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3D Direct Numerical Simulation (DNS) study of propagation of a single-reaction wave in forced,
statistically stationary, homogeneous, isotropic, and constant-density turbulence was performed in
order to evaluate both developing U t

T and fully developed Us
T bulk turbulent consumption velocities

by independently varying a ratio of 0.5 ≤ u′/SL ≤ 90 of the r.m.s. turbulent velocity to the laminar
wave speed and a ratio of 0.39 ≤ L11/δF ≤ 12.5 of the longitudinal integral length scale of the
turbulence to the laminar wave thickness. Accordingly, the Damköhler Da = (L11SL)/(u′δF) and
Karlovitz Ka = δF/(SLτη) numbers were varied from 0.01 to 24.7 and from 0.36 to 587, respectively.
Here, τη is the Kolmogorov time scale. The obtained DNS data show that, at sufficiently low Da,
the fully developed ratio of Us

T/u
′ is mainly controlled by Da and scales as

√
Da. However, such a

scaling should not be extrapolated to high Da. The higher Da (or the lower Ka), the less pronounced
dependence of Us

T/u
′ on a ratio of L11/δF . Moreover, scaling laws UT ∝ u′αS1−α

L (L11/δF)β are
substantially different for developing U t

T and fully developed Us
T , i.e., the scaling exponents α and,

especially, β depend on the wave-development time. Furthermore, α and, especially, β depend on
a method used to evaluate the developing U t

T . Such effects can contribute to significant scatter of
expressions for UT or ST as a function of {u′, SL, L11, δF}, obtained by parameterizing various
experimental databases. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4990836]

I. INTRODUCTION

As reviewed elsewhere,1–4 turbulent flame speed ST and
consumption (or burning) velocity UT were in the focus of
experimental and theoretical research into premixed turbu-
lent combustion for decades. Moreover, several approaches
to unsteady multi-dimensional numerical simulations of pre-
mixed flames4–10 straightforwardly invoke a model expression
for UT or ST . However, ranking such expressions using exper-
imental databases is substantially impeded because the vast
majority of models of UT or ST address the simplest case
of single-step chemistry and a constant-density flow, whereas
experiments deal with complex chemistry flames character-
ized by significant density variations. Therefore, in order to
properly assess various models of turbulent flame speed and
consumption velocity, there is a fundamental need for data on
UT and ST that are obtained under conditions consistent with
assumptions invoked by the models, i.e., single-step chem-
istry and constant density. Direct Numerical Simulation (DNS)
offers a unique opportunity to encompass such a database,
and the major goals of the present work consist in (i) evaluat-
ing turbulent consumption velocities in DNSs of propagation
of a single-reaction wave in constant-density turbulence, per-
formed for a wide range of basic mixture and turbulence
characteristics, and (ii) analyzing this database.
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Another goal of the present study stems from the fol-
lowing reasoning. Experimental data on UT and ST reported
by different research groups are well known to yield signifi-
cantly different values of these quantities, e.g., see Fig. 4.11
in Ref. 10. As shown in many studies11–17 and reviewed else-
where,4,10,18 the scatter of available experimental data on UT

and ST results, at least in part, from sensitivity of these quanti-
ties to methods used to process raw experimental data. Indeed,
the speed ST of a statistically stationary turbulent flame is
commonly determined as follows:1,4,10,18 ρuST = ρu, where
ρ is the mixture density, subscript u designates the unburned
gas, u is the flow velocity in the direction normal to the mean
flame brush, and q̄ is the Reynolds-averaged value of a quan-
tity q. However, in a typical statistically stationary turbulent
flame such as V-shaped, Bunsen, or stagnation-point flame, the
incoming mean flow of unburned gas is spatially non-uniform
and the magnitude of the mean normal flux ρu depends sub-
stantially on the choice of an iso-scalar surface whose speed
is associated with ST . For instance, the flux ρu decreases sig-
nificantly (by a factor of three or even larger11,12) from the
leading to the trailing edge of a mean flame brush stabilized
in a spatially diverging mean flow of unburned gas.

Moreover, if a mean flame brush is curved, areas of var-
ious mean iso-scalar surfaces within the flame brush will be
different. Accordingly, the measured value of turbulent burn-
ing velocity UT depends substantially on the choice of the
iso-scalar surface whose area is used to normalize the total
burning rate when evaluating UT . For instance, in a cylindri-
cal Bunsen flame, the mean iso-scalar surface area measured
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close to the leading edge of the mean flame brush may be sig-
nificantly (by a factor of two or even larger16) smaller than
the mean iso-scalar surface area measured close to the trailing
edge of the flame brush. Consequently, UT evaluated at the
leading edge may be significantly larger than UT evaluated at
the trailing edge.

In typical experimental studies of premixed turbu-
lent combustion, such flow-divergence and mean-surface-
curvature effects are well pronounced due to significant
thickness of the turbulent flame brush when compared to the
thin laminar flame. Recently, Verma and Lipatnikov17 numeri-
cally showed that these effects can also cause well documented
scatter4 of scaling exponents for UT or ST as a function of the
basic mixture and turbulence characteristics.

However, it may not be necessarily true that the scatter
of available experimental data on UT and ST is solely con-
trolled by the two effects of flow-divergence and mean-surface-
curvature. The present study aims at showing two more effects
that can substantially contribute to the scatter of the scaling
exponents for UT or ST as a function of the basic mixture
and turbulence characteristics. This goal is feasible because
the well-known flow-divergence and mean-surface-curvature
effects vanish in the case simulated in this work, i.e., propa-
gation of a statistically planar reaction wave in homogeneous,
isotropic, constant-density turbulence.

While the problem addressed in the present work is
straightforwardly relevant to premixed turbulent combustion,
the problem studied in this work is substantially simplified,
e.g., because thermal expansion phenomena can significantly
affect turbulent flames. Such effects were hypothesized in
the pioneering work by Karlovitz et al.19 and Scurlock and
Grover20 and were clearly shown in recent papers,21–25 as well
as in earlier contributions reviewed elsewhere.26–29

One reason for invoking the aforementioned simplifica-
tions consists in obtaining DNS database for assessing models
under conditions that are consistent with assumptions invoked
by the models, as already explained.

Another reason consists of a fact that propagation of a
passive reaction wave in constant-density turbulence is still
the corner-stone paradigm in research into premixed turbulent
combustion. A number of advanced models and concepts are
based on this corner-stone paradigm, with the thermal expan-
sion phenomena and complex combustion chemistry being
considered to supplement and expand, but not to revoke it.
For instance, widely used combustion regime diagrams7,30–32

were developed within the framework of this paradigm. There-
fore, the problem addressed in the present work appears to be
of a general interest for the theory of turbulent reacting flows
and of a particular interest for gaining fundamental insight into
the influence of turbulence on premixed combustion. Never-
theless, the fact that thermal expansion and complex chemistry
phenomena are beyond the scope of the present study should be
borne in mind when applying the obtained results to premixed
turbulent flames.

The paper is organized as follows. In Secs. II and III, gov-
erning equations and numerical methods are briefly described,
while the reader interested in a more detailed discussion is
referred to our recent papers.33,34 Conditions of the performed
simulations are discussed in detail in Sec. IV. Results obtained

for fully developed and developing turbulent consumption
velocities are reported in Secs. V A and V B, respectively,
followed by conclusions.

II. GOVERNING EQUATIONS

Constant-density turbulent flow is described by the conti-
nuity and Navier-Stokes equations

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)u=−ρ−1
∇ p + ν∇2u + f , (2)

where t is the time, u is the flow velocity vector, ν and p
are the kinematic viscosity and pressure, respectively, and a
vector-function f is added in order to maintain constant turbu-
lence intensity by using energy forcing at low wavenumbers,
as discussed in Sec. III.

