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Imitation learning for vision-based lane keeping assistance
HENRIK LINDÉN, CHRISTOPHER INNOCENTI
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Autonomous driving is currently an active area within the automotive industry
where many different solutions are being proposed, for example data driven meth-
ods such as deep learning. The aim of this work is to investigate whether neural
networks trained by means of imitation learning are capable of acting as an end-to-
end solution for lane keeping assistance, using a single grayscale front view camera.
The capability and robustness of such models, when exposed to both regular and
unexpected driving conditions, have therefore been evaluated. Furthermore, the
concept of domain changes, whether knowledge learned from real world driving sce-
narios is transferable to simulation environments, is investigated.

The model proposed in this work is based on a state–of–the–art neural network
architecture. The data from which it has learned stems from human driving collected
on highway-like roads under various conditions, such as time of day and weather.
The model has been evaluated in simulation environments with realistic road geome-
tries. The results from this work clearly shows that a neural network trained on real
driving data generalizes the concept of driving across different domains, performing
well in simulated environments. Additionally, at least for simulated environments,
empirical analysis on the model robustness seems to contradict earlier results, which
suggests that training a model from a single front view camera is insufficient in order
to achieve lane keeping functionality. Based on the findings, the conclusion is drawn
that neural networks indeed exhibits some capability to work as an end–to–end so-
lution to specific driving scenarios. However, more work, most notably real vehicle
tests, are required in order to assert this completely.

Keywords: Autonomous Driving, Deep Learning, Neural Networks, Machine Learn-
ing, Artificial Intelligence, Image Processing, Decision Making.
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1
Introduction

The human fascination with autonomous machinery has been around for a long time.
However, one of the most active areas for machine learning at present time is within
the automotive industry, where most major companies are dedicating huge effort
into creating vehicles capable of autonomous action, with no human driver required.
However, the field is just in its infancy and currently it is not known exactly how to
solve the task of autonomous driving, or if it is even possible.

This introductory chapter provides a short overview of the background to the
state-of-the-art methods used for autonomous driving. Further, some of the relevant
work that has been made within this field by adopting a deep learning approach are
presented. The purpose of this thesis is then given, coupled with the imposed lim-
itations required for making the scope of the project feasible. Further, an explicit
account for the contributions made in this work are presented, followed by a dis-
cussion on ethical and sustainability aspects connected to the project. Finally, this
chapter ends with a disposition of the thesis, providing some insight into how the
contents of the project have been structured including some guidance on how the
thesis could be read.
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1. Introduction

Figure 1.1: A schematic demonstration of the difference between conventional
systems for autonomous driving and end–to–end systems.

1.1 Background
In the active safety departments of many car manufacturers, work on sensors and
systems for autonomous driving (AD) is carried out. In these applications, usually
the raw data from sensors such as camera, radar, and lidar is processed and fused
in order to provide an accurate description of the environment in which the car is
driven. The output of this processing is usually a list of objects with information
describing their status in the environment, such as their position and speed. This
information is then utilized to design functions such as path planning, adaptive
speed control, or collision avoidance systems. That is, until recently, a potential
autonomous driving agent would consist of some large system of logic that makes
use of the acquired data in some engineered way.

Manual engineering allows for great flexibility in the design of a system, but it is
quite unlikely that it results in an optimal one. Furthermore, to manually engineer
relevant features from the raw data is a difficult and time-consuming process. Of
course, this also means that it is quite expensive as well. In addition, creating good
features requires top knowledge within the respective field which may be difficult to
acquire. A way to remedy this problem is to employ a deep learning (DL) approach
as it is data-driven with the ability to learn relevant features from the data. Because
deep learning models can operate on raw input data, they completely remove the
feature engineering requirement and might have the potential to work in an end–
to–end fashion. Figure 1.1 illustrates the difference in operation of the two types
of systems, where the traditional ones have several stages that must be properly
designed as opposed to the end–to–end variants.

The name deep learning stems from the fact that such models are defined by
computational graphs comprised of several processing units, stacked in layers. The
layers are connected in a long, or deep, structure, allowing the computational model
to learn from data at multiple levels of abstraction [1]. Deep learning, in the form of
convolutional neural nets, has in recent years provided significant breakthroughs in

2



1. Introduction

the fields of image and video processing, object recognition and speech recognition
[2, 3]. However, one drawback of such models is that they require a substantial
amount data to learn from, before they become viable.

1.2 Related Work
As the task of making a car fully autonomous is very complex, and because it has
been a sought goal for a long time, there have been a lot of efforts made in order
to solve the problem. Most efforts can however be divided into two categories that
are either based on large control logics (as mentioned in the previous section) or
are data driven solutions. Successful examples of systems comprised of modules of
control logic are among others, the 2007 DARPA Urban Challenge winner: Tartan
Boss [4], and the Daimler team that made a Mercedes S 500 drive autonomously [5].

A first step towards a data driven solution was taken in 1989 in the ALVINN
project [6]. The system used, by today’s standards, a very small fully connected feed
forward network to directly map camera input from the road ahead into appropriate
steering actions. Although trained mostly on artificial data, the system managed to
drive a 400-meter path through a wooded area of the Carnegie Mellon University
campus under sunny conditions with a speed of 0.5m/s.

In 2005, a new effort for autonomous obstacle avoidance and steering was per-
formed, the DAVE project [7]. In this case, the goal was to create a system that
could handle off-road obstacle avoidance and navigation without the need for fea-
ture engineering. In contrast to ALVINN , the system utilized a more advanced
neural network architecture, which included convolutional layers. Additionally, it
was trained using real world data from a front mounted stereo camera.

Almost two decades after the initial ALVINN project, in 2016, the American tech-
nology company Nvidia also developed a deep learning based system for autonomous
driving [8]. Their project, DAVE2 , used an even more advanced convolutional neu-
ral net (CNN) than DAVE and was trained on a larger dataset. The data consisted
of everyday driving on public roads, captured from three front mounted cameras,
although at inference time the system operates on images from a single camera. As
reported by Nvidia, their vehicle managed to drive autonomously 98% of the time
in their trials.

From these works it would seem that the use of neural networks as an end–to–end
solution for autonomous driving is a promising lead. Seemingly, recent efforts indi-
cate that CNNs should be particularly suitable for the task. In many cases, CNNs
have been shown to perform exceptionally well in detection tasks and predictions
that are crucial to make in a traffic environment.

It has been suggested in [8] that the use of multiple cameras, are required in order
to obtain a system that can stay continuously well positioned on a road. In fact,
for the previously mentioned projects that employed a neural network approach, the
systems relied on multiple sensors to interpret the surrounding. For the ALVINN
project, in addition to using camera images, a laser range scanner was also used.
Similarly, DAVE made use of stereo cameras and DAVE2 made use of three cameras.

Requiring more than a single camera seems like a limitation, and it would be
interesting to investigate further. Additionally, DAVE and DAVE2 also utilized

3



1. Introduction

Figure 1.2: Conceptual illustration of the input/output of the intended lane keep-
ing assistance system (the steering model).

color images, which might contain more information than what is actually needed.
By instead using a gray scale camera, less information needs to be processed and
therefore the complete system might be realizable using lower cost components.

1.3 Purpose

The purpose of this project is to investigate the suitability of neural networks as an
end-to-end solution to the process of steering a vehicle in a highway environment.
In particular, this thesis will investigate a neural networks capacity to act as a
lane keeping assistance system (LKA) using only single grayscale images captured
from a front mounted camera for both training and inference. In previously made
works, as mentioned in Section 1.2, the systems relied on information from multiple
sensors, either during run-time or for training. As images are very rich in information
contents, it is interesting to verify if a single front view camera is sufficient for
LKA. Additionally, such a system’s robustness against sudden disturbances will
be investigated as well. Finally, the thesis will consider the models capability of
transferring knowledge from one domain (environment) to others. The general idea
of how the final system is intended to work is displayed in Figure 1.2. Based on
a single image in, the model should produce an appropriate steering command to
maintain good positioning in the lane.

1.4 Limitations

As the task of creating a system for autonomous driving comprises much more than
what is reasonable to fit in a master’s thesis, the scope of the project was limited.
Firstly, the target environment for driving was restricted to highway and country
road types only. No consideration for city driving was taken, and therefore the
speed was fixed to be in the range 50-110 km/h. Additionally, the intended driving
behavior was limited to lane following with no other maneuvers such as overtakes
or merges considered.

For the learning of the neural network, only (supervised) imitation learning was
employed, and the data only consisted of raw images and steering angle measure-
ments without augmentations. The network was limited to control steering only
with no other outputs, such as accelerations, considered. For evaluation purposes,
simulated environments were used and no real vehicle tests were done.
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1.5 Scientific Contributions
In this thesis, the main contributions to the field of deep learning for autonomous
driving can be summarized as follows:

1. Demonstrating that, a neural network model trained and operating on imagery
from a single front mounted camera is sufficient for lane keeping (in simulated
environments), and acquires some robustness. This is to say it can learn to
recover from mistakes such as orientation misalignment with the road based
only on observing ordinary driving maneuvers.

2. Showing that the neural network model trained on real data is able to transfer
learned concepts across different domains, allowing for evaluation in simulated
environments. This is an interesting aspect because models showing robustness
against domain changes might allow for early development tests to be done in
simulation.

3. Providing a basis for discussion whether neural networks may serve as a holistic
solution for autonomous driving.

1.6 Ethical Aspects
With most introduction of new technology in society, it affects people in different
ways. While the core intent most often is to improve the quality of life for the
people using it, there may be some drawbacks worth considering. In this case, the
technology in question is a system for autonomous driving. Hopefully, the amount
of fatal accidents will decrease as automated systems are introduced because of the
fact that they could be much more reactive and attentive than humans. It could
also become possible for people to be productive on the go or simply use the time
spent commuting for recreation.

However, the introduction would also come with a price. For example, quite a
lot of people currently make a living driving various vehicles. If an AD solution
proves itself to be as reliable (or more so) than a human driver then this work group
may run the risk of getting laid off. The AD system is just a one-time investment
and does not require benefits or salaries, making it more preferable than a human
employee.

The fear of having new technology coming to replace the jobs of the people
has been around at least since the industrial revolution with the introduction of
the automatic looms [9]. Since then, many new and fantastic inventions have been
introduced, making many old professions completely obsolete. What is important
to realize is that with the introduction of new technology many new opportunities
for new areas of work appears. Just 50 years ago it would not have been possible
to anticipate how many people would be involved within a field such as software
development. Yet, today, some of the most successful companies are largely based
on this "new" tech that is the modern computer. Maybe the story will be similar
with the introduction of autonomous cars.
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1.7 Sustainability Aspects
With vehicles becoming autonomous, less resources are expected to be required to
accommodate them. With the more exact and reactive automatic driving systems,
lanes could be made much more narrow, meaning that more cars fit in the same
space. This would allow for more people to travel simultaneously while maintaining
a good traffic throughput for the same amount of materials spent on roads.

In connection with this increase in reactivity, perhaps also coupled together with
real-time communications with cars in the nearby area, it might also be that the
emissions or fuel consumption lowers substantially. This would be the result from the
cars simply driving smoother and able to perform better path planning than humans
currently can. Furthermore, autonomous vehicles could also very well perform safe
"platooning" where many vehicles drive in very close proximity to one another to
reduce drag, resulting in even lower fuel consumption. It may also be possible to
see a substantial shift in how autonomous cars are used and owned. The concept of
carpooling may become more popular where it could become possible for one car to
service many users, reducing the total number of cars in the vehicle fleet.

Naturally, none of these good outcomes are for certain. It could very well be
that the increase in comfort and ease of using AD vehicles magnifies their popularity.
This might increase the demand for such vehicles, resulting in more units which then
might consume all the positive effects resulting in a net increase in fuel consumption
and emissions.

However, it might be the case that it would not be worse than what is happen-
ing at the moment. Today, an increasing number of people are able to afford a car
resulting in greater emissions and more frequent and severe traffic congestion’s. As
autonomous cars become more affordable and convenient, they could also attract
the people currently commuting with trains and buses which of course would not be
particularly good. Maybe the adverse effects can be dampened with proper regula-
tions on a national or global level, but how this should be done is only speculations
at this point.

1.8 Disposition
This chapter has introduced the purpose of this work and provided a background to
the area of deep learning in connection to autonomous driving. A few examples of
earlier work have been provided, with a focus on projects adopting a neural network
approach and potential limitations. The restrictions imposed on this project have
further been stated and the main contributions of this work have been summarized.
Finally, a discussion on potential ethical and sustainability aspects has been given.
The remainder of this thesis provides a more in-depth description of the work that
has been done.

– Chapter 2 gives an overview of two simulation environments which have been
used for the purpose of model evaluation and data generation. The struc-
turing and processing of data (both the real data provided by Volvo Cars

6
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and the synthetic data obtained from the simulators) is further presented and
specifications of the resulting datasets, used for model training, are given.

– Chapter 3 provides the core theoretical concepts of neural networks which are
relevant in order to understand the models used in this work. The architecture
of the model for end–to-end inference of steering actions is presented and a
discussion with respect to its main components is given.

