the robot fails 

to deliver lens to fixture?

Check sensor after robot movement is

done. Send error signal
x

Function is not

implemented

General Does robot send/PLC receive status 

signals

Checkpoint
x

Function is not

implemented
General Does the robots have safety zones? Check robot safety zones

x
Function is not

implemented
General Does factory handle emergency stop? Check if factory shut down 

x
Function is not

implemented
General Does factory handle controlled stop? Check if factory does a controlled shut

down 
x

Function is not

implemented

Figure 14: VFAT protocol
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The protocol shows which cases that were covered and what needs to be further developed. Further developments
could be both in the simulation model, robot program and in the PLC-code.

The VFAT that has been conducted does not include the supervising system and is thus only to show the com-
munication between the PLC and the VC-model. The variables needed to communicate with the superior system
are still in use in the PLC-program though and therefore to be able to run the simulation successfully these have
to be manually set. Some parts were not possible to simulate with the real PLC-code, so the program had to be
simplified a bit for the simulation to run.
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6 Challenges and possibilities of Virtual commissioning

To be able to answer the 3rd and 4th research question in Section 1.3, concerning the challenges, possibilities
and the state-of-the-art of virtual commissioning, interviews have been conducted with experienced people within
the area. The interviews have been semi-structured with open questions and are summarized in the next three
subsections. Conclusions from all interviews are summarized and combined in Section 6.4.

6.1 Interview Jesper Halmsjö, ÅF

Jesper Halmsjö is a consultant at ÅF (Ångpanneföreningen) currently working at a project at SKF in Gothenburg.
He has a background in production and automation which is the area in which he finished his master degree at
Chalmers University of Technology. He completed his master thesis in 2016, which was a collaboration with SKF.
SKF was at the time in the design phase of building a new production cell and Jesper’s job together with his
thesis partner was to create a virtual commissioning model of the cell. They built two versions of the virtual
commissioning model using two different softwares, ABB’s RobotStudio (28) and Xcelgo’s Experior (29). They
managed to create a well functioning virtual commissioning model in both softwares and they also came up with
ideas on how one should perform a virtual commissioning in an efficient way and what needs to be improved both
from the suppliers of components and from the developers of the modeling/programming software.

When asking Jesper if virtual commissioning is something that is being used or asked for today, the answer is
basically no, not yet. His estimation is that within 10 years it will be common practice and that these upcoming
years a lot will happen. As usual it will be the big car manufacturers, such as Volvo, that will control this evolvement
and specifically Volvo has already started using virtual commissioning in some of their projects. This has pushed
leading companies on the market such as KUKA and Siemens to develop their modelling/programming software.
If more companies starts demanding VC in their projects other big software companies such as ABB will have to
follow.

Since projects involving VC is unusual it is hard to say what the work process usually looks like. Every company
has their own approach. The people responsible for the VC-model usually are in the middle of everything though,
and need to have knowledge about all parts. Most important is to have close contact with the group responsible for
defining signals and the purchasing department. To gain the most benefits out of a VC it should be involved from
the start of a project. This way every new design choice can be tested and evaluated early and the work progress
will be iterative. Usually today the model is built after all design choices are made, making it too late to gain full
effect of the model.

One problem with building a VC-model today is that it is very time consuming and to be able to efficiently build
the model it is needed to come to a drag-and-drop stage. This would mean that the low level components already
are available from the suppliers, ready to be imported to the high level model. Today it may be difficult to even
get the CAD-geometries from the suppliers, making it harder to create an accurate model and slowing down the
model building process. Another problem is the amount of signals that somehow has to be imported to the model.
The software should include support for auto-generation of signals making it possible to import the signals defined
by the electrical engineers. This is not supported in all software today. There are also too few functions available
in the libraries, making it hard too create more complex systems.

