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Måns Larsson1, Jennifer Alvén1, and Fredrik Kahl1,2

1 Chalmers University of Technology, Gothenburg, Sweden,
{mans.larsson,alven,fredrik.kahl}@chalmers.se

2 Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract. During the last few years most work done on the task of image seg-
mentation has been focused on deep learning and Convolutional Neural Networks
(CNNs) in particular. CNNs are powerful for modeling complex connections be-
tween input and output data but lack the ability to directly model dependent out-
put structures, for instance, enforcing properties such as smoothness and coher-
ence. This drawback motivates the use of Conditional Random Fields (CRFs),
widely applied as a post-processing step in semantic segmentation.
In this paper, we propose a learning framework that jointly trains the parameters
of a CNN paired with a CRF. For this, we develop theoretical tools making it
possible to optimize a max-margin objective with back-propagation. The max-
margin loss function gives the model good generalization capabilities. Thus, the
method is especially suitable for applications where labelled data is limited, for
example, medical applications. This generalization capability is reflected in our
results where we are able to show good performance on two relatively small med-
ical datasets. The method is also evaluated on a public benchmark (frequently
used for semantic segmentation) yielding results competitive to state-of-the-art.
Overall, we demonstrate that end-to-end max-margin training is preferred over
piecewise training when combining a CNN with a CRF.
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1 Introduction

Convolutional Neural Networks (CNNs) have, during the last few years, been used with
great success on a variety of computer vision problems such as image classification [12]
and object detection [8]. The capability of CNNs to learn high-level abstraction of data
makes them well suited for the task of image classification. Following this development,
there have been several successful attempts to extend CNN based methods to tasks done
on the pixel level such as semantic segmentation [9, 17, 18].

A drawback of CNNs is that they do not have the ability to directly model statisti-
cal dependencies of output variables. Hence they cannot explicitly enforce smoothness
constraints or encourage spatial consistency of the output, something that arguably is
important for the task of semantic segmentation. To deal with this a Markov Random
Field (MRF), or its variant Conditional Random Field (CRF), can be used as a refine-
ment step. This was done by Chen et al. in [4] where they used CNNs to form the unary



potential of the dense CRF model presented by Krähenbühl et al. in [11]. However, the
CNN and the CRF models are trained separately in [4] meaning that the parameters of
the CRF are learnt while holding the CNN weights fixed. In other words, the deep fea-
tures are learnt disregarding statistical dependencies of the output variables. In reaction
to this, several approaches for jointly training deep structured models, combining CNNs
and CRFs, have recently been proposed [5, 14–16, 24, 27, 31]. In these approaches, as
well as the one presented in this paper, the parameters of the CRF and the weights of
the CNN can be trained jointly, enabling the possibility to learn deep image features
taking dependencies of the output variables into account.

1.1 Contributions

What differentiates this paper from previous work done on learning deep structured
models is mainly the joint learning algorithm. We apply a max-margin based learning
framework inspired by [26]. This removes the need to calculate, or approximate, the
partition function present in learning algorithms that try to maximize the log-likelihood.
For instance, in [14, 31], the inference step is approximately solved using a few itera-
tions of the mean-field algorithm or gradient descent, respectively. Similarly, in [5],
sampling techniques are used to approximate the partition function. In our learning
framework, we can use standard graph cut methods to perform optimal inference in the
CRF model. We also show how the CNN weights can be trained to optimize the max-
margin criterion via standard back-propagation. To our knowledge, we are the first to
present a method for jointly training deep structured models with a max-margin objec-
tive for semantic segmentation.

Our experiments show that training deep structured models using our method gives
better results than piecewise training where the CNN and CRF models are trained sep-
arately. This proves that training deep structured models jointly enables the model to
learn deep features that take output dependencies into account which in turn gives better
segmentations. We tested our method on the Weizmann Horse dataset [2] for proof of
concept. In addition we applied it to two medical datasets, one for heart ventricle seg-
mentation in ultrasound images and one for pericardium segmentation in CTA slices.