– Chapter 4 describes the theory on how neural networks are able to learn from
data and specifies the configuration for the learning procedure. Further, a
description on model implementation and model–simulator interfacing is given.

– Chapter 5 deals with the task of model evaluation. The evaluation process is
initially explained in connection to the concepts of closed loop simulation and
transfer learning. An analysis of the predicted steering actions is presented and
the models capability of transferring knowledge across domains is discussed.
Then the resulting driving performance, in terms of two proposed performance
metrics is given, expanding on the topic of how to evaluate a system which
performance largely is subjective.

– Chapter 6 states the conclusions drawn as a result of this work, with the main
focus on whether neural networks seem to be suitable as an end-to-end solution
for autonomous driving.

– Chapter 7 expands on the subject of model design and provides a discussion
on potential model extensions. Many of the ideas presented are based on work
that was done in the thesis, but failed to perform adequately due to technical
difficulties.

7
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2
Environments and Data

For any data driven model to work in a satisfying fashion, good data has to be
available. When such data is unavailable, a large amount of work has to be spent on
constructing proper databases before further progress can be made. Whichever is the
case, there are different types of data that one can decide to use. One choice is to use
real data, such as photos or real measurements. Another option is to use artificially
generated data from a model of the physical world such as rendered images from a
graphics engine or artificial signals from sensor models. In this project, both types
of data were used for model training.

A developed model must often be verified in some way to determine its perfor-
mance. The verification procedure would ideally be carried out with real exper-
iments but this is unfortunately not always possible. For safety critical systems,
virtual evaluation is preferable at early stages of development to reduce costs and
potential risks involved with real testing.

In this chapter, the two different simulation environments used for this work will
be presented in Sections 2.1 and 2.2. Furthermore, the process of structuring the
main dataset from Volvo Cars and making it as vehicle independent as possible is
stated in Section 2.3. Finally, the last part of this chapter, Sections 2.4 and 2.5,
deals with the process of obtaining artificial data from the simulation environments.

9



2. Environments and Data

2.1 Unity Game Engine

The Unity game engine [10], developed by Unity Technologies, is a free tool (for
educational purposes) for building and to code video games. The engine ships with
what is referred to as "Standard assets" that can be used to quickly get a grasp of
the engines capabilities. The standard assets consist of various objects and scripts
that can be repurposed as the user see fit. Almost anything can be created in the
game environment provided that the user has the required time and know-how,
making Unity a very general-purpose environment. The Unity community is also
quite extensive, with a plethora of additional packages available for download.

Conceptually, the process to create a game starts by defining what is called the
"scene". The scene is the actual environment that the game will be played out in.
In the scene, various objects can be placed, such as trees, roads, cars, and so on.
To make the scene more dynamical, it is possible to attach scripts to most of the
objects. Without them, everything would be static and in an unplayable state.
Adding the scripts enables things to change based on certain events happening such
as the player pressing a particular key. The scripts are coded in the C# or Java
Script programming languages. Using scripts, it is also possible to create game
applications that interact with other programs. Utilizing this functionality, it is
possible to use the Unity game engine for model in the loop (MIL) purposes.

When users have created whatever content they want, the complete package can
be compiled into an executable file for many target platforms. For the purposes of
testing a self-driving agent for example, one could create a game with a car plus
a track and then have the agent try to steer it in real time. While this is a valid
approach to take, creating custom games is a very time-consuming process.

While Unity indeed includes some physical properties such as gravity etc., it is
still a general-purpose game engine and often utilizes simplified versions of physical
interactions and sensors. As such, it is suitable for simple or early MIL testing but
if more realism is desired, other environments might be preferable.

2.2 IPG CarMaker

CarMaker, created by IPG Automotive [11] is a real-time simulation software solu-
tion developed specifically for virtual testing of passenger cars and light-duty vehi-
cles. The software is capable of modelling the environment of a vehicle with different
traffic scenarios, pedestrians, road signs etc. The software also comprises an intel-
ligent driver model, support for detailed vehicle models, and highly flexible road
generation.

The simulator uses a highly detailed physics engine, mimicking many of the
intricate relationships between physical objects in a realistic fashion. Car models
are subject to realistic centripetal forces when turning, friction is based on materials
interactions, even sensors can be accurately modeled, being affected by weather or
other environmental effects. Finally, as simulations are event and maneuver driven,
it allows for both open and closed loop testing.

Driving scenarios in CarMaker can be created by simply designing the road
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2. Environments and Data

geometry using segments. By chaining together different segments, such as curves,
straight roads and intersections, arbitrarily complicated road geometries may be
created. The different segments can then be customized with proper lane markings,
traffic signs, road types etc. One can also include a variety of triggered events in the
simulation, such as added disturbances in order to test model robustness. Scenarios
can also include different types of vehicles, each following specific trajectories at
different speeds. Naturally, the vehicle to be controlled is included, where model
functionality can be added. For example, a new steering model for autonomous
driving.

Road geometries are not restricted to perfectly straight lines and curves. It
is possible to base the road geometry on real data from longitude and latitude
coordinates. This is done by specifying keyhole markup language (KML) files which
can be imported into CarMaker. Although this captures the geometry of the road,
objects along it such as houses, trees etc., have to be manually modeled.

An animation of the simulation can play out in real time with the possibility of
being used as a base for any vision systems including virtual cameras. The cameras
can be adjusted using a wide variety of lenses and configured to record at an arbitrary
resolution and sample frequency. The captured images can be transmitted out of
the simulator for MIL purposes, or used internally with any included code.

2.3 Volvo Expedition Data
In this project, the main data to be used for training the neural network models
was supplied from Volvo Cars. The available data consisted of a large collection of
log files from various expeditions performed over the last 5 years. These expeditions
usually had the purpose of testing some new functionality for future cars and to
collect data that could be used for development.

The recorded information contained for example the video-feed from the vehicle’s
front mounted camera, the states of the vehicle sensors etc. For the purposes of
this project, the extracted portion of the data was limited to the captured video
frames and the sensor measurements from the steering wheel, the car’s current speed,
acceleration and yaw rate. The image data in this case was extracted as 640× 480
gray scale. Figure 2.1 shows a selection of images captured from various Volvo
expeditions under a variety of road and weather conditions.

The vehicle state sensors had a sampling rate that was roughly three times higher
than that of the video feed. This difference in rate posed a small problem, as there
could be multiple sensor readings per image frame. To remedy this issue, the sensor
measurements that most likely corresponded to particular frames were extracted.
This procedure was done by matching the timestamps of the videos and the sensor
readings to find the closest match. The readings that did not get paired up with a
frame were then simply disregarded.

In order to attain data driven models that generalize properly, ideally a large
and very diverse data set to train on is very beneficial, almost required even. This
is especially true if one would like the model to be robust to sudden changes in the
environment (entering new areas or road types) or being able to react to improbable
events. For example, if the model never has observed how to avoid obstacles on the
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Figure 2.1: A selection of images from various Volvo expeditions under a variety
of road and weather conditions. Note that the images here are cropped as described
in Section 3.2.1.

road, it will be very unlikely that it would do so in the live setting. Having a large
and diverse dataset is one way of ensuring that the network gets to observe as much
diverse situations as possible.

As the target environment to drive in was to be country- and highway roads in
Scandinavia, some manual filtering of the Volvo data was made. Only data captured
from the relevant road types in Sweden and Norway were chosen. Furthermore, some
effort was made in order ensure that the amount of city driving that was included
in the dataset was minimized. As the dataset available at Volvo cars that met these
criteria still was overwhelmingly large, manual inspection of the videos to determine
their suitability was out of the question. Therefore, the logs were filtered based on
data-viability. Viable logs were to contain no lane changes, and with not too slow
traffic (driving below 50km/h) as that was likely to be city-driving. Also, the vehicle
was only ever allowed to be driving forwards.

The filtering procedure produced a list of logs that passed the requirements, with
information about the mean, standard deviation, and variance of the steering wheel
angle (SWA) used throughout each particular log. This allowed for a sorting to be
done post filtering. In this first sorting, only videos with a SWA variance of at least
0.0025 radians were picked. This way, roads involving somewhat frequent amounts
of turning were favored over the ones that mostly contained straight driving.

The following sections describes how the pruning process of the data was made
in order to reduce bias toward any particular range of the SWA. Additionally, an
account for how the transformation of SWAs to a more vehicle independent measure
was performed is given, and the section ends with a discussion on the resulting
dataset.
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(a) The complete dataset. (b) The pruned dataset.

Figure 2.2: Histograms of steering wheel angles from the complete dataset (left)
and the pruned dataset (right). Histograms depict the significant range [−1, 1] rad
where most samples lie, rather than the complete range [−9, 9] rad.

2.3.1 Pruning
Having collected the initial dataset, it became apparent that even though curvy
roads were favored over straight ones, the data still showed some bias. Seemingly,
when driving a vehicle, the actual turning of the wheel is quite limited. Because
the Volvo data came from real driving scenarios, it naturally showed the same char-
acteristics as ordinary driving do. That is to say, the case of driving straight was
overrepresented. While the aspect of driving straight ahead indeed is an important
part of driving in itself, the fact that this was so prevalent posed a problem when
using the data to train models.

To reduce the bias, in this case driving straight, one option was of course to filter
out some range of values that considered to be within the range of driving straight.
While this indeed would have resolved the overrepresentation, it was likely to instead
induce the opposite problem. Because then the model would never have learned to
drive straight, it might have ended up steering too much and too frequently, never
driving smoothly. Naturally, this was not a desirable outcome either. Another way
of ensuring that the data had roughly equal representation over the entire domain
was to prune it. For this project, this was the preferred solution because collecting
more data to reduce the overrepresentation of straight driving was not an option.

To get a feeling for how the collected dataset was distributed, a histogram was
created, using 18000 bins, over the full range of the steering wheel angle, [-9, 9] rad.
From Figure 2.2 it is clearly visible that the data was centered around zero radians.
Furthermore, the data was residing on a quite narrow part of the actual range of
possible steering angles. The conclusion was then drawn that training a model on
such a dataset would be detrimental to its performance.

In order to remedy this issue, fair pruning of the dataset was performed. Fair-
ness in this regard meant that each expedition was appropriately pruned so large
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rturn

vehicle

Figure 2.3: A turning circle of a car when driven with a constant steering wheel
angle α. The radius rturn of that circle correspond to the vehicles turn radius.

rturn

L

α

α

Figure 2.4: A bicycle representation for calculation of the turning radius rturn of
a vehicle with wheel base L and front wheel angle α.

expeditions, with many data points, would have more image–steering pairs removed
than the small ones. This ensured that as many different settings of the environment
was left in the final dataset, improving its diversity. The level of the cut was set by
specifying the maximum number of occurrences (image-steer pairs) allowed in any
of the 18000 bins in the histogram. The histograms of the complete dataset as well
as the pruned dataset can be seen in Figure 2.2.

2.3.2 Transformations
Nearly every car model, or at least every brand, has a different range and a different
conversion rate from its steering wheel to the front wheel angles. Therefore, using
the raw recording of the SWA as a measure would mean that a model might become
dependent on the actual car used to collect the log data (in this case the Volvo
XC90) and not work properly on other vehicle models. To circumvent this issue,
making the output of the model vehicle-independent, a transformation of the SWA
was made. Instead of using the SWA directly, translating it to the turning radius
and subsequently to a measure of curvature (the inverse turning radius) was deemed
a better alternative which could be used for any vehicle.

The turning radius is the radius of the turning circle a car will make provided
a constant angle on its steering wheel as seen in Figure 2.3. Clearly, this radius
ranges from infinity to some minimum value that the car is mechanically limited to
go below. If the model could output such a value, every car that it was to operate
in would just require some vehicle specific transfer function to map the signal back
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to a proper SWA.
To transform the SWA to the turn radius, one first has to transform it into the

angle of the front wheels and then use a vehicle model for further transformation.
In this case, a transfer function from the XC90 SWA to its front wheels was approx-
imated by a third-degree polynomial based on data provided from the Volvo vehicle
dynamics department. Having obtained the average wheel angle, the turn radius
was calculated by approximating the car with a simple bicycle model. The turn ra-
dius could then be represented as shown in Figure 2.4. Using simple trigonometric
formulas, the turn radius was deduced as

rturn = L

sin(α) =⇒ 1
rturn

= sin(α)
L

(2.1)

where α is the front wheel angle, L the wheelbase, and rturn the turn radius.
Because the turn radius ranges from some minimal value to infinity, it might in

some cases be problematic to represent it properly in a computer. Therefore, using
its inverse might be more beneficial. For the XC90, this transformed the range of
possible values to approximately [−0.17, 0.17] m−1, easily represented digitally in a
computer.

2.3.3 Resulting Dataset
The previous sections described the pruning and transformations made to the raw
dataset in order to improve the quality and usability of the models. As the training
data was based on camera images, it could not be made entirely independent of the
host vehicles’ camera placement.