So, is it possible to make profit from performing a VC? Jesper’s answer is that it is probably possible but it will
have to be a large scale project, including several similar plants. The first plant model will take time to build but
the subsequent plants can be built by drag-and-drop-modelling with some minor adjustments. And to test the
plant in the virtual environment instead of at site is of course profitable. There is thus profit to be found but the
software has to be more stable and easy to work in. As of today ÅF has only done VC as thesis projects. Some
companies that have their own complete system and predefined layouts performs VC of their systems. One example
is Flexlink that is a supplier of transport systems. It is a different situation compared to production cells though,
where there are components from a lot of suppliers and a lot of different software involved.
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6.2 Interview Magnus Seger, ABB

Magnus Seger is a digital factory engineer at ABB and has been working in the business for about 20 years. He
started working with virtual commissioning 4-5 years ago when the subject was still in its early ages and he has
tried a lot of different software such as ABB’s RobotStudio, Excelgo’s Experior and Visual Components (30). He
mentions that the softwares most commonly used today are Siemens Process Simulate (31) and Dassault Systems
(32) and that it is the most common in car manufacturing business in Germany. When asked about what changes
he has seen happening the last couple of years in the area of VC Magnus says that it is all about simulating more.
It is about testing the PLC-logic, that it is correct but also about visualizing robot movements, operators and
simulating everything more exactly and realistically. Basically what we want is a digital twin of the factory. Until
now the most common approach in virtual commissioning is to run HiL but what is desired now and in the future
is to be able to have stable simulations running SiL, using a virtual controller and to include a VFAT in the project
plan. This would make it possible to make all design choices and testing without needing any hardware in advance.
Magnus says that we are not there yet though. Siemens for example have only one virtual PLC that can be used,
and it is still very expensive.

What is missing today for companies to perform virtual commissioning projects in an effective way? Magnus says
that for one thing there is a lack of software. There are basically no products on the market that are stable. But
there are also problems with a market that has not yet adapted to these new methods. Companies are not ready
to take risks and instead use old methods that they know works. Usually at commissioning it takes a lot of time to
reach full production rates due to errors in the program or other mistakes. This is a critical time in a project which
costs a lot of money. Building a model to test the program in in advance is something that could make the ramping
period at commissioning much shorter, but that is very hard to convince companies to pay for. They are not there
yet and not willing to change their process. This could be an effect of another problem that Magnus mentions,
that it is very hard to quantify the results of a VC project. This is because every project is unique making it hard
to quantify how much a VC project actually saves. Another problem that is commonly mentioned is that it takes
a lot of time to build the VC models which Magnus agrees on. It takes a lot of time to build the model and the
models are never re-usable. It is also an area where the person building the model have to have deep knowledge
in a lot of separate areas to be able to build an accurate model, and even in that case a lot of mistakes and faults
might be seen in the model.

To be able to perform a VC project Magnus strongly believes that the process has to be changed completely.
Usually in an automation project there is a planning phase and a design phase followed by some engineering and
lastly coding and commissioning. Usually commissioning takes a lot of time, a lot of mistakes are found and it
costs a lot of money. Magnus thinks that the engineers and programmers must be involved much earlier in the
project, ideally from start. The process has to be more parallel so that programming and testing is done iteratively
throughout the project. This could mean that the total time of the project is longer but will yield in a significant
shortening of the commissioning time which is the most crucial. Parallelization of the process and to introduce a
VFAT is the most significant differences between the traditional way of how an automation project is done and
how it should be done in the future, according to Magnus.

The most important things to test in a virtual environment before commissioning is of course the PLC logic
but also the interaction between different devices. All the handshakes and signal exchange between for example
robots, PLC and the supervising system. Often the programs appear to work well separately but when the systems
are interconnected problems occur. Some VC-programs include a physics engine which yields a more realistic
simulations and Magnus thinks that there are many pros of using that. Without a physics engine everything is
ideal, and a lot of test cases are not possible or very time consuming to build up. A physics engine makes the
simulations more realistic and good looking for the users. Magnus is convinced that in a near future VC will be
common practice but it is up to the large manufacturers to decide and the others will follow.
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6.3 Interview Anders Spaak, ABB

Anders Spaak works at ABB as a product engineer and is a part of the research and development (RD) department
of RobotStudio in Gothenburg, which is the main site for coding and development of RobotStudio. Anders does
not write any source code himself but instead works with testing new and existing RobotStudio versions where he
gives feedback and acts as a coupling between the end user and the RD-department. He has also done consulting
work and has earlier held educational classes in RobotStudio. Anders has worked at ABB with robotics since 1998
and has been working with RobotStudio since the start.