1.2 Related Work

The concept of deep structured models has been examined extensively in recent work.
In [21] Ning et al. combine a CNN with an energy based model, similar to a MRF, for
segmentation of cell nuclei and in [4] a dense CRF with unary potentials from a CNN is
used to achieve state-of-the-art results on several semantic segmentation benchmarks.

Methods for jointly training these deep structured models have also received a lot
of attention lately. In [27] Tompson et al. present a single learning framework unifying
a novel ConvNet Part-Detector and an MRF inspired Spatial-Model achieving state-of-
the-art performance on the task of human body pose recognition. In [24] Schwing et
al. develop a method for jointly training the model from [4], i.e. a CNN coupled with
a dense CRF. Further, Chen and Schwing present a more general framework for joint
learning of deep structured models that they apply to image tagging and word from
image problems in [5]. Zheng et al. [31] show that the mean-field inference algorithm
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with Gaussian pairwise potentials from [11] could be modeled with Recurrent Neu-
ral Networks. This enabled them to train their model within a standard deep learning
framework using a log-likelihood loss. In parallel, Lin et al. [16] developed a method
where CNNs are used to estimate the messages in the message passing algorithm for
CRF inference. This in contrast to most other work where the CNNs have been used
to estimate the potential functions of the CRFs. In [15], they formulated a CRF model
with CNNs for estimating the unary and pairwise potentials. For training they used the
piecewise training approach proposed by Sutton and McCallum in [25].

In the field of medical image analysis, methods based on CNNs have also received
an increased interest during the last few years with promising results [6, 20, 23]. Re-
cently, more intricate deep learning approaches have been proposed. Ronneberger et al.
[22] proposed the U-Net, a network based on the idea of “fully convolutional networks”
[17]. A similar network structure was also proposed by Brosch et al. in [3]. However, to
our knowledge, methods utilizing end-to-end training of deep structured models have
yet to be presented for medical image segmentation tasks.

2 A Deep Conditional Random Field Model

The deep structured model proposed in this paper consists of a CNN coupled with a
CRF. This setup allows the model to learn deep features while still taking dependencies
in the output data into account. Denote the set of input instances by X = {x(n)}n
and their corresponding labelings by Y = {y(n)}n. The input and output instances are
images indexed for each pixel by x(n) = (x

(n)
1 , . . . , x

(n)
N ) and y(n) = (y

(n)
1 , . . . , y

(n)
N )

respectively. We only consider the binary labeling case, hence y(n)i = {0, 1}. Our deep
structured model is described by a CRF of the form

P (Y |X;w,θ) =
1

Z
e−
∑

n E(y(n),x(n);w,θ), (1)

where w are the weights of the CRF, θ are the weights of the CNN and Z is the par-
tition function. The energy E considered decomposes over unary and pairwise terms
according to the following form

E(y,x;w,θ) =
∑
i∈V

wuφ
1
i (yi,x;θ) +

∑
(i,j)∈E

wpwφ
2
ij(yi, yj ,x), (2)

where V is the set of nodes (i.e. pixels) and E is the set of edges connecting neighbouring
pixels. Note that this energy is linear with respect to the weights, wu and wpw.

The unary term of the energy E has the following form

wuφ
1
i (yi,x;θ) = w1 log(Φi(yi,x,θ)), (3)

where Φ(yi,x,θ) denotes the output of the neural network for pixel i. There are no
explicit requirements for the CNN except that it should output an estimate of the prob-
ability for each pixel being either foreground or background.

The pairwise term consists of two parts both penalizing two neighbouring pixels
being labeled differently. The first part adds a constant cost while the other one adds a

3



cost based on the contrast of the neighbouring pixels. If 1yi 6=yj denotes the indicator
function equaling one if yi 6= yj , the pairwise term has the following form

wpwφ
2
ij(yi, yj ,x) = 1yi 6=yj

(
w2 + w3 e

−
(xi−xj)

2

2

)
. (4)

2.1 Inference

Given an input instance x(n), the inference problem equates to finding the maximum a
posteriori labeling y∗ given the model in (1). This is equivalent to finding a minimizer
of the energy E in (2):

y∗ = argmin
y

E(y,x;w,θ). (5)

For our deep structured model the inference is done in two steps. Firstly, an estimation
of the probability of each pixel being either foreground or background is computed by
a forward pass of the CNN. Secondly, problem (5) is solved. We add the constraint
w2 ≤ 0 when learning the weights to make the energy submodular. This means that
graph cut algorithms can be used to efficiently find a global optimum [10].

