
Investigating Simultaneous Localization
and Mapping for AGV systems
With open-source modules available in ROS

Master’s thesis in Computer Systems and Networks

ALBIN PÅLSSON
MARKUS SMEDBERG

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017

Investigating Simultaneous Localization
and Mapping for AGV systems

With open-source modules available in ROS

ALBIN PÅLSSON

MARKUS SMEDBERG

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Investigating Simultaneous Localization and Mapping for AGV systems
With open-source modules available in ROS
ALBIN PÅLSSON
MARKUS SMEDBERG

© ALBIN PÅLSSON, 2017.
© MARKUS SMEDBERG, 2017.

Supervisor: THOMAS PETIG, Computer Science and Engineering
Advisor: MIKAEL BJÖRN, Kollmorgen Automation AB
Examiner: OLAF LANDSIEDEL, Computer Science and Engineering

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Visualization of SLAM generated map.

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Investigating Simultaneous Localization and Mapping for AGV systems
With open-source modules available in ROS
ALBIN PÅLSSON
MARKUS SMEDBERG
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The purpose of this project is to investigate solutions for Simultaneous Localization
and Mapping (SLAM) in the context of Automated Guided Vehicles (AGVs). This
thesis presents implementation details of a prototype system for AGVs, which was
developed with the intention of allowing application-specific testing of SLAM.

Three of the most prominent open-source SLAM algorithms, available in
ROS, have been evaluated and critically compared. Furthermore, basic background
and explanation of the critical problems of SLAM are presented. The SLAM al-
gorithms have been evaluated based on resulting map quality as well as resource
requirements. Map quality is tested based on both visual comparison with a ground
truth and the correctness of estimated distances in the map. In addition to this, re-
sults are presented from tests which have been conducted in order to test the SLAM-
generated maps in AGV application areas. This includes tests where critical tasks,
such as the robot’s precision while navigating with the use of a SLAM-generated
map, has been assessed.

The presented prototype system is based on the Robot Operating System
(ROS), which includes state-of-the-art libraries and tools for robotic navigation. The
prototype enables testing of navigation and mapping software available in ROS by
publishing sensor data, from a physical AGV. The implemented software publishes
readings from a laser range scanner, wheel encoders and a gyroscope. These sensor
reading are published in a standardized way, making them accessible to applications
in the ROS framework. The presented results from the tests answers the question
of whether or not SLAM is suitable in the intended environment.

Keywords: AGV, Navigation, Robot Operating System, ROS, Automation, Simul-
taneous Localization and Mapping, SLAM, NDT

v

Acknowledgements
This Master thesis has been carried out under the Department of Computer Science
and Engineering at Chalmers University of Technology. We want to express our
deep gratitude towards our academical supervisor Thomas Petig for his support,
proposed ideas and feedback on technical writing.

We thank Kollmorgen Automation AB for providing the thesis topic, a
workplace and AGVs for testing. Furthermore, we would like to express gratitude
toward all employees at Kollmorgen for a friendly and welcoming atmosphere. We
would also like to give special thanks to Mikael Björn for his technical guidance,
willingness to help and enthusiasm towards the thesis topic.

Markus Smedberg and Albin Pålsson, Gothenburg, June 2017

vii

Contents

1 Introduction 1
1.1 Related work . 2
1.2 Our contribution . 3

2 Background 5
2.1 Robot Operating System . 5
2.2 Simultaneous Localization and Mapping 8

2.2.1 Problem definition . 8
2.2.2 Bayes filter . 9
2.2.3 Basic SLAM paradigms . 10

2.3 The Normal Distribution Transform 10

3 Implementation 13
3.1 System background . 13

3.1.1 Hardware . 14
3.1.2 Software . 15

3.2 Software design . 16
3.2.1 ROS SLAM node . 18

3.3 Map conversion . 20

4 Evaluation 23
4.1 Mapping . 23

4.1.1 Map alignment . 24
4.1.2 Manual measurements . 25
4.1.3 Performance and system requirements 26

4.2 Navigation . 28
4.2.1 Repeatability in positioning estimation 29
4.2.2 Repeatability in automatic driving 32
4.2.3 Navigation level . 33

