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Causal relationships between food intake and stomach issues
An algorithmic detection using machine learning
Oskar Karnblad, Nils Nordeman
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Irritable Bowel Syndrome (IBS) is the most common functional disease related to
the bowel and is classified as one of the most common diseases in the world with
11.2% of the global population suffering. An accurate tool as an aid will therefore
have a major societal impact. In this thesis, algorithms for identifying causal rela-
tionships between food intake and stomach issues from synthetically generated data
and patient’s self-recorded journals were investigated as the primary aim. The the-
sis was confined to an investigation of algorithms appropriate for small datasets.
Algorithms considered appropriate were members from the following families of
algorithms: regression analysis, ensemble learning, support vector machines and
Bayesian statistics. The results were obtained by running each algorithm on the
same datasets and performing averaging. The study found that the beta-binomial
hierarchical model acquired the highest average performance for all metrics consid-
ered when selecting symptom intolerances from synthetic data. However, due to the
unknown symptom generating behavior of users, the limitations of the model may
affect the performance significantly. We believe that utilizing the hierarchical model
in combination with another algorithm may be useful for analysis of the available
datasets.

Keywords: IBS, machine learning, beta-binomial hierarchical model, intolerance
detection
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1
Introduction

In Sweden, over one million people are suffering from chronic stomach issues di-
agnosed as Irritable Bowel Syndrome (IBS) with symptoms such as diarrhea, gas,
pain and bloating. Individuals suffering from IBS often keep a paper-based journal
of food intake and symptoms, and then manually look through the data to find
patterns. A majority of the individuals say they want more help investigating what
foods to avoid in order to ease the symptoms. Since the disease is classified as one of
the most common ones in the world with 11.2% of the global population suffering,
an accurate tool as an aid will have a major societal impact [10].

The possible benefits of an accurate tool for people with IBS are primary to increase
suffering person’s Quality-of-Life (QoL) but also to reduce direct and indirect health
costs related to IBS for the society. In the year 2000, [37] conducted an SF-36 health
survey, which estimates a person’s QoL based on 36 measures and concluded that
IBS patients had similar QoL as patients with end-stage renal disease and diabetes
mellitus. Moreover, the QoL of IBS patients was lower than for people suffering
from gastroesophageal reflux disease.

From a health economic point of view, IBS leads to a substantial amount of indirect
and direct costs. [33] has shown that the yearly cost directly connected to IBS in
the United States is approximately 1.3 billion US dollar. However, this figure does
not include the indirect costs of e.g. productivity losses at the workplace and off-
work days. Moreover, [14] has estimated the average off-work or school days for IBS
patients to be 13.4 days/year which is three times higher than for a non-sufferer.

The health system can not only increase the cost-benefit with a well-performing
aid for IBS patients but also reduce the pressure on dieticians and gastrointestinal
experts. With the many sufferers in Sweden and approximately only 800 specialized
dietitians on the subject, this limits the possibilities of receiving help and support
for sufferers [37].

1.1 What is IBS?
IBS is the most common functional disease related to the bowel. The cause is
still unknown but factors such as diet, stress, depression, gut dysbiosis and prior
infections have been acknowledged as confounding elements [8]. Women are twice
as often diagnosed with IBS compared to men and 80% of the individuals with IBS
suffer due to dietary and nutritional factors [28][5]. Persons with the disease often
experience pain due to visceral hypersensitivity, a condition where the sensory nerve
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1. Introduction

endings in the bowel have an unnaturally strong response to stretching of the bowel.

IBS can be divided into 4 subtypes, namely IBS-C, IBS-D, IBS-M and unsubtyped
IBS (IBS-U). The subtypes are based on the form and consistency of the stool.
IBS-C stands for IBS with constipation and indicators are often bloating, delayed
or sporadic movement of the bowel and hard stool. IBS-D is IBS with diarrhea
and comes with abnormally frequent bowel movement together with watery stool.
Finally, mixed IBS is a type which alternates between IBS-C, IBS-D and IBS-U and
does consequently not fulfill the specifics for neither IBS-C, IBS-D or IBS-M [5].

1.2 Related Work
IBS has been a subject of medical research for the past three decades and is partly
understood. Substantial research of the effects of food intake and nutrition has been
performed. Examples are [5], [8] and [36]. Other explored topics have been on sus-
ceptibility for IBS and genetically contributing factors as in e.g. [15]. The societal
and health economic impact of IBS has also been charted out as mentioned earlier
by, for example, [35], [14] and [33].

A study on the topic of food intake that has been conducted by performing dietary
modifications. The study showed that avoiding certain short-chains of carbohydrates
(FODMAP), which are absorbed poorly by the small intestine, eased the symptoms
for approximately half of the persons undergoing the trial [5]. However, the outcome
from certain food intakes was shown to be highly individual. FODMAPs are further
introduced in section 2.1.

To our knowledge, no similar research has been carried out using a dataset as large
as the one available for this thesis. In addition, the focus of the previous studies
of IBS has been from a medical and anatomical point of view whilst this report
investigates the disease using machine learning and statistical analytics.

The field of incorporating machine learning techniques in the field of medicine and
especially medical diagnosis is however not unexplored. Common classifiers intro-
duced in this thesis e.g. naive Bayes classifier, support vector machines and decision
trees have been fed with patient records and medical images for labeling purposes
in the healthcare sector since the 1990s [25].

1.3 Aim
The aim of this master thesis is to identify available techniques to algorithmically
identify causal relationships between food intake and stomach issues from patient’s
self-recorded journals, utilizing machine learning and statistical analytics. Other
actions considering data usage which can result in increased accuracy for the end-
user might also be taken. Finally, the aim is to identify which of the investigated
algorithms that is the most optimal for the datasets available.

2



1. Introduction

1.4 Research Questions
In order to reach the aim of this thesis work the following research questions will be
considered. The questions are listed in prioritized order, that is, the most emphasis
will be placed on answering question 1.

1. What algorithms are applicable to the problem of finding causal relationships
between food intake and stomach issues for the data available? This question
is divided into sub-questions for:

• Classifiers
• Regressors
• Statistical Inference

2. What would be the most suitable algorithm to use for extracting intolerance
ingredients for individual users?

3. Can the data be modified in a more beneficial way?

1.5 Scope
Due to the relatively few data points available for analysis, deep machine learn-
ing methods, for instance, artificial neural networks or similar algorithms which
require large sets of data was not considered. Furthermore, the emphasis of this
thesis work did not lie in developing algorithms but rather apply already existing
algorithms from Python machine learning packages. Moreover, this thesis work did
not put any effort in collecting more data but instead use the available data in a
more advantageous way. Parameters used to generate synthetic data was, if possi-
ble, approximated to its furthest extent in order to emulate individual’s behavior.
However, if impossible, these were subject to guesses made by the authors of this
thesis.

1.6 Thesis Outline
The beginning of the next chapter will introduce the connection between FODMAP
and IBS more thoroughly. Thereafter, two approaches for finding relationships are
represented, namely the machine learning and the statistical approach. In addition,
methods for evaluating the performance of the procedures are presented and con-
stitutes together with the three previous topics the theory chapter of this thesis.
Thereafter, the method used for testing and pre-processing data is presented. The
result conducted from the method is presented and also analyzed in the subsequent
chapters.

3
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2
Theory

This chapter presents the theoretical framework which the method and result chap-
ters are based upon. The theory chapter begins with a brief introduction to the col-
lection of short-chain carbohydrates and sugar alcohols called FODMAP and their
connection to the disease IBS. Thereafter, a description of the machine learning and
statistical algorithms for identifying relationships is presented. Finally, designated
methods for performance evaluation for the algorithms are described.

2.1 FODMAP and IBS
Fermentable oligo-, di-, mono-saccharides and polyols (FODMAP) are a set of short-
chain carbohydrates and sugar alcohols. Fructose, fructans, galacto-oligosaccharides,
lactose, sorbitol and mannitol are examples of the most common FODMAPs. Foods
including high level of FODMAPs are typically apples, pears, cauliflowers, leek,
onion, milk and honey [40].

During digestion, carbohydrates are decomposed into monosaccharides by the use of
enzymes which are secreted from e.g. the stomach, salivary glands and from cells in
the small intestine. Glucose is a common monosaccharides which is easily absorbed
by the small intestine. However, depending on the coincident absorption of glucose,
the ability for the small intestine to absorb fructose is limited. In addition to fruc-
tose, the sugar alcohol sorbitol may also be malabsorbed by the small intestine.

The malabsorbed carbohydrates, including but not limited to fructose, act as so-
lutes and draws fluid into the interior of the gastrointestinal walls. The excessive
water stretches the lumen of the gastrointestinal tract which causes pain due to vis-
ceral hyperactivity for individuals with IBS. The fluid may also cause the muscles
around the gastrointestinal tract to spasm which may cause diarrhea. Moreover, the
non-digested carbohydrates are metabolized by the bacterial strain in the intestine
which causes the production of gas. The gas amplifies the symptoms of pain, muscle
spasms and diarrhea [5].

2.2 Machine Learning for Relationship Identifica-
tion

The field of data analysis and machine learning is an important part of modern sci-
ence. The aim is to discover data patterns which might be invisible for the human
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2. Theory

eye. The increase in generated data and widespread availability of processing power
enables machine learning to be implemented within numerous fields. The objective
of predictive machine learning is to, based on training data, predict the output from
new introduced data points.

A machine learning problem with the aim to make decisions or predictions based on
data can be divided into two essential categories, regressors and classifiers. Regres-
sors are commonly used for quantitative problems while the classifiers are used in
qualitative problems. However, the regression techniques can often be converted to
a classifier by feeding the continuous output to an activation function and perform
thresholding in order to obtain discrete values. There exists several groups of acti-
vation functions such as identity, binary step and the logistic function. The logistic
function, shown in 2.1 below, is most commonly used in machine learning and is
also known as “softstep” due to its S-shaped characteristics [42].

f(x) = 1
1 + e−x

(2.1)

2.2.1 Imbalanced Datasets
Most datasets that are non-synthetical and unprocessed are often unbalanced. This
is a well-known problem in the field of machine learning and has been a highly
researched topic for the last 20 years. Imbalanced data occasionally yields biased
results and returns misleading predictive power for the machine learning algorithms.
An example of this issue is within detection of fraudulent transactions where, for
example, 1 out of 100 transactions are fraudulent and the rest are legitimate. A clas-
sifier always predicting non-fraudulent will yield an accuracy of 99% which becomes
misleadingly good prediction power [41]. Suitable additional classifier performance
metrics for imbalanced data are presented in Section 2.4.1. An imbalance ratio 1:4
between rarest and most common class is considered to be an imbalanced dataset
[22].

2.2.2 Regression Analysis
Linear regression techniques are probably the most fundamental family of machine
learning algorithms. The essential idea is most easily introduced by linear regression.
Linear regression is the process of estimating values for coefficients for a model based
on observed data points. The model is estimated through fitting the coefficients,
β, for the model by using a minimization method, often Residual Sum of Squares
(RSS). A visualization of linear regression can be seen in Figure 2.1 below. Assume
an input-matrix X = (X1, ..., XN) and a corresponding prediction of the output Yj
where i = 1, 2..., N . Then the regression model takes the following form:

f(X) = β0 +
N∑
j=1

Xjβj (2.2)

In the situation presented in Figure 2.1, N in the above equation is set to 1 and the
formula for describing a line in R2 space is obtained.

6



2. Theory

Least Absolute Shrinkage and Selection Operator (LASSO) is a machine learning
method performing penalized, linear regression through regularization. The reg-
ularization performed by LASSO aims to minimize ∑i |βi| and is also known as
L1-regularization. Regularization minimizes the complexity of the underlying linear
regression model and therefore reduces the risk of overfitting [39][23, pp. 43-51].

The estimate from LASSO, α̂ and β̂ where β̂ = (β̂1, .., β̂N), is calculated as shown in
2.3 below. The observed input data is xi = (xi1, ..., xiM)T and the observed output
data is yi where i = 1, 2..., N .

(α̂, β̂) = arg min
 N∑
i=1

(yi − α−
∑
j

βjxij)2

 subject to
∑
j

|βj| ≤ t (2.3)

t > 0 is the shrinkage parameter regulating the amount of shrinking applied to the
model [39].

Figure 2.1: The principle of linear regression visualized

The L1-regularization is however not the only regularization term used in the field
of regression. L2-regularization, compared to L1-regularization, aims to minimize∑
i |βi|2. The different constraints are presented graphically in Figure 2.2. ||ω1|| and
||ω2|| are the weights for L1- and L2-regularization respectively. If one considers the
two-dimensional case, the constraint for LASSO takes the form |β1|+ |β2| < t and is
represented by the diamond-shape in the Figure 2.2 a. The shape of the constraint
is the cause of the feature selection performed by the LASSO algorithm. The level
curve of the objective function is more likely to hit a corner of the constraint region,
resulting in that certain components in the β-vector is set to zero.