2.2 Max-Margin Learning

There are two sets of learnable parameters, the weights of the CRF w and the weights
of the CNN θ. The method of learning is based on an algorithm proposed by Szummer
et al. [26] where the goal is to find a set of parameters w,θ such that

E(y(n),x(n);w,θ) ≤ E(y,x(n);w,θ) ∀y 6= y(n), (6)

i.e. we want to learn a set of weights that assign the ground truth labeling an equal or
lower energy than any other labeling. Since this problem might have multiple or no
solutions we introduce a margin ζ and try to maximize it according to

max
w:|w|=1

ζ

s.t. E(y,x(n);w,θ)− E(y(n),x(n);w,θ) ≥ ζ ∀y 6= y(n).
(7)

Finding the set of parameters that provides the largest margin regularizes the prob-
lem and tends to give good generalization to unseen data. However, for the final ob-
jective we make a few changes suggested by Szummer et al. [26]. To start of, a slack
variable for each training sample ξn is introduced to make the method more robust to
noisy data. In addition, we use a rescaled margin, demanding a larger energy margin
for labelings that differ a lot from the ground truth. Also, the program described in (7)
includes an exponential amount of constraints which makes solving it intractable, we
therefore perform the optimization over a much smaller set S(n). These changes, given
the variable transformation ||w|| ← 1/ζ, give rise to the following problem

γ = min
w

1

2
‖w‖2 + C

N

∑
n

ξn s.t. ∀y ∈ S(n) ∀n

E(y,x(n),w)− E(y(n),x(n),w) ≥ ∆(y(n),y)− ξn
ξn ≥ 0,wpw ≥ 0,

(8)
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where N is the number of training samples, C is a hyperparameter regulating the slack
penalty and ∆(y(n),y) is the Hamming loss, ∆(y(n),y) =

∑
i δ(y

(n)
i , yi).

The constraint set S(n) is iteratively grown by adding labelings that violate the
constraints in (8) the most. For each iteration, the weights are then updated to satisfy
the new, larger constraint set. This weight update is repeated until the weights no longer
change. The complete learning algorithm is summarized in Algorithm 1.

Input: image-labeling pairs {(x(n),y(n))} in the training set
initialize S(n) = ∅ for each training instance n andw = w0

whilew not converged do
for all training instances n do

find MAP labeling of instance n: y∗ ← argminy E(y,x(n),w)−∆(y(n),y)

if y∗ 6= y(n) then
add y∗ to constraint set: S(n) ← S(n) ∪ {y∗}

end
updatew to ensure ground truth has the lowest energy by solving program (8)

end
end
Output:w

Algorithm 1: Pseudocode for the CRF weight learning algorithm from [26].

2.3 Back-propagation of Error Derivatives

In this section, we show how the max-margin objective from the previous section can
be optimized for our coupled CNN and CRF model. Our main goal during learning is
to maximize the margin, or equivalently, minimize the objective γ as defined in (8). To
be able to perform a gradient based weight update we need to calculate the derivative
of this objective with respect to the weights of the network

∂γ

∂θj
=
∑
n

∑
i

∂γ

∂Φi

∂Φi
∂θj

, (9)

where the two sums are over the training instances, n, and the pixels, i. As previously,
Φi is the output of the network. Given a well-defined network structure the term ∂Φi

∂θj

can be easily calculated using standard back-propagation. Henceforth we will focus on
calculating the term ∂γ

∂Φi
. To simplify notation we will introduce zi as the output of the

network of pixel i being foreground, zi = Φi(yi = 1,x,θ). We start of by expressing
(8) on the following compact form