5 Discussion 37
5.1 Software implementation . 37

5.1.1 Sensor publisher node . 37
5.1.2 Map converter . 38

5.2 Test results . 41
5.2.1 Mapping . 41
5.2.2 Navigation . 45

ix

Contents

6 Conclusion 47

Bibliography 48

A Appendix 1 I

x

1
Introduction

An Automated Guided Vehicle (AGV) is a robot which navigates using techniques
such as laser scanning or markers on the floor. Today’s AGVs are most commonly
used in environments such as warehouses, since they provide an effective and cost
efficient way to move objects around. The application areas for AGVs are expanding
which means that the need for new features and better performance is increasing.

The use of autonomous vehicles in industrial environments has been in-
creasing in recent years since it potentially boosts efficiency and also reduces the
amount of manual work required. These vehicles needs to be able to position them-
selves reliably in order for this to work efficiently, which makes positioning a key
feature for AGV systems. The most common way to achieve this is using addi-
tional infrastructure in the existing environment. The installation of such a setup is
however time consuming and additional manual work is required if the environment
changes. Research within the area of alternative map-based localization methods
is therefore crucial for future development. By using a technique called Simulta-
neous Localization and Mapping (SLAM) it is possible to automate the process of
surveying the environment and significantly reduce the time and cost of mapping
processes [13].

SLAM is the computational problem of mapping an unknown environment
while at the same time finding and keeping track of the operators location within
this map. SLAM in two dimensions has been frequently used in research for several
years but have not yet been widely accepted in industrial systems [27].

Robot Operating System (ROS) [22] is an open-source framework useful
when building software for robot research. It contains libraries and tools which
simplify the process of creating and connecting complex, but modular distributed
robot systems. The ROS framework has proven to be powerful when developing
applications for automated vehicles, specially prototype work requiring simulations
and debugging [12]. ROS provides an opportunity for companies working with e.g.,
AGVs to open up their robots as a platform for research. This allows for research on
new algorithms or applications for the existing systems with minimal knowledge of
the inside of the system. It also allows integration of external software which have
been created by experts outside of the company. This can simplify development and
testing of new approaches and features.

The purpose of this project is to evaluate SLAM by developing and pre-
senting a proof of concept system, based on ROS, with hardware and use cases
similar to those used for AGVs in the industry. The implemented software of this
project will be a extension to an already existing AGV system where ROS will serve
as a foundation for the implementation. The performance of this setup will then

1

1. Introduction

be evaluated in order to provide a starting point for further investigation whether
SLAM is a feasible solution for tasks related to AGVs or not. Limitations found
will contribute to direct further research. The focus of this project is mapping and
navigation, but the project also indirectly includes a small-scale evaluation of ROS
focusing on some of the existing stacks and tools, as an environment for testing and
research.

With a system set up, using primarily a range scanner as input, several
different SLAM algorithms will be tested and evaluated. These algorithms are evalu-
ated first and foremost by the quality of the resulting map. The goal is to distinguish
which SLAM-techniques give the best performance, but also to look at whether the
results are promising for industry use or not. The tests include visual inspection as
well as manual distance measurements. Furthermore, CPU load and memory usage
are important parameters to consider in addition to the quality of results of the
algorithms. The intent is to also further present which techniques for mapping and
navigation that show most promise in order to direct future research. Although the
tested SLAM algorithms share similarities they still have some differences which are
worth analyzing.

As previously mentioned, positioning is one of the key features of AGV
systems. In order to evaluate the suitability of SLAM in this environment, additional
tests have therefore been conducted to determine the precision of positioning using
SLAM generated maps. The tests are meant to determine if SLAM solutions meet
the demands of real world use cases. These demands include low computational costs
while providing near real-time execution and high precision. The most important
metric when it comes to positioning is repeatability, which is the ability to position
the vehicle at the same real-world coordinate over and over again. Further tests have
been performed, using existing positioning applications, which measure repeatability
with constructed movement patterns and environments which resembles real world
use cases.