When running the model in simulations or in reality, this meant that the camera
had to be aligned with the camera positioning that was used when the images in
the dataset were recorded. Otherwise the model’s different perspective of the world
would most likely cause it to make faulty predictions. This is because with the
new perspective, objects of interest were no longer as likely to appear in the way
the model had learnt to recognize them. Having a dataset that included many
different examples of camera-mounting would most likely have enabled the model to
generalize beyond such a problem, but in this case, as the data was already recorded,
such changes could not be included.

For each of the chosen videos from the first viability filtering, as described in
Section 2.3, the video was split into its separate frames and paired with the cor-
responding sensor reading (SWA). In the end, this netted a total dataset of 1.4
million image-measurement pairs. Based on the sampling rate, this amounted to
approximately 27 hours of driving.

2.4 Unity Data
For verification purposes, training a model solely on Unity data was performed in
order to ensure that the model itself was sound. Realizing that manually driving
the car in the Unity game engine would be a very time-consuming process when
collecting a large dataset, a method for automatic data collection was created. In
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Figure 2.5: A selection of images collected from the Unity game engine environ-
ment illustrating a variety of lane configurations and backgrounds.

order to make the car drive automatically, parts of the standard assets were used.
A set of 400 waypoints were manually put along the route that the car should drive.
The collection of waypoints together defined a line that the car could be set to
follow. By varying the parameters, such as how much the car was allowed to cut
corners, changing the initial position of the vehicle, and its maximum speed, different
diving behaviors could be attained. This meant that it was possible to ensure some
diversity in the dataset. In total, roughly 50 000 image-steering pairs, or about 45
minutes of driving, were collected. A selection of images from the dataset can be
seen in Figure 2.5.

As this dataset was quite limited in terms of its size compared to the one ex-
tracted from the Volvo logs, it was not put under the same pruning regime as in
the other case. Doing so would have meant that most of the data had been pruned
away, which was not desirable. The recorded steering angle was not transformed as
before, because the model to be trained on Unity data was only intended to be used
in Unity were the recorded SWA could be used directly.

2.5 CarMaker Data
For the same reasons as with the Unity environment, a model trained on only Car-
Maker data was to be created for verification purposes. For this case, data from
a real-world road geometry was collected. The road geometry was a stretch of
roughly 53km country road from the southwestern part of Sweden, Riksväg 160
from Rotviksbro to Ucklum. The choice of this particular road was based on the
fact that it provided a good mix of different scenarios. Long straight sections and
wide curves mixed with winding sections and moderately sharp turns. Also, there
were two roundabouts in the original road which was edited out as they were deemed
to fall outside the scope of the highway and country road type.

With the road geometry specified, the included IPG driver agent was configured
to traverse the complete road, staying roughly in the middle of the lane at all times.
The IPG driver agent is essentially a model of a driver which can be tuned to behave
realistically depending on the tuning of its parameters. The parameters of the agent
were appropriately adjusted to ensure realistic cutting of corners and lane keeping
with the speed of the driver set to a constant value of 70 km/h. The front mounted
camera in the vehicle was adjusted to conform with the specifications from the Volvo
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Figure 2.6: A selection of images collected from the CarMaker environment illus-
trating a variety of lane configurations, lighting and background scenarios.

log, both in terms of physical positioning but also with regards to resolution and
sampling rate.

With all the specifications made, data was logged in a similar way as it was done
in the Unity engine. In total, the data from CarMaker amounted to approximately
50 000 image-measurement pairs, equivalent of roughly 45 minutes of driving. A
selection of images can be seen in Figure 2.6 and as with the Unity data, this
dataset was deemed too small to undergo the pruning procedure.
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The human brain is a curious thing. Based on the intricate network structure
between its many neurons, it is capable of learning to perform very complex control
tasks with ease. It is for example able to maintain balance on a bike dashing
at full speed through a forest, or navigating a vehicle in a highly complex urban
environment using almost only vision data as input. Creating an autonomous agent
for such complex control tasks has been a sought goal for quite a while, with varying
degrees of success so far.

Defining some sort of control logic, by manually writing a set of rules that en-
ables such complex behavior is not easy. The brain does not seem to possess these
capabilities inherently but apparently learns them by observing data from the world
around it through the many sensors that the body contains. If an autonomous agent
too could learn by experience and example, the whole design of the control logic and
how to make use of the sensor information is alleviated. In fact, some of the current
state–of–the–art systems for autonomous driving are actually data-driven and have
learned the task of driving based on data they observe.

In this chapter, an overview of the design of the neural network models used in
this project is provided. In Section 3.1, a quick introduction, coupled with some
history, is given. Additionally, the core components that make up neural networks
are displayed and their workings explained. Then, the section provides some detail
on the most basic neural network models, moving up to the general idea of CNNs.
The chapter ends with Section 3.2, where the proposed model architecture for the
task at hand is given.
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3.1 Artificial Neural Networks

Neural networks are one of the several methods that has been tried in order to
attain intelligent systems, or AI. The concept of neural networks was introduced
during the 1940s when Warren McCulloch and Walter Pitts created the first neural
network model [12]. Initially, the networks were seen to be an analogue to the human
brain as they have similar structure and behavior. However in recent years, their
resemblance to their biological counterpart has been debated.

At the lowest level, a neural network consists of independent neurons. For bio-
logical neurons, each unit has several input gates, in the form of dendrites, which
feed information into the cell body. From the cell body extends a long connection
called an axon. This axon in turn connects to other neurons’ dendrites, forming a
network structure. For a schematic representation of a biological neuron, refer to
Figure 3.1.

Figure 3.1: An image of a biological neuron [13].

Depending on its inputs, a neuron may pass an electrochemical impulse along
its axon. This is often referred to as the neuron being activated. The transmitted
impulse may in turn activate other neurons that then transmits their signal and so
on. Some of the inputs to the neuron may excite it to transmit its signal and other
may inhibit it. In addition, some connections seem to play a more central role than
others whether the neuron activate or not, seemingly having a larger weight.

The artificial analogue behaves in a similar fashion, albeit a bit more simplified.
The central part essentially acts as a small computational unit. It sums up all its
inputs x, multiplied by the weights w on the connections, adding a bias term b and
finally applies a so-called activation function on the result, outputting some value.
That output is then given to all other neurons it is connected to. In Figure 3.2 a
single artificial neuron is shown with all of its components displayed.
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Figure 3.2: An artificial neuron with input xi, weights wi, bias b and output a.
f(·) is the activation function and z corresponds to the weighted sum of the inputs
as described in Equation 3.1.

The output a of a neuron can be written as

z =
(

n∑
i=1

wixi

)
+ b = Wx+ b (3.1)

a =f(z) (3.2)

where n is the number of inputs to the neuron and f(·) is the activation function.
The input of a neuron is generally represented in vector form, x, and the weights as
a vector W , simplifying the notation slightly.

The remainder of this section will further describe common activation functions,
simple neural network models and finally more complex architectures in the form of
convolutional neural networks.

3.1.1 Activation Functions

The number of different choices that can be made for an activation function in a
neuron is in theory neigh limitless. However, because the neurons usually operate
on real numbers, the activation function has to be defined such that it takes a real
value as input. Despite the broad possibility of functions to choose, there are some
that have been proven over the years to provide good results in different contexts.
As of now, the most common ones are the identity, hyperbolic tangent, sigmoid,
rectified linear, and the exponential linear functions. See Equations 3.3 for the
mathematical representation and Figure 3.3 for plots of the different functions and
their derivatives.
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Identity: f(x) = x

Hyperbolic tangent: f(x) = tanh(x) = ex − e−x

ex + e−x

Sigmoid: f(x) = 1
1 + e−x

Rectified Linear: f(x) = max(0, x)

Exponential Linear: f(x) =
{
x if x ≥ 0
α(ex − 1) if x < 0

(3.3)

In the early days of neural networks, the tanh and sigmoid functions were com-
monly used. In contrast to the identity function, both the sigmoid and tanh saturate
on most of their defined domain and thus only have sensitivity to the input when it
is close to 0. In addition, the derivative of those functions also approaches zero for
much of their domain, making neurons using them a bit difficult to train using the
common gradient methods.

The last two activation functions, the ReLU and the ELU, are nowadays likely
the most common ones in the standard, feed-forward, form of the neural networks.
The ReLU is composed of two linear segments making it piece-wise linear. The
ELU is similar but with the difference of having a scaled exponential function for
the negative domain.
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Figure 3.3: Common activation functions and their derivatives including the expo-
nential linear unit (ELU), rectified linear unit (ReLU), hyperbolic tangent (Tanh)
and the logistic function (Sigmoid).
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Figure 3.4: A fully connected feed forward neural network with one hidden layer
consisting of three hidden units, the input xi, and outputs a0, a1.

3.1.2 Fully Connected Feed Forward Neural Networks
Fully connected feed forward neural networks (FCFFNN) were in their initially
simple form developed in 1957 by Frank Rosenblatt for the US Navy [14]. However,
at the time, the networks were actually modeled as a physical machine rather than
a software. The FCFFNN structure is likely the most common topology a neural
network can have. Here, the neurons are structured in layers to form a directed
acyclic graph.

Every neuron in each layer only feeds its output into the neurons in the layer
directly after. Similarly, the neurons in a layer only gets their inputs from the
neurons directly before it. Furthermore, there are no connections between neurons
in a single layer. Only the forward connection is present. Common for all feed
forward networks is that the only interface they have with the outside world is the
input to the very first layer and the outputs from the very last one. The remaining
neurons, between the input and output layers have no means of outputting any value
or receiving any value from the outside. Due to this property, those layers are often
said to be hidden [15]. In Figure 3.4, a FCFFNN with a three-unit hidden layer is
shown.

As opposed to the single neuron, the weights W for a given layer are no longer
just a single vector but instead a matrix. Calculating the output of the FCFFNN is
referred to as the forward pass, due to the fact that the output values from all of the
neurons flows forwards through the network. Assuming the input to some layer l of
neurons being a(l−1), the weight matrix for that layer being W (l), and the activation
function to be f(·), one can write the output from the layer as

z(l) =W (l)a(l−1) + b(l) (3.4)
a(l) =f(z(l)) (3.5)

where the output a of the layer now generally is a vector. This vector is then fed
into the next layer following the same principle. This procedure is continued until
one reaches the final neuron(s).

3.1.3 Convolutional Neural Networks
The convolutional neural network, often shortened to just convolutional network, or
simply CNN, is a specialized form of the standard feed forward neural network. It
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is tailored to operate on data that has a known grid-based topology such as that of
images or audio recordings. In recent years, the convolutional networks have been
hugely successful in a quite diverse set of practical applications. Areas in which
they have been very successful include, for example, computer vision and voice
recognition.

Real implementations of convolutional nets make use of the mathematical op-
eration of convolution, which is from where their name originates. The use of the
convolution allows them to be efficient despite the usually quite large data they op-
erate on. This is because the weights in a CNN are shared, rather than each neuron
having its own set of weights.

The convolutional operation is defined to be valid between two functions that
take real-valued arguments and is also commonly referred to as filtering. A typical
example of a convolution is the application of a smoothing effect on recorded noisy
signals [15].Assuming two time continuous signals x(t) and W (t), the convolution
operation is defined as

z(t) =
∫ ∞
−∞

x(a)w(t− a)da. (3.6)

The operation is most often shortened using an asterisk as

z(t) = (x ∗W )(t). (3.7)

In this setting, one says that x(t) acts as the input and W (t) as the kernel. There
also exists an equivalent version for discretized signals, similarly defined as

z[td] =
∞∑

a=−∞
x[a]W [td − a] (3.8)

where td is the discretized version of t.
In most machine learning (ML) applications, one assumes that the signals to

be processed have a finite duration. That is, outside of a certain time span the
signals are considered to be constantly zero. This makes the infinite sum in Equa-
tion 3.8 computationally tractable. Furthermore, in many applications, the convo-
lution is performed over several dimensions at once, for example when convolving
2-dimensional data such as imagery etc. The 2D discrete version of the convolution
is similarly defined as

z[n,m] =
∞∑

a=−∞

∞∑
b=−∞

x[n,m]W [n− a,m− b]. (3.9)

This method of performing the convolution becomes important in the many appli-
cations of digital image processing and can naturally be extended to also run on
higher dimensions such as for RGB color images which in fact are three dimensional
structures.

A CNN takes a tensor (multi-dimensional array) as input. For computer vision
tasks, this most often corresponds to a 2D (grayscale) or 3D (color) image. The input
is then convolved with at least one kernel. The kernel is simply a tensor, where all
the weights are stored. For 2D convolution, the kernels are spatially limited in terms
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Figure 3.5: A schematic view of the convolution process for an input volume. In
this case, a Full convolution is performed with a 2× 2 kernel with weights equal to
one, resulting in a 4× 4 output map.

of their width and height, but they always extend throughout the entirety of the
input depth. The convolution between the input and the kernel can conceptually be
thought of as having the kernel slide over the input volume, calculating a weighted
sum of the pixel (input) values.