Propagation of a reaction wave of non-zero thickness
is modeled by the following convection-diffusion-reaction
equation:

∂c
∂t

+ u · ∇ c = D∇2c + W (3)

for a scalar field c, which is equal to zero and unity in fresh
reactants and products, respectively. The molecular diffusivity
D is set to be constant and the reaction rate

W =
1

1 + τ
1 − c
τR

exp

[
−

Ze(1 + τ)2

τ(1 + τc)

]
(4)

depends on c in a highly non-linear manner, similarly to the
temperature-dependence of heat-release rateω in flames. Here,
τR is a constant reaction time scale, τ = 6, and parameter Ze,
called the Zeldovich number via an analogy with premixed
combustion, is specified in Sec. IV, see the eighth column in
Table I therein. To further draw the analogy, it is worth noting
that (1 + τ) is associated with the density ratio ρu/ρb. The
scalar c is associated with the combustion progress variable,
which is equal to 1 � Y /Yu = (T � Tu)/(Tb � Tu) in a premixed
flame if the Lewis number Le = a/D = 1. Here, Y is the mass
fraction of the deficient reactant, T is the temperature, a is
the molecular heat diffusivity of the mixture, and subscript b
designates the burned products in the flame.

Premixed turbulent flames are commonly characterized
using (i) a ratio u′/SL of the r.m.s. turbulent velocity u′ to the
laminar flame speed SL and (ii) a ratio of an integral length
scale of turbulence to a laminar flame thickness δF = D/SL.
Accordingly, DNS cases were set up (i) by specifying Ze,
SL, and δF and (ii) by finding D and τR that are required to
obtain the specified SL and δF in pre-simulations of a planar
1D laminar reaction wave modeled with Eqs. (3) and (4).

III. NUMERICAL METHOD

The major difference between the present work and our
earlier DNS studies33,34 consists in substituting the level set
(G) equation7,31 with Eq. (3), whereas numerical methods were
basically similar in both computations. Accordingly, we will
restrict ourselves to a very brief summary of the numerical
methods and refer the interested reader to recent papers33,34

for more details.
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TABLE I. Studied DNS cases.

η
∆x

Λx
Λ

Nx
Λ
Λ256

L11
Λ

τt
τη

Ze Sc Da Ka Ret Pe u′
SL

L11
δF

Us
T

u′
Us

T
SL

B1 0.68 4 256 1 0.13 5.5 6.0 0.04 4.09 1.34 26 1.02 0.5 2.1 2.18 1.09
B2 0.68 4 256 1 0.13 5.5 6.0 0.08 2.04 2.69 26 2.04 1. 2.1 1.31 1.31
B3 0.68 4 256 1 0.13 5.5 6.0 0.16 1.02 5.38 26 4.09 2. 2.1 0.89 1.78
B4 0.68 4 256 1 0.13 5.5 6.0 0.39 0.41 13.4 26 10.2 5. 2.1 0.57 2.85
B5 0.68 4 256 1 0.13 5.5 6.0 0.78 0.20 26.9 26 20.4 10. 2.1 0.40 4.0
B6 0.87 4 512 2 0.12 6.3 6.0 0.04 7.50 0.84 48 1.87 0.5 3.7 2.45 1.23
B7 0.87 4 512 2 0.12 6.3 6.0 0.08 3.75 1.67 48 3.75 1. 3.7 1.69 1.69
B8 0.87 4 512 2 0.12 6.3 6.0 0.16 1.87 3.34 48 7.50 2. 3.7 1.27 2.54
B9 0.87 4 512 2 0.12 6.3 6.0 0.39 0.75 8.36 48 18.7 5. 3.7 0.80 4.0
B10 0.87 4 512 2 0.12 6.3 6.0 0.78 0.38 16.7 48 37.5 10. 3.7 0.55 5.5
B11 1.07 4 1024 4 0.11 7.4 6.0 0.04 13.5 0.55 86 3.37 0.5 6.7 2.77 1.39
B12 1.07 4 1024 4 0.11 7.4 6.0 0.08 6.74 1.10 86 6.74 1. 6.7 2.06 2.06
B13 1.07 4 1024 4 0.11 7.4 6.0 0.16 3.37 2.21 86 13.5 2. 6.7 1.61 3.22
B14 1.07 4 1024 4 0.11 7.4 6.0 0.39 1.35 5.52 86 33.7 5. 6.7 1.11 5.55
B15 1.07 4 1024 4 0.11 7.4 6.0 0.78 0.67 11.0 86 67.4 10. 6.7 0.76 7.61
L1 1.32 4 1024 4 0.19 8.9 6.0 0.04 24.7 0.36 158 6.18 0.5 12.4 2.99 1.5
L2 1.32 4 1024 4 0.19 8.9 6.0 0.08 12.4 0.72 158 12.4 1. 12.4 2.23 2.23
L3 1.32 4 1024 4 0.19 8.9 6.0 0.16 6.18 1.44 158 24.7 2. 12.4 1.79 3.57
L4 1.32 4 1024 4 0.19 8.9 6.0 0.39 2.47 3.60 158 61.8 5. 12.4 1.40 7.02
L5 1.32 4 1024 4 0.19 8.9 6.0 0.78 1.24 7.21 158 124. 10. 12.4 1.02 10.2
D1 1.08 8 2048 4 0.11 7.5 6.0 0.78 0.17 43.3 89 69.3 20. 3.46 0.38 7.69
D2 1.08 8 2048 4 0.11 7.5 6.0 0.78 0.08 97.4 90 70.6 30. 2.35 0.25 7.58
D3 1.08 8 2048 4 0.11 7.5 6.0 0.78 0.04 173. 90 70.4 40. 1.76 0.19 7.48
D4 1.08 8 2048 4 0.11 7.5 6.0 0.78 0.02 390. 89 69.5 60. 1.16 0.13 7.59
D5 0.88 8 1024 2 0.12 6.4 6.0 0.08 0.97 6.53 50 3.90 2. 1.95 0.88 1.76
D6 0.88 8 1024 2 0.12 6.4 6.0 0.08 0.16 40.8 50 3.90 5. 0.78 0.35 1.73
D7 0.88 8 1024 2 0.12 6.4 6.0 0.08 0.04 163. 50 3.90 10. 0.39 0.17 1.73
D8 0.88 8 1024 2 0.12 6.4 6.0 0.78 0.04 147 50 38.8 30. 1.29 0.19 5.69
D9 0.88 8 1024 2 0.12 6.4 6.0 0.78 0.01 587 50 39.1 60. 0.65 0.09 5.69
D10 0.69 8 512 1 0.13 5.5 6.0 0.78 0.02 238 27 20.9 30. 0.70 0.14 4.19
T1 1.07 4 1024 4 0.11 7.4 6.0 0.01 4.11 1.81 86 1.03 0.5 2.1 2.19 1.09
T2 1.07 4 1024 4 0.11 7.4 6.0 0.24 0.21 36.2 86 20.5 10. 2.1 0.42 4.18
T3 1.07 8 2048 4 0.11 7.5 6.0 3.13 0.08 97.4 90 281. 60. 4.67 0.25 15.1
T4 1.07 8 2048 4 0.11 7.5 6.0 7.04 0.08 97.6 89 626. 90. 6.94 0.25 22.8
T5 1.07 4 1024 4 0.11 7.4 6.0 0.03 0.67 11.0 89 2.68 2. 1.34 0.76 1.51
T6 1.07 4 1024 4 0.11 7.4 6.0 0.20 0.68 11.0 89 16.9 5. 3.39 0.76 3.78
K1 0.87 4 512 2 0.12 6.3 6.0 0.04 1.89 3.33 48 1.89 1. 1.89 1.29 1.29
K2 1.07 4 1024 4 0.11 7.4 6.0 0.02 1.70 4.41 87 1.70 1. 1.69 1.25 1.25
K3 2.70 8 2048 4 0.13 5.7 6.0 28.2 0.09 62.1 26 744. 90. 8.27 0.27 24.3
K4 2.05 8 1024 2 0.14 5.3 6.0 3.13 0.01 431. 14 44.0 60. 0.73 0.10 6.06
H1 2.69 4 1024 1 0.13 5.7 6.0 0.78 0.21 27.7 26 20.7 10. 2.1 0.41 4.09
H2 2.69 4 1024 1 0.13 5.7 17.1 0.78 0.21 27.7 26 20.7 10. 2.1 0.41 4.07
H3 1.07 4 1024 4 0.11 7.4 17.1 0.24 0.21 36.2 86 20.5 10. 2.1 0.41 4.11
H4 1.07 8 2048 4 0.11 7.5 17.1 0.78 0.02 389. 90 70.1 60. 1.16 0.12 7.37
H5 0.88 4 1024 4 0.06 6.2 6.0 0.78 0.39 16.1 49 38.7 10. 3.88 0.57 5.70

The computational domain is a fully periodic rectangular
box of size of Λx ×Λ×Λ. It is discretized using a uniform
staggered Cartesian grid of Nx ×N ×N cells with Nx =NΛx/Λ.
Therefore, spatial resolution ∆x = Λx/Nx = Λ/N = ∆y = ∆z
is the same in the axial (x) and transverse (y and z) directions.