1.1 Related work
Indoor localization is an important topic in today’s research since it can be used
in a wide variety of systems, such as AGVs. There exist solutions which can be
considered infrastructure-free, for example those using existing WiFi or GSM [17]
for localization. Other solutions, using techniques such as Ultra Wideband (UWB)
radio or RFID, require beacons or special infrastructure but are generally more ac-
curate. For this thesis we will mainly consider the use of Light detection and ranging
(LIDAR), where a scanner gathers distance measurements of the surrounding ob-
jects by sending laser beams. LIDAR measurements can be used for localization
by comparing the scans to a predefined map. This technique is commonly used for
indoor localization for AGVs since it provides high precision measurements without
being too costly. In this project the LIDAR will also be used for SLAM.

There are various variants of SLAM techniques and implementations [29].
SLAM algorithms are often developed with a specific goal in mind, where metrics like
accuracy, robustness or processing time are prioritized at various extents. The paper
"A flexible and scalable SLAM system with full 3D motion estimation" [15] presents

2

1. Introduction

an algorithm which was developed with the aim of allowing sufficient mapping and
localization while keeping computational costs low. Meanwhile, the recently released
paper "Real-time loop closure in 2D LIDAR SLAM" [13] presents a method for
reducing the computational costs of computing loop closures. This potentially allows
for mapping of large areas. The need to analyze strengths and weaknesses of SLAM
algorithms is obvious.

While there exist research on evaluation of different algorithms, compar-
isons between algorithms are rare. There exist a few different techniques for evaluat-
ing SLAM algorithms. The paper "An evaluation of 2D SLAM techniques available
in Robot Operating System" [25] compares the most popular SLAM algorithms
available in ROS as an overview of strengths and weaknesses to define guidelines for
other users. The quality of the maps are compared by looking at the error between
the generated map and the ground truth. Sometimes, simple visual comparison of
the result is considered to be sufficient while another common technique is based on
calculating the error for the estimated trajectory during SLAM [16].

Tests on SLAM algorithms are commonly performed both in simulated en-
vironments and with physical robots. Furthermore, most existing SLAM evaluations
are conducted on standard data sets, while focus will be at evaluating SLAM specif-
ically for AGV use in the project, with more specific test cases and environments in
mind.

SLAM research targets a variety of application areas. There exist research
which is primarily focused on the AGV industry such as the paper called "Graph
SLAM based mapping for AGV localization in large-scale warehouses" [2] where a
SLAM solution for warehouse AGV’s is implemented. A solution based on using
mounted reflectors in addition to range measurements is presented in this paper,
which differs from what has been done in our thesis.

1.2 Our contribution

This thesis presents an implementation of a ROS-based mapping and navigation
system for an embedded vehicle controller. The project is done in collaboration
with Kollmorgen Automation, a company developing AGV systems. Kollmorgen
provided the vehicle controller, as well as a test vehicle which has been used in this
project. The design choices and configurations of this implementation are detailed.
The implementation is added on top of existing vehicle software in order to allow
for extensive testing. Furthermore the resulting setup is evaluated.

The most prominent SLAM algorithms existing for ROS are evaluated and
compared, both to each other and to a ground truth. The algorithms are compared
based on resulting output as well as CPU and memory usage. The comparisons in
this project will include the Cartographer algorithm [13] which has shown promis-
ing results but which has not yet, to our knowledge, been compared to the most
prominent SLAM algorithms available in ROS.

The SLAM-generated maps are also tested together with existing navi-
gation software in order to evaluate their usefulness in AGV systems. These tests
are constructed to test the vehicles precision in navigation and position estimation.

3

1. Introduction

In order to use existing software, a map converter was developed. This converter
enables SLAM-generated maps to be used with existing navigation tools.