The simplest setting of the sliding process is when the kernel uses a step of one,
referred to as the convolution using a stride of one. This means that to generate the
output, the kernel moves one pixel to the side after each of its applications. When
it has reached the end, it moves just one pixel down and then begins anew until
the complete input has been processed. Any integer number is usable for the stride
however, and with larger strides the output of the convolution will become smaller.
This can actually be used as an efficient down sampling operation as setting the
stride larger than one gives the same result as a traditional down sampling of the
output from a stride-1 operation.

All of the values produced by the sliding kernel are passed through an activation
function similarly as for the FCFFNN. This results in a new 2D matrix of values, a
feature map. For every kernel that is used, one of these feature maps is produced.
As the final step, they are all concatenated, or stacked, into a so called feature
volume. This feature volume can then be used in subsequent steps, that is, it can
be convolved with other kernels to produce new feature volumes which in turn can
be used by yet other kernels and so forth. Each section which takes an input and
outputs a feature volume is called a convolutional layer. Each layer may have an
arbitrary number of kernels associated with it, provided they are of the adequate
size to handle the input. Figure 3.5 shows the convolution procedure.

More operations can be applied to the feature maps and/or volume in order to
attain various effects. One very popular choice is the use of pooling. Pooling means
that one only extracts a subset of the values from the feature map to be used for
the next set of convolutions. This subset is usually obtained in such a fashion as
to portray a summary statistic of the original feature map. Oftentimes the pooling
procedure can make the network invariant to small translations of its input, meaning
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Figure 3.6: A demonstration of the max pooling procedure.

that it reacts to if certain features are present rather than where in the input they
are located. Figure 3.6 shows an example of a common pooling procedure, the so
called max pooling.

Finally, the process of finite convolution may in some cases pose a bit of a
problem. If the whole kernel (kh × kw) is to fit inside the image when performing
the convolution operation, using a stride of 1, the output feature map will shrink
with (kh − 1) pixels in height and (kw − 1) pixels in width for each convolutional
layer. This means that either the spatial extent of the image shrinks rapidly, or one
is required to use very small kernels at each layer. Both of these actions severely
limit the capabilities of the net [15]. Fortunately, this issue can be remedied by the
use of padding. Padding simply means that additional data is appended to places
where the kernel otherwise would not have fit, such as in the boundaries of an image.
There are varying choices of what to pad with, but the most common choice is often
to just add zeroes, so called zero-padding. The extent of how padding can be done
ranges from three common configurations, valid, same, and full convolution.

In the case of the valid convolution, no zero padding is used at all, meaning that
the entirety of the kernel has to fit in the feature volume. In turn, this means that
the output will shrink at every layer. The second choice, the same version, means
that just enough zeroes are added to the data so that the output of layer gets the
same size as its input. This allows for an arbitrary number of convolutional layers,
as the previous ones does not impact the premises for the next in terms of available
pixels. However, the values at the borders influences less output values and thus
become a bit underrepresented. The last choice is the full convolution. Here, the
generated output from the layers will have its width increased by k − 1 values as
enough zeroes are added such that every value can be visited k times by the kernel.
This usually means that the border values of the output are generated by fewer
input values than the ones in the center, making it troublesome to attain a kernel
that performs well everywhere.
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Figure 3.7: Illustration of the baseline steering model architecture. Boxes cor-
responds to feature volumes after each processing layer, specifying its size. Edges
between boxes denotes the applied operations: PRE for preprocessing, Ci for con-
volutional layers, FLAT for reshaping and FFi for fully connected layers.

Figure 3.8: Illustration of the preprocessing stages of the baseline steering model.
An input image is cropped on top and bottom, down sampled and normalized.

3.2 Steering Model
The model developed in this project is a CNN with a structure similar to the model
presented in [8], with the main differences being the data, preprocessing, regulariza-
tion and training procedure. Minor differences in kernel and hidden unit configura-
tions are also present. The model takes a front view image as input and consists of
three main parts. These include a static pre-processing layer, a section of five con-
volutional layers and lastly a section of four fully connected layers where the output
is a single unit (neuron) whose output represents the desired steering action. In this
case, the desired steering action is the inverse turn radius which should result in the
vehicle staying well positioned on the road. The model structure is illustrated in
Figure 3.7 and the individual parts are described throughout the remainder of this
section.

3.2.1 Preprocessing
The preprocessing component, although static and not updated during the learning
phase, was included in the network structure in order to leverage fast (GPU based)
processing routines. Preprocessing was included partly to improve the structure
of the input data, enhancing the information, but also to convert the input to an
appropriate representation for the remainder of the network. The operations applied
in the preprocessing layer can be seen in Figure 3.8 which includes cropping, down
sampling, type casting and normalization.

Cropping removes parts from the top and bottom regions of the input image,
effectively reducing the computational load. In addition, the amount of redundant
information present in the image will also decrease. 35 percent of the top of the
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Figure 3.9: Illustration of the convolutional layers of the steering model. The
size of each feature volume is specified below an illustration of the corresponding
averaged feature volume. The number of kernels, kernel size and stride are specified
for each convolutional layer.

image is removed because this part almost exclusively depicts sky and was deemed
redundant for the task of determining steering actions. Likewise, 15 percent of
the bottom of the image is removed based on the same arguments as this region
exclusively depicts the hood of the vehicle. In total, the cropping operation thus
reduces the size of the input by 50 percent. The reason for not cropping even more
of the height is that it should be possible to see the road ahead even when the vehicle
is driving in for example hilly terrain.

Further, the size of the model and the amount of computations needed is reduced
by down-sampling the cropped image with a factor∼ 3.5 using bilinear interpolation.
This results in an image with a spatial dimension of 68 × 182. The down-sampled
image is then subject to type casting because different sources of input data produces
images with varying numerical precision. The different datasets used during the
optimization process of this model had image precisions with integer representations
that varied from 1 to 4 bytes per pixel for both the 2D (grayscale) or 3D (color)
images. As such, the integer representation of the images was converted to 4-byte
floating point precision for consistency and to conform with the required precision
for the remainder of the computational layers.

Finally, a per image normalization is performed by element wise subtracting the
mean and dividing by the standard deviation of the pixel values for each processed
image. This procedure was intended to even out the difference between images
captured at different times of day, such as night and noon.

3.2.2 Convolutional Layers
The preprocessed image, or input map, is passed to the convolutional part of the
network, consisting of five layers. Figure 3.9 provides a specification of the convolu-
tional layers and illustrates the average feature volumes as outputted by each layer.
The process performed at each layer is a strided 2D convolution, followed by ELU
activations resulting in 3-dimensional feature volumes.

The kernels associated with the three first layers were set to size 5 × 5 in the
spatial dimensions while spanning the entirety of the preceding feature volumes in
the depth dimension. The kernels of the following two layers were similarly defined

28



3. Model Design

with a size of 3 × 3. Kernel sizes were partly selected based on empirical tests
where a 5× 5 window seemed to provide a good trade-off between perceptive field,
computational complexity and model size in the shallow layers of the network. In
addition, this has been shown to work well in earlier work [8]. The reduction in
kernel size towards the deeper part of the network was introduced to keep the model
size small in addition to keeping the perceptive field from becoming too large. The
reasoning behind this choice was because information at the input space effectively
gets compressed for each consecutive layer, allowing a 3 × 3 kernel to "see" more
information at a deeper level than a 5× 5 kernel would see at a shallower level.

Strides were similarly selected based on empirical evidence. Layer one to three
applies 2×2 strided convolution which effectively shrinks the output feature volume
to roughly half the size of the input volume for each consecutive layer. The result is
thus that the number of convolution operations needed is halved for each layer. Layer
four and five uses a 1 × 1 stride since at this point the feature volumes are small
enough and do not require further down sampling in order to have fast inference
time.

To keep the expressiveness of the model, the capacity for each layer was extended
by an increase of the number of kernels as the feature volumes shrinks in the spatial
dimension. In the first layer 24 kernels were used. Then for each of the following
layers, additional kernels were added. This resulted in layer 2 having 36 kernels,
layer 3, 48 kernels, layer 4, 64 kernels and layer 5 having 76 kernels. The choice of
increasing the number of kernels in the fifth layer more compared to the increase
done in PilotNet stems from the desire to retain as much feature information as
possible in the net.

3.2.3 Fully Connected Layers
The fully connected (FC) part of the model was designed to map the relevant features
obtained in the last convolutional feature volume to the appropriate steering action.
The process firstly consists of reshaping the feature volume from the convolutional
part into a vector representation. The feature vector is then successively mapped
to lower dimensional spaces where each consecutive layer represents features of a
higher abstraction level. Figure 3.10 provides a specification of the FC layers. In
layers 1, 2, and 3, ELU activations are applied to their respective outputs while
in the fourth layer, the identity function is used as activation. This last choice of
activation function was based on the desire in order to have sensitivity over the
complete range of the output.
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Figure 3.10: Illustration of the fully connected layers of the steering model. The
output of the last conv. layer is flattened before being fed into the first layer. The
feature is gradually reduced in size as its abstraction level increases, until it finally
is summarized as the 1

r
value.
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As the human brain gradually learns to perform a multitude of tasks, over many
years of experience and observations, so too must an artificial neural network learn
to perform its intended task. The process of learning for an artificial neural network
consists of gradually making changes in the weights of its connections in order to
more closely resemble some intended function.

In this chapter, the procedure for this learning process is presented in Section 4.1
where some of the methods for improving the efficiency of the training are mentioned
as well. Section 4.2 demonstrates the way in which the learning procedure has
been implemented and how the data was structured. Finally, in Section 4.2.4, an
overview of how the trained model was integrated into the aforementioned simulation
environments is given.
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4.1 Network Optimization and Regularization
Learning in a deep learning (DL) context refers to optimization of some performance
metric P , which is often implicitly optimized by minimizing a cost function J . In a
supervised setting, a typical approach is to define a cost function over an average of
training data x and corresponding target values y as

J(f(x, θ), y) = E(x,y)[L(f(x, θ), y)] (4.1)

where training and target data stems from an empirical data generating distribution.
Here, L denotes a cost function w.r.t. a single data point x and f(x, θ) denotes
the inferred output of a deep neural network (DNN) parametrized by θ [15]. In
an optimal setting, the objective would be to minimize a cost function where the
expectation is taken w.r.t. the true data generating distribution rather than the
empirical distribution obtained using a training dataset [15]. In the context of this
work, the empirical distribution differs from the true distribution since the training
data does not contain all possible driving scenarios.

The most actively used optimization methods for training DNNs consists of vari-
ations of the gradient descent algorithm (GD) [15]. GD is extensively used as is, but
also variations of it including for example the method of momentum [16] and more
recent methods which apply adaption of the learning rate during run time. Adap-
tive methods include among others the AdaDelta [17] and Adam [18] algorithms.
However, the conceptual idea of the gradient descent algorithm is illustrated in Fig-
ure 4.1, where one can observe how the minimum of the surface is iteratively found
by taking small steps in the negative direction of the gradient.

To improve the rate of which a network learns, the method of regularization is
often applied. This is a general method that applies to most ML topics and the idea
behind it can be expressed as "any modification made to a learning algorithm that
intends to reduce its generalization error but not necessarily its training error" [15].

For the remainder of this section, a few concrete examples of cost functions
that are commonly used will be presented, moving over to an overview of the most
common methods used for optimizing such functions. A short explanation to the
approach of supervised learning is then provided and finally, the method used for
regularization will be described.

4.1.1 Cost Functions
Deep neural networks can generally be applied for both classification as well as
regression tasks. That is, if the desired output should be interpreted as a probability
distribution over hypotheses (classes) or represent real valued quantities, DNNs can
serve as powerful tools. A cost function which is commonly used for classification
problems is the cross entropy. The cross entropy indicates the distance between what
the DNN predicts and the ground truth (target) distribution. The cross entropy for
a single example x is defined as

Lxe(f(x, θ), y) =
n∑
i=1

yi log(f(xi, θ)) (4.2)
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Figure 4.1: A demonstration of the gradient descent concept where the black ar-
rows represent the small steps taken in the negative gradient direction of underlying
function shown with the level curves.

where f(x, θ) is the distribution over hypotheses inferred by the DNN parametrized
by θ, y represent the target distribution and n is the number of hypotheses. For
batch input the overall cost function is defined as the expectation over the batch of
data as described in Equation 4.1.

For regression tasks, one of the most popular cost functions is the mean squared
error (MSE). This error function is both convex and symmetric which are desirable
properties of a cost function because it then penalizes both positive and negative
errors equally. The MSE is, however, rather sensitive to outliers since the error
grows quadratically for linear deviations. The MSE for a single example x is defined
as

Lmse(f(x, θ), y) = 1
n

n∑
i=1

(yi − f(xi, θ))2 (4.3)

where f(x, θ) is the inferred quantities of the DNN, y represents the target values
and n represent the number of quantities inferred by the DNN. The overall cost
function for batches of data is similarly defined by Equation 4.1.