Boundary conditions are periodic in all three directions,
thus, enabling a piece of a wave surface that comes to the left
boundary (x = 0) at certain t, y, and z to enter the computa-
tional domain through the right boundary (x = Λx) at the same
t, y, and z, respectively. Such a method allows us to strongly
improve sampling statistics by simulating a number of cycles
of wave propagation through the computational domain. This

method is only justified if the reaction affects neither the den-
sity nor the viscosity. Otherwise, wave surfaces that come to
x = 0 and enter through x = Λx will be affected by flow fields
characterized by different ρ and/or ν.

Simulations are performed using a simplified in-house
DNS solver35 developed for low Mach number reacting flows
and equipped with a standalone stiff chemistry solver for a
general kinetic mechanism. The solver was already applied
to various reacting flow systems.36–39 In the original solver,
the temporal integration of the governing equations is based
on a second order symmetrical Strang splitting algorithm. In
the present work, the solver is simplified because the source



065116-4 R. Yu and A. N. Lipatnikov Phys. Fluids 29, 065116 (2017)

term W (c) given by Eq. (4) is not stiff. In particular, when
numerically integrating Eq. (3), temporal advancement is per-
formed for a full time-step (∆t = tn+1 − tn = 0.029∆x/u′)
using the Adams-Bashforth method in multiple sub-time steps,
i.e., ∆t∗ = ∆t/K = tk+1

∗ − tk
∗ , k = 0, . . . , K , t0

∗ = tn, and
K = 1 + floor[∆t · D(∆x)−2/0.075], where floor is the integer
floor function. Accordingly,

c(tk+1
∗ ) − c(tk

∗ )
∆t∗

=
3
2
D(tk
∗ ) −

1
2
D(tk−1
∗ )

+ (1 + ak)H(tn) − akH(tn−1). (5)

Here, D = D∇2c and H = (u · ∇)c + W represent the diffu-
sion term and the sum of the convection and reaction terms,
respectively, and ak = (k + 1/2)/K is an interpolation coefficient.
To minimize numerical under/overshooting of c value outside
[0, 1] associated with center difference schemes, the convec-
tion term in Eq. (3) is discretized using a fifth order Weighted
Essentially Non-Oscillatory (WENO) scheme,40 whereas all
other spatial terms are discretized using sixth order center
schemes.

The constant-density flow solver is largely identical to the
solver used by us33,34 earlier, but the multi-grid solver41 for
the constant-coefficient Poisson equation with periodic bound-
aries is replaced with an accurate spectrum solver using an
open source, parallel version of FFTW3 (mpi-fftw). The DNS
code is implemented in a vector form enabling 1D, 2D, and
3D simulations.

The initial turbulence field is generated by synthesizing
prescribed Fourier waves42 with an initial r.m.s. velocity u′0 and
a turbulence length scale Λ0 = Λ/4. Following Lamorgese
et al.,43 the forcing function f(x, t) =

∑
κ f̂κ(t) exp(iκ · x) is

invoked in order to maintain statically stationary turbulence.
Here,

f̂κ(t) =
〈ε〉 1κ−κr (t)

ûκ(t) · û∗κ(t)
ûκ(t) (6)

is the Fourier mode of f in the wavenumber κ-space,

ε = 2νSijSij =
ν

2

(
∂ui

∂xj
+
∂uj

∂xi

) (
∂ui

∂xj
+
∂uj

∂xi

)
(7)

is the dissipation rate, the bracket 〈·〉 designates averaging
over entire domain, and the summation convention applies to
repeated indexes i and j. The caret operator designates the com-
plex Fourier mode q̂κ(t)= 〈q(x, t) exp(−iκ ·x)〉 for any q, super-
script star denotes the complex conjugate, 1κ−κr = 1 when κ =
κr or vanishes otherwise, κr = 2πmiΛ

−1
i is a randomly selected

(at each time step) non-zero wavenumber within a user-
specified lower wavenumber band, i.e., |κr | ≤ κf , m = (mx,
my, mz) is a random integer vector, and Λ= (Λx,Λy,Λz) is the
domain length vector (note that Λy = Λz = Λ).

By adopting the same forcing technique with κf /κ0 = 3,
where κ0 = 2π/Λ, the present authors33,34 showed that (i) the
r.m.s. velocity was maintained as the initial value, i.e., u′ = u′0,
(ii) the normalized averaged dissipation rate (Λ0/u′0

3)〈ε〉 fluc-
tuated slightly above 3/2 after a short period (t < τ0 = Λ0/u′0)
of rapid transition from the initial artificially synthesized flow
to developed turbulence, (iii) the forced turbulence achieved
statistical homogeneity and isotropy over the entire domain
(see also Fig. 1), and (iv) the energy spectrum showed a range

FIG. 1. Longitudinal auto-correlation functions Ru
11 (black), Rv11 (red), and

Rw11 (blue) obtained from statistically stationary turbulence maintained using
three forcing radii; κf /κ0 = 1 (solid lines), 3 (dashed-dotted lines), and 6
(dashed lines). Re0 = 200.

of the Kolmogorov scaling (�5/3) at Re0 = u′0Λ0/ν = 200, see
also Fig. 3.

In the present work, each of the generated turbulent fields
is characterized with the longitudinal integral length scale
L11 = ∫

Λ/2
0 Ru

11(r)dr ≈ ∫
Λ/2

0 Rv11(r)dr ≈ ∫
Λ/2

0 Rw11(r)dr, the time
scale τt =L11/u′, the Reynolds number Ret = u′L11/ν,
the dissipation rate 〈ε〉 averaged both over the com-
putational domain and time, the Kolmogorov length
scale η = (ν3/〈ε〉)1/4, and the Kolmogorov time scale
τη = (ν/〈ε〉)1/2. These turbulence characteristics were calcu-
lated after the forced turbulence reached statistical station-
arity, i.e., at t > 5τ0

t . The auto-correlation functions Ru
11(r)

= 〈u(x, y, z)u(x + r, y, z)〉/u′2, Rv11(r)= 〈v(x, y, z)v(x, y + r, z)〉

/u′2, and Rw11(r)= 〈w(x, y, z)v(x, y, z + r)〉/u′2 averaged over
the transverse coordinates and time are plotted in Fig. 1, which
further validate the isotropy of the generated turbulence.

Most present results were obtained at the same ratio of
κf /κ0 = 3. In such a case, three basic turbulence fields were
generated by specifying three different values Re0 = 50, 100,
or 200 of the “initial” turbulent Reynolds number, which was
increased by increasing the domain size Λ. Three statistically
same velocity fields were used in our previous DNS study33,34

of self-propagation of a passive, infinitely thin interface in
a turbulent flow. Moreover, two more turbulence fields were
generated by setting κf /κ0 equal to 1 or 6 (Re0 = 200 in
both cases) in order to change ratios of L11/Λ by retain-
ing the same44 u′ and ν. A smaller forcing radius yields
wider auto-correlation functions and, therefore, larger L11, see
Fig. 1.