The project is limited to testing existing SLAM and navigation-algorithms
available in ROS. Related settings and configurations will be explained but no de-
velopment of algorithms for these tasks has been done.

4

2
Background

This chapter provides background knowledge which helps the reader understand the
work presented in this thesis. The knowledge required for this project includes infor-
mation about the ROS framework as well as details regarding the SLAM problem.

2.1 Robot Operating System
Robot Operating System (ROS) is an open-source framework useful when building
software for various kinds of robots. It contains libraries and tools which simplify the
process of creating and connecting complex robot systems [22]. ROS is specifically
useful as its modular structure allows known well-debugged code to run alongside
other code currently being written. The structure also allows for easy debugging of
a single node.

ROS software is organized into packages. These contain modules of soft-
ware such as nodes or libraries. A robot system is supposed to operate using a
network of processing nodes where each node controls one smaller task of the sys-
tem. Figure 2.1 shows an example of a ROS setup where nodes are displayed as
ellipses.

/Publisher_Node /topic_name

/Subscriber_Node2

/Subscriber_Node1

Figure 2.1: Illustration of an example ROS setup with Publisher and Subscriber
nodes sharing data via a topic. Both Subscriber nodes recieve all data published by
the Publisher node.

The nodes are connected in the network by topics or services. Topics are
buses which can be used to transmit messages between nodes. Generally, nodes
are not aware of who they are communicating with. Instead, a node publishes
information onto a topic, where anyone interested can subscribe to all messages
published to it. Topics are shown as rectangles in Figure 2.1 with a topic name

5

2. Background

(/topic_name). Topics are intended for streaming communication and use TCP or
UDP based transport. Each topic has a message type bound to it which specifies
the format of sent and received messages.

Sometimes it is more useful to let a node send a request for a message
rather than subscribing to a topic. ROS Services supplies a request and reply struc-
ture for nodes. A Service is defined by one message type for requests and one for
replies. A node provides a service by listening for the expected request and reply-
ing when asked. ROS Message types are used to simplify communication between
nodes. Descriptions for messages are stored in ROS packages and detail what data
is sent within a message.

A ROS system requires a Master, which is included in the roscore package.
This master matches publishers and subscribers to topics and services. The Master
provides a "lookup" which allows for nodes to find each other. Nodes can ask the
master for a publisher or subscriber of a certain topic and the nodes can then
communicate directly with each other.

In robotics, it is important for the robot to be aware of where it is in
relation to the rest of the world. It is also crucial that the software is aware of
the different locations and positions of connected sensors. All sensors use their own
coordinate frames and the job for the robot is then to transform the frames in order
to be able to compare data from different sensors in the same coordinate frame. TF
is a ROS library which provides a way to track different coordinate frames and the
transforms between those [10]. The library lets the developer use data in the desired
coordinate frame without knowledge of all the frames in the system.

The transform class supports rigid body transforms. A transform is simply
a message which contains a translation and rotation, providing a relation between
two frames. Figure 2.2 shows a basic topology of a transform tree where the boxes
represent frames and the arrows are transforms. In order for a system to work
correctly, there must exist a path which connects all frames.

Base_linkOdomMap

Figure 2.2: Basic example of TF tree structure with three frames connected by
transforms.

6

2. Background

Odom and Base_link are commonly used frames and their relations are
illustrated in Figure 2.3. The Base_link frame is rigidly attached to the robot base
and the Odom frame typically has its origin at the starting position of the robot.
The transform from the Base_link frame to the Odom frame specifies what trans-
lation and rotation that represents the robots position in the Odom frame. As an
example of this, lets consider a point Pbase_link with coordinates in the Base_link
frame. The position of this point in the Odom frame Podom can then be calculated
using equation 2.2. T o

b is the transform between Base_link and Odom frame and
can be represented using the rotation θ and translation (x’,y’) as seen in equation 2.1.