γ(z) = min
w,ξ

f(w, ξ),

s.t. hk(w, ξ, z) ≤ 0, k = 1, . . . ,M,
(10)

where M is the total number of constraints. We will treat γ as a function depending on
the network output, γ(z).
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In addition, the minimizers w∗ and ξ∗ can also be seen as functions of z, that is,
w∗ = w∗(z) and ξ∗ = ξ∗(z), which gives that

γ(z) = f(w∗(z), ξ∗(z)) =
1

2
‖w∗‖2 + C

N

N∑
n=1

ξ∗n,

∂γ

∂zi
=

D∑
j=1

fwj

∂wj
∂zi

+

N∑
n=1

fξn
∂ξn
∂zi

=

D∑
j=1

wj
∂wj
∂zi

+
C

N

N∑
n=1

∂ξn
∂zi

,

(11)

where D is the number of weights and N is the number of slack variables. To be able to
calculate ∂γ

∂zi
we need ∂wj

∂zi
and ∂ξn

∂zi
. These derivatives are found by creating and solving

a system of equations from the optimality conditions of the problem. The Lagrangian
for the constrained minimization problem in (10) is

L(w, ξ,λ) = f(w, ξ) +

M∑
k=1

λkhk(w, ξ),

where λ is the vector of Langrangian multipliers with elements λk. At optimum, the
first-order optimality conditions are satisfied:

∇wL = w +

M∑
k=1

λk∇whk = 0 and ∇ξL =
C

N
+

M∑
k=1

λk∇ξhk = 0. (12)

Now, the conditions for the implicit function theorem are satisfied and we also get that

∂(∇wL)
∂zi

=
∂w

∂zi
+

M∑
k=1

(
∂λk
∂zi
∇whk + λk

∂∇whk
∂zi

)
= 0, (13)

∂(∇ξL)
∂zi

=

M∑
k=1

(
∂λk
∂zi
∇ξhk + λk

∂∇ξhk
∂zi

)
= 0. (14)

Note that λk is a function of z. For the active constraints, where hk = 0, it holds that
∂hk

∂zi
= 0. For the passive constraints, hk < 0, we use the following identities:

λk = 0 and
λhk
∂zi

= 0. (15)

The equations in (12) to (15) give a linear system of equations with the unknowns
∂wj

∂zi
, ∂ξn∂zi

, λk and ∂λk

∂zi
. Solving this enables us to calculate ∂γ

∂zi
from (11) and finally

∂γ
∂θj

according to (9). Having this derivative makes it possible to learn CNN weights that
optimize the max-margin objective formulated in (8) using gradient based methods. For
more details, see the supplementary material.

2.4 End-to-End Training in Batches

We have now derived all the theoretical tools needed to train our deep structured model
in an end-to-end manner. The joint training is done in epochs, where all training samples
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are utilized in each epoch. In every training epoch, new CRF weights are computed and
the CNN weights are updated using gradient descent: θj ← θj + η ∂γ∂θj for all j.

To facilitate the process of learning deep image features for the CNN we first pre-
train the weights θ without the CRF part of the model. This is done using stochastic
gradient descent with a standard pixelwise log-likelihood error function.

The original learning method involves the entire training set when computing the
CRF weights. However, since the linear equation system that needs to be solved grows
with the number of training instances the learning process quickly becomes impracti-
cal with an increasing number of images. Hence we propose a method to compute the
derivatives in batches. In batch mode we apply the CRF learning method from Algo-
rithm 1 for each batch separately, We also calculate ∂γb

∂θj
following the steps described in

Section 2.3. Note that the objective γb that we actually minimize here is an approxima-
tion of the true objective since not all images are included. For each batch, the constraint
set S(n)

b is saved. These are, at the end of the epoch, merged to a set S(n) containing the
low-energy labelings for all training instances. Finally the optimization problem in (8)
is solved with this S(n) to get the CRF weights. When solving for the CRF weights we
also get the current value of our objective γ, which obviously should decrease during
training. The algorithm is summarized in Algorithm 2.