Ridge regression is an algorithm that applies L2-regularization. The two-dimensional
constraint of the ridge regression is presented in Figure 2.2 b. The constraint takes

7
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the form
√
β2

1 + β2
2 < t and therefore has the shape of a circle. In contrast to

the LASSO algorithm, the ridge regression constraint does not have sharp edges.
Therefore, a lower likelihood that the level curves of the objective function hit a
corner is obtained, resulting in a higher number of nonzero elements in the β vector
compared to the LASSO algorithm [34]. If both L1- and L2-regularization is utilized,
the regression is called elastic net regularization.

Figure 2.2: Constraint areas for the different regularization constraints

The counterparts of linear regression and LASSO in the classification case are called
logistic regression and logistic LASSO. The elementary idea of these classifiers is the
same as presented in the begin of this section. The continuous output values from
linear regression and LASSO are fed through an activation function thus discretizing
the output data. The activation function is in these cases is the logistic function.
Logistic regression is widely used in many application areas [24].

2.2.3 Ensemble Learning
The general approach of ensemble techniques is to create numerous sets of replicates
of the original data. The replicates are retrieved by sampling from the original data
set with replacement. The replicates are used for training models to each set. After
the training phase, each model prediction is aggregated to make a majority predic-
tion. This general procedure is also known as bootstrap aggregating (bagging) and
has been the subject of extensive research, and implemented in various fields such
as medical diagnostics the last decades of the 20th century [23, pp. 282-288].

A fundamental part of ensemble learning is decision trees. Decision trees can be di-
vided into classification trees and regression trees (CART) depending on the format
of the input to the trees. A decision tree takes a numeric value X as input to the
trees so called root node. From the root node, the data is split into subnodes. The
splitting continues until reaching the end of the tree, also referred to as the leaves.
How the split is carried out is depending on which type of decision tree algorithm
that is being used. However, how much information that is necessary to describe
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the data and how much variance each split introduces are two common aspects con-
sidered [16].

One of the most widely used decision tree techniques is random forest. The essen-
tial idea of random forest for classification purposes is very similar to the approach
of bagging. A committee of de-correlated decision trees cast individual votes for a
prediction class. The votes for each tree are generated by splitting each node and
follow the split that maximizes the information retrieval until reaching the leaves
of the tree. This split is often called the optimal split. Decision trees are known to
introduce a great amount of variance in their output votes. To reduce the variance
introduced by decision trees, the result from the votes is averaged and used as the
final output [23, pp. 587-604].

Figure 2.3: The simplified idea of random forest

Random forest, just as the bagging technique where it originates from, has a low-
bias since each individual tree has equivalent expected value as an average of a set B
trees. This is, in addition to the reduced variance and the simplicity of the method,
the main reasons why random forest is a popular classification alternative. Moreover,
tree algorithms perform well on imbalanced datasets since both classes in data often
are addressed in the creation of trees and make random forest a strong classification
candidate when imbalance between classes is present. Since the variable selection in
each tree is random, random forest does not introduce overfitting [23, pp. 587-604].

Boosting is yet another branch derived from the principle of bagging. [23, pp.
337-387] states that this learning method is one of the most powerful created in
the past two decades. Boosting, in contrast to random forest, uses a collection of
weak learners that each can cast a weighted vote in contrast to the equal-influence
votes featured in random forest algorithm. The weighting of the votes is obtained
by running the training of the algorithm multiple times and redistributing weights
between learners depending on the training error retrieved from each run. The most
well-known boosting technique is ADABOOST [23, pp. 337-387].

2.2.4 Support Vector Machines
Support Vector Machines (SVM) is a supervised machine learning method with a
broad span of applications, ranging from face recognition to classification of biologi-
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cal data [44][9]. SVM is efficient on high dimensional data and is therefore commonly
used in high feature problems such as language processing and classification of gene
expression data [44]. There exists a variety of different types of SVM. However, the
description in this section is limited to the most basic SVM which utilizes a linear
hard margin.

(a) (b)

Figure 2.4: Possible linear boundaries for separating classes using SVM

Figure 2.4 presents a binary classification problem in which the SVM can be applied
in order find a linear boundary which separates the classes. As can be seen in
the left visualization in Figure 2.4, several possible boundaries separate the classes.
However, the SVM aims to fit a hyperplane, which maximizes the separation between
the classes. The hyperplane can be expressed as w · xi + b = 0 where xi is the set
of input vectors located within the hyperplane, each having a label which takes
the binary values -1 or +1 depending on class. The weights, w, are the normal to
the hyperplane and determine the orientation while b is the offset to the origin in
input space [23, pp. 418-420]. The hyperplane which maximizes the separation is
presented in the right visualization in Figure 2.4 and can be expressed by solving
the following optimization problem:

min
1
2 ||w||

2 subjected to constrains yi(w · xi + b) ≥ 1,∀i (2.4)

The constraint ensures correct classification while the minimization maximizes the
margin, i.e the separation of the classes. However, in many situations, complete
separation of classes is not possible and therefore the equation need to be modified
in order to allow some misclassification. This is achieved by introducing a variable
to the constraint called the slack variable which measures the relative distance over-
lap, with respect to the margin. After introducing the slack variable, optimization
problem above can be expressed as:

min
1
2 ||w||

2 + C
∑

ζi under the constrains

yi(w · xi + b) ≥ 1− ζi
ζi ≥ 0

(2.5)

Which is the usual way the SVM is defined for non-separable classes [23, pp. 418-
420]. The constant C is a tunable parameter which regulates the trade-off between
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the training classification error and margins maximization [27]. The previous de-
scription of the SVM performs well on balanced datasets. However, as described in
section 2.2.1, one rarely has this type of data. Therefore, in order to improve the
performance on imbalanced datasets, equation 2.5 can be modified in the following
manner to penalize misclassification of classes differently as described by equation
2.6:

min
1
2 ||w||

2 + C+
∑

i:yi=+1
ζi + C−

∑
i:yi=−1

ζi with

yi(w · xi + b) ≥ 1− ζi
ζi ≥ 0

(2.6)

C+ and C- are the weights which regulate the misclassification penalty for the
different classes. If the weights C is chosen as C-= C+ one ends up with the
ordinary SVM expressed by equation 2.5. In order to penalize misclassification of
minority classes more heavily, the values of C- and C+ can be set to be inversely
proportional to the class frequency thus allowing better performance on imbalanced
data [27].

When using the SVM in practice, a kernel function, also referred to as the similarity
function, is often applied. The aim of a kernel function is to transform the data x
into a higher dimensional space in order to gain linear separation between classes.
According to [13], a kernel suited for high feature problem with few data points is
the linear-kernel. A linear-kernel utilizes the the expression in equation 2.5 and is
therefore equivalent to not applying any kernel at all. Other kernels are also used
in combination with SVM but will not be presented in this report.

2.3 Bayesian Statistics for Relationship Identifi-
cation

Bayesian inference allows incorporation of prior information for parameters which
may, in some situations, be advantageous, especially when limited amount of data
is available. In the initial phase of Bayesian inference, one develops a model for
the joint probability p(θ, y), where θ is unobservable vector quantities or population
parameters of interest and y is the observed data, in order to express the conditional
probability p(θ|y) in an appropriate manner [20]. This is achieved by applying Bayes’
rule, which states that the posterior probability distribution p(θ|y) of a parameter θ,
given the data, is equal to the likelihood p(y|θ) multiplied with the prior belief p(θ)
of the parameter divided by the probability of the data [4]. Bayes’ rule is presented
in equation 2.7 below.

p(θ|y) = p(θ, y)
p(y) = p(θ)p(y|θ)∫

p(θ)p(y|θ)dθ = p(θ)p(y|θ)
p(y) (2.7)

For discrete value of θ, p(y) becomes ∑θ p(θ)p(y|θ), where all possible values of θ
are included in the summation. The integral in the denominator is occasionally
intractable. However, since p(y) does not depend on θ it can be seen as a constant,
yielding the unnormalized posterior distribution:

p(θ|y) ∝ p(θ)p(y|θ) (2.8)
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The posterior distribution represents the uncertainty in the unknown parameter
values after data has been observed while the prior distribution represent the uncer-
tainty in the unknown parameter values before the data is observed. The likelihood
is a function of the model parameters, given the observed data [18].

2.3.1 Naive Bayes Classifier
The naive Bayes classifier is the least complicated approach to Bayesian inference.
The naive Bayes classifier applies Bayes’ theorem which for one variable is unprob-
lematic. However, as the number of variables increases, the math becomes more
complicated. Assume that the features held by the input-vector x = x1, x2, . . . , xN
is to be classified to the classes Gj where j is the possible outcomes. The conditional
probability of the problem can then be formulated with Bayes’ theorem as:

p(Gj|x) = p(Gj)p(x|Gj)
p(x) (2.9)

The denominator of the equation becomes constant due to the lack of dependence
to Gj. The numerator of the expression is the same as p(Gj, x1, . . . , xN) which is ob-
tained by the applying the chain-rule to the definition of the conditional probability
repeatedly. The result from this is non-trivial and difficult to evaluate. Therefore,
the naive Bayes approach to the problem is to see every variable as independent to
the other variables and is also the reason it is called “naive”. Assuming independence
and replacing the denominator of 2.9 with a scaling factor, K, the final equation can
be rewritten as:

p(Gj|x) = 1
K
p(Gj)

N∏
i=1

p(xi|Gj) (2.10)

The class, Gj, that yields the highest probability are the class which the variables
are classified as. However, the approach of assuming each feature independent of the
other does not apply well to reality since variables rarely are completely independent
of each other [31].

2.3.2 Beta-Binomial Model
The beta-binomial model utilizes, as the name suggests, the beta and the binomial
distribution in order to infer a posterior distribution on the binomial parameter.
The binomial distribution is often used for describing dichotomous data which has
been generated through a sequence of Bernoulli trials with aim to estimate unknown
population proportions. Due to exchangeability, the data can be expressed in terms
of number of successes y, over n trials. By allowing the parameter θ to describe
the proportion of success in a population, or probability of success in each trial,
the formulation of exchangeability can be converted to one using independent and
identically distributed random variables [18]. The binomial distribution, used as the
likelihood function in the beta-binomial model, can thus be written as described by
the equation below.

p(y|θ) = Bin(y|n, θ) =
(
n
y

)
θy(1− θ)n−y (2.11)
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In order to make Bayesian inferences, a priori distribution has to be specified. If
one chooses a priori distribution with the same shape as the likelihood, a posteriori
with the same form will be obtained. This property, where the posterior has the
same parametric form as the prior distribution is called conjugacy. Conjugacy is
mathematically desirable since the posterior will follow a known parametric form
[18]. It is achieved by choosing the beta distribution as the prior distribution, which
has the following density:

p(θ) ∝ θα−1(1− θ)β−1 θ ∼ Beta(α, β) (2.12)

Where α and β parameterize the beta distribution and is often referred to as hyper-
parameters. The value of α and β model the prior belief regarding the parameter θ.
If no prior knowledge is available, the values of α and β is chosen in a manner such
that a non-informative prior distribution is achieved. Examples of such values could
be α, β = 1 or α, β = 0.5 [18][21]. The posterior distribution of θ, including the
hyperparameters α and β, can be expressed as in equation 2.13 below. By inspecting
the equation, one realizes that the parameter values of α and β, will have a larger
impact in situations when the number of data points, n, are small.

P (θ|y) ∝ θy(1− θ)n−yθα−1(1− θ)β−1 = θy+α−1(1− θ)n−y+β−1 =
Beta(θ|α + y, β + n− y) (2.13)

The probability of success in future draws can be expressed as the posterior mean
value of θ. The mean value will lie between the sample mean and and prior mean
and can be expressed as by 2.14.

E(θ|y) = α + y

α + β + n
(2.14)

2.3.3 Hierarchical Models
A hierarchical model can be viewed as a mathematical description of dependencies
between variables where the credibility values of some variables are dependent on
other variable values. There are several situations which can be modeled using a
hierarchical structure. In the following subsection, the concept of hierarchical mod-
elling is presented with support from an example. Moreover, the example will be
referred to throughout the chapter.