In the five aforementioned cases (κf /κ0 = 3 and Re0 = 50,
100, or 200; κf /κ0 = 1 and Re0 = 200; κf /κ0 = 6 and
Re0 = 200), the Kolmogorov length scale η was on the order
of the grid cell size∆x, see the second column in Table I in Sec.
IV, thus, implying sufficient grid resolution. Capability of the
used grids and numerical schemes for properly resolving the
reaction wave was checked (i) in separate 1D simulations of
laminar reaction waves, which were performed by running the
same DNS code in the 1D case, and (ii) in recent 2D simula-
tions of the development of the hydrodynamic instability45,46
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of a laminar premixed flame in a wide computational domain.47

Nevertheless, in order to assess the sensitivity of computed
results to numerical resolution, highly resolved simulations
were also run by decreasing ∆x by a factor of four, see cases
H1 and H2 in Table I.

In the present work, statistics of the c(x, t)-fields were
sampled at t > 3.5τ0

t , i.e., when the initial artificially syn-
thesized velocity field reached a statistically stationary stage.
The development of this velocity field to statistically stationary
turbulence is illustrated in Fig. 2, which shows the temporary
evolution of the simulated volume-averaged dissipation rate
〈ε〉(t), while u′(t) is kept constant. At t > 4τt (note that the
eddy-turn-over time τt = L11/u′ is less than τ0

t in all cases),
the dissipation rates 〈ε〉(t) are close to their fully developed
values 〈ε〉, which are averaged over time at t > 5τ0

t , with the
amplitude of fluctuations in 〈ε〉(t) with respect to 〈ε〉 being
low in all cases.

Figure 3 shows the statistically stationary spectra E(|κ |)
of the turbulent energy, computed using all above three forc-
ing radii and at three Re0. A wider range of �5/3 spectrum
is obtained either for larger Re0 or for smaller forcing radius
(κf /κ0). It is worth stressing that the spectra simulated set-
ting (i) κf /κ0 = 3 and Re0 = 100 and (ii) κf /κ0 = 6 and
Re0 = 200 well match one another at large wavenumbers,
cf. curves shown in green dotted-dashed and blue dashed
lines. This matching is associated with equal values of κfΛ0

∝ (κf /κ0)Re−1
0 . Thus, the fields obtained at (i) Re0 = 100 and

κf /κ0 = 3 and (ii) Re0 = 200 and κf /κ0 = 6 are characterized
by almost equal Ret or L11, but the ratio of L11/Λ is larger by
a factor of about two in the former case. Accordingly, these
two turbulence fields were used in order to gain insight into
eventual influence of the relative width Λ/L11 of the com-
putational domain on obtained results, with all other things
being approximately equal. As will be shown later, in the sim-
ulated constant-density reacting flows, such influence is weak
because the auto-correlation functions vanish (if κf /κ0 ≥ 3)
at distance r equal to halve the width of the computational
domain, see Fig. 1.

In the present work, both fully developed and transient
reaction waves were simulated starting from the pre-computed

FIG. 2. Early (0< t < 10τt) evolution of the instantaneous, volume-averaged
dissipation rate (〈ε〉) normalized using its fully developed value 〈ε〉 averaged
at t > 5τ0

t . Three different forcing radii and three different initial Reynolds
numbers Re0 are specified in legends.

FIG. 3. Energy spectrums E(κ) obtained from statistically stationary turbu-
lence maintained using three forcing radii; κf /κ0 = 1 (solid line), 3 (dotted-
dashed lines), and 6 (dashed line) at three different initial Reynolds numbers
Re0 = 50 (red), 100 (green), and 200 (blue).

laminar-wave profile of cL(ξ) with dcL/dξ > 0. In order
to study the fully developed turbulent reaction wave, a pla-
nar wave cs(x, 0) = cL(ξ) was initially (t = 0) released at
x0 = Λx/2 such that ∫

0
−∞ cL(ξ)dξ = ∫

∞
0 [1 − cL(ξ)]dξ and

ξ = x − x0. Subsequently, evolution of this field cs(x, t) was
simulated by solving Eq. (3). Computations of fully developed
statistics with sampling every 100 time steps ∆t were started
after the forced turbulence reached statistical stationarity at
t = t∗ = 6000∆t > 3.5τ0

t and were performed over a time
interval longer than 50 flow time scales τ0

t = Λ0/u′, with τ0
t

being on the order of, but larger than the eddy-turn-over time τt

in all cases. For that purpose, the time-dependent mean value
qs(x, t) of a quantity qs(x, t), e.g., qs = cs and qs = W (cs), was
evaluated by averaging DNS data over transverse coordinates,
followed by computing the fully developed profile of 〈qs〉(x)
by averaging qs(x, t) over time. Finally, x-coordinates were
mapped to 〈cs〉(x)-coordinates, as discussed elsewhere.34

In order to study transient turbulent reaction waves, the
same pre-computed laminar-wave profiles cL(ξ) were simul-
taneously embedded into the turbulent flow in M equidistantly
separated planar zones centered around xm/Λx = (m−0.5)/M,
i.e., cm(x, t∗)= cL(ξm), where coordinates ξm = x− xm were set
using ∫

0
−∞ cL(ξm)dξm = ∫

∞
0 [1−cL(ξm)]dξm and m was an inte-

ger number (1 ≤ m < M = 30). Subsequently, evolutions of M
transient fields ct

m(x, t) were simulated by solving M indepen-
dent Eq. (3), with these fields affecting neither each other nor
the turbulence in the studied case of ρ= const. and ν = const.
Accordingly, all M transient fields ct

m(x, t) were indepen-
dent from each other, and the distance between iso-surfaces
of two different transient fields did not affect computed
results.

The transient simulations were run over 2τ0
t before being

reset. Subsequently, at t = t∗ + 2jτ0
t , where j ≥ 1, the flow was

again populated by M new profiles of cL(ξm) and the transient
simulations were repeated. Time-dependent mean quantities
qt(x, t) were evaluated by averaging DNS data over transverse
coordinates and over the entire ensemble [m = 1,. . . ,M and
various time intervals t∗ + 2(j − 1)τ0

t ≤ t ≤ t∗ + 2jτ0
t ] of the

transient fields qt
m(x, t). Then, x-coordinates were mapped to

ct(x, t)-coordinates, as discussed in detail elsewhere.34
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Such a method (i.e., simulations of M independent tran-
sient fields) significantly increased the sampling counts for cal-
culating transient statistics and was already applied to studying
self-propagation of an infinitely thin front in homogeneous
isotropic turbulence.33,34 It is worth remembering, however,
that such a method can only be used for simulating processes
that do not affect the flow, e.g., a constant-density reaction
wave addressed here. The transient simulations were per-
formed only in the 15 basic cases, B1-B15, specified in Sec. IV
because numerical integration of 31 independent Eq. (3) was
sufficiently expensive.

Both fully developed and transient bulk consumption
velocities were calculated by integrating the mean reaction
rate along the normal to the mean reaction wave brush, i.e.,

Us
T =

∫ Λx

0
〈W s〉(x)dx (8)

and

U t
T (t) =

∫ Λx

0
W t(x, t)dx, (9)

respectively.
Evolution of the major bulk characteristics (consumption

velocity and mean wave brush thickness) of the transient fields
ct

m(x, t) was very similar in the present and earlier34 DNS stud-
ies. In particular, Figs. 14(a) and 15(a) in the cited paper34

indicate that the used time interval of 2τ0
t is sufficient to

investigate the largest part of the wave-development stage. For
instance, at the end of this time interval, turbulent flame speed
reached at least 80% of its fully developed value in the pre-
vious simulations.34 Similarly, in the present work, turbulent
consumption velocity evaluated at the end of this time inter-
val reached at least 80% of its fully developed value, which
was obtained by simulating the propagation of the long-living
reaction wave cs(x, t).