When asked about his previous experience with virtual commissioning he answers that it depends what is meant
by virtual commissioning. He says that he has done a lot of offline programming and virtual commissioning of
robots but not at the extent that is usually referred to today including PLC, servo drives etcetera for an entire
factory or cell. Anders also says that what is being developed from ABB right now is the virtual PLC which can
be connected and run with RobotStudio. However he says that there is still too much work to set up the model
and connect the different drives, such as servo- and communication drives. He believes that there is still a bit to go
before it is simple and fast enough to set up the connections and the virtual environment so that time and focus
can be spent on coding of devices such as PLC and robots.

Anders is certain that VC will become common practice but says that it took approximately ten years for offline
programming of robots to become accepted. He thus expects that it will take around the same amount of time for
VC to become accepted on the market. We asked him what he thought about companies building libraries and
manufacturers offering standard dynamic components to speed up the process of building the environment in the
future. His answer is that he definitely thinks this will become a common thing and that companies are going to
have this included in their business model, but he also says that if companies start to supply tested and verified
code for the user to only put some unique details on top the need for a VC would decrease.

When asked about how he thinks a VC project should be carried out he replies that the dynamic model should
be developed as soon as a conceptual model is chosen and that the mechanical designers should work side by side
with the virtual model developers to be able to find mistakes and problems and make concurrent improvements.
Anders says that how it works today is that the robot programmers usually build up the environment and do offline
programming of the robots. He himself sometimes simulates a PLC using a robot controller to try to test more
of the system but this code cannot be used in the PLC later and is only to try to get a bit farther in the robot
programming. When the model developers and the mechanical designers are finished the virtual model should be
handed to the programmers of robots, PLC etcetera so that they can start to test their code against the virtual
model. Today typically the PLC programmers are not involved in the project before the physical factory or cell is
constructed, which is the time when they start to program. After the coding is done a VFAT should be performed
and be satisfactory. Before the VFAT no equipment of the factory should be ordered. He also points out that
even though you can cut down on the commissioning time by including a VFAT there is always going to be some
adjustments needed in the physical factory due to the complexity of reality.

6.4 Compilation of interview answers

Virtual commissioning is not yet widely used or asked for by customers. The market is not ready to pay for the
risks. It could be possible to make profit out of a VC but it needs to be a large scale project with a lot of plants
with similar layout. VC projects are often carried out as thesis projects today. The most recent changes in the
area are that more realistic simulations are possible and a change from using HiL to using SiL can be seen.

What needs to be developed further?

• Software
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– More stable software.

– Broader range of PLC and device specific emulators from manufacturers.

– Software needs to be more optimized for simulation of more complex systems (the requirements on the
computers are very high today).

• Modelling

– Standardization of dynamic components

– Larger library of components

– Drag-and-drop modeling

– Amount of signals is high, no standard way of importing/exporting, some sort of auto-generation needed.

– Requires a lot of "expert knowledge" about everything.

– Faulty models.

• Market

– Market not ready. Needs convincing, time and a push from large companies.

– Change of project process needed.

Most important to test:

• PLC logic.

• Signal exchange.

Process:

• There is no standard process of how to perform a VC project and every company has their own approach.

• VC-model people is in the middle (need knowledge about everything).

• Engineers/programmers should be involved from start.

• Process needs to be iterative and parallel.

• VFAT needs to be introduced.
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7 Discussion

This section presents discussions about how this project has been conducted and the outcome of trying to answer
the research questions presented in Section 1.3.

7.1 Discussion about how to build a VC model efficiently

It has been shown throughout the project that the time it takes to build a VC model is one of the most prominent
problems in a VC project. There is yet no standardized method for how to build the model, and a lot of the
softwares available today lack functionality and user-friendliness. The study has shown that to be able to efficiently
build the model the dynamic components has to be available in advance for easy drag-and-drop modelling. If this
is not possible, as is usually the case today, it has been shown very important to work close to the mechanical
engineers, electrical engineers and robot- and PLC-programmers.