Consider a factory that produces a coin used for coin flipping, where the sequence of
successful flipping outcomes yj follows an independent binomial distribution, param-
eterized as yj ∼ Bin(nj, θj). Each coin distribution is parameterized individually
by θj which represent the bias of the coin and nj which represent the number of
performed flips. Since the coins are produced in a similar manner, one can assume
that the there exists a common factory distribution, describing the general coin bias,
from where the values of θj, are independently sampled from. Since the observed
values yj follows the binomial distribution, the beta distribution will provide conju-
gacy as described in previous section. The hierarchical structure can graphically be
interpreted as presented in Figure 2.5 [18].
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Figure 2.5: An example of a hierarchical model’s parameters structure

Moreover, the hierarchical structure can further be described with the use of Bayes’
rule as by equation 2.7.

p(θj, α, β|yj) ∝ p(α, β)p(θj|α, β)p(yj|θj, α, β) = p(α, β)p(θj|α, β)p(yj|θj) (2.15)

The right-hand side of the equal-sign in the equation above states that the observed
data yj is only dependent on the variable value of θj, which is in turn only dependent
on the variable value of α and β. The observed data is considered as independent
of all parameters except θ while the θ distribution is conditionally independent of
all parameters except α and β.

The dependencies in the hierarchical structure enables more informed estimates of
parameters and is one of the advantages with hierarchical models. The relationships
between the higher level parameters α, β and lower level parameter θ are called
shrinkage. In addition to the advantages described, the shrinkage reduces the impact
of random sampling noise in the lower level parameter space since the θj is shrunk
toward the mode of the prior distribution [26].

2.3.3.1 Empirical Bayes for Estimating Beta Parameters

The empirical Bayes method utilizes point estimates for the parameters which pa-
rameterize the population distribution rather than joint distributions and is there-
fore not strictly Bayesian. In the empirical Bayes method, one considers the data as
random samples from a common distribution. In the beta-binomial model, exempli-
fied in the previous section by the coin factory experiment, one would estimate the
beta parameters α, β by calculating the sample mean and sample variance from the
binomial parameters θ1:n, estimated by flipping the individual coins. By knowing
the sample mean and variance, one can utilize the method of moment in order to
estimate the parameters alpha and beta, as described by the equations below.

α + β = E(θ)(1− E(θ))
var(θ) − 1 (2.16)

α = (α + β)E(θ)α = (α + β)(1− E(θ)) (2.17)
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var(θ) < E(θ)(1− E(θ)) (2.18)

E(θ) is the sample mean of θ and var(θ) is the sample variance [18][30]. Estimating
the beta parameters in this manner is a more rapid procedure compared to fully
Bayesian methods, which is often require computationally heavy procedures like the
Markov Chain Monte-Carlo sampler [18].

To account for differences in the collected data, the variance can be inflated. For the
beta-binomial model, this would correspond to decreasing α + β while keeping the
ratio α

β
constant. To associate this with the introduced example for this section, such

a situation could be if there were two factories producing coins in likewise manner
or if there exists an uncertainty regarding a change in the manufacture process [18].

2.3.3.2 Bayes Factor for Model Comparison

The above model describes a scenario in which the θi distributions is considered to
follow one common distribution. However, in some situations, there can be more
than one model competing to describe the data. Consider once again the coin
factory, but now, the factory produces two types of coins, one that is biased toward
heads and one that is biased toward tails. Given a coin, one has to have the ability
to decide from which of these two distribution the coin originates. The decision can
be made by the use of Bayes factor (BF) [26].

The BF measure is gained by comparing the posterior probability of models. By
applying the Bayes’ rule to a specific model one gets following expression:

p(m|yj) = p(yj|m)p(m)∑
m p(yj|m)p(m) (2.19)

Where p(yj|m) is the probability of the data given the model, marginalized across
all parameter values. By comparing the posterior distribution of two models one
gets following expression:

p(m = 1|yj)
p(m = 2|yj)

= p(yj|m = 1)
p(yj|m = 2)︸ ︷︷ ︸

BF

p(m = 1)
p(m = 2)

/
∑
m p(yj|m)p(m)

/
∑
m

p(yj|m)p(m)︸ ︷︷ ︸
=1

(2.20)

BF describes the ratio of the probability of the data in the different models. Ac-
cording to [43], a BF of 3 indicate substantial evidence for model 1 while a BF of
1/3 indicate substantial evidence for model 2. With the use of these values, one can
make a decision regarding the choice of model [26].

2.3.3.3 Change-Point Modelling

The change-point model connected to the beta-binomial model in this thesis is not
considered as a Bayesian method. However, due to its relation, it is featured in this
section. Change-point models are most commonly used to find abrupt changes in
time series and are applied in, for example, medical condition monitoring, speech
recognition and human activity analysis [3]. The abrupt changes can, for example, be
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in mean value or in variance. The changes can be modeled in various ways, however,
in this section, a description of the change in a binomial probability parameter θ
will be presented [3][12]. The estimation of the change-point, k, will be described
using a maximum likelihood estimate (MLE) method.

Consider a number of variables yi, each following a binomial distribution, yi =
Bin(ni, θi), i∃[1, c], where yi is the number of ones or successes in n trials for variable
i. The null hypothesis H0 can be written as in equation 2.21 and describe a situation
where no variation between the θs exists:

H0 : θ1 = θ2 = ... = θc = θ0 (2.21)

If one wants to examine if there exist 2 distributions, separated at index k, within
the variables y, one can write the hypothesis as:

H1 : θ1 = θ2 = ... = θk = θ−k 6= θk+1 = ... = θc = θ+
k (2.22)

As before, if one assumes independence between the variables y, one can write the
likelihood functions for the hypotheses L0 and L1 as:

Lo(θ0) =
c∏
i=1

(
ni
yi

)
θ0
yi(1− θ0)(ni−yi) (2.23)

L1(θk− , θk+) =
k∏
i=1

(
ni
yi

)
θk−

yi(1− θk−)(ni−yi)
c∏

j=k+1

(
nj
yj

)
θk+

yj (1− θk+)(nj−yj) (2.24)

By taking the logarithm and deriving the likelihood above with respect to θ0, θk−
and θk+, following MLE of the parameter θ is achieved:

θ =

c∑
i=1

yi

c∑
i=1

ni
= M

N
, θk− =

k∑
i=1

yi

k∑
i=1

ni

= Mk

Nk

, θk+ =

c∑
j=k+1

yj

c∑
j=k+1

nj
= M ′

k

N ′k
(2.25)

The logarithmic maximum likelihood ratio between the two hypotheses can be cal-
culated as:

log L0(θ0)
L1(θ1, θ2) = log(L0(θ0))− log(L1(θ1, θ2)) (2.26)

Which can be rewritten as the -2log maximum ratio which is described in the equa-
tion below:

Lk = −2 log L0(θ0)
L1(θk− , θk+) = 2[l(N,M)− l(Nk,Mk)− l(N

′

k,M
′

k)] (2.27)

Where l(N,M) is defined as l(n,m) = m log(m)+(n−m) log(n−m)−n log(n). The
−2L log likelihood ratio has a chi-square asymptotic distribution and therefore the
position of the change point k can be estimated such that L = L−k = maxl≤k≤l−1Lk
[12].
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2.4 Performance Evaluation
There is an abundance of methods for evaluating the performance of machine learn-
ing techniques. Given the data structure and how the evaluation of the predictor is
carried out, certain choices are more relevant than others. In this section, commonly
used metrics for evaluation of both classifiers and regressors are presented.

2.4.1 Classifier Performance
In this chapter, properties and gained information from common classifier evaluation
metrics are presented.

2.4.1.1 Confusion Matrix and Accuracy

A perspicuous and common way of visualizing a classifier’s performance is with a
confusion matrix (also sometimes referred to as contingency matrix). The confusion
matrix is constructed by calculating the number of cases that the classifier has
predicted a correct and incorrectly label respectively for the possible outcomes of the
classifier. If the classifier is binary (meaning that class outcomes from the classifier
are either 0 or 1), the confusion matrix consists of 4 bins, namely True Positives
(TP), False Negatives (FN), True Negatives (TN) and False Negatives (FN) [7]. The
TP and TN are defined as the correctly classified labels by the algorithm for the
positive and negative class respectively and constitutes the diagonal of the confusion
matrix as can be seen in table 2.1. The anti-diagonal of the table is constituted by
the wrongly classified negatives and positives, FN and TN respectively.

Table 2.1: Confusion or contingency matrix

Predicted Class
P N

Actual
Class

P True Positives (TP) False Negatives (FN)
N False Positives (FP) True Negatives (TN)

By use of the confusion matrix, accuracy of an algorithm can be calculated. The
accuracy is the most general performance metric for machine learning applications
and measures the fraction of correctly classified labels as shown in 2.28. However,
accuracy may be a misleading metric to use for e.g. imbalanced datasets in which
high accuracy will be obtained even for algorithms only labelling or predicting data
to the majority class.

Accuracy = TN + TP

TN + FP + FN + TP
(2.28)

2.4.1.2 Precision, Recall and F1-score

It is often insufficient to use accuracy as the only performance metric and therefore,
more informative metrics are often used. Precision and recall are two measures used
for evaluating the classifier’s performance for different classes. Recall measures the
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relation between TP and FN and can interpret as the number of positive classes that
were detected (recalled) as such by an algorithm. Precision measures the relation
between TP and FP and can be interpreted as the percentage of correctly classified
positives by an algorithm. The arithmetic definitions based on the terms introduced
from the confusion matrix are shown below [11].

Precision = TP

TP + FP
(2.29)

Recall = TP

TP + FN
(2.30)

It is desired to achieve a high precision and a high recall for a classifier coincidently.
A metric which considers the trade-off between recall and precision is the F1-score.
The F1-score is the harmonic mean of precision and recall meaning that a classi-
fier yielding high precision and low recall or vice versa is penalized compared to a
classifier that yields an intermediary result for both [7].

F1 = 2 · precision · recall
precision+ recall

(2.31)

2.4.1.3 ROC Analysis and Cohen’s Kappa Coefficient

Receiver Operating Characteristic (ROC) analysis is a useful graphing method when
handling data with unbalanced classes. The ROC curve is constructed by plotting
the true positive rate (recall) against corresponding false positive rate over a se-
quence of cut-off points, with equal scales in the range [0, 1]. The false positive rate
is the percentage of incorrectly classified negatives (often called false alarm rate).
Assuming that the X-axis holds the false positive rate and the Y-axis holds the true
positive rate, an ideal classifier results in an Area Under Curve (AUC) equal to 1. A
diagonal ROC curve indicates an absence of predictive power for a classifier which
is equivalent to randomly guessing a class [17].

In addition to the ROC-curve, the Cohen’s Kappa Coefficient metric can be utilized
in order to evaluate the inter-rater agreement of an algorithm. The coefficient is
calculated by measuring to which extent two independent raters (interrater reliabil-
ity) assign scores to the same variable. The inter-rater reliability can be measured
by several means. However, the Cohen’s Kappa has the advantage that interweaves
the probability of common agreement by chance.

κ = po − pca
1− pca

(2.32)

Where po and pca is the observed probability for common agreement and the prob-
ability for chance agreement respectively. The Kappa coefficient ranges between -1
to +1 where -1 is inverse classification, 0 is random classification and +1 perfect
classification [29].
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2.4.2 Regressor Performance
Since the output for a regressor takes continuous-values, the confusion matrix cannot
be created and consequently, the metrics depending on the matrix are not available
for evaluation. Therefore, specific measures for evaluating regressors needs to be
applied.

2.4.2.1 Mean Squared Error and Median Absolute Error

The Mean Squared Error (MSE) evaluates the quality for a predictor performing
regression. The quality is measured in the average magnitude of the error which is
calculated as:

MSE = 1
N

N∑
i=1

(Ŷi − Yi)2 (2.33)

Where N is the total number of predictions, Ŷi is the predicted value and Yi the
true value. A related metrics is the Median Absolute Error (MedAE) which is more
robust to outliers. MedAE metric evaluates the performance of the regressors as the
median deviation for all predictions between predicted and true value as shown in
equation 2.34 [2].

MedAE = median(|Ŷ1 − Y1|, ..., |ŶN − YN |) (2.34)

2.4.2.2 Coefficient of Determination

The coefficient of determination (R2) is a regression metric that answers the question
“How many % of the total variation in y is described by the variation in x?” and is
a common goodness-of-fit measure. This is evaluated as:

R2 = 1− SSE

SStot
(2.35)

Where SSE = ∑
i(yi − ŷi)2 is the Sum of Squared Errors and SStot = ∑

i(yi − ȳ)2

is the total Sum of Squares which is the variance if normalized. ŷi is the estimated
value by the regression line at sample i and ȳ is the mean of the true values for y.
A R2 score equal to 0 mean equal goodness-of-fit as the simple average while +1 is
a perfect fit. The R2 score can also be negative if the regression line is fitted worse
than the simple average of the data [2].