4.1.2 Gradient Descent
Gradient descent (GD) is an iterative optimization algorithm for which there exists
different variations that introduce a trade-off between speed and accuracy of updates.
The most crucial aspect which gives preference for one variation over another is the
size of the total dataset available for training. This is the case because the difference
between variations of this methods boils down to the amount of data used for each
update.

The regular gradient descent algorithm makes use of the complete dataset at each
update step, making each update very expensive in terms of time and computational
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cost. Furthermore, using the complete dataset disables the possibility for continuous
inclusion of data in an online fashion. However, the gradient is generally more
accurate compared to methods using only a subset of the available data. In contrast,
the completely stochastic version makes use of the opposite approach. At each
update step, only a single data point is used. This provides means for fast updates,
albeit not as accurate as regular GD because gradients are calculated with respect
to single examples. The completely stochastic variation is thus particularly suited
for online learning where new data periodically becomes available.

Lastly, a popular variation of GD is the so called mini-batch gradient descent
which uses a subset of the data points, more than one but less than the complete
dataset, for each update. This method introduces a tuning parameter, the mini-
batch size, which effectively determines the trade-off between computational speed
and accuracy of the gradients. The update rule is defined analogously for the three
variations, with the difference being the use of a subset of data rather than a single
example or the full dataset. The update rule is defined as

θ ← θ − η∇θJ(f(x, θ), y), (4.4)

where η represents the learning rate parameter and x and y represent either a single,
a subset, or the complete set of data points. The learning rate is usually a small
value in the range (0, 1).

Deep neural networks are in general highly non-convex and rather complex func-
tions. Due to this, a number of problematic behaviors can often be encountered.
When such functions are to be optimized using stochastic optimization methods, a
common problem known as ill conditioning might arise. When the parameter space
of a DNN is a highly curved space (as is often the case), meaning that the second
order derivatives are large, there is often a risk of taking to large update steps. This
means that in order for a gradient descent update to lead to a smaller cost, the
learning rate often need to be reduced. As such, if the parameter space is to highly
curved, the learning rate might need to be reduced to the extent that it is close to
zero which would result in the optimization getting extremely slow.

Other issues encountered during optimization, such as exploding or vanishing
gradients, can often be encountered when the architecture of a neural network is very
deep [15]. Feed forward networks are more prone to the vanishing gradient problem
because a large number of multiplications are performed on such architectures. This
often results in a diminishing value for the gradient, causing the optimization to
slow down. Local minima and other flat regions, such as plateaus in the parameter
space, pose another problem. At such points, the gradient is already effectively
zero, causing the optimization to halt. Choosing good hyper-parameters is yet
another, often difficult, task. As mentioned, the learning rate is an example of such
a parameter that if selected too small will make the optimization process very slow
and if selected too large might cause the optimization to diverge or make it unstable
[19].
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Figure 4.2: Illustration of the supervised learning procedure. Inputs x are used to
calculate a forward pass by which a cost function J is used to determine the error
between the model output f(x, θ) and the ground truth y. The partial derivatives of
this error with respect to the model parameters θ is then calculated using backprop-
agation. These error derivatives are finally used to update the model parameters by
means of gradient descent.

4.1.3 Supervised Learning
Training a DNN on samples of input data coupled with ground truth target values is
commonly referred to as supervised learning since the model learns from examples.
An efficient algorithm for employing supervised learning for feed forward networks
is the so-called backpropagation algorithm. This algorithm provides an efficient way
of calculating the partial derivatives needed to apply parameters updates using the
method of gradient descent. As the structure of a feed forward network constitutes
a composition of (possibly many) functions, backpropagation makes use of the chain
rule of calculus to obtain the gradients w.r.t. the model’s parameters.

The supervised learning process is an iterative process which alternates the
following steps a pre-defined number of iterations or until the model parameters
converge. The process is illustrated in Figure 4.2. Given a DNN model f(x, θ)
parametrized by θ, input examples x and corresponding target values y, do

1. Calculate a "forward pass" ŷ = f(x, θ).
2. Calculate the gradient ∇θJ(ŷ, y) w.r.t. θ using backpropagation.
3. Update parameters θ ← θ − η∇θJ(ŷ, y) using gradient descent.
4. Stop if convergence or pre-defined steps are reached, otherwise repeat from 1.

4.1.4 Dropout
The dropout method of regularization belongs to a class of techniques which in
the ML context are known as ensemble methods. This class of methods aims at
reducing generalization errors by means of model averaging and has been shown
to be extremely powerful and reliable [15]. In a DL context, working with a large
number of DNNs in parallel will quickly be unmanageable as a result of the large
amount of parameters generally used by such models. To avoid this, the dropout
method provides an approximation for averaging an exponential number of models
which has been shown to be both powerful and computationally cheap for tasks
in vision, speech and computational biology [20]. An additional strength of the
dropout method is that it easily integrates with other regularization methods and
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can be successfully used with an GD optimization scheme.
In a general feed forward network, the mathematical description of a forward

pass of data through a layer l as described in Section 3.1.2 gives an output a(l). The
dropout algorithm modifies this output during the training phase by multiplying
each output unit a(l)

i of a layer with a random variable r(l)
i ∼ Bernoulli(p) such that

the output of that layer is replaced by

a(l) ← a(l) � r(l) (4.5)

where r(l) represents a tensor of independent Bernoulli random variables [20] and �
denotes element wise multiplication.

By applying this modification to each layer, samples of sub networks from a col-
lection of 2n possible configurations can be obtained where n represents the number
of units in the base network architecture. All sub networks share the same weights
so by applying this method of sampling, most configurations will only be used for
training a small number of times or not at all depending the size of the base ar-
chitecture. It has further been suggested that for most architectures and units, the
probability p for which a unit is dropped, can be fixed and set to 0.5 (or determined
using a validation data set) to achieve good regularization [20].

4.2 Implementations
In this section, a description of the important parts of the training procedure will be
given. The Tensorflow library, a tool developed by Google for efficient computation
and visualization of mathematical graphs (which is extensively used in this project),
will be briefly presented. Then a description of the data and input pipeline is given,
focusing on how it was implemented in order to reduce input lag from the hard
drive and to make the datasets more manageable. Further, an overview of the hyper
parameters and error metric used for training of the models are shown. Finally,
the process of incorporating the trained models in the simulated environments is
explained.

4.2.1 TensorFlow
TensorFlow is an open source software library for machine intelligence, initially de-
veloped by the Google Brain Team [21]. The library supports definition of compu-
tational graphs supporting multidimensional data arrays (tensors). TensorFlow was
initially developed for conducting research on large scale deep neural networks but
is very general purpose. Any machine learning algorithm that can be represented
in the form of a computational graph can be implemented using this framework.
TensorFlow supports computation on a variety of hardware, including both single
and multiple CPU/GPU clusters. Further, TensorFlow provides APIs in several
programming languages for both construction and execution of TensorFlow graphs.
The most complete and easy to use API is written in the Python programming
language, the core API is written in C++ and other experimental API’s include
programming languages such as Java and Go.
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Figure 4.3: A schematic overview of the input pipeline for model training. The
high latency of accessing the hard drive where the training images are stored is
mitigated by running a separate thread, filling intermediate queues in RAM which
the model training thread loads its data from.

4.2.2 Datasets and Input Pipeline
There are several ways in which one can feed data into models created with the
TensorFlow environment. One way is to train models using one batch of data at a
time, loaded from the hard drive as needed. This method works well for data sets
that are quite small as the accumulated overhead from accessing the hard drive is
limited over a short training session. For moderately sized data sets, the overhead
might be a bit cumbersome. One way to remedy this is to load most of the data into
RAM, requiring only a single large load time, but at the cost of a larger memory
footprint. However, for very large data sets, this might not be possible as few
ordinary computers have more than 64 GB of RAM.

Another option is to only load in parts of the data at a time. For this work,
the datasets were initially converted into TensorFlow TFRecord format in order to
leverage data queues. Furthermore, packaging the data into TFRecords had the
benefit of combining the very large amount of separate training examples to larger,
more manageable files.

For training, the queues were then populated with data from background threads,
ensuring that the training procedure, running on the main thread, was protected
from disk lag. From the TFRecords, training examples (image-steering pairs) were
loaded into the queue in batches. Batches were formed by shuffling examples in
random order from random files, ensuring that the model observations become as
uncorrelated with each other as possible. This enabled a more smooth and reliable
training procedure in terms of performance and time consumption. A schematic
representation of this procedure can be seen in Figure 4.3.

4.2.3 Model Parametrization and Training
Three different versions of the steering model were trained, one for each of the
datasets described in Chapter 2. For these three versions, the same specification
for the training procedure was used. The training was performed in a supervised
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setting, with the mini batch size set to 64 images at a time. The batches of images
were fed into the model which then predicted some outputs. These outputs were
then compared to the ground truth for those images (the recorded SWA) and the
mean squared error loss was calculated.

The actual training, or optimization of the network, was performed using gra-
dient descent with the Adam [18] optimizer with an initial learning rate of 0.0001.
Further, in order to improve the networks generalization, dropout was applied of the
first three fully connected layers with a keep probability p = 0.5. The probability
for dropping units at each layer was selected because it has been suggested that this
value of p is close to optimal for a wide variety of architectures and tasks [20].

Because the difference in data size for the training of the three different models
was quite significant, the total number of batches (iterations) each was trained on
differed substantially as well. For the model trained on Volvo expedition data,
roughly 200 thousand iterations seemed to produce the most general model. For
the models trained on Unity and CarMaker data, roughly 20 thousand training
iterations seemed to produce the best results.

4.2.4 Simulator Interfacing
For the purpose of evaluation in a closed loop setting, the developed models needed
to be integrated with the simulation environments described in Chapter 2. The
models had to receive information from the simulation and send back the inferred
actions in order to achieve real time decision making.

For this end, the TensorFlow models were converted to a platform independent
format (protocol buffer format), able to interface most software languages. The
interface with the Unity game engine did not explicitly require this conversion since
the interface was based on the Python programming language. Integration with the
CarMaker environment however, required the use of the C and C++ programming
languages, and thus required this platform independent format.

The initial version of the Unity simulator was adapted by the Udacity organi-
zation [22] from the Unity standard assets to serve as a platform for one of their
"nanodegree" programmes. The communication interface between the Unity game
engine and the model was done via a websocket interface, where images from Unity
were sent to the model for processing and the output of the model transmitted back
to control the virtual car. For every rendered frame, the captured image was trans-
mitted from the virtual front facing camera to the model which then transmitted
back the inferred steering action.

For their programme, Udacity had created a small python script to serve as the
interface between their model and the Unity engine. This script was substantially
modified in order to utilize the model developed in this work. Both the steering and
the vehicle throttle was controlled via this script, and as the created model only gave
a steering command as output, a very simple proportional controller was created
to generate the acceleration signal. Finally, support for converting the curvature
1
r
measure output from the model to a Unity compliant format was created. The

transformation was based on measurements of the virtual vehicle made via the Unity
editor.
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To interface the CarMaker environment, a modified user project was created. A
user project is the equivalent of an internal user application, with user accessible
C code. From this application, in principle all aspects of the simulation loop can
be controlled, for example assignment of the steering wheel angle of a simulated
vehicle. Because the application code can be accessed directly, integration of custom
C/C++ code for vehicle control was somewhat straight forward. In order to control
the steering of a simulated vehicle in CarMaker, a custom C++ library based on
the TensorFlow source code was built. This library acted as an interface between
CarMaker and the steering model developed in this thesis. In CarMaker, the state
of the simulated environment was updated from a main control loop where the
state update included all actions taken by actors in the environment. For example,
updating the position of a simulated vehicle driving at a certain velocity with a
particular angle of the steering wheel.

To obtain front view images from the simulated vehicle, an extension to the
CarMaker software needed to be used. This was the so-called video data stream
(VDS) extension that made it possible to include a virtual front view camera into
the simulated environment. The main control loop and the VDS extension (image
feed) was not synchronized and could be viewed as two separate applications running
in parallel. This is much like in a real world setting where the environment continues
to change and does not wait for a driver to process received visual input and to act
on it before transitioning to the next state.

For simulations, when an image was received from the virtual camera, it was
passed to the model using the C++ library and was used to compute the desired
steering action to take. The steering action was then sent back using the C++
interface and the state of the vehicle was updated.
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5
Model Evaluation

In many cases, it can be almost impossible to determine best options by visual
inspection. So instead we often use some kind of metric. Usually it takes the form
of some number, discriminating the wheat from the chaff. Unfortunately, reality is
subjective. Difference in perspective might play a significant role in how objects and
phenomena are perceived. Due to the difference in perspective, deciding on which
metric to use is not a straightforward process.

In this chapter, the concepts of closed loop simulation and transfer learning are
initially introduced in Section 5.1 and 5.2. Focus is put on the domain adaptation
aspect since (the primary) model in this work was trained using real world data
but evaluated in a simulated environment. An initial view of the model’s predictive
capacity is given in Section 5.3 where closed loop tests are demonstrated. Section 5.4
briefly outlines what the model seems to pay attention to in the different domains.
Then, in Section 5.5, the proposed penalty metrics for driving performance are
defined. Using these performance metrics, the model behavior on realistic road
representations is investigated in Section 5.6 where the model’s predictive capacity
is analyzed, compared, and discussed for different cases of driving.
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Figure 5.1: Schematic illustration of the closed loop simulation setup. At each
point in time, the model observes a state/observation xt and decides on what action
f(xt, θ) to take. The action is realized in the simulated environment which is updated
to a new state xt+1, observable by the model.