One reason that it might take a lot of time to build the model is due to changes of the design throughout the
project, or that the planning phase was not performed carefully enough, yielding component lists, IO-lists etcetera
that are faulty. Faulty IO-lists or components lists, could lead to the same work having to be done twice with, the
only difference being change of components or signals. This takes up unnecessary time since these kind of errors
could be avoided by making sure that the planning phase and design phase are carefully conducted. Another way
to look at it is that changes in the design is a natural part of an automation project and thus the modelling part
should be flexible enough for these kind of changes and that the software should be designed for easy replace of
signals or components.

When discussing about virtual commissioning the opinion on what should be excluded and simplified in the model
can differ. Some people want the model to be an accurate copy of the real factory including everything for example
wires, tubes, lamps, etc., whereas others think simplifications and exclusions should be made to both save time and
to make the simulation computationally less greedy.

7.2 Discussion about verification of VC model and VFAT

The verification part of the project could be divided into two parts; verification of VC model and verification of
PLC-program. The verification of the model is crucial to do before starting to verify the PLC-program.

One thing that has been shown during this project is that it is hard and time consuming to test larger parts of
the model without having access to PLC-code. Without PLC-code it is not possible to have a complete sequence
of events, but instead one has to manually trigger different inputs or outputs to simulate actions. This has lead
to some simple PLC-programs being written by the authors of this thesis, with the sole purpose of verifying the
model, and then being scrapped. Since PLC-programming and development of the model should be conducted
as two separate processes, it seems weird that model developers need to write PLC-code to be able to verify the
model. Furthermore to be able to verify the model by using PLC-programs the complete setup with model and
virtual PLC is needed throughout the project, which may not always be the case. There should thus be better
ways within the modelling software to verify the model.

Only a simplified VFAT has been performed in this project, using the checklist presented in Section 5. It has been
hard to know exactly how to structure a VFAT and what to test in what order. It is important to have a clear
specification on demands of the system which is something that has not been available in this project. Instead the
verification has been based on the authors of this thesis knowledge about the system and the process together with
the group responsible for the PLC-program. Generally there is a customer that has some demands on the system
being delivered, specified in a specification list.

33



Another aspect that should be stated and standardized is who should be responsible for the verification and the
VFAT. Should it be the model developers, PLC-programmers or some other group that are experts in testing
and has general knowledge about both modelling and PLC-programming? We think that the best way now is
that the model developers are responsible for the verification of the PLC-code, but this requires some knowledge
about PLC-programming and the code from the model developers side. This way of working could though lead
to conflicts among the groups. Who should fix the errors that are found? One way is that the PLC-programmers
and model developers work side by side during the verification phase, which was the method used in this project.
When an error was found by the model developers, it was fixed by the PLC-programmers. This made sure that
the programmers was responsible for the code throughout the entire project, not creating conflicts by some other
group adding onto the code. The problem by working side by side like this is that the PLC-programmers may sit
a lot of time just waiting for potential errors to be found, spending unnecessary time. Although this is an issue
it was found that it was too complicated to work the other way around, having the PLC-programmers verifying
the code using the model. The environment and connections between all programs were too complicated if one is
not used to it, and the model is also very hard to work with if one has not worked with it from start. In future
versions of the modelling software it may be possible to have the PLC-programmers use the VC model to test their
program in. Probably the different softwares will be more user friendly and integrated into each other.

7.3 Sustainability and ethical aspects

A sustainable production is an important issue and includes both social, environmental and economical sustainabil-
ity. Simulation of a plant or as in the case of this project, a complete emulation of the plant, can be used as a base
for decision making, helping manufacturers to make ethical decisions. For example simulation or emulation can be
used for optimizing the amount of material or energy use. A VC can also be used to detect errors in construction
before ordering or building the components. It ensures that no component would go to waste.

Regarding social aspects including a VC has a lot of advantages. For example a lot of stress can be reduced since
work can be made in advance at a PC at the office instead of on-site in the final phase of a project, simulation
can be done to improve ergonomics of workers and to have an overall safer system. Safety critical systems can be
tested in a safe virtual environment decreasing the risk of someone being harmed.
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8 Conclusions and future work

This section presents the conclusions drawn from this MSc project and possible future work.