Input: image-labeling pairs {(x(n),y(n))} in the training set.
initializew = w0 and θ = θ0
for number of epochs do

initialize S(n) = ∅ for each training instance n
for each batch b do

CNN forward pass→ z
CRF learning by Algorithm 1
add low-energy labelings to set S(n)

calculation of objective derivative→ ∂γb
∂zi

, back-propagation→ ∂γb
∂θj

update CNN weights, θj ← θj + η ∂γb
∂θj

end
update CRF weights by solving (8)→ w, γ

end
Output:w, θ

Algorithm 2: Pseudocode for joint learning of parameters in batches.

3 Experiments and Results

Now, we present the performance of our method on three different segmentation tasks
including comparisons to two baselines. For the first baseline, “CNN (only)“, the seg-
mentation is created by thresholding the output of a pretrained CNN. For the second
baseline, “CNN + CRF (piecewise)“, a CNN coupled with a CRF is trained in a piece-
wise manner, meaning that the network weights are kept fixed while learning the CRF
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weights. The results for the joint learning is denoted ”CNN + CRF (joint)“. For all ex-
periments the CNN had the same structure as the FCN-8 network introduced by Long
et al. [17]. The parameter settings were the same for all three segmentation tasks (learn-
ing rate = 10−4, batch size = 10 and C = 1). All routines for training and testing were
implemented in MATLAB on top of MATCONVNET [28].

3.1 Weizmann Horse Dataset

The Weizmann Horse dataset [2] is widely used for benchmarking object segmentation
algorithms. The dataset contains 328 images of horses in different environments, we
divide these images into a training set of 150 images, a validation set of 50 images and
a test set of 128 images.

Our algorithm is compared to the, to our knowledge, best previously published re-
sults on the data set; Reseg [29], CRF-Grad [14] and PatchCut [30]. There are a few
variations of the Weizmann Horse dataset available, we used the same one as in Patch-
Cut [30]. Our algorithm is also compared to the two baselines, ”CNN (only)” and ”CNN
+ CRF (piecewise”). Quantative results (mean Jaccard index) are shown in Table 1 for
the test images. In Fig. 1 some qualitative results are presented.

Table 1. Mean Jaccard index for the Weizmann Horse dataset (test set).

Method Jaccard (%) Method Jaccard (%)

PatchCut [30] 84.03 CNN (only) 79.97
ReSeg [29] 91.60 CNN + CRF (piecewise) 81.62
CRF-Grad [14] 83.98 CNN + CRF (joint) 84.54

3.2 Cardiac Ultrasound Dataset

The second dataset we consider consists of 2D cardiac ultrasound images (2-chamber
view, i.e. the left artrium and the left ventricle are visible). The ground truth consists of
manual annotations of the left ventricle made by an experienced cardiologist according
to the protocol in [13]. The dataset contains 66 images which are divided into a training
set of 33 images, a validation set of 17 images and a test set of 16 images. See Fig. 2
and Table 2 for qualitative and quantitative results respectively.

3.3 Cardiac CTA Dataset

The third dataset we consider consists of 2D slices of cardiac CTA volumes originating
from the SCAPIS pilot study [1]. The ground truth consists of slice-wise manual an-
notations of the pericardium made by a specialist in thoracic radiology and according
to the protocol in [19]. The dataset includes in total 1500 2D slices which are divided
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58.32
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53.79

Piecewise

69.66

Joint Ground Truth

Fig. 1. Qualitative results on the Weizmann Horse dataset. ”Piecewise” denotes ”CNN + CRF
(piecewise)” and ”Joint” denotes ”CNN + CRF (joint)”. The number shown in the upper right
corner is the Jaccard index (%).

into three subsets of equal size to be evaluated separately representing three different
views (i.e. axial, coronal and sagittal view). For each view the 2D slices were divided
into a training set of 300 images, a validation set of 100 images and a test set of 100 im-
ages. Some of the 2D slices originate from regions where the pericardium is not visible.
Thus, these images were excluded from the quantitative results since the Jaccard index
is undefined if the ground truth and segmentation are both empty sets. Some qualitative
results of the joint training process are visualized in Fig. 2 and quantitative results are
presented in Table 2.