IV. STUDIED CASES

Four groups of characteristics of 45 studied cases are
shown in Table I. The first group consists of two parame-
ters η/∆x and Λx/Λ, which characterize numerical meshes.
In cases characterized by a high u′/SL ≥ 20, a longer compu-
tational domain (Λx/Λ = 8) was used in order for the length
of the entire reaction wave brush to be significantly less than
Λx always. With exception of cases H1 and H2, which were
designed to check numerical resolution, all numerical meshes
shared the same spatial step ∆x, but the ratio of η/∆x was var-
ied due to variations of turbulence length scales, as discussed
below.

The second group consists of four parameters, relevant to
setting the longitudinal integral length scale L11 of turbulence
(u′ was the same in all cases), which was varied in two ways.
Typically, L11 was increased by increasing the numbers N and
Nx of cells in the transverse and axial directions, respectively,
by a factor of two (or four). Accordingly, the width Λ of the
computational domain was increased by a factor of two (or
four) when compared to the width Λ256, associated with Nx

= 256. However, the length scale L11 was increased less33

due to a slight decrease in L11/Λ with Λ, cf. L11/Λ in cases

B1, B6, and B11. In six particular cases (L1-L5 and H5),
the length scale L11 was varied by changing the character-
istic wavenumber κf /κ0 of turbulence forcing, but retaining
Nx and Λ unchanged when compared to cases B11-B15. The
seventh column reports the ratio of the eddy-turn-over time to
the Kolmogorov time scale.

The third group consists of three parameters relevant to
setting key mixture characteristics such as SL and δF = D/SL.
As noted in Sec. II, these laminar wave characteristics are
controlled by the Zeldovich number Ze, diffusivity D, and
reaction time scale τR, with the wave time scale τF = δF/SL

being directly proportional to τR if Ze = const. Accordingly, the
eighth and ninth columns in Table I report Ze and the Schmidt
number Sc = ν/D, respectively. Variations in Sc are required
in order to vary SL by retaining the same δF and vice versa.
The tenth column reports the Damköhler number Da = τt/τF

because (the lack of) variations in Da indicate (the lack of)
variations in τR provided that turbulence characteristics (L11

and τt) are kept constant.
The fourth group consists of turbulent wave characteristics

such as Karlovitz Ka = τF/τη , Reynolds Ret = (u′L11)/ν, and
Péclet Pe = u′L11/D numbers, the normalized r.m.s. veloc-
ity u′/SL and length scale L11/δF , as well as normalized fully
developed turbulent consumption velocities Us

T/u
′ and Us

T/SL.
Although the Péclet number is rarely used in papers on tur-
bulent combustion, Pe is specified in Table I for the following
reasons. It is hypothesized in the seminal work of Damköhler48

that, in small-scale (L11 � δF) turbulence, burning velocity
can be evaluated by (i) invoking a theoretical expression for
the laminar flame speed SL and (ii) substituting the molecular
diffusivity D with turbulent diffusivity DT ∼ u′L11. Moreover,
Damköhler48 assumed that D = ν or Sc = 1 and arrived at
ST ∝ SLRe1/2

t . Damköhler’s expression, i.e., ST ∝ SLRe1/2
t ,

is widely used in the turbulent combustion literature because
Sc retains approximately the same value close to 0.7 in vari-
ous premixed turbulent flames. However, in the present study,
Sc is varied, e.g., in order to vary SL by retaining the same
δF . Accordingly, the aforementioned Damköhler’s hypothesis
leads to ST ∝ SLPe1/2, thus, implying that the Péclet number
may play a more important role than the Reynolds number if
the Schmidt number is varied.

Furthermore, while Ret ∝ Ka2Da2, the values of Ret are
also reported to stress the following important point. In the
premixed turbulent combustion literature, the term “intense
turbulence” is often associated with a low Da < 1 and a high
Ka > 1 or u′/SL � 1. Therefore, many cases addressed in
Table I are associated with highly turbulent combustion. On
the contrary, in the fluid mechanics literature, the same term
“intense turbulence” is associated with Ret � 1. From this
viewpoint, all cases addressed in Table I are associated with
weak turbulence or even transition to turbulence. This limita-
tion of the present (and the vast majority of other) combustion
DNS should be borne in mind.

As shown in Table I, several sets of simulations were
performed. First, cases Bn, where 1 ≤ n ≤ 15 is an integer
number, are characterized by the same δF and compose three
sets, B1-B5, B6-B10, and B11-B15, characterized by three
different L11. In each set, all cases are characterized by the
same L11 (and, hence, the same L11/δF) but five different
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u′/SL. Accordingly, each set is designed to study the influence
of u′/SL on turbulent consumption velocity. In all five cases
B1-B5, B6-B10, or B11-B15 that had different SL but the
same Ret and the same κf /κ0, the flow statistics were the same
because a reaction wave did not affect turbulence in the case of
constant ρ and ν. Moreover, cases Bl, B(l + 5), and B(l + 10),
where 1 ≤ l ≤ 5 is an integer number, belong to three differ-
ent sets and are characterized by the same u′/SL but different
L11 (and, hence, different L11/δF). Therefore such three cases
(jointly with one of the cases Ll, discussed later) offer an oppor-
tunity to study the influence of L11/δF on U t at five different
u′/SL.

Second, five cases L1-L5 are basically similar to cases
B11-B15, but forcing was performed at different wavenumbers
in cases Ll and Bn. Therefore, cases Ll and B(l + 10) share
the same computational domain, the same u′/SL, and the same
δF but are characterized by different L11/Λ and, hence, by
different L11/δF .

Third, while δF was the same in 20 cases B1-B15 and
L1-L5, four sets D1-D4, D5-D7, D8-D9, and D10 were
designed to vary both δF and SL by retaining the same (in
each set) Sc and, hence, the same diffusivity D. Each D-set is
complementary to a single reference basic case, i.e., the com-
plementary B-case and D-cases share the same L11, the same
Ret , the same Sc, and the same Pe, whereas u′/SL are differ-
ent. In particular, (i) the set D1-D4 is complementary to case
B15, (ii) D5-D7 to B7, (iii) D8-D9 to B10, and (iv) D10 to B5.
Such complementary cases offer the opportunity to straight-
forwardly study the dependence of a ratio of Us

T/SL on the
diffusivity D.

Fourth, four sets of T-cases were designed to vary L11, SL,
and δF by retaining the same Damköhler number Da. Each T-
set has a reference B or D-case, characterized by the same Da,
e.g., (i) B1 and T1, (ii) B5 and T2, (iii) D2 and T3-T4, and
(iv) B15 and T5-T6. Such complementary cases enable us to
study the influence of Da on a ratio of Us

T/u
′. It is also worth

noting that, in addition to these specially designed cases, there
are four more pairs of cases that are occasionally characterized
by approximately equal Da for each pair. These are cases B4
and B10, B8 and K1, B14 and L5, and D1 and D6.

Fifth, as the aforementioned cases characterized by
approximately the same Da are also characterized by suffi-
ciently close Karlovitz numbers Ka, three sets of K-cases were
designed in order to retain approximately the same Da but
to substantially change Ka when compared to a reference B,
D, or T case. These sets are (i) B2 and K1-K2, (ii) T4 and
K3, and (iii) D9 and K4. It is worth noting that, in cases K3
and K4, the viscosity was increased by a factor of four when
compared to a reference value set in all other cases. Accord-
ingly, Ret is low in cases K3 and K4. Such complementary
cases make it possible to compare effects of Da and Ka on
a ratio of Us

T/u
′. Moreover, these cases offer the opportunity

to study the influence of Ret on Us
T/u

′ because variations in
Ret ∝ Ka2Da2 are required in order to vary Ka by retaining the
same Da.