8.1 Conclusions

Considering the effort and time that one has to put into building a VC model today, and the difficulty of connecting
the different VC-softwares, there seem to be quite a long time before VC will be part of the common working process.
Most people agree that there are a lot that could be gained from doing a VC, but this is today mostly in theory.
From both the practical work and the investigation of virtual commissioning in this MSc project, it is concluded
that components that are needed for a full VC are not yet available on the market. This is one of the main problems.
Another issue is that companies are not always willing to hand out all the information about their products.

To be able to build a VC model efficiently there is a need of standardization, that does not exist today. Virtual
dynamic components have to be more easily accessible and have a standard format, for an easy model building
process. There is also a need for a standardized working process. By including a VC and a VFAT the entire process
is changed and it seems to be difficult to know how to include these things in the working process that exists today.
Investigations on how to include these new ways of working should be made. For example, how to perform a VFAT,
is an important aspect to investigate.

8.2 Future work

The model can be improved in many ways. Some of the movements of different parts can be more accurate and
realistic, for example when the sheet is delivered to the customer. The robot programs and handshake between the
robots and the PLC can also be further developed. One example is to include so that the PLC can demand status
signals from the robot to see the state. This is not included today. Signals and actions to perform a controlled
stop and emergency stop is also something that needs to be included in the future. Other than that there are some
geometries that does not exist yet and has to be included in the future.

Furthermore it would be interesting to compare the real system results with the virtual model when the factory is
built and running. By comparing cycle times and movements an evaluation can be done to see how accurate the
model is and what the model lacks. The virtual model could also be used as a base if similar plants are to be built
in the future. Using the existing virtual plant and just applying the changes needed to simulate the new factory
would probably make it possible for a faster virtual commissioning and thus also start of production than building
a virtual model of the new factory from scratch.
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Appendix

A Flowchart IRB1200

Figure 15: Flowchart of IRB1200 process.
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B Flowchart IRB910

Figure 16: Flowchart of IRB910 process.
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C RAPID code IRB1200

MODULE Module1
VAR num pile_number:=1;
VAR num loop_number:=0;

VAR robtarget pFixturePos;
VAR robtarget pSheetLeft:=Magazine_left_above;
VAR robtarget pSheetRight:=Magazine_right_above;
VAR robtarget pSheetLeftAbove:=Magazine_left_above;
VAR robtarget pSheetRightAbove:=Magazine_right_above;

VAR robtarget current_tool_pos;
VAR errnum ERR_BATT:=-1;
VAR intnum timeint;
VAR intnum dovacuum_low;

PROC main()
SetDO doVacuum,0;
SetDO doIRBStrobe,0;
setGO goPLCComBits,0;
CONNECT dovacuum_low WITH Lost_Sheet;
ISignalDO doVacuum, 0 , dovacuum_low;
ISleep dovacuum_low;
init;
WHILE TRUE DO

WaitDi diPLCStrobe,1;
WaitUntil giPLCComBits=0 OR giPLCComBits=1 OR giPLCComBits=2; !0=pick left pile, 1=pick right pile, 2=reset offset, refilling magazine
SetGO goPLCComBits,giPLCComBits;
SetDO doIRBStrobe,1;
WaitDI diPLCStrobe,0;

IF giPLCComBits=0 THEN
Pick_left;
Fixture_proc;
Print_scan;
Input_stamp;

ELSEIF giPLCComBits=1 THEN
Pick_right;
Fixture_proc;
Print_scan;
Input_stamp;

ELSEIF giPLCComBits=2 THEN
Reset; !resets the search position offset

ENDIF
ENDWHILE

ENDPROC

TRAP Lost_Sheet
TPWrite "Sheet dropped unexpected";

EXIT;
ENDTRAP

PROC init()
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setDO doVacuum,0;
SetDO doIRBStrobe,0;
setGO goPLCComBits,0;
current_tool_pos:=CRobT(\Tool:=VacumTool \WObj:=wobj0);
if (current_tool_pos.trans.x < (Robot_Ready_To_Pick_Magazine.trans.x-100) OR current_tool_pos.trans.x > (Robot_Ready_To_Pick_Magazine.trans.x+100) ) OR