Table 2. Quantitative results for the Cardiac ultrasound dataset (US) and the Cardiac CTA Dataset
(CTA). For the CTA dataset, the different types of slices are evaluated separately (ax - axial, cor
- coronal and sag - sagittal). The mean Jaccard index (%) for the test sets are reported.

Mean Jaccard index (%)

Method US CTA-ax CTA-cor CTA-sag

CNN (only) 82.28 81.40 77.11 75.96
CNN + CRF (piecewise) 85.79 81.84 77.12 75.83
CNN + CRF (joint) 86.20 82.10 77.71 76.34
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Fig. 2. Qualitative results on the Cardiac ultrasound dataset (US) and the Cardiac CTA Dataset
(CTA). For the CTA dataset, the different types of slices are evaluated separately (ax - axial, cor
- coronal and sag - sagittal). ”Piecewise” denotes ”CNN + CRF (piecewise)” and ”Joint” denotes
”CNN + CRF (joint)”. The red number shown in the upper right corner is the Jaccard index (%).
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4 Conclusion and Future Work

In this paper, we have proposed a segmentation algorithm based on a deep structured
model consisting of a CNN paired with a CRF. We also presented a method for jointly
learning the parameters of the CNN and the CRF using a max-margin approach. Conve-
niently, the max-margin objective could be optimized with standard back-propagation
thanks to the theoretical results derived in Section 2.3.

We achieve superior results on two smaller medical datasets when comparing to
using a CNN only and using a CNN paired with a CRF trained separately. Note that
the CNN we used is based on a network pretrained on the ImageNet dataset [7]. It has
hence learnt image features for standard RGB images and for classification tasks, which
of course makes it more challenging learning CNN weights well-adjusted for medical
image segmentation. In spite of this, we still achieve good results on the two medical
datasets. A future continuation of this work would be to combine the CRF with a CNN
trained on a larger set of medical images. Also, implementing the framework for 3D
would increase its usability when it comes to medical applications.

In addition, other types of CRFs could be used. The ones considered in this paper
only include pairwise terms depending on neighbouring pixels. One possible extension
would be to consider longer distance relationships or higher order energy terms. Also,
the pairwise terms could be learned with a trainable CNN in the same way as for unary
terms. A trainable regularization term would surely enable the model to learn even more
sophisticated relationships for the output pixels.
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6. D.C. Cireşan, A. Giusti, L.M. Gambardella, and J. Schmidhuber. Mitosis detection in breast
cancer histology images with deep neural networks. In Int. Conf. on Medical Image Com-
puting and Computer-Assisted Intervention, pages 411–418, 2013.

7. J. Deng et al. ImageNet: A large-scale hierarchical image database. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition, pages 248–255, 2009.

8. R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition, pages 580–587, 2014.

9. A. Giusti et al. Fast image scanning with deep max-pooling convolutional neural networks.
In IEEE Int. Conf. on Image Processing, pages 4034–4038, 2013.

10. V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph cuts? IEEE
Trans. Pattern Anal. Mach. Intell., 26(2):147–159, 2004.

11
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Supplementary Material

Constraint Derivatives

In this section we derive the derivatives of the constraints in (8) in the main paper. This
is needed to calculate ∂γ

∂zi
, i.e. the derivative of the objective with respect to the CNN

output. We start off by rewriting all constraints on the form hk ≤ 0,

E(y(n))− E(y) +∆(y(n),y)− ξn ≤ 0 (16)
−ξn ≤ 0 (17)
−wpw ≤ 0. (18)

Note that, to clarify notation, we have not included all dependencies for the energies
here. We divide the constraints into three categories; energy constraints (16), slack con-
straints (17) and weight constraints (18). As mention in Section 2.3, for the constraint
that are active (hi = 0) we add the equation ∂hi

∂zj
= 0 to our linear system. Hence we

need to derive ∂hi

∂zj
for the different types of constraints. In addition, in Equations 12 to

15 we also need ∂hi

∂w1
, ∂hi

∂w2
, ∂hi

∂w3
, ∂hi

∂w4
and ∂2hi

∂w2∂zj
. Note that all all other second order

derivative equal zero.