Sixth, five H-cases were designed in order (i) to check
the sensitivity of results to numerical resolution, cf. cases B5
and H1, or to a ratio of the length scale L11 to the width
Λ of the computational domain, cf. cases B10 and H5, and

(ii) to study the influence of Zeldovich numbers on the wave
characteristics, cases H2-H4.

Comparison of results computed in cases B5 and H1 val-
idates the simulations by showing that a decrease in ∆x by a
factor of four (H1) very weakly affects Us

T/u
′ = 0.40 and 0.41,

respectively. The difference is as small as 2.5%.
Comparison of results computed in cases B10 and H5

validates the simulations by showing that a decrease in a ratio
of L11/Λ by a factor of two (H5) weakly affects Us

T .
Comparison of results computed in cases H1 and H2, T2

and H3, or D4 and H4 shows that an increase in Ze by a factor
of about three (H-cases) weakly affects Us

T .

V. RESULTS AND DISCUSSION

Figure 4 shows the evolution of five transient cT
m(x, t)-

fields in cases B15 (u′/SL = 10, left column) and B12
(u′/SL = 1, right column), with Ret being equal to 86 in both
cases. Comparison of the left and right columns in Fig. 4 shows
that a lower laminar wave speed SL is associated with a more
wrinkled surface of the reaction zone and a thicker mean turbu-
lent wave brush that propagates at a lower speed. For instance,
at (t − t∗)/τt = 5, see the bottom row, the reaction zone for
the cT

7 (x, t)-field is close to the left boundary of the compu-
tational domain in the case of u′/SL = 1, see image (j), but is
sufficiently far from this boundary in the case of u′/SL = 10,
see image (i). While the five instantaneous c-iso-surfaces plot-
ted in an image in Fig. 4 are different from each other, they
show qualitatively similar appearances, thus, supporting the
use of multiple cT

m(x, t)-fields to achieve more sampling for
computing converged transient statistics.

A. Fully developed turbulent consumption velocity

Computed fully developed turbulent consumption veloc-
ities normalized using u′ and SL are reported in the two right
columns in Table I. Experimental data on turbulent burning
velocities and flame speeds are commonly fitted using power-
law dependencies of UT or ST on u′, SL, and L11/δF , with
various models also yielding dependencies of such a kind.
Accordingly, the same type of fitting was applied to the present
DNS data on Us

T . More specifically, the data were approx-
imated with Y = BXb using least square fits, with Y being
substituted with Us

T/u
′, (Us

T − SL)/u′, Us
T/SL, or (Us

T − SL)/SL

and X being substituted with Ka, Ret , or (u′/SL) · (L11/δF)d .
For X = (u′/SL) · (L11/δF)d , the power exponent d was varied
from �32 to 32 with a step of 0.01, the coefficients B(d) and
b(d) were determined using least square fits for each value of
d, and the final values of d∗, B(d∗), and b(d∗) were selected
by maximizing a coefficient of determination,49 evaluated as
follows:

R2 = 1 −



N∑
j=1

(Yj − BXb
j )

2




N∑
j=1

*
,
Yj −

1
N

N∑
k=1

Yk
+
-

2

−1

. (10)

Here, N = 45 is the number of simulated cases. It is worth not-
ing that the subtraction of SL from Us

T substantially increased
scatter of the DNS data around fitting curves. A similar trend
was also observed4 when processing various experimental
databases on UT and ST .
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FIG. 4. Five (or sometimes two for clear visualization) independent ct
m(x, t)-fields obtained in the DNS at (t − t∗)/τt = 1.0 [(a) and (b)], 2.0 [(c) and (d)], 3.0

[(e) and (f)], 4.0 [(g) and (h)], and 5.0 [(i) and (j)], Ret = 86, τt = 0.4τ0
t , and u′/SL = 10 [i.e., case B15, left column, i.e., (a), (c), (e), (g), and (i)] or 1.0 [case

B12, right column, i.e., (b), (d), (f), (h), and (j)]. Grey iso-surfaces are associated with the peak reaction rate. Top-sliced planes are colored from blue to red in
order to represent an increase in the local ct

m from zero to unity. All ct
m(x, t)-fields start as perfectly flat planes and propagate to the left until rewinding to the

right due to periodicity.

Such an analysis of the DNS data has shown that the coef-
ficient R2 is most close to unity in the following two cases: (i)
Y = Us

T/SL, X = (u′/SL) · (L11/δF)0.98, B = 0.89, b = 0.51, and
R2 = 0.996 and (ii) Y = Us

T/u
′, X = Ka, B = 2.24, b = �0.495,

and R2 = 0.930. These two fits are very close to the following
scaling expressions:

Us
T ∝ u′

√
Da ∝ SL

√
Pe, (11)

Us
T ∝ u′Ka−0.5 ∝ u′

√
DaRe−1/4

t , (12)

respectively. It is worth noting that, first, Eq. (11) can be written
in two equivalent forms, i.e., (Us

T/SL)2 is proportional to the
Péclet number Pe or (Us

T/u
′)2 is proportional to the Damköhler

number Da. Second, the major difference between Eqs. (11)
and (12) consists of a factor of Re−1/4

t , which was varied in a
sufficiently narrow range (from 2.2 to 3.5 if case K4 is skipped)
under conditions of the present DNS.

Figure 5 shows that the DNS data are very well approx-
imated with Eq. (11). At first glance, these data fully sup-
port the scaling of Us

T ∝ SL
√

Pe ∝ SL
√

RetSc. In the
case of constant Sc = O(1), the scaling was theoretically
predicted both in the distributed combustion regime associ-
ated with a low Da48 and the flamelet combustion regime
associated with a high Da.50 However, the inspection of the
DNS data casts certain doubts on the universal validity of the
scaling.
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FIG. 5. Dependencies of Us
T/SL on the Péclet number, reported in two dif-

ferent formats. DNS data are plotted in red symbols. Black lines show
Us

T ∝ SL
√

Pe.

Indeed, as already noted earlier, our previous DNS
study33,34 of self-propagation of an infinitely thin interface
in a turbulence field with the same statistical properties has
yielded Us

T ∝ u′. Therefore, comparison of the present and ear-
lier DNS data implies that Eq. (11) should not be extrapolated
to the limit case of infinitely large L11/δF → ∞.

To assess such a hypothesis, we applied power-law fitting
Us

T/u
′ ∝ (L11/δF)β to DNS data obtained for a set of four

reaction waves Bl, B(l + 5), B(l + 10), and Ll, characterized
by the same u′, the same SL, but four different L11/δF . Results
obtained for five such sets (1 ≤ l ≤ 5) and plotted in Fig. 6(a)
show that the magnitude | β | of the power exponent is decreased
when u′/SL is decreased and, hence, Da is increased. At the
lowest value of u′/SL, see triangles, | β | is as low as 0.18. Thus,
at low u′/SL and large Da, the power exponent obtained in the
present study becomes sufficiently close to the power exponent
β = 0 associated with the earlier study33,34 of self-propagation
of an infinitely thin interface in a turbulence field with the same
statistical properties.

Figure 6(a) indicates that if a dependence of Us
T/u

′ on
L11/δF is approximated invoking a power law fitting within a
bounded domain of u′/SL, the obtained power exponent β is
varied when the domain of u′/SL is varied. Such a behavior of
β is fully consistent with the strong scatter of the fitted values
of the discussed power exponent, reported in the literature.4

FIG. 6. (a) Approximation (lines) of DNS data (symbols) on Us
T/u

′ using
power-law fitting Us

T/u
′ ∝ (L11/δF )β , with the power exponent β being

specified near each curve. Each set of the data is characterized by the same
u′/SL specified in legends. (b) Approximation (lines) of DNS data (symbols)
on Us

T/SL using power-law fitting Us
T/SL ∝ (u′/SL)α , with the power expo-

nent α being specified near each curve. Each set of the data is characterized
by the same L11/δF specified in legends.