(current_tool_pos.trans.y < (Robot_Ready_To_Pick_Magazine.trans.y-100) OR current_tool_pos.trans.y > (Robot_Ready_To_Pick_Magazine.trans.y+100)) OR
(current_tool_pos.trans.z < (Robot_Ready_To_Pick_Magazine.trans.z-100) OR current_tool_pos.trans.z > (Robot_Ready_To_Pick_Magazine.trans.z+100)) THEN

Error_4800;
ENDIF

ENDPROC

PROC Error_4800()
VAR num errorid := 4800;
VAR errstr my_title := "Robot in bad position";
VAR errstr str1 := "Jog robot, To Start position!";
BookErrNo ERR_BATT;
ErrRaise "ERR_BATT", errorid, my_title, ERRSTR_TASK, str1,ERRSTR_CONTEXT,ERRSTR_EMPTY;
ERROR
EXIT;

ENDPROC

PROC Pick_left()
SetDO doIRBStrobe,0;
MoveJ pSheetLeftAbove,v500,fine,VacumTool\WObj:=Wobj_magazine;
SetDO doVacuum,1; !activates vacuum
SearchL\Stop,diVacuum,pSheetLeft,offs(pSheetLeftAbove,0,0,500),v80,VacumTool\WObj:=Wobj_magazine; !diVacuum=1 when linesensor senses something
IWatch dovacuum_low;
MoveL Offs(pSheetLeft,0,0,-40),v40,fine,VacumTool\WObj:=Wobj_magazine; !slow movement first part
pSheetLeftAbove:=offs(pSheetLeft,0,0,-100);
MoveL Magazine_left_above,v1000,z100,VacumTool\WObj:=Wobj_magazine;
MoveL Magazine_left_above_2,v500,fine,VacumTool\WObj:=Wobj_magazine;

ENDPROC

PROC Pick_right()
SetDO doIRBStrobe,0;
MoveJ pSheetRightAbove,v500,fine,VacumTool\WObj:=Wobj_magazine;
SetDO doVacuum,1;!activates vacuum
SearchL\Stop,diVacuum,pSheetRight,offs(pSheetRightAbove,0,0,500),v80, VacumTool\WObj:=Wobj_magazine; !diVacuum=1 when linesensor senses something
IWatch dovacuum_low;
MoveL Offs(pSheetRight,0,0,-40),v40,fine,VacumTool\Wobj:=Wobj_magazine; !slow movement first part
pSheetRightAbove:=offs(pSheetRight,0,0,-100);
MoveL Magazine_right_above,v1000,z100,VacumTool\WObj:=Wobj_magazine;
MoveL Magazine_right_above_2,v500,fine,VacumTool\WObj:=Wobj_magazine;

ENDPROC

PROC Reset()
pSheetLeft:=Magazine_left_above;
pSheetRight:=Magazine_right_above;
pSheetLeftAbove:=Magazine_left_above;
pSheetRightAbove:=Magazine_right_above;
setDO doIRBStrobe,0;

ENDPROC

PROC Print_scan()
IWatch dovacuum_low;
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MoveJ Printer_position_1_before,v500,fine,VacumTool\WObj:=Wobj_Printer;
Handshake(3);
MoveLdo Printer_position_1,v500,fine,VacumTool\WObj:=Wobj_Printer,doIRBStrobe,0; !in position to print QR-code 1
MoveLdo Scanner_position_1,v500,fine,VacumTool\WObj:=Wobj_Printer,doIRBStrobe,0; !in position to scan QR-code 1
Handshake_scanners;
MoveL Printer_position_2_before,v500,fine,VacumTool\WObj:=Wobj_Printer;
Handshake(3);
MoveLdo Printer_position_2,v500,fine,VacumTool\WObj:=Wobj_Printer,doIRBStrobe,0; !in position to print name
MoveL Printer_position_3_before,v500,fine,VacumTool\WObj:=Wobj_Printer;
Handshake(3);
MoveLdo Printer_position_3,v500,fine,VacumTool\WObj:=Wobj_Printer,doIRBStrobe,0; !in position to print QR-code 2
MoveLdo Scanner_position_3,v500,fine,VacumTool\WObj:=Wobj_Printer,doIRBStrobe,0; !in position to scan QR-code 2
Handshake_scanners;
movej For_Reorient_For_Input,v500,fine,VacumTool\WObj:=Wobj0;
MoveJ Reorient_For_Input,v500,fine,VacumTool\WObj:=Wobj0;