5.1 Closed Loop Simulation
For the purpose of this work, different models were trained to imitate the behavior
of human drivers in order to learn the concept of steering a vehicle. As described in
Chapter 4, the models were trained on the various datasets described in Chapter 2.
This was an iterative process where models with specific training setup, data selec-
tion and configurations were subject to evaluation. Based on the evaluation results,
the model, learning procedure and data were updated in order improve performance.

These types of models are commonly evaluated using validation datasets. That
is, data not seen by the models during the learning phase annotated with ground
truth labels. However, as is the case when steering of a vehicle, there are many
valid ways in which one can steer at any given point in time. This is a sequential
decision-making problem. Therefore, requiring that a model predicts the exact same
action as that of a particular human driver is not necessary. For example, given
a road segment of a curve, it is most likely the case that it can be maneuvered
correctly by a large variety of different steering actions, other than those taken by a
particular human driver. To this end, evaluation in a closed loop setting is a way of
empirically determining the stability of a system. Figure 5.1 illustrates the closed
loop control setup where at each point in time a state/observation xt is seen by the
controller/model. The actions taken by the model at each point in time will thus
influence the next state xt+1 and subsequently the behavior of the model at future
points in time.

5.2 Transfer Learning
Creating a system that works satisfactory in a real-world setting based on synthetic
data is a desirable goal. This would reduce the need for a lot of expensive and often
time-consuming data collection processes. However, if large databases already exist
(as is often the case for large car manufacturers) or are easily obtained, an equally
desirable goal is to make good use of the available data. If data driven models could
be trained using available real-world data while still being able to be tested and
evaluated in simulated environments, this would in the same way reduce the need
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for costly HIL and/or vehicle tests at early stages of development.
The capabilities of the models used in this work were analysed in terms of knowl-

edge transfer across different domains, in this particular case, training the model on
real data but evaluating on synthetic data. This refers to the method of transferring
knowledge from a known set of conditions to a new set of conditions. Transfer learn-
ing is defined in [23] as knowledge transfer between domainsD1, . . . , Dn and/or tasks
T1, . . . , Tn. A domain D is defined by a feature space X and a marginal probability
distribution P (X) for X = x1, . . . , xn ∈ X and is denoted

D = {X, P (X)}. (5.1)
In the context of this work, the feature space X corresponds to the space of all
possible image representations (the pixel space) and the random variable X then
represents a particular image.

A task T is similarly defined for a given domain D by a target space Y and a
conditional probability distribution P (Y |X) denoted

T = {Y, P (Y |X)}. (5.2)
Analogously, in the context of this work, Y represents the space of all possible
steering actions, where the random variable Y ∈ Y is a particular steering action.
The conditional probability distribution thus describes the probability of a given
steering action conditioned on a given image and is what is learnt using training
examples yi ∈ Y , xi ∈ X.

Pan and Yang [23] divides the possible applications of TL into four categories
based on knowledge transfer between source and target domains (DS,DT ) and source
and target tasks (TS, TT ). The category which is of the most relevance for this work
is known as domain adaptation and occurs when the source and target domains
have different marginal probability distributions P (XS) 6= P (XT ). The remainder
of the categories consists of source and target domains having different features
spaces (XS 6= XT) and source and target tasks having different target distributions
(YS 6= YT) and/or conditional probability distributions (P (YS|XS) 6= P (YT |XT )).
The last two cases often arise in the case of task adaptation and is probably the
most common case of transfer learning applied to deep neural networks, in particular
to CNNs. For classification tasks, CNNs are usually pre-trained on some large
database and the feature representations obtained are subsequently used for different
classification tasks.

For this work, domain adaptation occurs since training was done in a source
domain that consisted of real world images and the model was subsequently applied
to the target domain of synthetic image data for evaluation. The feature spaces
are thus the same (the pixel space) while objects and environments generally look
different. Intuitively, this is the case because the probability of observing a real-world
image in the simulated environment is (extremely) small. Figure 5.2 illustrates the
different domains used for training and evaluation.

Through the remainder of this chapter, the results presented show that the pro-
posed type of model indeed works in a satisfactory manner when domain changes
are applied. The results therefore suggest that pre-existing real data can be used
for both rapid and inexpensive development of data driven models.

43



5. Model Evaluation

Figure 5.2: Schematic illustration of the instance of domain adaptation applied to
the model used in this work. The model is trained on real world image data from the
source domain to perform the steering task and subsequently applied to the target
domain of synthetic image data for evaluation.

5.3 Predicting Steering Actions
Based on the synthetic data gathered from the Unity and the CarMaker environ-
ments, two different models were created to serve as a proof of concept, as described
in Section 4.2.3. These models were trained on the same type of data that they
would be exposed to during evaluation (no domain adaptation) and could therefore
serve to indicate whether the model architecture even had the capacity to learn
the concept of driving. Had these models failed, it would have served as a good
indication that another model architecture might have been required.

As mentioned in Section 2.4 and 2.5, the datasets these models were trained on
was significantly smaller than that of the Volvo expedition dataset and thus required
only a fraction of the time for training. Naturally, using only a very small dataset
meant that the models were likely to become quite limited in terms of generality,
but since their purpose was to demonstrate the capability of learning, this was not
considered an issue.

Both of the proof of concept models were evaluated empirically in the simulator
environments, where their performance could easily be assessed. Recordings1 of the
simulations clearly shows that the models have learned the concept of following a
road quite nicely, based on a small amount of data. The model trained on the 1.4
million images from the Volvo expeditions had a dataset roughly 28 times greater
than the proof of concept models, and therefore it was allotted significantly more
time for its training phase. However, unlike the models trained on synthetic data,
this one was to endure a domain change for its evaluation. Similarly as for the proof
of concept models, the Volvo expedition data model was to be evaluated in both
Unity and CarMaker as well. However, for this model, rather than just performing
very generic tests, the initial performance of the model was evaluated based on few
specifically constructed scenarios.

Because ordinary driving can be decomposed into the three different scenarios,
driving straight, turning left and turning right, these three scenarios were considered

1https://youtu.be/jC8FFt-bV_s
https://youtu.be/IHgpG3OlGbg
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Figure 5.3: The Unity sky-car driving in a right turn on a 6-lane highway in the
Unity game engine.

good base cases to investigate the effectiveness of the new model. Based on the
performance on the base cases, conclusions as to whether the domain change had
affected the model performance could be gauged. In addition, performing these tests
might also have revealed any latent bias in the training data.

In this section, the performance on the base cases will be presented for each of the
two simulation environments. Even though some effort was made in order to make
the two simulation environments as similar as possible in terms of road geometries,
Unity lacked the support CarMaker provided for easily specifying roads. A such,
some mismatch between the two was unavoidable. Thus, a detailed description of
the specification for the base case road geometries will be given for each respec-
tive simulation environment. Nevertheless, the results from tests will be presented,
coupled with a discussion of the nature of the model’s predictive capability.

Finally, this section ends with an empirical robustness analysis of the model.
The robustness of the model was analysed based on how well it handled sudden
disturbances in the form of fault injections. In this case, the fault injections took
the form of temporary overrides to the model output, causing a misalignment of the
vehicle in relation to its lane. From this erroneous state, the model’s capacity for
recovery was investigated, and the results discussed.

5.3.1 Driving in the Unity Game Engine
In the Unity environment, samples of the inferred steering actions (curvature) were
collected for specific driving scenarios by closed loop simulation using the model
trained on Volvo expedition data. The road segments used for simulation consisted
of parts of a 6-lane highway from the Kajaman road package [24]. The scaling of
this road was set such that each lane had a width of 3.9m, a roadside width of 0.6m
foreclosed by barriers of height 0.8m. The center, left most and right most lane
markings were solid lines while markings between lanes were 3.3m line segments
with 3.6m spacing.

The road geometries used for evaluation corresponded to initial stretches of
roughly straight road followed by either a left or right turn (approximately 90◦)
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Figure 5.4: Predicted curvature values (1
r
) and smoothed curvature values

(
1
r

)∗
from the steering model introduced in Section 3.2. The model was trained on Volvo
expedition data and samples were collected from two evaluation runs in the Unity
game engine on a 6-lane highway as can be seen in Figure 5.3.
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Figure 5.5: Volvo XC90 driving in a left turn on a 6-lane highway in the IPG
CarMaker environment.

with varying radii. The radii were initially large and decreased towards the end, i.e.
the curves got sharper towards their end. The total driving distance was approx-
imately 1.7–2,4km. Figure 5.3 illustrates a third person view of the initial part of
the right turn road segment, where the Unity sky-car is positioned in a center lane.
Recordings2 of the driving simulations with the vehicle speed set to a constant 100
km/h show the model performance.

The predicted curvature values for both the left and the right turn simulations
can be seen in Figure 5.4. In addition to the predicted curvature, a smoothed average
of the signal is included in order to observe the general trend of the predictions. As
can be seen, the predicted signals are rather noisy and shifts quite a lot between
samples. This is not surprising because the steering model predicts the curvature
on a frame–by–frame basis. Therefore, it seems to alternate between over and under
estimating the actions to take for an optimal path.

From empirical observations of these driving scenarios, the vehicle stays rather
well positioned in its lane and does not oscillate within the lane as much as the curves
in Figure 5.4 seems to suggest. In summary, this model seems to have adapted rather
well to the Unity environment even though it never observed any data from that
domain during training.

5.3.2 Driving in IPG CarMaker
In the IPG CarMaker environment, samples of the inferred steering actions (curva-
ture) were similarly collected for specific driving scenarios as a basis for analysis.
The road segments used in this case also consisted of a 6-lane highway where each
lane had a width equal to 3.75m and a roadside width of 0.5m. This lane specifi-
cation corresponds to a road of "high standard" in Sweden [25]. Lane markings are
similar to those of the road used in the Unity environment. The center, left most
and right most lane markings were solid lines while markings between lanes were 3m
line segments with a 9m spacing. The road geometries consisted of approximately

2https://youtu.be/DE1q1qPoJ64
https://youtu.be/B98VdNiNBqo
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Figure 5.6: Predicted curvature values (1
r
) and smoothed curvature values

(
1
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)∗
from the steering model introduced in Section 3.2. The model was trained on Volvo
expedition data and samples were collected from two evaluation runs in IPG Car-
Maker on a 6-lane highway as can be seen in Figure 5.5.

1km straight road followed by either a left or right 90◦ turn with a constant radius
of 1km and ended with additional stretches of straight road. Figure 5.5 illustrates
a third person view of the left turn road segment where a simulated Volvo XC90 is
positioned in a center lane.

Recordings3 of the driving simulations performed in CarMaker, with a fixed speed
of 100 km/h, demonstrates the model performance. The predicted curvature values
for both the left turn and the right turn simulations can be seen in Figure 5.6 in ad-
dition to the corresponding smoothed predictions. Similar behavior as that observed
from simulation in the Unity environment can be seen in this case. The predicted
values seem to alternate between under and over estimating the curvature. By sim-
ilar empirical observation of the driving scenarios as in the Unity case, the vehicle
stays rather well positioned in its lane and does not show any large oscillatory behav-
ior. In summary, this model seems to also adapt well to the CarMaker environment
even though it never observed any data from that domain during training.

3https://youtu.be/IF6oV9et9T0
https://youtu.be/STluSPG3V2g
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Figure 5.7: Illustration of the visual backpropagation procedure. The averaged
feature map at a layer L is deconvolved (up sampled) and elementwise multiplied
with the average feature map of the previous layer L−1, resulting in an intermediate
feature mask. The intermediate mask is then deconvolved to produce a feature mask
for layer L− 2 and the process is repeated until the input layer is reached.

5.3.3 Robustness
When designing a control system, one usually intends it to be run under some
nominal conditions. During these conditions one would like the controller to behave
in such a way that it fulfills some set specification. In this case for example, one
can consider the specifications being to stay properly aligned in a lane for extended
periods of time. To handle this, the controller would have to be able to handle
the slow changes in road geometry one encounters while driving on highways. Of
course, a proper control system should be able to handle the nominal cases but this
is not always sufficient. Sudden changes in the environment or changes in setpoints,
may force the system outside of its nominal range. In such cases one would like
the controller to have such characteristics that it manages to reinstate the nominal
behavior again rather than having instability ensue.

In this case, the robustness of the created model for steering the vehicle was
empirically analysed. The model was set to run on the road segments defined in
Secion 5.3.2 and 5.3.1 but at some random point in time, the model would be subject
to a fault injection. Whenever such an event occurred, the steering of the vehicle
was overridden as to force its front outside of the currently traversed lane. From this
new orientation, control was reinstated to the model which then had to correct for
the error4. These correspond to steering angle offsets to the left and to the right for
both simulation environments respectively. From the simulations, they clearly show
that the model exhibits some characteristics of robustness. The model manages to
guide the vehicle back into the lane after having the vehicle’s position displaced.