2.4.3 Cross-Validation
Cross-validation is a commonly used method for estimating prediction error. The
elementary purpose of cross-validation is to evaluate how well the result of an al-
gorithm generalizes to an independent set of data. Moreover, cross-validation is
commonly used for reduction of overfitting, in which the error for the training set
remains low but the validation error successively increases. Cross-validation is per-
formed by dividing one dataset into two subsets of data called training and vali-
dation data. The classifier is trained using the training data and the performance
measurement of the trained classifier is obtained using the validation data [23, pp.
241-249].
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2.4.3.1 K-Fold Cross-Validation

K-fold cross-validation (KFCV) divides the dataset into K roughly equally-sized
subsets (folds) where one of the subsets is used for validation and the rest K − 1
sets are used as training data.

Figure 2.6: Unstructured data points divided into folds.

When the classification has been performed, one of the other K folds is used for
validation while the other K − 1 sets are used for training. This procedure is
repeated (rotated) until all folds have been used for validation. The classification
from the previous folds are stored and after all folds have been evaluated, the result
is averaged.

Figure 2.7: The basic idea of training and validation rotation for KFCV based on
figure 2.6
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After the rotation of which of the subset k is used for validation, and which ones
are being used for training, the averaged prediction error can be obtained from the
stored outcomes of the evaluation for the previous folds. If K = N where N is the
number of data points in the dataset, the cross-validation is called leave one out
cross-validation (LOOCV). However, K is an unfixed parameter but are often set
to 5 or 10 folds [23, pp. 241-249].
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3
Methods

This chapter begins with a description of the data structure and the approach to
the general problem. The subsequent sections will focus on explaining the format
of the anonymized user data and how the data was preprocessed in terms of data
selection, data aggregation and data point combination. Thereafter follows two
sections explaining the modelling of the model person and the hierarchical model.
The final section gives a detailed description on how the comparison of the different
techniques were addressed. This includes which techniques that were used and a
justification why these were chosen.

3.1 Data Structure and General Approach
The data collected from users contain information about intakes of food, beverages,
supplements, medicals, activities performed and symptom responses. Since the log-
ging of data is manually done by the users of the app and are not automatically
logged as in other typical machine learning fields such as automotive, economics and
marketing, the data introduces several challenges. Firstly, a considerable amount of
noise is expected to be present in the data in forms of delayed, missed or inaccurate
data logs.

Since the general data problem is high-dimensional with few data points, a delayed
or missed log has a great impact on the possibility to classify if a food log is the
source to the symptom outcome or not. However, these aspects are not consid-
ered in means of improvement for this thesis since outlier-classification and anomaly
detection is a broad area which would be time-consuming to implement properly.
Emphasis was instead put on modifying inaccurate logs to reduce the number of
dimensions for the problem and increase the number of data points for each dimen-
sion. How this was carried out is further discussed in Section 3.2.2.

In addition to the high-dimensionality and noise in the data, the datasets are imbal-
anced. The imbalance may be due to the fact that users avoid food that they have
noticed to give rise to outcomes. The imbalanced dataset problem could have been
tackled through introducing over- and undersampling. However, in this case, this
could result in loss of information or redistributing the statistical model erroneously
which may be counteracting. Instead, performance metrics taking the imbalance
into account were applied and some machine learning techniques addressing both
classes were included in the comparison.

The research conducted regarding the IBS disease has not yet been able to find
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common trends for all sufferers since the triggering factor varies individually. Con-
sequently, there is no ground-truth data available for testing the performance of a
machine learning technique. This challenge is bypassed by creating a model of a
person’s behaviour including several random variables. The model of a person is
further discussed in Section 3.3. Using the model person approach to the problem
introduces the possibility to evaluate the algorithms on synthetic data.

The general approach toward the problem was that meals consumed by users were
considered to be independent random samples from the collection of consumed meals
at an individual level. Therefore, the aspect of time is not considered and conse-
quently, the ingredient intolerances for the individuals are assumed to be constant.
Moreover, individuals are further considered to either be tolerant or intolerant to-
wards an ingredient. Therefore, if a intolerance ingredient is consumed, the individ-
ual will experience a symptom response. Due to the distinctiveness of intolerances
for individuals suffering from IBS, one model is trained per individual.

3.2 Data Preprocessing
This section aims to present the format of the raw data in more detail prior to any
preprocessing. Thereafter, the steps of selecting, aggregating and combining data
will be described in detail which altogether constitutes the applied preprocessing.

3.2.1 Format and Selection
The food and beverage items are composed hierarchically and were, therefore, flat-
tened in order to construct an input-matrix described in subsection 3.2.3. The user
logs the symptom response from their food, beverage, supplement and medicine in-
take. An outcome describes how a user experiences the intensity of a symptom. A
typical description of an outcome is “Bloating”, “Diarrhea” and “Gases”. Moreover,
supplement, medicine and activity logs are also composed of single-layer logs. Only
symptom responses directly connected to stomach issues were used for benchmark-
ing.

The users of the application have generated different amount of data. Therefore,
in order to select individuals with significant number of logs, a threshold based on
file size was selected. The user of the application has generated different amount
of data. Therefore, in order to select individuals with significant number of logs, a
threshold based on file size was selected. Limiting the selection to few users would
result in a bias towards these user’s specific lifestyle. Therefore, a lower threshold
was chosen in order to put emphasis on a quantitative selection as the foundation
for the benchmarking. Figure 3.1 below visualizes the distribution of the user data
file sizes and which interval of files that was used for benchmarking. The interval
corresponds to roughly the top 10% datasets sorted by size and corresponds to the
shaded area in the figure.
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Figure 3.1: Datasets sorted by file size and the portion used in this thesis

3.2.2 Aggregation and Point Combination
The data generated by the users includes a lot of features with many unique in-
stances of food, beverages, supplements and medications. However, the number of
times each feature has been logged varies. For instance, common beverages such
as “Water”, “Coffee” and “Tea” are logged frequently while more atypical intakes
such as “pickled pears” are more seldomly logged. The most commonly logged food
intakes can be seen in Figure 3.2 below.
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Figure 3.2: 10 most common food ingredients for the users after point combination
with normalized number of occurrences

In order to reduce the number of features, similar features were merged. Moreover,
the data for the merged features was combined, resulting in higher number of data
points per dimension. As an example, user logs with the food item “Butter”, were
often logged with corresponding fat content (often 60% or 80%) of the butter. Such
items were merged, resulting in no separation with respect to the percentage of fat.

The data point combination was done by going through the logged food items man-
ually for the 10 users which have been using the app most frequently. Information
in the food items considered excessive was written in a csv-file. An example of
information considered superfluous was “Extra Virgin”, “Frozen”, “Chopped” och
“Passed”. Moreover, the combination was carried out case-insensitively. After the
manual scan, the file of unnecessary words contained approximately 85 entries. This
could probably be carried out by using machine learning similar to spam-mail recog-
nition. However, the effort of e.g. creating labeled training data and evaluating the
performance was considered as outside the scope of this thesis due to the time bud-
get.

The next step included extracting all the food items and their corresponding unique
identifier from datasets of users iteratively. Each food item was scanned to see if
any of the words in the csv-file were in the entry. If they were present, they were
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removed and the items were given identical identifiers. Moreover, all numerical en-
tries and percent-signs in the food item were removed.

There are however certain drawbacks by using the explained combination method.
The performance of the method might differ between users due to individual user
behavior. However, the method modifies, on an average computed for 10 indi-
viduals, 30.6% of the entries. The data was further rigorously reviewed after the
combination method and a negligible part of the food instances were wrongly pro-
cessed. The method was therefore added as a preprocessing stage when performing
benchmarking tests on the anonymized user data.

3.2.3 Construction of Arrays
The construction of arrays starts with combining meals and symptoms into pairs.
Thereafter, ingredients which have been connected to a symptom are stored with
the corresponding identifier and consumed amount n. Ingredients connected to
symptoms at least once are considered as interesting. Ingredients not connected to
symptoms are considered as non-intolerances and are therefore removed. Moreover,
such procedure further reduces the number of features.

In the next step, an empty matrix is created of size M ×N where M is the number
of meals eaten and N is the number of ingredients consumed by the user. The
consumed meals are iterated through and if an ingredient i has been eaten in the
current meal pair j, the consumed amount is placed in the cell-position (i, j). When
all interesting ingredients have been assigned to their corresponding cell, column-
wise normalization is performed on the matrix.

In parallel, the symptom intensity experienced after each meal is stored in a column
vector. The matrix is further referred to as input-matrix and the column vector as
the output-array. Based on if binary classification or regression is to be performed,
the output-array is binarized or left unchanged. Binarization intends here that all
positions in the output-array that are non-zero are set to one or else, not modified.

3.3 Model Person
In order to evaluate algorithms in aspects of symptom prediction ability and ingre-
dient selection accuracy, synthetic data was generated by a model which mimic the
behavior of a user. The model generates data with respect to aspects such as time,
meal variance, the number of ingredient allergies and symptom response intensity.
Moreover, in order to model the noise in the user data, aspects such as random
symptom appearances, omitted events and delayed symptom logs were also consid-
ered. The aspects are presented in the following order: time, meal, symptom and
noise. For each section, a table is provided to summarize the parameters considered
connected to each field of the modeling.
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3.3.1 Time Modelling
The start date was selected as the actual day and time the simulation was initiated.
The parameter StartOfDay was used to model the variations of the awakened state
of an user. Analogously, the parameter EndOfDay was used to model variations of
the sleeping state. A third parameter, TimeBetweenMeals, was used to control the
time between meals.

Table 3.1: Parameters connected to time modelling

Name Description
StartOfDay Deciding from which time the model person is awake.
EndOfDay Deciding from which time the model person is asleep.
TimeBetweenMeals Parameter for modelling the time between meals.

3.3.2 Meal Modelling
During daytime, the model generates events which are either a logged meal or a
logged symptom. However, during nighttime, no events are generated. Food con-
sumption behavior was assumed to coincide with the behavior of the average popula-
tion. The variance in eaten meal was modeled by MealChoiceVariance. MealChoice-
Variance was expected to mimic the behavior of some meals to be more frequently
logged than others. This yielded that 68% of the meals consumed are the Meal-
ChoiceVariance most commonly occurring meals.

Each meal consists of a number of different ingredients in the range [1,
MaxMealComponents] which is selected by ComponentChoiceVariance. The param-
eter MaxMealComponents was selected to generate similar behavior as a number of
ingredients in each meal as for real users visualized in Figure 3.3.
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Figure 3.3: Normal distribution generated from user data showing the distribution
of number of ingredients in each meal

The amount of each ingredient consumed was modeled in a similar way as the
selection of ingredients. The parameter controlling the eaten amount of an ingredient
was selected through studying the standard deviation of the amount of food eaten
in meals by real users as shown in Figure 3.4 below. First obvious outliers and
erroneous logs were removed (abnormally high amounts of food intakes). Moreover,
the rolling standard deviation was computed over 50 samples and then used to
compute a mean rolling standard deviation. This mean rolling standard deviation
was then used to choose the value for the parameter EatenAmountVariance.
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Figure 3.4: Standard deviation of the amount of food intake logged

Table 3.2: Parameters connected to meal modelling

Name Description

MealChoiceVariance Amount of variance when picking the meal eaten
by the model person.

MaxMealComponents The upper limit of how many components one
meal holds.

ComponentChoiceVariance Amount of variance when picking the component
eaten by the model person.

EatenAmountVariance The variance in the amount of food eaten from
Figure 3.4.

3.3.3 Symptom Modelling
To model the symptom response, the meal consumed was searched through for an
intolerance ingredient. The probability that the specific model person is intolerant to
an ingredient is modeled by randomly assigning the model person to a probability
distribution with either a high or low expected value. If a symptom generating
ingredient was found, a symptom intensity response was drawn proportional to the
linear combination of the amount consumed of the symptom generating ingredient
multiplied with a tolerance factor. The variance, IntoleranceVariance, was gathered
from real user data similarly as for EatenAmountVariance and is shown in Figure
3.5 below. The drawn symptom response was then scaled into the range (0, 1].
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Figure 3.5: Standard deviation of the experienced intensity logged

The number of unique intolerance ingredients of a model person was chosen by the
parameter MaxIntolerants. A component is modeled to consist of several subcompo-
nents. The number of subcomponents a user is intolerant to determined by a range
constituted by MinIntolerantsSub and MaxIntolerantsSub. A component could be
for example “Pasta” while its subcomponents would be for example “Wheat”, “Egg”
and “Water”.