ENDPROC

PROC Handshake_scanners()
Handshake(4);
SetDO doIRBStrobe,0;
WaitDI diPLCStrobe,1;
IF giPLCComBits=5 THEN !giPLCComBits=5: QR code okay

Handshake(5);
SetDO doIRBStrobe,0;

ELSEIF giPLCComBits=6 THEN !giPLCComBits=6: QR code not okay
Handshake(6);
Scrap_proc;
SetDO doIRBStrobe,0;

ENDIF
ENDPROC

!handshake procedure between robot and PLC
PROC Handshake(num handshake_num)

WaitDi diPLCStrobe,1;
WaitGI giPLCComBits,handshake_num;
SetGO goPLCComBits,handshake_num;
SetDO doIRBStrobe,1;
WaitDI diPLCStrobe,0;

ENDPROC

PROC Scrap_proc()
movej For_Reorient_For_Input,v500,fine,VacumTool\WObj:=Wobj0;
MoveJ Scrap_pos_above,v500,fine,VacumTool\WObj:=Wobj_input;
MoveJ Scrap_pos,v50,z50,VacumTool\WObj:=Wobj_input;
ISleep dovacuum_low;
SetDO doVacuum,0;
WaitDI diVacuum,0;
WaitTime 5;
MoveJ Scrap_pos_above,v500,fine,VacumTool\WObj:=Wobj_input;

MoveJ Position_Go_From_Stamp,v1000,z50,VacumTool\WObj:=wobj0;
MoveJ Robot_Ready_To_Pick_Magazine,v1000,z50,VacumTool\WObj:=wobj0;

main;
ENDPROC

PROC Input_stamp()
MoveJ Above_input,v500,fine,VacumTool\WObj:=Wobj_input;
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MoveL Input,v500,fine,VacumTool\WObj:=Wobj_input;
ISleep dovacuum_low;
SetDO doVacuum,0;
WaitDI diVacuum,0;

MoveL Above_input,v500,fine,VacumTool\WObj:=Wobj_input;
Handshake(7); !robot moved from input
setDo doIRBStrobe,0;

MoveJ Position_Go_From_Stamp,v500,fine,VacumTool\WObj:=wobj0;
MoveJ Robot_Ready_To_Pick_Magazine,v500,fine,VacumTool\WObj:=wobj0;

ENDPROC

PROC Fixture_proc()
MoveJ offs(Above_fixture,30,30,-30),v500,z100,VacumTool\WObj:=Wobj_fixture;
MoveL offs(Fixture_pos,30,30,-30),v500,fine,VacumTool\WObj:=Wobj_fixture;
ISleep dovacuum_low;
SetDO doVacuum,0;
WaitDi diVacuum,0;
MoveL Above_fixture,v40,z10,VacumTool\WObj:=Wobj_fixture;
SetDO doVacuum,1;
SearchL\Stop,diVacuum,pFixturePos,offs(Fixture_pos,0,0,10),v80, VacumTool\WObj:=Wobj_fixture;
IWatch dovacuum_low;
MoveL Above_fixture,v40,fine,VacumTool\WObj:=Wobj_fixture;
MoveL Above_fixture_2,v400,fine,VacumTool\WObj:=Wobj_fixture;

ENDPROC

ENDMODULE
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D RAPID code IRB910

MODULE Module1
VAR robtarget start_pos_above;
VAR robtarget start_pos;
VAR num row_offset;