5.4 Domain Invariant Features
To further investigate if a model trained on real world images generalizes across dif-
ferent domains, an analysis on the decision-making process was made. This analysis
was based on visual backpropagation [26] which is an algorithm for determining, in

4https://youtu.be/alP_zydEVac
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Figure 5.8: Illustration of the most significant pixel regions (pixels with the high-
est activation values), obtained through visual backpropagation from the proposed
model trained on Volvo expedition data. Images are samples from three different
environments that correspond to a Volvo expedition (left), IPG CarMaker (center),
and the Unity game engine (right).

the case of image data, the pixel regions of an input image that have the highest
activation for a given model output. The purpose of this analysis was to determine
if these regions were similar for different domains, i.e. similar when images from
the simulation environments were fed to the model trained on real image data. The
visual backpropagation algorithm illustrated in Figure 5.7 has been summarized
in [27] and is repeated here for clarity.

1. In each convolutional layer, the feature maps are averaged.

2. The final averaged map is scaled up to the size of the map of the layer below using
deconvolution. The kernel size and stride used for the deconvolution are the same as
in the convolutional layer used to generate the map. The weights for deconvolution
are set to 1.0 and biases are set to 0.0.

3. The up-scaled averaged map from a deeper level is then multiplied with the averaged
map from the layer below (both are now the same size). The result is an intermediate
mask.

4. The intermediate mask is scaled up to the size of the maps of layer below in the
same way as described Step 2.

5. The up-scaled intermediate map is again multiplied with the averaged map from
the layer below (both are now the same size). Thus, a new intermediate mask is
obtained.

6. Steps 4 and 5 above are repeated until the input is reached.

For this case, samples of images from Volvo expeditions, Unity and IPG Car-
Maker were processed by the model trained on Volvo expedition data. The feature
maps obtained from the processing stage was then subject to visual backpropagation.

Figure 5.8 illustrates one result showing a strong indication that lane markings
seems to be important features for making steering decisions, which has previously
been argued for in [26]. The left most image is a sample from the Volvo expedition
data and as can be seen, the pixel regions with the highest activations for both the
center image (obtained from IPG CarMaker) and the right most image (obtained
from Unity) are highly similar to that of the real-world image. Based on the similar-
ity in activations, this shows that knowledge obtained by learning from real world
image data is transferable across domains.
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vehicle

wl wrw′LwL

wv
dl dr

Figure 5.9: Illustration of a road segment showing the lane width wL, penalty
regions wl and wr, non-penalized lane region w′L, vehicle width wv and vehicle–to–
lane marking distances dl and dr.

5.5 Performance Metrics
Rating the performance of a driving algorithm is not a trivial task. The performance
of driving needs to be quantified based on measures representing what good vs. bad
driving behavior is, which is subjective to some degree. However, in this section,
two different penalty metrics for assessing the quality of driving are proposed which
can be used for comparing driving algorithms. Firstly, a metric penalizing erroneous
vehicle positioning is introduced and is followed by the description of a metric with
the purpose of penalizing noisy driving trajectories and reward low energy utilization
in terms of vehicle steering.

5.5.1 Lane Positioning Penalty
A vehicle’s position on the road, or more specifically in a lane, is an important
measure of the driving performance. If an autonomous vehicle is able to stay well
positioned within the regions for which it is allowed to drive, its driving performance
with respect to positioning is said to be good, and the opposite if it is not able to
stay within this region. In this section, such a measure is defined as an error metric
denoted the lane positioning penalty.

Figure 5.9 illustrates a road segment with two lanes, both of width wL, and a
vehicle of width wv positioned in the right lane. The positioning penalty regions of
the right lane are defined as the widths of the striped areas on either side of the
vehicle, denoted wl and wr for the left and right regions respectively. The width of
the non-penalized region of the lane is thus defined as w′L = wL−(wl+wr). Further,
the distances from the edges of the vehicle to the left and right lane markings are
denoted dl and dr respectively.

The lane positioning penalty ew(t) for time step t is analogously defined for
the left and right regions. The penalty region widths are hyper parameters that
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Figure 5.10: Lane positioning error as a function of vehicle–to–lane marking dis-
tance d(t) with respect to penalty region w(t) and β for different choices of β.

potentially vary over time and need to be tuned to represent erroneous positioning
for different roads. However, given a defined penalty region w(t) (either left or right)
and vehicle to lane marking distance d(t) (corresponding left or right), the penalty
function is defined as

ew(t; β) =


1 if d(t) < 0
(βw(t))

d(t)
w(t) − βd(t) if 0 ≤ d(t) ≤ w(t)

0 if d(t) > w(t)
(5.3)

where β is an additional hyper parameter that determines the shape of the error
function w.r.t. the width of the penalty region w(t). Figure 5.10 illustrates the
positioning penalty as a function of the vehicle to lane marking distance d(t) for
three values of β. As can be seen, a value of β close to 1 corresponds to an almost
linear increase in error for decreasing distance to the lane marking while a smaller
value of β corresponds to an exponential increase in error when the vehicle gets
closer to the lane marking.

The lane positioning penalty for a driving session (during t = 1, . . . , T ) is further
defined as the average of the left and right positioning penalties for all time steps as

Ew(β) = 1
T

T∑
t=1

[ewl
(t; β) + ewr(t; β)] . (5.4)

where Ew(β) ∈ [0, 1] and 1 corresponds to entirely bad positioning and 0 corresponds
to perfect positioning.

5.5.2 Accelerations and Jerks
In addition to vehicle positioning on the road, good driving behavior in the sense
of how smooth and comfortable a driven trajectory is, can be characterized by the
level of accelerations and jerks a vehicle is being subjected to. Consequently, since
only lateral positioning (steering) is being controlled for this work, only lateral
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accelerations and jerks will be used for comparing the level of comfort of driving
tests.

Two trajectories are illustrated in Figure 5.9, one as a solid line and the other
as a dashed line in the right lane segment of the road. The solid line represents the
better of the two trajectories where the vehicle is subject to less lateral accelerations
and jerks than from the other. Unfortunately, quantifying how bad a jerking driving
trajectory is, is quite subjective. What some drivers experience to be uncomfortable
might be acceptable for others. Furthermore, it could be a significant difference
between what drivers and passengers consider acceptable. Because the passengers
do not have direct control of the vehicle, they might be more easily startled by
sudden changes in velocity etc. Based on the fact that all persons in an autonomous
vehicle can be considered passengers, the reaction from them is more informative.
From empirical studies discussed in [28], one can draw the conclusion that up to some
certain threshold, jerks and accelerations only pose minuscule decreases in comfort.
However, passing this threshold, the experienced discomfort rapidly increases.

This level of discomfort (or error) elat as a result of the acting acceleration and
jerks is defined in [28] as

elat(t; g) =


x(t)2

g2 if x(t) < g(
5
6 + x(t)2

6g2

)6
if x(t) ≥ g

(5.5)

where x(t) is either the measured lateral acceleration (or jerk) for time step t and
g the comfort threshold. In this case, the comfort threshold was set to 1.8m/s2 (or
1.8m/s3) as it was deemed a good value based on empirical studies performed on
highways in Canada and China [29, 30]. The level of discomfort is illustrated in
Figure 5.11 for this value of the comfort threshold. Based on this criterion, it is
then possible to estimate the experienced comfort for a passenger for a particular
driving scenario. Different agents driving the same scenario, with the same vehicle,
can then also be compared in terms of comfort level.

The level of discomfort for a driving session (during t = 1, . . . , T ) is further
defined as the average accumulated discomfort for all time steps as

Elat(t, g) = 1
T

T∑
t=1

elat(t; g). (5.6)

5.6 Realistic Road Driving
Based on the proposed performance metrics, quantitative evaluation of the model
could be made. In contrast to the tests described in Section 5.3.1 and 5.3.2, where
the model had been subject to simple road segments, a more realistic evaluation
was performed as well. For this case, real world road geometries, obtained via
Google Maps, were included in CarMaker. For the Unity environment, a model of
a highway was downloaded. These roads geometries were much longer and more
realistic than the simple road segments from previous tests which meant that if the
model accumulated some error over time, it should at some point have driven of the
road.
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Figure 5.11: Level of discomfort metric elat(x) for a comfort threshold g = 1.8
m/s2 or m/s3 for x being either lateral acceleration or jerk.

Figure 5.12: Birds eye view of the Kajaman highway road geometry used for
evaluation in the Unity game engine. The complete road amounts to roughly 20km.
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Figure 5.13: Illustration of two road segments used for evaluation in IPG Car-
Maker. These are 30km of the VCC Drive Me rout (left) and 53km of Riksväg 160
(right).

The model trained on Volvo expedition data was exposed to three different sce-
narios of driving. Two in the CarMaker environment and one in the Unity environ-
ment. The road geometry used in the Unity environment (Kajaman road [24]) was
a six-lane highway with a length of roughly 20km. No speed limit existed for this
road, but as highways in Sweden often have a speed limit of 100km/h, such a limit
seemed fitting. Figure 5.12 shows a birds-eye view of the complete route.

In CarMaker, the Volvo Drive Me route around Gothenburg and an excerpt from
Riksväg 160 (Rotviksbro to Ucklum) as seen in Figure 5.13 were used. The Drive
Me route consisted of approximately 30km of six to four lane highway with a speed
limit ranging from 70-90km/h. The excerpt from Riksväg 160 consisted of 53km of
two lane country road with speed limits in the range 50-80km/h. For simulations,
a permanent speed of 70km/h was used on Riksväg 160 while the proper speed
limits where kept for the Drive Me route. In addition, the VCC Drive Me route
was evaluated for day time driving while Riksväg 160 was evaluated for night time
driving.

Simulations5 show that the model keeps the vehicle properly aligned in the lane
throughout the complete evaluation runs and manages to drive without issue. Some
sub-optimal alignment of the vehicle is visible at times (the vehicle being a bit
too close to either lane marking), but considering the environment around it, the
behavior seems acceptable. In the case of the Drive Me route for example, safely
cutting a corner a bit in a steep curve at 70 km/h seems like an acceptable thing to do
since most humans drive in a similar fashion. Based on the measure of performance

5https://youtu.be/pT4D1zS6qz4
https://youtu.be/5nvcDgFTOJ8
https://youtu.be/iaR6o8PqJgo
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Figure 5.14: Lane penalty metric Ew(β) for lane penalty width w ∈ [0, 0.875] m
and β ∈ {0.01, 0.1, 1}. Vehicle–to–lane distances were collected for the 30km VCC
Drive Me route and 53km stretch of Riksväg 160 when the vehicle was controlled by
the model trained on Volvo expedition data. The total lane widths are 3.75m and
the test vehicle width was 2m.

used in [8], the level of autonomy achieved was either very close or equal to 100%
for the performed tests.

During simulation in IPG CarMaker, the lateral acceleration of the vehicle as well
as the vehicle–to–lane marking distances were logged for the evaluation runs. In the
following sections, the results obtained using these time series are presented based
on the penalty metrics defined in Section 5.5. As the proposed lane penalty metric
has two hyperparameters, these needed to be tuned for the road conditions and
desired driver style. Preferably this would have been done by performing several test-
runs with real drivers, logging both (subjectively) good and bad driving behavior.
Unfortunately, real vehicle tests were not possible to do in this case, and as such,
no tuned values for these parameters are presented. Instead, the performance was
determined for a variety of parameter configurations.

5.6.1 Lane Positioning Performance
The lane penalty width (LPW) wl (left) and wr (right) were assumed to be equal
and constant (not time dependent) for each simulation run. The lane positioning
penalties obtained for both road geometries can be seen in Figure 5.14 for a range
of the LPW parameter w ∈ [0, 0.875]m and β ∈ {0.01, 0.1, 1}. The values used for β
was based on the motivation presented in Section 5.5.1 and the range of the LPW
parameter was determined based on the vehicle and lane configurations used for the
simulations. In these cases, the lanes were 3.75m wide and the vehicle had a width
of 2m.

The intuition for different LPW parameter values is that an increasing value will
penalize deviations from the lane center more. A LPW of zero thus corresponds
to no accumulation of penalties, no matter the vehicle’s positioning in the lane, as
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long as the vehicle remained within it. For the opposite case, a LPW of 0.875m
corresponds to penalties being accumulated as soon as the vehicle deviated from the
absolute center of the lane.

For these evaluations, the driving performance was deemed (subjectively) good.
Therefore, a parameter configuration resulting in a low lane positioning penalty
seemed reasonable. A good choice of LPW would then be within the range [0.5,
0.6]m, allowing the vehicle to have a lateral displacement of approximately 0.27 to
0.37m from the lane center without accumulating any positioning penalty. For the
different choices of β, this corresponded to the vehicle being well positioned roughly
94–99% of the time while driving on both the VCC Drive Me route and Riksväg
160. The small penalty (1%) even for an LPW of zero for the VCC Drive Me route
is a result of the corners being cut in some of the sharp curves of this road.