If the timestamp for the occurrence of a symptom is greater than the time of the end
of the day, the timestamp of the symptom is postponed to the beginning of the next
day. If no symptom generating ingredient were found the intensity was neglected.
The maximum delay between food intake and symptom, DelayOfSymptom, was set
to the time sufferers of IBS claims that it takes for the symptom to arises. This
parameter is highly dependent on the type of food consumed, stress levels and other
parameters that are difficult to model [5].

Table 3.3: Parameters connected to intolerance and symptom modelling

Name Description

MaxIntolerants The maximum amount of components
the model person are intolerant to.

IntoleranceVariance Amount of variance when picking the
intensity experienced by the intolerant component.

MinIntolerantsSub The minimum amount of sub-components
in the components that the model person are intolerant to.

MaxIntolerantsSub The maximum amount of sub-components
in the components that the model person are intolerant to.

DelayOfSymptom The delay between food intake and symptom outcome.
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3.3.4 Noise Modelling
In order to mimic the behavior of noise and erroneous logs in the data, five pa-
rameters were modeled shown in table 3.4. The first parameter, MissMealLogRisk
and MissSymptomLogRisk probably constitute the most common source of noise.
However, both parameters are difficult to approximate from real user data. Conse-
quently, the MissMealLogRisk was set to a higher value than MissSymptomLogRisk
since a symptom has a high impact on the well-being and consequently, the users
are assumed to log these occurrences to a higher degree.

The probability that random symptoms are appearing is also included as a noise
parameter. The parameter is called RiskOfRandomSymptom and simulate the oc-
currence of symptoms not connected to food intake. The chosen probability of
generating a random symptom is based on guessing. The timestamp was selected
as a random number contained in the day time interval.

Experienced symptoms might be delayed until the upcoming morning. This is as-
sumed to happen if food is consumed within DelayOfSymptom minutes from the time
for sleep. By examining at what time real users log data and assuming that average
time to go to sleep is 11 PM, one can study the fraction between meals consumed
within DelayOfSymptom and not. Consequently, the parameter OvernightDelayOf-
Symptom can be estimated as this fraction. The distribution of logging times for
meals can be seen below in Figure 3.6.

Figure 3.6: Time distribution for logging food intake among user data
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Table 3.4: Parameters connected to noise modelling

Name Description
MissMealLogRisk The probability that a meal is not logged.
MissSymptomLogRisk The probability that a symptom is not logged.

OvernightDelayOfSymptom Probability that a meal is not logged until
the upcoming morning.

RiskOfRandomSymptom
Probability that a random symptom will
occur each day. Not assumed to be connected
to food intake.

3.4 Hierarchical Model
This section presents the data input structure, followed by a description of the
implemented hierarchical model.

3.4.1 Structure of Input Data
As described in Section 3.2.3, the logged data is structured in an output vector and
an input matrix which was either binarized or scaled in the range [0, 1]. The hier-
archical model utilized the binary version of the matrix and the vector. The data
structure for the model was achieved by separating the row indexes in the output
array by value, where a value of 1 represented a symptom response and a value of
0 represented no response for each individual. The two sets of indexes were used
to extract the rows in the input matrix, connected to symptom response and no
symptom response, respectively. The binary structure in the input matrix enabled
column-wise summation for the separated rows in order to gain the final input re-
sult.

The final data structure for each individual was a 2×N matrix, containing a num-
ber of times the ingredients were connected to a symptom and to no symptom. The
above restructuring of data was performed for all individuals used for the construc-
tion of priors and was subsequently separated by ingredient and added to a data
frame. Therefore, one data frame per ingredient was achieved where each row con-
tained the restructured data result for an individual. Moreover, the data frame was
further sorted in ascending order by the ratio: symptom connection/
(symptom connection + no symptom connection).

As described in the symptom modeling section, the users were considered to have
either high or low tolerance toward an ingredient. The difference in tolerance be-
tween individuals was considered to be represented as abrupt changes of the ratio
in the data-frames. The change-point was estimated using the likelihood-ratio pro-
cedure presented in the theory section. The data on rows with lower index than the
change-point were used for estimating the high-tolerance distribution while the data
on rows with higher index were used for estimating the low-tolerance distribution.
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3.4.2 Estimating Prior Beta Parameters
As described in the previous section, the data frame for each ingredient, containing
the responses from several individuals, were separated into two datasets. For each of
the sets, mean value and variance were calculated and subsequently used to estimate
the parameters of the two beta distributions. The number of individuals used for
estimating priors and symptom ingredient distributions was 300. The estimate of
the prior α and β were gained by using the equations described in Section 2.3.3.4.
If the criterion of variance was not fulfilled, α and β were set to 1 to represent the
ignorance toward the priori knowledge. Moreover, the sum α + β was confined to
an upper limit of 20 to allow for detection of symptom responses which differ from
the general population response. If α + β exceeded 20, the procedure presented in
Section 2.3.3.4, were applied. After generating priors, the parameter values were
stored in csv files.

3.4.3 Usage of Beta Priors for Individual Inferences
The process of making inferences regarding the parameter θ was as follows. For each
individual, the data was structured in a 2 × N matrix, where N is the number of
individual ingredients consumed by individual I, as described in Section 3.2.3. For
each of the N ingredients, the posterior distribution of θ was calculated by the use of
equation 2.13, where α and β were the priors estimated as described in the previous
section. Since the data was assumed to be random samples from two separate beta
distributions, one for high-tolerance and one for low-tolerance, the BF was used to
select the model which described the data most accurately. The BF were calcu-
lated as described in Section 2.3.3.2, where the probability P (m1,2) was set to 0.5.
However, due to a large number of individual ingredients, the criterion for selecting
distribution was simplified such that only the most likely model was selected.

The final result of the inference was N posterior distributions, one for each ingredi-
ent consumed by an individual. However, in order to classify or select ingredients
as harmful, a threshold was constructed. The threshold was compared with the
mean value of the posterior distribution of the θs. If the mean value of the posterior
distribution of θ exceeded the threshold, the ingredient was selected as an intoler-
ance. Different values of the threshold were tested and tuned manually. Examples
of tested values were 0.4, 0.5 and 0.6.

3.5 Performance Comparison
This section describes how the evaluation and comparison of the machine learning
and the statistical analytics algorithms were conducted. First, a pipeline is intro-
duced explaining the steps performed in order to develop a benchmarking suite for
the algorithms. Secondly, the choice of algorithms are presented and motivated.
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3.5.1 Benchmarking Pipeline
The benchmarking was performed by running each algorithm on the same datasets in
order to obtain comparable results since the class imbalance and number of logged
events in the different segments varies. The dataset used is further divided into
validation data and training data by splitting it into K consecutive folds according
to the KFCV principle. Ten folds were used which is the most common choice
according to [23, pp. 241-249].

A list summarizing the full pipeline of the benchmarking is given below:
1. Model Person Evaluation

• Meal Prediction Ability
– Classifiers
– Regressors

• Symptom Ingredients Classification
• Dependence on Intolerance Occurrences

2. User Data Evaluation
• Meal Prediction Ability

– Classifiers
– Regressors

• Effects of Point Combination

3.5.1.1 Model Person

In order to attain an understanding of the algorithms performance in selecting cor-
rect intolerance ingredients, the implemented techniques were evaluated with the use
of synthetic data which was generated by a model person. The number of unique
intolerance ingredients assigned to the model person were 1, 3 and 5. This set was
used in order to evaluate region-specific performance for each of the algorithms. The
minimum number of generated intolerance occurrences was varied to constitute a
10:1 ratio compared to the number of unique intolerance ingredients assigned to the
model person.

For evaluation using the model person, 2000 averaging rounds were performed where
each round contributed with a new dataset, generated from a new model person. The
number of averaging rounds was determined based on the Law of Large Numbers
(LLN) which states that the average result from the experiment tends to be closer
to the expected value as the number of trials increases. 2000 trials were considered
to achieve a sufficiently converged result as visualized in Figure 3.7 below where the
averaged MedAE for LASSO was studied as an arbitrarily chosen constellation.
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Figure 3.7: Average MedAE convergence for LASSO for varying number of aver-
aging trials

The first part of the evaluation with the model person was performed in order to get
a sense of how well the different techniques might perform on answering the ques-
tion “Given that I have eaten these meals and reacted accordingly, will I experience
a symptom when eating this meal?”. This could also, indirectly, be a measure on
how well the pattern in the dataset has been learnt by the algorithms. This part
was implemented by training the algorithms on a training dataset and then evaluate
their ability to predict the outcome of a consumed meal featured in the validation
dataset. Consequently, this part of the benchmarking does not extract individual
ingredients contribution to a symptom but rather the predicted outcome of a full
meal. However, the algorithms meal predictive power might correlate with the ac-
curacy of the ingredient classification.

The model person evaluation was initially considered as a classifier problem and
answers the question: “Will the user experience a symptom if eating this meal?
Yes/No”. The classifier evaluation metrics used were accuracy, precision, recall, F1-
score, Cohen’s Kappa Coefficient, ROC analysis and AUC in order to capture the
effects of class imbalance. The classifiers tendency to perform better than random
by chance and if there were equal classification ability for majority as for minority
classes as described in Section 2.4.1.3.

In the second part of the model-person evaluation, a regressor-approach was taken
and consequently, more information was interweaved in the evaluation. This part of
the benchmarking aimed to answer the question: “How high intensity of a symptom
will the user experience if eating this meal?". Metrics used for this evaluation was
MSE, MedAE and the goodness-of-fit measure R2.
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The meal prediction part of the benchmarking aimed to determine which of the
classifiers and regressors, separately, that yielded the best prediction power given a
certain amount of training data. However, since the ability of selecting correct intol-
erance ingredients is of greater importance compared to accurate meal predictions,
emphasis is put on the algorithms performance on such tasks. This benchmarking is
therefore limited to using the model person since it is for real-user data, unknown,
which component that is actually contributing to the symptom outcome. However,
if the behaviour of the model person mimic real user behavior, the result obtained
can be assumed to be similar.

The aim of the next part was to evaluate the algorithms ability to identify intoler-
ance ingredients. The question can be formulated as “What ingredients are causing
a symptom?”. Through feature importances, the most significant features from each
algorithm can be classified as an intolerance ingredient. The intolerance identifica-
tion allows regressors and classifiers to be benchmarked together and the effects on
the result for the different groups can be examined.

In order to select the feature considered as significant, the features importance ob-
tained after training on the data were extracted. A robust method to select these
features was coveted since the selection has a great impact on the benchmarking
output. A feature is only classified as an intolerance if the feature importance value
exceeds a fixed lower threshold which functions as a safeguard. Moreover, the feature
importance has to be a part of the 75th percentile of the total number of features
for an individual. The generous percentile range was chosen to put emphasis on
classifying intolerance ingredients correctly.

The outcome from the intolerance identification is used to construct a second confu-
sion matrix. For each averaging round, the resulting confusion matrix is normalized
and stacked position-wise. Each position of the stacked confusion matrix is then di-
vided by the number of averaging rounds. The reason for the normalization in each
round is to make allowances for confusion matrices with different number of total
elements. The second normalization is a macro-average approach to the problem.

Macro-averaging is sometimes useful. However, in this case, information regarding
fluctuation from each result is lost. Therefore, in addition to the macro-averaged
confusion matrix, variance is measured to be able to involve fluctuations in the
benchmarking. The macro-averaged confusion matrix was used in order to generate
the metrics accuracy, precision, recall and F1-score. The Cohen’s Kappa Coefficient,
ROC curve and AUC is dropped in this part of the evaluation since the character-
istics of the methods has already been obtained in previous parts of the analysis.

Finally, an algorithm’s ability to classify correct outcomes given as few observed
intolerance occurrences as possible were studied. This was achieved by sweeping
the number of occurrences a symptom ingredient was consumed in the range [5, 30]
with a fixed step size of 1. For each sweep, 2000 averaging rounds were used and
plots for the averaged precision and recall were generated for benchmarking. The
number of unique ingredient intolerances generated were kept at 3.
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3.5.1.2 User Data

The second part of the evaluation was performed on real user data and consequently,
no ground truth data was available. Therefore, the meal prediction ability of the
algorithms was the only part evaluated. This part of the benchmarking could be
argued to be superfluous. However, by cross validating the performance compared
to the the meal prediction ability run on the model person, insights on how accurate
the model person has been modelled can be obtained. In analogy to the model per-
son evaluation, the structure and performance metrics implemented are the same.

The last part of the evaluation aimed to investigate the effect of the point com-
bination and consequently answer the research question, “Could the data be used
in a more beneficial way?”. Arbitrarily chosen metrics and classifiers were used to
evaluate the performance before and after the point combination.