CONST robtarget Lens_row1_start:=[[227.157,371.099,-74.5],[0.5,0.5,0.5,0.5],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
CONST robtarget Lens_row1_start_above:=[[227.157,371.099,-134.5],[0.5,0.5,0.5,0.5],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
CONST robtarget Lens_row2_start:=[[147.157,361.099,-74.5],[0.5,0.5,0.5,0.5],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
CONST robtarget Lens_row3_start:=[[67.157,371.099,-74.5],[0.5,0.5,0.5,0.5],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
CONST robtarget Home:=[[650,0,50.2],[0.707106781,-0.707106781,0,0],[0,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
CONST robtarget LensFixturePos:=[[334,423.5,-74.819],[0.5,-0.5,-0.5,0.5],[0,-1,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

CONST robtarget Lens_row3_start_above:=[[67.157,371.099,-134.5],[0.5,0.5,0.5,0.5],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
CONST robtarget Lens_row2_start_above:=[[147.157,361.099,-134.5],[0.5,0.5,0.5,0.5],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
CONST robtarget LensFixturePosAbove:=[[334,423.5,-24.819],[0.5,-0.5,-0.5,0.5],[0,-1,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

PROC init_SCARA()
setDO doOpenGripper,0;

setDO doCloseGripper,0;
setdo doSCARAStrobe,0;
SetGO goSCARAComBits,0;

ENDPROC

PROC Main()
init_SCARA;

WHILE TRUE DO
MoveL Home,v1000,z100,SCHUNK_EPS_2\WObj:=wobj0;
PickAndPlace;
ENDWHILE

ENDPROC

PROC PickAndPlace()
waitDI diPLCStrobe2,1; !wait for order from PLC to start pick lens from some position index
IF giPLCComBits2 <=17 THEN

start_pos_above:= Lens_row1_start_above;
start_pos:= Lens_row1_start;
row_offset:=1;

ELSEIF giPLCComBits2 > 17 AND giPLCComBits2<=33 THEN
start_pos_above:= Lens_row2_start_above;

start_pos:= Lens_row2_start;
row_offset:=17+1;

ELSEIF giPLCComBits2>33 AND giPLCComBits2 < 51 THEN
start_pos_above:= Lens_row3_start_above;

start_pos:= Lens_row3_start;
row_offset:=17+16+1;
ELSE

!knas
ENDIF

setGO goSCARAComBits, giPLCComBits2; !tell PLC that index is received
setDO doScaraStrobe,1; !tell PLC to start reading bits
WaitDI diPLCStrobe2,0; !start pick from index

MoveJ Offs(start_pos_above,0,-20*(giPLCComBits2-row_offset),0),v1000,fine,SCHUNK_EPS_2\WObj:=Wobj_lensbox; !20 mm offset
MoveL Offs(start_pos,0,-20*(giPLCComBits2-row_offset),0),v1000,fine,SCHUNK_EPS_2\WObj:=Wobj_lensbox; !20 mm offset

SetDO doCloseGripper,1;
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WaitDI diGripperClosed,1;
setDO doCloseGripper,0;

MoveJ Offs(start_pos_above,0,-20*(giPLCComBits2-row_offset),0),v1000,fine,SCHUNK_EPS_2\WObj:=Wobj_lensbox; !20 mm offset
setDO doScaraStrobe,0; !handshake finished -> PLC start moving plates one lap
Handshake(51); !check if it is safe to move lens to fixture(actuator has to be down, and no carrier in the way)
MoveJ LensFixturePosAbove,v1000,fine,SCHUNK_EPS_2\WObj:=wobj0;

MoveL LensFixturePos,v1000,fine,SCHUNK_EPS_2\WObj:=wobj0;
SetDO doOpenGripper,1;
WaitDI diGripperOpen,1;
setdo doOpenGripper,0;
MoveL LensFixturePosAbove,v1000,fine,SCHUNK_EPS_2\WObj:=wobj0;

MoveJ Home,v1000,fine,SCHUNK_EPS_2\WObj:=wobj0;
setDO doScaraStrobe,0; !handshake finished, safe to move fixture actuator

ENDPROC

PROC Handshake(num handshake_num)
WaitDi diPLCStrobe2,1;
WaitGI giPLCComBits2,handshake_num;
SetGO goSCARAComBits,handshake_num;
SetDO doSCARAStrobe,1;
WaitDI diPLCStrobe2,0;

ENDPROC

ENDMODULE
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