5.6.2 Level of Discomfort
The lateral acceleration and jerk obtained for a given road geometry provides a
measure of the smoothness of the inferred steering actions of the model. For this
evaluation, the optimal lateral acceleration was assumed to be known and logged
from an optimal trajectory of the road. Preferably, this trajectory would have been
obtained by from a human driving the particular route at hand, however in this case,
the human behavior was instead approximated with a driver model from the IPG
CarMaker software (the IPG driver). Because the IPG driver has full knowledge
of the complete simulated environment at all times, its driving behavior could be
considered optimal. This IPG driver was set to traverse the simulated route, allowing
for the collection of data. This data could then be used to make a comparison of
the model performance in terms of the comfort level. The lateral acceleration and
jerks were evaluated for both road geometries using the model trained on Volvo
expedition data and the IPG Driver. Excerpts of the measured signals can be seen
in Figure 5.15, 5.16, 5.17, and 5.18.

From Figure 5.15 and 5.16, one can see that the model generally follows quite
closely to the IPG driver in terms of accelerations. For minor road curvatures, it
can clearly be seen that the model seems to constantly over and under estimate the
required curvature of the road. Nevertheless, for major curvatures, the model seems
to perform much better, suggesting that it is better at determining curvatures of
actual turns rather than straight sections. The reason behind this more prominent
acceleration is based on the fact that the model operates on a "frame–by–frame" ba-
sis. For each time instance, the model decides on the appropriate steering command
to take, resulting in an oscillatory behavior.

Due to this oscillatory behaviour, there is a significant increase in the jerks
measured from the trajectory. From Figure 5.17, and 5.18, one can clearly see a
difference between the jerks measured by the use of the IPG driver and that of
the model. For minor road curvatures, one can with some effort distinguish that
the model to some extent follows the general trend of the curve of the IPG driver,
although with much more noise. Similarly as in the case of the accelerations, it is
observable that the model seem to perform better for major road curvatures.

From the gathered data, the error metric Elat(t; g) introduced in Section 5.5.2
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Figure 5.15: Logged lateral accelerations on the Volvo Cars Drive Me route for
two different sections of the route with different degrees of curvature. The solid line
represents the model trained on the Volvo cars Data and the dashed the default IPG
driver.

6,250 6,300 6,350 6,400 6,450 6,500 6,550 6,600 6,650 6,700 6,750 6,800 6,850
−1

0

1

La
t.

ac
c.

m s2

Minor road curvatures

Model
IPG Driver

2.89 2.89 2.9 2.9 2.91 2.91 2.92 2.92 2.93 2.93 2.94 2.94 2.95
·104

0
1
2

Distance [m]

La
t.

ac
c.

m s2

Major road curvatures

Model
IPG Driver
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of the route with different degrees of curvature. The solid line represents the model
trained on the Volvo cars Data and the dashed the default IPG driver.
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Table 5.1: Level of discomfort Elat(t; g) for the model trained on Volvo expedition
data and the IPG driver with a comfort threshold g = 1.8. The level of discomfort
is calculated based on both lateral accelerations and jerks for the Volvo Drive Me
route and Riksväg 160.

Driver/signal VCC Drive Me route Riksväg 160
Model/acc. 0.1600 0.1112
IPG driver/acc. 0.1404 0.1039
Model/jerk 0.0390 0.0335
IPG driver/jerk 0.0227 0.0070

can be used to compare the level of discomfort of the driving behaviour of the model
with that of the optimal driver. A comparison between the model and the IPG driver
can be seen in Table 5.1 in terms of accelerations and jerks. From these results, it
can be seen that the IPG driver is 1.14 and 1.07 times more comfortable in terms of
lateral acceleration for the Volvo Drive Me route and Riksväg 160 respectively. In
terms of jerk however, the IPG driver is 1.72 and 4.79 times more comfortable for
the same roads.

That the model behaves considerably worse in terms of the level of jerk it not
very surprising. Again, one must consider the fact that the model makes decisions in
an instantaneous fashion which makes it rapidly oscillate between different steering
values. While small, all of the oscillations together add up to form a significantly
larger jerk penalty than what an optimal driver would accumulate. So even though
the level of discomfort in terms of jerks seems high, it is important to note that the
measurements are rather small on average and they might not be perceived as being
bad by passengers. Additionally, from the definition of the level of discomfort given
in Section 5.5.2, an absolute value of the error of 1 would be at the level at which
discomfort ensues. As the model discomfort value is merely a tenth of that, it is
well within the comfortable range.

As a final note, in the case of Riksväg 160, the scenario was played out during
night with reduced visibility as a result. While this had no effect on the IPG driver
(which had knowledge about the simulation state at all times) it made it significantly
more difficult for a vision based system to produce proper output, resulting in slightly
degraded performance.
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Figure 5.17: Logged lateral jerks on the Volvo Cars Drive Me route for two different
sections of the route with different degrees of curvature. The solid line represents
the model trained on the Volvo cars Data and the dashed the default IPG driver.
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Figure 5.18: Logged lateral jerks on Riksväg 160 for two different sections of the
route with different degrees of curvature. The solid line represents the model trained
on the Volvo cars Data and the dashed the default IPG driver.
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6
Conclusion

With this work, it has been shown that neural network models trained on real world
driving data can perform well in simulated environments. That is, they generalize
enough to endure a domain change. Notably, the model seems to have learned to
react to certain concepts in the real-world data which it then also detected in the
simulations as well. Additionally, the detections it makes aligns to some extent with
the human intuition of what is important, such as lane markings. This seems to
indicate that rapid prototyping, where models are initially tested in simulations,
might be a possibility. To assert this however, real vehicle tests are required.

The investigation of the model robustness also revealed that having a sufficiently
large data set with enough diversity enables the model to compensate for misalign-
ment on the road. The results show that using a single gray scale front view camera
is sufficient in order to attain lane keeping capabilities with a very high level of
autonomy. In addition, in simulated environments, the model has also been shown
to exhibit robustness to sudden fault injections and subsequent misalignment, seem-
ingly contradicting previously held beliefs.

Overall, the findings in this work seems to indicate that neural networks indeed
possess the capacity to act as a holistic solution, at least to certain tasks. With this
work, the concept has been verified to work for the basic components of driving, in
various environments previously unobserved by the network.
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7
Future Work

Over the course of the project, several new ideas and extensions for solving the
original task have emerged. The ones deemed most important have been collected
and are presented here.

This chapter will begin in Section 7.1 with a discussion on the need to move
outside the simulated environments, expressed in the form of performing verification
in real vehicles or via hardware in the loop. In the event such real tests proved
fruitful, it would have served as good evidence that rapid prototyping indeed had
the potential to work. In such a case, further extensions to the simulators would
have been interesting as well. In Section 7.2, a brief discussion on the topic of the
simulators is provided. The chapter ends with Section 7.3 which elaborates on how
the current model architecture might be modified in order to further increase the
system’s performance.
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7. Future Work

7.1 Real Vehicle Tests
The results obtained in this thesis seems very promising. At least in the simulated
environments the model is able to steer very well. Based on the real data, the general
concepts of driving have seemingly been learned. Or at least some sort of minimum
representation of them. From this, the conclusion was drawn that knowledge could
successfully be transferred across different domains. However, for the results to
really have any impact, the resulting model must be evaluated using real tests.

Performing the real vehicle tests would first and foremost answer the question of
whether the simulated performance indeed was representative of the one obtained
when running the model in the real-world scenarios. In addition, the real-world
testing would have been helpful in determining if the sensitivity in camera placement
observed in simulations also carried over to reality.

An additional aspect that can be improved via the use of real vehicle tests is
that the parametrization of the proposed performance metric can be determined.
By collecting data from several real vehicles when driven in a "proper manner" from
a human’s perspective, the performance metric can be tuned to closely represent
good driving. With the metric properly adjusted, newly created models can easily
be ranked based on the score they achieve.

Finally, running the software on the target hardware would also have been an
indication of how much processing power was consumed and if there was room for
more extensions to the model or not. Of course, all of these aspects are naturally
very important, and therefore the next logical step would be to test out these initial
results in reality.

7.2 Extended Driving Scenarios
In order to verify the model to a greater extent than what has been done so far, more
extensive tests are required. For the simulation environments, there are many forms
in which such extended tests could come. For example, plenty more road geometries
can be included, as the tested routes only amounted to about 100km. More detail
might also be added to the already present geometries. Such as landmarks, other
vehicles, and weather effects making them more similar to their real counterparts.
Additionally, more complex interactions between different vehicles such as merges,
overtakes, and right of way need to be modeled and tested as well. There are also
many more types of roads to traverse other than highways and country roads. A
complete system for autonomous drive would also have to be verified to work for
these cases.

One of the main objectives in this thesis was to investigate whether a model
trained on real world data would also perform well in simulated environments. That
is, the concept of transfer learning was investigated. Because the world portrayed
in the simulators in many ways differ from the real world, most notably in terms of
graphical fidelity, running models that rely on vision information might be difficult.

However, based on the results obtained, it was shown that the limited graphics
nevertheless was enough for the model to drive properly. Although, if the simulator
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could produce more realistic images, the issue of transfer learning might be circum-
vented completely. As of now, we are not yet there, but there are many engines that
do provide very realistic graphics. Some of these graphics engines are also working
with simulators such as CarMaker in order to take over the rendering of the graph-
ics but leaving the physical interaction and calculations for the original simulator.
Using such an additional graphics system would be very interesting for testing out
the created model in this work as well as any future models.

7.3 Experimental Model Improvements
In this section, some general ideas to future extensions for the already created model
are presented. Most of them were actually implemented, but due to technical diffi-
culties they did not produce any usable output and were therefore not subjected to
the evaluation process. In future reiterations of the work, it would be interesting to
sort out their issues in order to investigate whether the extensions would improve
upon the basic one, or if the general idea behind them is flawed.

First, the idea of introducing the concept of temporal dynamics into the model
architecture via several methods is discussed. From there, the section expands briefly
on the possibility to include more input into the model as a means to achieve better
accuracy. In the end, the concept of changing the problem formulation from a
regression task to that of a classification is discussed.

7.3.1 Temporal Dynamics
The performance of the created model experienced some shortcomings as a result
of its particular architecture. Most notably, since it operates on a frame by frame
basis, it has no notion of what is happening other than that of the current time
instant. Because of this, the model has the tendency to rapidly oscillate between
different choices for the steering.

Considering that the act of driving intuitively seems to involve a bit more than
just instantaneous decisions, a model architecture incorporating temporal informa-
tion, would probably perform better at the task. When humans are driving a vehicle,
it seems reasonable to think that they are not just considering what they see at each
and every moment but rather plan ahead. A simple approach for incorporating tem-
poral information, based on the original architecture, was implemented by letting
the input consist of a volume of stacked images. This extension required minimal
change to the actual architecture, where the only change involved an update of ker-
nel depth for the first convolutional layer in order to accommodate the new input
volume size.

Experiments performed using this model did not result in any increase in driving
performance. This is most likely due to the fact that the simulation environment
interfacing was sub-optimally implemented, which lead to problematic delays in the
closed loop evaluation setting, rather than the new model not working. In the future,
ensuring that this model is properly tested might yield some insights into how to
make the system smoother.
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Additional ideas on incorporating temporal information would be to replace
and/or extend the baseline architecture with a recurrent model. For example, by
including LSTM (Long Short Term Memory) units or GRU (Gated Recurrent Unit)
cells. Both of which has proven to be powerful for a large number task requiring the
use of sequential data.

7.3.2 Multiple Inputs
The idea of incorporating earlier information (in a simple way) could obviously be
extended even further. In addition to passing the n previous images as input, the n
last steering actions, as predicted by the model, could also be fed back recursively
as additional input. This would allow the model to consider its previous actions,
probably increasing the performance of driving.

Other than increasing of the amount of image and/or steering data, additional
sensor data might improve on the driving performance even further. During this
work, an extension of the baseline model was implemented where the second fully
connected layer (50-unit layer) was merged with IMU (Inertial Measurement Unit)
information. For this implementation, the vehicle yaw rate, velocity and acceler-
ations were selected as additional inputs. This extension was initially trained on
Volvo expedition data but was not subject to thorough evaluation because of the
aforementioned technical issues. However, the idea of using IMU measurements as
input does, even with the lack of proper result, seem like a good idea given that
this type of information most like affect the decisions made by human drivers and
is therefore worth keeping in mind for the future.

7.3.3 From Regression to Classification
An alternative approach to the complete problem formulation is to pose the problem
of end-to-end inference of steering actions as a classification task rather than a
regression task. This would allow for more flexibility in labeling the actions w.r.t.
the images. The complete range on possible steering actions could be divided into
small discrete ranges, possibly aligned with the distribution of the data. Then,
rather than labeling an image with a fixed value for the corresponding steering
action, the confidence of the corresponding class could be high, but still allow for
some confidence on the closely adjacent classes.
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