Energy Constraints The energy constraints are formulated as follows

hi(x;w,θ) = w1

∑
j∈V

(− log(Φj(y
(n)
j ,x,θ)) + log(Φj(yj ,x,θ)))+

w2

∑
(j,k)∈ε

(1
y
(n)
j 6=y

(n)
k

− 1yj 6=yk) + w3

∑
(j,k)∈ε

(1
y
(n)
j 6=y

(n)
k

− 1yj 6=yk)e

(
−

(xj−xk)2

2

)
+

+∆(y(n), y)− ξn = w1

∑
j∈V

Ui(zj) + C
(i)
2 w2 + C

(i)
3 w3 +∆(y(n), y)− ξn,

(19)

where the index n denotes the ground truth instance that the energy is coupled
with. Note that there are several of these constraint per training instance, one for each
y ∈ S(n). To simplify notation we have introduced C(i)

2 and C(i)
3 , note that these are

constant given a low energy labeling y ∈ S(n) and a ground truth labeling y(n). In
addition we have introduced Ui(zj) which equals

Ui(zj) =


0 if yj = y

(n)
j

log(zj)− log(1− zj) if yj = 1, y
(n)
j = 0

log(1− zj)− log(zj) if yj = 0, y
(n)
j = 1

(20)

with the derivative

∂U(zj)

∂zj
=


0 if yj = y

(n)
j

1
zj

+ 1
1−zj if yj = 1, y

(n)
j = 0

− 1
zj
− 1

1−zj if yj = 0, y
(n)
j = 1
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We now calculate the needed derivatives, excluding the ones equaling zero

∂hi
∂zj

=
∂w1

∂zj

∑
k∈V

Ui(zj) +
∂Ui(zj)

∂zj
w1

+ C
(i)
2

∂w2

∂zj
+ C

(i)
3

∂w3

∂zj
− ∂ξn
∂zj

∂hi
∂w1

=
∑
j∈V

Ui(zj)

∂hi
∂w2

= C
(i)
2

∂hi
∂w3

= C
(i)
3

∂hi
∂ξn

=

{
−1 if yi ∈ S(n)

0 else

∂2hi
∂w1∂zj

=
∂Ui(zj)

∂zj

(21)

yi ∈ S(n) means that that the energy constraint hi is related to image and labeling
{(x(n),y(n))}. Note that the termUi(zj) is the only explicit dependence on the network
output in our optimization problem. Looking at the definition of Ui(zj) in (20) we see
that it will be zero for a lot of pixels. The derivative for all those pixel will be the same
and can hence be calculated by solving one linear system. However, for the pixels where
Ui(zj) 6= 0, the derivative needs to be calculated for each pixel.

Slack and Weight Constraints The slack constraints are formulated as follows

hi = −ξi.

Calculate the needed derivatives, excluding the ones equaling zero gives

∂hi
∂ξi

= −1

∂hi
∂zj

= − ∂ξi
∂zj

.

Note that the weight constraints are identical (switch ξi for w3 or w4).

Final Explicit Linear System

The variables for the linear system of equations are as previously mentioned ∂wi

∂z ,
∂ξi
∂z , λi,

∂λi

∂z .
To calculate these set up and solve a linear systemAx = b. where
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x =



∂w1

∂z
...

∂wD

∂z
∂ξ1
∂z
...

∂ξn
∂z
λ1
...
λN
∂λ1

∂z
...