While an increase in β with increasing u′/SL has not yet
been shown in the literature, to the best of the present authors’
knowledge, this trend is not surprising and could be attributed
to the change of the governing physical mechanism of the
influence of turbulence on a reaction wave. For instance, the
widely used regime diagrams of premixed turbulent combus-
tion7,30–32 highlight different physical mechanisms in different
ranges of u′/SL and L11/δF . In particular, Damköhler48 con-
sidered two limiting cases of δF � η (and, hence, Ka � 1)
and L11 � δF (and, hence, Da � 1 if u′/SL ≥ 1) and obtained
the following scaling laws: ST = SL + u′ and ST = SL

√
Ret ,

respectively. Under conditions of Sc = 1, addressed by
Damköhler,48 the latter scaling reads ST ∝ SL

√
Pe. Therefore,

in the two limiting cases, β = 0 and 0.5, respectively. Thus,
the theory by Damköhler48 predicts an increase in β from zero
to 0.5 with decreasing Da or increasing Ka. The present DNS
data do show such an increase because an increase in u′/SL

is accompanied with an increase in Ka and a decrease in Da
in 20 cases addressed in Fig. 6(a). The discussed variations
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in β with decreasing Da and increasing Ka may substantially
contribute to the strong scatter4 of the values of this power
exponent, obtained by fitting various experimental databases
on ST or UT .

Results of a similar study of dependence of Us
T/SL on

(u′/SL)α are reported in Fig. 6(b). We applied power-law fit-
ting Us

T/SL ∝ (u′/SL)α to DNS data obtained for four sets
(B1-B5, B6-B10, B11-B15, and L1-L5) of cases, with all reac-
tion waves in each set being characterized by the same L11, the
same δF , but five different u′/SL. Trends shown in Fig. 6(b)
are qualitatively similar to trends shown in Fig. 6(a) (e.g.,
if L11/δF and, hence, Da is increased, the fitted α becomes
more close to α = 1 obtained in the earlier studies33,34), but
the trends are significantly less pronounced in Fig. 6(b) when
compared to Fig. 6(a). For instance, the fitted values of α
are sufficiently close to 0.5 under conditions of the present
study. Probably for this reason, the values of this power expo-
nent, fitted to various experimental databases, are substantially
less scattered4 when compared to similarly fitted values of
β in Us

T/u
′ ∝ (L11/δF)β .

To gain better insight into eventual dependence of the
power exponents on the Damköhler and Karlovitz numbers,
the following investigation was performed. First, the array of
45 values of Us

T , obtained in the DNS, was re-arranged starting
from the case characterized by the highest Da (case L1) and
ending with the case characterized by the lowest Da (case D9),
i.e., Dai ≤ Dai−1, where 1 < i ≤ 45. Second, two truncated
arrays of the data, i.e., i1 ≤ i ≤ 45 and 1 ≤ i ≤ i2, with
1 ≤ i1 ≤ 42 and 4 ≤ i2 ≤ 45, were fitted using either Us

T/u
′

= BDab, see Eq. (11), or Us
T/u

′ = BKab, see Eq. (12). Third,
the obtained dependencies of R2 and b on the boundary values
Dai1 and Dai2 of the Damköhler number were analyzed. A
similar study was also performed by re-arranging the same
DNS data based on the Karlovitz number, i.e., Ka1 = 0.36
< · · · ≤ Kai ≤ Kai+1 ≤ · · · < Ka45 = 587. It is worth noting
that both Da1 = 24.7 and Ka1 = 0.36 correspond to the same
case L1 and both Da45 = 0.01 and Ka45 = 587 correspond to
the same case D9.

Typical results of such studies are plotted in Figs. 7 and
8. First, Fig. 7(a) shows that the restriction of the fitted data
to large values of Da ≥ Dai2 results in significantly decreas-
ing power exponents in Us

T/u
′ = BDab when compared to the

value of b obtained by processing the entire data set, cf. red
circles at Da > 1 with blue dashed line, respectively. This dif-
ference implies the dependence of the fitted b on the analyzed
range of Da if the Damköhler number is sufficiently high. If the
same data are restricted to low Da ≤ Dai1 , see black squares,
variations in the power exponent are much less pronounced,
thus, indicating a weaker dependence of the fitted b on the
analyzed range of Da if the Damköhler number is sufficiently
low.

Similarly, Fig. 8(a) shows that the power exponent in
Us

T/u
′ = BKab varies less if the DNS data are restricted to high

Ka ≥ Kai1 (black squares), whereas variations in b are signif-
icant at low Karlovitz numbers if the DNS data are restricted
to Ka ≤ Kai2 (red circles).

Second, Fig. 7(b) shows that both a decrease in Dai1 and
an increase in Dai2 make R2 very close to unity, thus, indicating
that the DNS data computed either at low (Da ≤ Dai1 ) or at

FIG. 7. (a) Power exponent in Us
T/u

′ = BDab and (b) coefficient of determi-
nation vs. upper (Dai1 , black squares) and lower (Dai2 , red circles) boundaries
of truncated arrays of the DNS data. Blue dashed lines show results obtained
for all 45 DNS cases.

high (Da ≥ Dai2 ) Damköhler numbers are better fitted with
Us

T/u
′ = BDab when compared to the entire data set. This

difference in the values of R2 again implies that the data follow
different scaling laws at low and at high Da.

Figure 8(b) shows that if the DNS data are fitted with
Us

T/u
′ = BKab and are restricted to high Ka ≥ Kai1 (black

squares), then R2 is very close to unity. If the same data are
restricted to low Ka ≤ Kai2 (red circles), then R2 is increased
with decreasing Kai2 , thus, indicating that Us

T/u
′ = BKab fits

the DNS data worse at low Ka.
Finally, the dependence of the power exponents on Da

and Ka can also be indicated by straightforwardly applying
Eqs. (11) and (12), respectively, to the entire data set. Indeed,
results plotted in Fig. 9 show that both Eqs. (11) and (12) well
approximate the data at low Da and Ka�1, respectively, but
the scatter of the data is much more pronounced at Da > 4 or
Ka−1 > 0.6.

It is also worth noting that Fig. 6(a) shows that | β | asso-
ciated with Us

T/u
′ ∝ (δF/L11)β is strongly decreased when

u′/SL is decreased from 5.0 to 0.5, but the values of β obtained
at u′/SL = 5.0 and 10.0 are almost equal to one another, cf.
diamonds and triangles. Similarly, Fig. 6(b) indicates that α
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FIG. 8. (a) Power exponent in Us
T/u

′ = BKab and (b) coefficient of determi-
nation vs. lower (Kai1 , black squares) and upper (Kai2 , red circles) boundaries
of truncated arrays of the DNS data. Blue dashed lines show results obtained
for all 45 DNS cases.

associated with Us
T/SL ∝ (u′/SL)α is approximately the same

(0.51 ± 0.07) for three sets characterized by lower L11/δF

and, hence, Da. Based on these results, one may assume that
dependencies of the two power exponents on Da (or Ka)
are leveled-off at |α | = | β | = 0.5, in line with Eq. (11), at
sufficiently low (high) Da (Ka).

Such an assumption can be assessed by comparing values
of Us

T/SL computed at approximately equal Pe. In six such sets
of cases associated with low or moderate Da, i.e., (i) B1 and
T1, (ii) B5, D10, and T2, (iii) B6, K1, and K2, (iv) B7 and D5-
D7, (v) B15 and D1-D4, and (vi) D8 and D9, approximately
the same values of Us

T/SL were computed for all cases within
each set, in line with the discussed assumption.

If we accept Eq. (11) at sufficiently low Da, then a ratio of
Us

T/u
′ should solely be controlled by the Damköhler number.

Indeed, Table I shows that approximately the same values of
Us

T/u
′ have been computed for all reaction waves within each

of the 12 sets of cases characterized with approximately equal
Da, i.e., (i) B1 and T1, (ii) B4 and B10, (iii) B8 and K1, (iv)
B14 and L5, (v) B15, T5, and T6, (vi) D1 and D6, (vii) D2,
T3, and T4, (viii) D3, D7, and D8, (ix) D4 and D10, (xi) D9
and K4, and (xii) K1, K2, and B2.