3.5.2 Algorithms Included
This section intends to give the reader a better understanding and overview of the
algorithms used in this thesis. Moreover, an intuition why certain choices were made
is also included. A 3-letter abbreviation for each algorithm is introduced.

3.5.2.1 Regression Analysis

The possible success of a linear regression approach is not unwarranted. Each meal
S registered by a user constitutes a new row in the input-matrix A. The positions
i corresponding to a logged ingredients are updated with the amount eaten of the
ingredient. The output-array B, holds values for the experienced intensity of the
outcome after eating the ingredients on the position i. The problem can therefore
be viewed as the matrix equation Ax = b. Where the linear combinations held by
A are weighted through the weighting-vector x, computed through linear regression
in LASSO. The LASSO is also well-suited since the shrinkage operator extracts, in
this case, the most significant features for each meal and handles the noise in the
data.

• Logistic Regression (LRC): The discretized counterpart to linear regres-
sion was featured as it is one of the most basic classifiers and its strengths and
weaknesses compared to more complex classifiers was interesting to study.

• Logistic LASSO (LLC): Strong theoretical support, the differences and sim-
ilarities between the regressor and classifier is of interest.

• Linear Regression (LRR): The linear regression was featured to examine
if the penalty introduced by regularization methods did result in loss of im-
portant information and if a better performance could be obtained without
regularization.
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• LASSO Regression (LAR): The method with probably the strongest theo-
retical support. However, the regularization term might not practically fit the
problem optimally.

• Elastic Net (ENR): Even though the nature of the problem theoretically is
a linear one, the effect of introducing an additional regularization parameter
was considered interesting to study.

3.5.2.2 Ensemble Learning

The divide-and-conquer algorithms of ensemble learning does not have the same the-
oretical support for small datasets as the more tolerant approach of linear regression
and LASSO. Consequently, there was a risk that the complexity of the model could
not be learned by the ensemble methods. Nevertheless, ensemble algorithms were
included in the benchmarking for this thesis. This due to that both classes in a
dataset is often addressed under the creation of voters and since the dataset used
in this thesis is highly imbalanced, the ensemble approach could still be promising.
Two different approaches of random forests and one boosting method were included.

• Random Forest Classifier (RFC), Random Forest Regression (RFR):
Random Forest was implemented due to the fact that it does not introduce
overfitting but also since all classes are addressed during tree creation and
therefore does not get affected by the imbalance in the data set.

• Extremely Randomized Trees Classifier (ETC), Extremely Random-
ized Trees Regression (ETR): Extremely Randomized Trees or Extra-
Trees is a modification of the RFC and RFR. The split node used in RFC and
RFR is the one expected to yield the best result. In ETC however, this split
node is chosen randomly. This can introduce marginally better result than for
RFC and RFR in some applications.

• ADABOOST Classifier (ABC), ADABOOST Regressor (ABR): The
ADABOOST Classifier and ADABOOST regressor was implemented due its
praised performance by [23, pp. 337-387] which is also mentioned in the theory
chapter of this thesis. Moreover, the difference in results from other ensemble
learning algorithms is interesting to study.

3.5.2.3 Support Vector Machines

• SVM Classifier (SVC), SVM Regression (SVR): The SVM classifier
and regressor was implemented to evaluate if the classes in the data could be
separated properly with a hyperplane.
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3.5.2.4 Bayesian Statistics

The possibility to include prior knowledge to the parameters in order to make in-
ferences could be a possible advantage due to the few data points available at an
individual user level.

• Naive Bayes Classifier (NBC): Often used in the field of automatic medi-
cal diagnosis. The naivety of assuming that each event is independent is often
a poor assumption for real-life scenarios, however in many cases, the method
performs better than more complex solutions [31]. The simplicity and low
computation time of the method was the motivation for including naive Bayes
classifier for the evaluation before investigating more complex Bayesian ap-
proaches.

• Hierarchical Model (HMC): The motivation regarding the use of hierar-
chical models was based on the assumption that there exist similarities in user
responses toward a specific ingredient. Such information can be incorporated
in the hierarchical structure, resulting in more informed parameter estimates
as well as reduced random sampling noise. In addition, individuals with few
data points will to a greater extent be affected by the shrinkage effect. There-
fore, hierarchical models were considered as a possible technique for providing
users with early traces of ingredients contributing to symptom.
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4
Results and Analysis

The previous chapter presented the methods used for reaching the aim and an-
swering the research questions addressed. It consisted of a detailed description of
the data preprocessing method, the model person, the hierarchical model and the
structure of the performance comparison. This chapter will present the results ob-
tained from the steps described in the method chapter. Moreover, an analysis of
the obtained result are included for each of the constellations of model parameters
and algorithms. Question formulations from the previous chapter are occasionally
repeated to clarify the analysis. For each subsection, significant information from
the result is highlighted and discussed in the following paragraphs.

4.1 Result from Model Person
The results presented in this section has been acquired through averaging over 2000
different model persons, a number which was selected based on the the converging
performance metric presented in the methodology. The number of meals generated
was in the range 150-700 with a mean value of 304. The class imbalance, including
the noise, varied in the range 0.16-0.45 with a mean value of 0.3. The first section
presents the performance of the 7 classifiers evaluated on the model person with 1, 3
and 5 as set values for the number of unique ingredient intolerances. The reason for
the different constellations on the number of unique intolerances is to evaluate each
algorithm in different regions of data. The dataset retrieved from using 1 unique
symptom generating ingredient will be referred to as the first data region, 3 the
second and finally 5 as the third.

4.1.1 Meal Predictive Performance
The predictions presented below aims to classify the outcome of an eaten meal and
not an individual ingredient. This approach is examined to obtain an overview of
how well the patterns of data has been learned by the algorithms. It is also relevant
to identify differences and similarities when, subsequently, performing classification
of individual ingredients. This section is deliberately left narrow on discussion since
a more exhaustive discussion is carried out in Section 4.1.4 on common metrics and
algorithms.
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4.1.1.1 Classifiers

This subsection introduces evaluation of the least complicated scenario of classifi-
cations considered. Classifiers are compared on how well, given a training dataset,
each are able to predict the label of the data points in the validation dataset. The
values in a cell correspond to 1, 3 and 5 generated intolerances respectively. The
minimum number of generated intolerance occurrences was varied to constitute a
10:1 ratio compared to the number of unique intolerance ingredients generated. The
classifier with the highest average value for each metric has been marked out. In this
subsection, the result is presented in the first paragraph followed by the analysis.
In the end of the analysis, the general findings are summarized.

Table 4.1: Classifier performance on model person for 1, 3 and 5 generated allergies
averaged over 2000 model persons

Classifier Accuracy Precision Recall F1-
score

AUC Kappa

Logistic
Regression

0.722,
0.690,
0.685

0.459,
0.682,
0.699

0.396,
0.656,
0.698

0.398,
0.659,
0.693

0.725,
0.748,
0.772

0.270,
0.368,
0.365

Logistic
LASSO

0.714,
0.699,
0.702

0.408,
0.692,
0.718

0.388,
0.668,
0.707

0.376,
0.669,
0.707

0.635,
0.742,
0.773

0.250,
0.387,
0.398

Random For-
est Classifier

0.752,
0.704,
0.704

0.636,
0.707,
0.722

0.574,
0.654,
0.706

0.570,
0.668,
0.709

0.779,
0.765,
0.783

0.397,
0.395,
0.404

Extra Trees
Classifier

0.757,
0.709,
0.707

0.654,
0.734,
0.748

0.541,
0.615,
0.665

0.557,
0.657,
0.698

0.780,
0.759,
0.779

0.396,
0.402,
0.411

ADABOOST
Classifier

0.715,
0.679,
0.674

0.552,
0.666,
0.685

0.483,
0.656,
0.697

0.480,
0.651,
0.686

0.670,
0.728,
0.758

0.292,
0.348,
0.343

SVM Classi-
fier

0.718,
0.691,
0.698

0.568,
0.670,
0.731

0.490,
0.693,
0.670

0.487,
0.672,
0.693

0.675,
0.724,
0.748

0.306,
0.374,
0.393

Naive Baye’s
Classifier

0.646,
0.625,
0.631

0.472,
0.592,
0.647

0.631,
0.679,
0.650

0.508,
0.623,
0.642

0.712,
0.716,
0.729

0.684,
0.250,
0.260

By reviewing the table above in a column-wise manner, it can be seen that the
accuracy metric tends to be higher for one intolerance compared to three and five
intolerances, for which the accuracy remains approximately constant. The classi-
fiers which achieved the highest average accuracy was the ETC which also gained the
highest accuracy in each data region. However, the average accuracy performance
between the top-achieving classifiers is approximately the same. The ETC has the
highest precision performance in all data regions and does consequently, gain the
highest average precision. The NBC attains the greatest average recall. However, it
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is outperformed by other classifiers in the second and third data region. The highest
average harmonic mean of precision and recall, F1-score, is acquired by RFC which
has the highest performance in the first and third data region. However, the F1-score
for several classifiers in the second and third region are similar. Furthermore, the
top average score for the AUC metric is gained by RFC which is the top-achiever in
all regions except for the first. Finally, the marginally highest value for the Cohen’s
Kappa Coefficient is obtained by ETC which perform best, in relation to the other
classifiers, in the second and third data region.

The accuracy score might, as presented in the theory chapter, be misleading due to
the accuracy paradox. Moreover, in addition to the effect of the class imbalance,
noise in the data further complicates the interpretation of the accuracy result. In
our case, there are several random variables introduces to model the noise in user
logs. An accuracy of 1.0 might therefore not be optimal since it would correspond to
fitting the noise, which is not desireable. Instead, the metrics precision, recall and
F1-score need to be examined since they are less affected by the class imbalance.

As introduced in the theory chapter, the precision can be thought of as the per-
centage of correctly classified positives by an algorithm. In this part of the bench-
marking, the precision measure can, therefore, be interpreted as the ratio between
the correctly classified intolerance meals and the total number of intolerance meals
selected by the algorithm. Moreover, the recall measure in this part of the bench-
marking is the percentage of the intolerance meals which were classified correctly as
such.

To summarize the results of the meal prediction evaluation, it has been found that
tree algorithms perform well in most of the examined regions. The highest average
accuracy, precision and Cohen’s Kappa was achieved by ETC whilst RFC achieved
the highest average, F1-score and AUC. In addition, ETC and RFC further ac-
quired the highest and second highest average value for Cohen’s Kappa, indicating
that more accurate data patterns have been found. Consequently, these algorithms
will be assumed to perform accurately when classifying ingredient intolerances.
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(a) (b)

(c)

Figure 4.1: Generated ROC curves for all classifiers evaluated for 1, 3 and 5
generated ingredient intolerances

In Figure 4.1, the ROC curves for the classifiers are presented for the first data region
in a), second data region in b) and third data region in c). As can be seen, the ETC
and RFC achieves similar AUC from their corresponding ROC curves for the first
data region. Moreover, the shape of these curves are more desirable compared to
the curves obtained by the other classifiers. No classifier lacks predictive power since
all curves are above the diagonal. By investigating the next data region presented
in Figure 4.1 b, it can be seen that the performance of the classifiers converge to
a similar result. The result obtained for region three, presented in Figure 4.1 c, is
similar to the second region. However, the AUC measure has marginally increased
for all classifiers.

As mentioned in the theory chapter, the FPR on the X-axis can be rewritten as 1−
precision. Consequently, the ROC curve can be interpreted as “How much precision
do we sacrifice to achieve the following recall?” and vice versa. For example, from
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Figure 4.1 A, if a recall of 0.9 is desirable for the ETC, a poor precision of 0.25 is
obtained. On the contrary, if a precision of 0.9 is preferable, a recall of approximately
0.4 is obtained. However, since parts of the meals are labeled positively due to noise,
an ideal ROC-curve with an AUC equal to 1 would indicate overfitting.

4.1.1.2 Regressors

The ability to predict quantitative outcomes given newly introduced data points are
evaluated in this subsection. Each cell holds the values for 1, 3 and 5 number of
intolerance ingredients as in the previous subsection. The highest average R2 score
has been marked out while the lowest average MSE and MedAE score has been
marked out since these indicates higher performance. The results are presented in
table 4.2 below.