∂λN

∂z



(22)

A and b are calculated from the equations satisfied at the optimum. Following the
derivations in Section 2.3 and Appendix 4 we are now ready to explicitly state these
equations. Call the set of indices corresponding to the energy constraint IE and the
indices corresponding to the positive slack constraint IS . For the first part of (12) we
get

∂L

∂w1
= w1 +

∑
i∈IE

λi
∑
j∈V

Ui(zj) = 0

∂L

∂w2
= w2 +

∑
i∈IE

λiC
(i)
2 − λw2

= 0

∂L

∂w3
= w3 +

∑
i∈IE

λiC
(i)
3 − λw3

= 0,

(23)

where λw2
and λw3

are the lagrangian multipliers corresponding to the weight con-
straints. For the second part of (12) we get

∂L

∂ξn
=
C

N
−
∑
k∈I(n)

E

(λk)− λ(n) = 0,

where I(n)E is the set containing the indices for the energy constraints for training
instance (n) and λ(n) is the lagrangian multiplier corresponding to the slack constraint
of instance (n). For (13) we get
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Fig. 3. Joint training results for the Weizmann Horse dataset. The left figure shows the mean
Jaccard index versus epochs for the training images (blue upper graph) and the validation images
(red lower graph). The right figure shows the max-margin objective, γ, from (8) versus epochs.

∂2L

∂w1∂zj
=
∂w1

∂zj
+
∑
i∈IE

(
∂λi
∂zj

∑
k∈V

(Ui(zk)) + λi
∂Ui(zj)

∂zj

)
= 0

∂2L

∂w2∂zj
=
∂w2

∂zj
+
∑
i∈IE

(
∂λi
∂zj

C
(i)
2

)
− ∂λw2

∂zj
= 0

∂2L

∂w3∂zj
=
∂w3

∂zj
+
∑
i∈IE

(
∂λi
∂zj

C
(i)
3

)
− ∂λw3

∂zj
= 0.

(24)

And finally for (14)

∂2L

∂ξn∂zj
= −

∑
k∈I(n)

E

(
∂λk
∂zj

)
−
∂λ(n)

∂zj
= 0

In addition to these equations we also get one equation for each active constraint,
∂hi

∂zj
= 0 or see Appendix 4 for an explicit formulation, and two equations for each

passive constraint, see (15). All of these equations make up A and b of our linear
system, solving it we get x as defined in (22).

Additional Results

In this section we present some additional results for the different datasets. For the
Weizmann horse dataset results from the joint training process can be seen in Fig. 3
and some qualitative results can be seen in Fig. 4. For the Cardiac Ultrasound Dataset
qualitative results can be seen in Fig. 5 and for the Cardiac CTA Dataset the results on
the axial, coronal and sagittal slices can be seen in Fig. 6, Fig. 7 and Fig. 8 respectively.

16



87.33 88.45 93.25

66.85 70.85 80.43

80.83 82.12 93.90

Image

58.32

CNN only

53.79

Piecewise

69.66

Joint Ground Truth

Fig. 4. Qualitative results on the Weizmann Horse dataset. ”Piecewise” denotes ”CNN + CRF
(piecewise)” and ”Joint” denotes ”CNN + CRF (joint)”. The red number shown in the upper right
corner is the Jaccard index (%). The figure is best viewed in color.
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Joint Ground Truth

Fig. 5. Qualitative results on the Cardiac ultrasound dataset. ”Piecewise” denotes ”CNN + CRF
(piecewise)” and ”Joint” denotes ”CNN + CRF (joint)”. The red number shown in the upper right
corner is the Jaccard index (%). The figure is best viewed in color.
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Fig. 6. Qualitative results on the Cardiac CTA Dataset for the axial slices. ”Piecewise” denotes
”CNN + CRF (piecewise)” and ”Joint” denotes ”CNN + CRF (joint)”. The red number shown in
the upper right corner is the Jaccard index (%). The figure is best viewed in color.
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Fig. 7. Qualitative results on the Cardiac CTA Dataset for the coronal slices. ”Piecewise” denotes
”CNN + CRF (piecewise)” and ”Joint” denotes ”CNN + CRF (joint)”. The red number shown in
the upper right corner is the Jaccard index (%). The figure is best viewed in color.
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Fig. 8. Qualitative results on the Cardiac CTA Dataset for the sagittal slices. ”Piecewise” denotes
”CNN + CRF (piecewise)” and ”Joint” denotes ”CNN + CRF (joint)”. The red number shown in
the upper right corner is the Jaccard index (%). The figure is best viewed in color.
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