FIG. 9. Approximation of the DNS data with (a) Us
T ∝ u′

√
Da and (b) Us

T ∝

u′/
√

Ka.

The above discussion implies that a ratio of Us
T/u

′ is con-
trolled by the Damköhler, rather than the Karlovitz number
provided that Da is sufficiently low. The same conclusion can
be drawn by comparing values of Us

T/u
′ computed in cases (i)

B2, K1, and K2, (ii) T4 and K3, and (iii) D9 and K4. Within
each of these three sets of cases, values of Da are approx-
imately the same, values of Ka are notably (up to 64%, cf.
cases B2 and K2) different, but, nevertheless, values of Us

T/u
′

are approximately the same (difference is 9% or less).
The obtained better (worse) correlation of Us

T/u
′ with Da

(Ka) implies that the smallest eddies of the Kolmogorov scale
weakly affect UT . In a recent DNS study of lean premixed
hydrogen flames, Aspden51 found that “changes to viscosity
made little difference to the general structure and appearance
of the flame,” and this finding also implies a minor influence of
the Kolmogorov scales on UT . In flames, such an effect could
be attributed to the disappearance of the smallest turbulent
eddies due to dilatation,52,53 but ∇ · u = 0 in the constant-
density case studied by us. Accordingly, under conditions of
the present simulations, the weak influence of the smallest
eddies on UT stems from rapid smoothing of small-scale wrin-
kles of the reaction-zone surface due to molecular diffusion, as
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discussed in detail elsewhere.54 Comparison of the efficiencies
of the two physical mechanisms (dilatation and smoothing)
appears to be an interesting task for future variable-density
DNS of premixed turbulent combustion.

All in all, in line with the second (L � δF) hypothesis
by Damköhler,48 the present DNS data support Eq. (11) but
imply that it should not be used at sufficiently high Da. It is
worth remembering that the validity of Eq. (11) at low Da and
high Ka was also shown in an earlier DNS study by Aspden
et al.55,56

B. Developing turbulent consumption velocity

In order to gain insight into eventual variations of the scal-
ing exponents α and β during wave development, the present
DNS data on the developing U t

T (t) were processed adopting
the following two methods.

First, to mimic experiments with expanding statistically
spherical flames,2,57–61 the mean non-dimensional reaction
wave “radius” r̄f normalized using the length scale L11 was
evaluated by numerically integrating the following equation:

τt
dr̄f

dt
=

U t
T (t)

u′
, (13)

starting from r̄f (0) = 0.0 and using the DNS data on U t
T (t).

Subsequently, (i) a reference value r∗was set, (ii) time required
to reach this reference radius was found using r̄f (t) = r∗, and
(iii) values of U t

T [r̄f (t) = r∗] obtained in the basic DNS cases
B1-B15 at the same r̄f (t) = r∗, but different instants t, were
fitted using Eq. (10). Such a method is associated with the
aforementioned experiments because, in those experiments,
flame images are recorded using the same window and, there-
fore, the flame speeds are evaluated in the same range of the
flame radii independently of u′, mixture composition, etc.

In the range of 0.25 ≤ r∗ ≤ 1, the best fit (R2 = 0.99)
to the DNS data was obtained using Y =U t

T/u
′ and X = (u′/SL)

· (L11/δF)d . (Note that d is defined in Sec. V A where it was
also discussed that the same type of fitting yielded the lowest
difference in R2 and unity in the case of the fully developed
Us

T .) More specifically, in the range of 0.25 ≤ r∗ ≤ 1, the
DNS data on U t

T [t(r̄f = r∗)] with the above best fit give
U t

T ∝ u′αS1−α
L (L11/δF)β , where α ≈ 0.5, but β is increased

with increasing r∗, see Table II. It is worth remembering that
α ≈ β ≈ 0.5 for the entire database on the fully developed
Us

T . Thus, in this particular case, the scaling exponent β for
U t

T as a function of L11/δF changes substantially during the
wave development, whereas the scaling exponent α for U t

T as
a function of u′/SL retains approximately the same value 0.5.

It is also worth noting that the values of β = 0.22 and 0.28,
obtained at r∗ = 0.50 and 0.75, respectively, are sufficiently
close to the power exponent 0.25 resulting for L11/δF from
the following scaling UT ∝ u′Da1/4, which well fits2,4 to the
most extensive experimental databases on ST and UT obtained
from expanding statistically spherical turbulent premixed
flames. However, values of α = 0.5 and 0.75 are substan-
tially different in the present DNS and the cited experiments,
respectively.

Second, values of U t
T (t) computed in the basic cases

B1-B15 at the same non-dimensional time θ∗ = t/τt were
fitted using Eq. (10) and varying θ∗. Such a method is

TABLE II. Variations of scaling exponents during wave development.

Fixed normalized mean wave radius r̄f

r∗ 0.25 0.50 0.75 1.0
R2 0.99 0.99 0.99 0.99
α 0.5 0.5 0.5 0.5
β 0.19 0.22 0.28 0.33

Fixed normalized time θ

θ∗ 0.2 0.5 1.0
R2 0.99 0.97 0.95
α 0.05 0.20 0.35
β 0 0 0

associated with measurements performed in a statistically
stationary Bunsen16,62–64 (rim-stabilized) or V-shaped65–67

(rod-stabilized) premixed turbulent flame at the same distance
x from the flame-stabilization zone. If mixture composition,
u′, and the bulk flow velocity U are varied, but the ratio
of u′/U retains the same value, then the normalized flame-
development time (x/U)/(L11/u′) also retains the same value
in such experiments.

At θ∗ = 0.2, 0.5, and 1.0, the maximal values of R2 = 0.99,
0.97, and 0.95, respectively, were obtained for Y = U t

T/u
′ and

X = u′/SL. More specifically, at 0.2 ≤ θ∗ ≤ 1, the DNS data
on U t

T (θ∗) are best fitted with U t
T ∝ u′αS1−α

L (L11/δF)β , where
β vanishes and α is increased with increasing θ∗, see Table II.
A decrease in α or β with decreasing θ∗ is expected because
UT should be sufficiently close to SL at low θ∗.

The significant difference between the best fits to the DNS
data on Us

T , U t
T [t(r̄f ≤ 1)], and U t

T (θ∗ ≤ 1) implies that ST

or UT is subject to significant transient effects during the pre-
mixed turbulent flame development. This result appears to be
of substantial importance because a typical premixed turbulent
flame investigated in a typical experiment is the develop-
ing flame, as discussed in detail elsewhere.4,10 Such transient
effects should definitely be taken into account when comparing
experimental data obtained using different measurement meth-
ods from different flames. Moreover, such transient effects
should also be taken into account when comparing an analyt-
ical expression for the fully developed UT with experimental
data obtained from developing flames.

VI. CONCLUSION

The present DNS data show that, at sufficiently low
Damköhler numbers Da, a ratio Us

T/u
′ of fully developed

turbulent consumption velocity to r.m.s. turbulent velocity is
mainly controlled by Da and scales as

√
Da, in line with the

classical hypothesis by Damköhler.48 However, such a scaling
should not be extrapolated to high Da.

The higher Da (or Ka�1), the less pronounced dependence
of Us

T/u
′ on a ratio L11/δF of integral turbulent length scale

to the laminar wave thickness. This effect may contribute to
significant scatter of scaling exponents β obtained by fitting
various experimental databases with UT ∝ u′αS1−α

L (L11/δF)β .
Scaling laws for developing U t

T and fully developed Us
T

can be substantially different. In particular, the aforemen-
tioned scaling exponents α and, especially, β depend on the
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wave-development time and on a method used to evaluate the
developing U t

T . Such effects may also contribute to signifi-
cant scatter of expressions for UT or ST as a function of {u′,
SL, L11, δF}, obtained by parameterizing various experimental
databases.
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