Table 4.2: Performance of regressors of 1, 3 and 5 symptom ingredients generated
by model person

Regressor MSE MedAE R2

Linear Regression 0.183,
0.168,
0.169

0.176,
0.255,
0.304

0.804,
0.319,
0.184

LASSO 0.157,
0.159,
0.185

0.111,
0.274,
0.369

0.185,
0.036,
0.016

Elastic Net 0.170,
0.142,
0.158

0.108,
0.293,
0.355

0.173,
0.073,
0.154

Random Forest Regression 0.153,
0.134,
0.152

0.109,
0.217,
0.273

0.251,
0.167,
0.233

Extra Trees Regression 0.110,
0.158,
0.156

0.114,
0.204,
0.272

0.355,
0.114,
0.093

ADABOOST Regression 0.205,
0.155,
0.180

0.120,
0.364,
0.443

0.309,
0.122,
0.132

SVM Regression 0.138,
0.139,
0.174

0.115,
0.197,
0.268

0.403,
0.158,
0.218

By reviewing the table 4.2 in column-wise manner, it can be seen that the ETR
achieves the lowest average MSE and MSE in the first data region. The top-achiever
based on the average MedAE is the SVR, which attains the lowest score for the sec-
ond and third data region. The highest average value for the R2 score is achieved
by LRR which outperforms the other regressors in the first and second data region.

The noise and the class imbalance in the data may affect the regressor’s perfor-
mance metrics in a similar manner as the accuracy for the classifiers. The analysis
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was therefore only based on the relative performance values between the algorithms
since no metric considering the noise or class imbalance was used.

Examining table 4.2, one cannot obtain obvious suggestions of algorithm or family
of algorithms that achieves higher performance than others. The results are, there-
fore, in general, non-informative. However, the LRR attains a remarkable R2 score
in the first data region suggesting that the regression line describes the variance in
y accurately.

Comparing the obtained R2 score for all regressors in the first data region with the
score obtained in the third data region, a reduction in R2 score can be seen. This in-
dicates that the predictions of the regressors are more likely to approach the mean of
the observed data points as the number of uniquely generated intolerances increases.
Therefore, reduced ability to predict variation in y is attained for increasing number
of unique intolerances.

4.1.2 Classification of Symptom Generating Ingredient
This section presents the results obtained from the identification of ingredient intol-
erances. The feature importances were calculated and selected as intolerances if a
value above the lower threshold were obtained while belonging to the 75th percentile
(third quartile). A generous lower threshold was set as a safeguard. The results are
obtained from 2000 averaging rounds with macro-averaged confusion matrices. Due
to the macro-averaging, the cell-wise variance was studied in order to detect abnor-
mally high fluctuations. However, the obtained variance was left out since no large
fluctuations were detected. In addition to the previously introduced algorithms,
the hierarchical model is evaluated in this subsection as well. Based on the re-
sult from previous subsections, the tree algorithms from the classifier approach and
the LRR from the regressor approach were expected to achieve the highest overall
performance.
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Table 4.3: Performance of classification for 1, 3 and 5 symptom ingredients gener-
ated by model person

Algorithm Accuracy Precision Recall F1-
score

Logistic Regression 0.615,
0.572,
0.663

0.727,
0.859,
0.881

0.368,
0.172,
0.377

0.488,
0.287,
0.528

Logistic LASSO 0.662,
0.727,
0.663

0.782,
0.884,
0.852

0.451,
0.523,
0.394

0.572,
0.658,
0.539

Linear Regression 0.774,
0.745,
0.801

0.673,
0.905,
0.881

0.993,
0.547,
0.697

0.799,
0.682,
0.778

LASSO 0.665,
0.697,
0.659

0.252,
0.935,
0.900

0.289,
0.423,
0.358

0.269,
0.582,
0.512

Elastic Net 0.568,
0.631,
0.649

0.668,
0.907,
0.894

0.271,
0.293,
0.339

0.385,
0.443,
0.491

Random Forest Classifier 0.622,
0.664,
0.673

0.766,
0.856,
0.887

0.353,
0.396,
0.396

0.483,
0.541,
0.547

Random Forest Regression 0.774,
0.950,
0.934

0.688,
0.909,
0.883

0.543,
0.816,
1.000

0.615,
0.752,
0.938

Extra Trees Classifier 0.673,
0.645,
0.651

0.808,
0.842,
0.874

0.453,
0.357,
0.354

0.581,
0.501,
0.503

Extra Trees Regression 0.478,
0.611,
0.637

0.402,
0.894,
0.886

0.092,
0.253,
0.313

0.149,
0.394,
0.463

ADABOOST Classifier 0.552,
0.631,
0.624

0.662,
0.830,
0.853

0.213,
0.328,
0.300

0.322,
0.471,
0.444

ADABOOST Regression 0.523,
0.695,
0.659

0.574,
0.935,
0.900

0.182,
0.420,
0.358

0.276,
0.579,
0.512

SVM Classifier 0.487,
0.597,
0.653

0.433,
0.795,
0.875

0.084,
0.262,
0.357

0.140,
0.394,
0.507

SVM Regression 0.529,
0.663,
0.645

0.588,
0.923,
0.892

0.193,
0.355,
0.329

0.290,
0.513,
0.481
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Naive Baye’s Classifier 0.548,
0.632,
0.713

0.603,
0.831,
0.896

0.279,
0.330,
0.482

0.381,
0.473,
0.626

Hierarchical Model (thresh-
old = 0.4)

0.912,
0.795,
0.812

0.883,
0.819,
0.845

0.960,
0.940,
0.954

0.919,
0.871,
0.896

Reviewing table 4.3 in a column-wise manner, one finds that the HMC acquire the
highest average values for all metrics. However, the method is outperformed by
RFR in the second and third data region for the accuracy metric. Moreover, the
HMC achieves a lower precision compared to all other algorithms except for SVC
in the second data region. By inspecting the recall column, it can be seen that the
majority of the algorithms attain lower recall scores compared to the HMC. However,
the LAR and LRR achieves higher recall score in the first data region while the RFR
obtain a higher score in the third. The only algorithm outperforming HMC for the
F1-score considering all data regions are RFR which achieves higher F1-score for
the last data region.

By separately analyzing the results obtained from linear regression family presented
in table 4.3, one finds that LRR has the highest average accuracy, recall and F1-score.
For the ensemble learning algorithms, ETC gained the highest average precision
and the RFR attains the highest average accuracy, recall and F1-score. However,
the difference in average precision for RFR, RFC and ETC was marginal. The
SVR approach outperforms the SVC for all average metrics considered. The most
superior Bayesian approach evaluated was the HMC which outperformed the NBC
for all metrics.

Differences and similarities to meal predictive performance
Since no ground-truth was available for real user data, an aspect considered was to
evaluate if the performance of intolerance identification could be derived from the
performance of the meal prediction. The best achieving algorithm in the regres-
sion family was the LRR. By inspecting the table 4.2, the LRR indicated that the
algorithm attained a higher average R2 score compared to other linear regression
algorithms. However, by inspecting the R2 score obtained for the LRR in all data
regions, a decrease in the metric can be seen with increasing intolerances. The same
relationships are not visible in table 4.3 when inspecting the obtained F1-score for
the LRR. Therefore, a confident conclusion regarding the performance of the in-
gredient intolerance selection can not be obtained by independently studying the
performance of the meal predictions.

For the family of ensemble learning algorithms, the RFR achieved the highest aver-
age accuracy, recall and F1-score in the intolerance ingredient extraction. Moreover,
the measures improved with increasing number of unique intolerance ingredients.
However, the improvement in intolerance identification is not reflected in the meal
prediction performance. Therefore, it is difficult to evaluate the performance of the
ingredient intolerance extraction based on meal predictive performance for the RFR
algorithm.
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General comparison of precision and recall
By analyzing the precision in table 4.3, one can see that the metric tends to be higher
for three and five intolerances. However, since only 1, 3 and 5 positive examples
were available in total, the precision values indicate restrictiveness when selecting
ingredients as intolerances. The tendency becomes more apparent if the denomi-
nator in equation 2.29 is rewritten as TP + FP = TP + (#PP − TP ) = #PP
resulting in the following fraction TP/#PP . #PP is the sum of the elements in
the left column of the confusion matrix i.e. the total number of ingredients labeled
as an intolerance by the algorithm.

In order to attain a higher precision, one could increase the safeguard threshold for
selecting intolerance ingredients. Moreover, additional improvements in precision
may be gained if the selection window, i.e the third quartile, were narrowed such
that only the 90th percentile was included. However, by limiting the selection win-
dow, the risk of not detecting the true intolerance ingredients increases which will
be reflected in the recall measure as well as the precision measure.

An inspection of the recall measure shows that the performance between algorithms
is varying. However, the recall values are in general low for all algorithms except for
LRR, LAR, RFR and HMC. Low recall values indicate that the intolerance identi-
fication requirements were too restrictive. Another explanation is that the selected
algorithms perform poorly when extracting ingredients as intolerances. The ten-
dency becomes more distinctive if the denominator of the recall metric is rewritten
as TP + FN = TP + (#intolerances− TP ) = #intolerances resulting in the fol-
lowing fraction TP/#intolerances. #intolerances is the total number of unique
ingredient intolerances and is attained by adding the elements in the upper row in
the confusion matrix.

The recall measure can be improved by reducing the safeguard threshold for select-
ing intolerance ingredients as well as by expanding the selection window. However,
such changes may influence the precision measure negatively since it would allow for
more #PP . Moreover, such behavior is not desirable since it lowers the confidence
requirements for ingredient selection, resulting in an excessive amount of ingredients
marked as intolerances by the algorithm.

Family-wise comparison of precision and recall
A justification for the higher performance achieved by the LRR compared to the
other algorithms in the linear regression family could be due to the effect of the
regularization. The regularization limits the number of possible positives, resulting
in a higher precision. Moreover, the low recall score achieved by the LLC further
supports the explanation. However, by comparing the differences in performance
between the LAR and the LRR, it can be seen that gains in performance are expected
if the regularization is decreased. By studying the linear regression classifiers, the
same relationship could not be detected.

Based on the result and discussion in this subsection, we consider the LRR as the
most promising of the tested linear regression-based algorithms since it has the
highest average accuracy, recall and F1-score.
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The reason for RFR achieving higher average scores for accuracy, recall and F1-score
than the other ensemble algorithms might be explained by the selection of splitting-
points. The splitting-points are chosen to yield the optimal split in RFR and RFC
compared to the ETC which chooses the splitting-points randomly. The random
choice of splitting-point might be counteracting for small datasets since it increases
the variance for the individual trees. A possible explanation for the poor results
retrieved for boosting algorithms may be due to the lack of adequate weighting.

Highest performing algorithms
An algorithm which obtains high precision and recall simultaneously is always de-
sirable. The F1-score is, therefore, a measure of great importance in this analysis.
The algorithms with good performance with respect to F1-score was RFR and HMC.
However, HMC has a higher performance for one and three intolerance while the
RFR has higher performance in the last data region.

Due to the chosen ratio between intolerance occurrences and the number of ingredi-
ent intolerances, the average number of consumed meals are likely to be higher when
five intolerances are used compared to one and three. Therefore, one may assume
that the RFR outperforms the HMC algorithm on a larger dataset. However, by
inspecting the figures in the following subsection, it is visible that such relationship
does not exist. However, the RFR has the ability to capture linear and nonlinear
relationships in the data, which the HMC has not.

The highest average score for all metrics was achieved by the HMC. One contribut-
ing factor may be the procedure utilized by the model person in order to generate
symptom responses. As expressed in the Section 3.3.3, a symptom response was
obtained if an intolerance ingredient was consumed. This concept, where single in-
gredients generate symptoms is supported by the hierarchical model. Therefore, the
HMC is likely to find the majority of intolerances as the number of meals consumed
increases since it counts the number of times an ingredient has been connected to
a symptom. However, an issue emerging from viewing ingredients as independent
features is the inability to find the linear and nonlinear relationship between combi-
nations of ingredients. Therefore, symptoms which arise from such connections will
not be detected. In addition, the HMC does not take the consumed amount into
consideration and consequently intolerances thresholded based on the amount will
not be captured accurately.

4.1.3 Dependence on Intolerance Occurrences
To answer the question “What would be the most suitable algorithm to use based
on benchmarking?”, an important aspect is to consider the algorithm’s ability to
classify correct intolerance ingredients given a few number of observed intolerance
occurrences. In this section, the minimum amount of generated intolerance occur-
rences is swept in the range [5, 30] with fixed step size equal to 1. For each step, 2000
averaging rounds were used when generating the plots for benchmarking, display-
ing the averaged precision and recall. The number of unique ingredient intolerances
generated was held at 3 as this constitutes a 10:1 relationship towards the maximum
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number of intolerance occurrences.

Figure 4.2: Precision averaged 2000 rounds and swept in the range between [5, 30]
number of intolerance occurrences
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Figure 4.3: Recall averaged 2000 rounds and swept in the range between [5, 30]
number of intolerance occurrences

The classifier and regressor achieving the highest precision given the lowest amount
of intolerance occurrences is HMC and ETR as can be seen in Figure 4.2. More-
over, fluctuations in precision for different algorithms is also visible in the figure.
The general trend is an increasing precision with increasing number of intolerance
occurrences.

For the recall sweep, the HMC outperforms the other algorithms and achieves al-
most an optimal recall in all data point regions. The regressor achieving the highest
recall given few intolerance occurrences is RFR. The recall performance for RFR
remains high throughout the span of data regions but are more fluctuating than the
HMC.

The most obvious finding to emerge from the results is the high performance of the
HMC for both precision and recall. HMC’s performance is however not unwarranted
since the method has before the data points from the sweep are introduced, obtained
a prior knowledge from a general population which coincides well with the behavior
of a single model persons’s behavior.

The general trend of the increasing precision with increasing number of intolerance
occurrences may be explained by a decrease in incorrect labeling of the positive
class. This could also be interpreted as that the algorithms are more confident when
making positive class predictions. Moreover, these results are likely to be related to
the increase in meal variance, which increases with the number of consumed meals.
Therefore, ingredients consumed in meals with the intolerance ingredient is also
more likely to be consumed in absence from it in other meals.
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One unanticipated finding was the negligible increase for the recall metric consider-
ing all algorithms. This may, as previously mentioned, be explained by the fact that
the selection window of intolerance ingredients is too narrow or that the safeguard
threshold were set to high. This finding might also indicate that selecting the 75th
percentile might not be suitable. Instead, a fixed value could have been used for
thresholding. This, in addition to the lower safeguard, may also explain the fluctua-
tions for the curve to some extent since the recall might be restricted to increase for
particular regions. Another explanation could be that the algorithms do not find
the patterns in the data or that too little data has been generated.

4.1.4 Summary of the Model Person Evaluation
To summarize the findings of this section, differences and similarities between meal
prediction performance and ingredient classification performance were identified.
The impression of similarities in meal predictive power and ingredient classification
was obtained for some regressors including RFR and LRR. However, this correlation
is difficult to confirm since the variations in R2 score for meal predictions was not
reflected in e.g. the F1-score for the intolerance selection.

The precision and recall comparison for the ingredient intolerance detection indi-
cated that an increased selection window size might improve the recall measure
while simultaneously affecting the result of the precision negatively.

The family-wise comparison between the algorithms showed that the LRR, RFR,
SVR and HMC had the highest performance for their respective family. Moreover,
HMC achieves the highest average score for all metric considering all algorithms.
The sweep over intolerance occurrences further supported the high performance of
the HMC.

Before drawing conclusions for the performance of the algorithms on user data, the
results presented in this section need to be interpreted with caution. There are sev-
eral sources of uncertainties which may alter the implications of the obtained result.
An example is the process of generating synthetic data which may not capture the
behaviour of user data accurately.

4.2 Result from User Data
For this part of the evaluation, no ground truth data was available. Therefore,
the aim was to evaluate how realistically the model person has been modeled by
highlighting the differences or similarities from the previous section. This may also
indicate on how trustworthy the result and discussion from the previous section is.
Finally, the effect of the point combination is evaluated in this section.

4.2.1 Meal Predictive Performance
The results presented in this subsection has been generated from anonymized user
data. The number of logs used were the number of logs corresponding to the 90th
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percentile of the logs ordered by file size and consequently a number of data files. The
result has also been preprocessed by point combination of data. The result achieved
without point combination of data will be presented in the following subsection. The
aim in this section is in analogy to Section 4.1.1 i.e. to predict symptom outcomes
from meals and not ingredient intolerances.

4.2.1.1 Classifiers

Table 4.4: Classifier performance on user data with data point combination

Classifier Accuracy Precision Recall F1-
score

AUC Kappa

Logistic
Regression

0.810 0.118 0.116 0.106 0.287 0.025

Logistic
LASSO

0.814 0.107 0.124 0.111 0.290 0.035

Random For-
est Classifier

0.805 0.160 0.176 0.160 0.298 0.066

Extra Trees
Classifier

0.808 0.153 0.166 0.152 0.294 0.060

ADABOOST
Classifier

0.779 0.131 0.134 0.124 0.258 0.015

SVM Classi-
fier

0.722 0.143 0.228 0.167 0.259 0.035

Naive Baye’s
Classifier

0.781 0.183 0.214 0.173 0.317 0.071

The general behavior in table 4.4 is differing from the result obtained for the model
person in table 4.1. A significant difference is a major drop in all measures ex-
cept for accuracy. The marginally highest accuracy is achieved by the LLC. The
NBC achieves the highest precision, F1-score, AUC and Kappa score while the SVC
obtained the highest recall. However, all algorithms have a low AUC measures, indi-
cating a low probability of ranking a randomly chosen positively labeled meal higher
than a randomly selected meal with a negative label. Furthermore, all algorithms
obtained low kappa score, indicating that the po in equation 2.32 is approximately
equal to the probability of agreeing by chance.

The obvious difference in result compared to Section 4.1.1.1 indicates that the model
person does not emulate the 90th percentile of the user’s data accurately. There-
fore, the results obtained in the Section 4.1.1.1 should not be considered to be fully
correct for real users. However, the 90th percentile of the user data might still be
biased towards these selected individual’s behavior and lifestyle and consequently,
the result should be interpreted cautiously.
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4.2.1.2 Regressors

Table 4.5: Regressor performance on user data with data point combination

Regressor MSE MedAE R2

Linear Regression 0.141 0.170 0.223
LASSO 0.048 0.131 0.029
Elastic Net 0.047 0.132 0.027
Random Forest Regression 0.061 0.098 0.076
Extra Trees Regression 0.065 0.091 0.068
ADABOOST Regression 0.056 0.128 0.087
SVM Regression 0.058 0.132 0.069

Data from table 4.5 can be compared with the data in table 4.2 which indicates
differences that could also be seen for the classifier comparison. Moreover, LRR
does, similarly, as for the benchmarking of the model person achieve the highest
R2 score. Such a consistency was not detected for the classifiers and supports the
performance presented for LRR for the model person as well as for the 90th percentile
user data.

4.2.2 Effect of Point Combination
This section presents the effect of the point combination described in the method
chapter. The aim is to answer the research question “Can the data be modified in a
more beneficial way?”. The evaluation is based on observing the difference in predic-
tive meal performance attained when point combination is applied. The regressor
performance with point combination is shown in table 4.5 and the performance
without is shown below in table 4.6.

Table 4.6: Regressor performance on user data without data point combination

Regressor MSE MedAE R2

Linear Regression 0.178 0.232 0.144
LASSO 0.060 0.166 0.019
Elastic Net 0.059 0.163 0.017
Random Forest Regression 0.080 0.128 0.049
Extra Trees Regression 0.082 0.113 0.058
ADABOOST Regression 0.071 0.144 0.023
SVM Regression 0.069 0.156 0.047

By comparing the tables column-wise, it is noticeable that a lower MSE is obtained
for all regressors with the point combination. This is expected since all regressors
benefit from reducing the number of dimensions while increasing the number of data
points for each dimension. The same scenario is observed for the MedAE and R2

metric due to the same reasons. The R2 score is for some regressors twice as high
for the point combination than without. This means that the regression line fitted
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by the regressors are twice as good fit as the simple average. This is an interesting
finding and indicates the importance of preprocessing, dimensionality reduction and
influence of more data points.

4.2.3 Summary of the User Data Evaluation
The implications from the user data evaluation showed that the classifier’s perfor-
mance varied compared to the classifier’s performance for the model person. This
gave the impression that the model person did not mimic the general behavior of the
90th percentile of the users. Moreover, the results gained from the regressors further
supports this impression. However, some parity might be visible in the R2 of the
LLR. Finally, this section implied that the data can be more beneficially used by e.g.
point combination. However, the improvement in performance was not substantial.

4.3 Possibilities for Improvement
There is abundant room for improvements in order to obtain the most optimal anal-
ysis engine. During this thesis, the focus has been on evaluating pre-implemented
machine learning algorithms with no notable parameter tuning or optimization in
mind. This parameter tuning would be a natural next step to examine in the future.

The predictions done by all algorithms in this thesis were based on that there were no
synergy effects between food components and consequently, symptom appearances
caused by combinations of ingredients were not considered nor detectable. The ef-
fect of extending the analysis to finding synergy between food components would
be an interesting future implementation. Moreover, improving the model person to
support such behavior may increase the similarity between the synthetic and user
data.

An interesting future study for the research within the field of IBS would be to
perform clustering of individuals in order to bundle individuals with similar intol-
erances. A possible advantage is that symptom intolerance may be inferred from
the cluster populations which in turn would enable earlier symptom intolerance de-
tection at a individuals level. Moreover, such a structure may be represented by a
hierarchical model. However, to perform reliable clustering, more data is probably
needed.

Except for estimating priors for the hierarchical model from different clusters that
users are assumed to belong to, additional information obtained from medical re-
search on the disease could be interwoven. Examples of such information could
be to increase the probability of an outcome for food consisting of high FODMAP
components. An investigation regarding the optimal thresholding could probably
improve the performance of the hierarchical model. Moreover, another possible area
of improvement is the selection of threshold used for feature extraction.

The evaluation could have been extended to examine how many data points that
are necessary in order to achieve 100% correct classification of the correct ingredient
intolerances, given the ground truth. Moreover, the usage of a proportional hazard
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model to evaluate how different factors (ingredients) influence the degree of symp-
tom probability in time could also be investigated. This could possibly also be used
for estimating the time of the predicted symptom outcome is expected to occur [32].

Further research could be undertaken to investigate if the point combination could
be performed more dynamically using machine learning. Other actions considering
using data more advantageously could also be evaluated in future research. For
instance, ingredient data may be clustered into larger groups based on similarity.
An example would be to cluster the dairy products such as milk and cream. Such
procedures would lower the number of features while simultaneously increasing the
number of data points within each dimension. Another possible preprocessing area
of improvement would be, instead of clustering ingredients, divide them into their
nutrient components or subcomponents.
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5
Conclusion

The main goal was to identify available techniques to algorithmically identify causal
relationships between food intake and stomach issues from patient’s self-recorded
journals, utilizing machine learning and statistical analytics. The second aim of was
to identify which of the investigated algorithms that are the most optimal for the
datasets available. Evaluation of more beneficial usage of data was also included in
the investigation.

This study has identified that a correlation between meal predictive power and in-
gredient classification is difficult to confirm for synthetic data. However, the result
indicated that linear regression might have similarities in meal predictive power and
ingredient classification. The linear regression outperformed the other algorithms
within the family of regression analysis for most evaluation metrics examined.

The family-wise comparison on the model person showed that linear regression, ran-
dom forest regression, support vector machines regression and hierarchical modeling
had the highest performance. Moreover, the hierarchical model achieves the highest
average score for all metric considering all algorithms. The sweep over intolerance
occurrences further supported the high performance of the hierarchical model. The
result for the random forest regression from the family-wise comparison was en-
hanced by the sweep over intolerance occurrences.

The comparison of the result obtained from the model person with the result ob-
tained from the 90th percentile of the real user data based on meal predictive per-
formance gave the impression that the model person did not mimic the general
behavior of the users. Moreover, by combining data points as a preprocessing stage,
improvement in performance was obtained. However, the increase in performance
was not substantial.

The hierarchical model acquired the highest average performance for all metrics
considered. However, the model does not support detection of linear or nonlinear
relationships between combinations of consumed ingredients and outcomes. In addi-
tion, the hierarchical model does not take the consumed amount into consideration.
Consequently, intolerances thresholded based on the amount will not be captured
accurately. Due to the unknown symptom generating behavior of users, the limita-
tions of the model may affect its performance significantly when applied to real user
data.

Due to sources of uncertainties, the presented findings must be interpreted with
caution. The main source of uncertainty is the lack of knowledge regarding the
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difference between the model person and real users. However, the model person is
believed that to some extent model real user behaviours and therefore gives indica-
tions of the algorithmic performance.

To conclude, we believe that utilizing the hierarchical model in combination with
another algorithm may be useful for the analysis of the available dataset. This is
motivated by the hierarchical model’s ability to detect intolerances given few data
points. As the data size increases, more complex structures may be detectable and
captured by other algorithms.

Further research should be undertaken to investigate the possibility of utilizing more
complex algorithms to detect more complicated structures. Moreover, efforts to
cluster individuals based on similar ingredient intolerances may improve the knowl-
edge in the field of IBS. Such knowledge can further be used to detect ingredient
intolerances at an earlier stage by inferring the cluster specific characteristics for
individuals.
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