T o
b =

cosθ −sinθ x′

sinθ cosθ y′

0 0 1

 (2.1)

Podom = T o
b Pbase_link (2.2)

θ

x’,y
’

/odom

/bas
e_li

nk

Y

X

x

y

Figure 2.3: Example of relation between Base_link and Odom frames.

Poses in the Odom frame needs to be continuous and are often provided
by a source such as wheel encoders or an inertial measurement unit. Poses in the
Odom frame provides good short-term positioning but the drift makes it a bad source
for long-term position references which introduces the need for other "world-fixed"
frames. The Map frame is commonly used in robotics, with a transform towards the
Odom frame. This transform, similar the one illustrated in Figure 2.3, specifies how
the Odom frame is placed within the global Map frame. By traversing the TF tree
and applying both the transform from Base_link to Odom T o

b and from Odom to
Map Tm

o one can obtain the global Map coordinate of the Base_link Tm
b , ie. where

the robot is in the map frame; Tm
b = T o

b ∗ Tm
o .

7

2. Background

2.2 Simultaneous Localization and Mapping
Simultaneous Localization and Mapping (SLAM) is the concept of letting a mobile
robot generate a map of an unknown environment and at the same time use this
map to calculate its position [8]. The SLAM problem exists when a robot does
not have any information regarding a map nor its position and all that is given
is measurements and control [28]. All information is calculated during run-time
and no prior knowledge of the environment is required. To conclude, SLAM serves
two different purposes: creating an accurate environment map and calculating and
keeping track of the robots location over time. The SLAM problem is seen as one
of the most important topics to master when developing truly autonomous mobile
robots [29]. It is significantly more difficult than most robotic problems due to the
fact that the map and poses have to be estimated along the way [28].

2.2.1 Problem definition
Figure 2.4 depicts the foundational variables of a SLAM system and the relation
betweem them. The notion ut represents the relative motion between time t-1 and
time t, which is called odometry. Odometry is stored for each time t and is often
derived from the robots wheel encoders or motor control and represents a relative
motion between two points in time.

xt-1 xt xt+1

ut-1 ut ut+1

zt-1 zt zt+1

m

Figure 2.4: Graphical visualization of variables and their relations in the SLAM
problem.

It is necessary to have measurements of the environment when performing
SLAM. A common type of measurement sensor is LIDARs, which uses laser rays
to measure the distance to the closest object in all directions. These measurements
form point clouds representing the environment and are stored as zt for all times.

8

2. Background

In SLAM it is also necessary to estimate a sequence of the robot’s positions
during execution. These positions are denoted as xt, where t represents a point in
time. Each position is typically represented as a three-dimensional vector which
contains a two-dimensional coordinate and a rotational value to represent the robots
orientation. Each position xt has relations to the previous and the following position.
The odometry measurements ut represent the motion between times t − 1 and t.
Measurements zt are associated with each position, xt, in time as well.

The final variable, m, introduced in Figure 2.4 represents the true map of
the environment, that is, how the environment actually looks. The SLAM problem
is then defined as to estimate m and the sequence of positions xt, only using mea-
surements and odometry data. One especially difficult part of the SLAM problem
is loop closures, which refers to the situation when the robot returns to an already
visited position and re-observes landmarks.

2.2.2 Bayes filter
Bayes filter is the most general algorithm for estimating beliefs over states x, where
a state is a collection of all information related to the robot and its environment.
A belief represent the robots internal knowledge of its position, which is not the
same as the true state. The general idea is to calculate a belief bel(xt) of time t
recursively based on the previous belief bel(xx−1) together with measurement zt and
control data ut [28]. The general Bayes filter algorithm can be found in Algorithm 1.

The algorithm iterates over each hypothetical state xt. The belief bel(xt)
for time t is estimated in two steps. First a prediction step is executed, seen in line
2. This step calculates a belief of xt purely based on the previous belief bel(xt−1)
and the control ut. This is done by integrating over the product of two distributions.
The first being the probability that control ut moves the robot from xt−1 to xt and
the second the belief of state xt−1. This step spreads the resulting state distribution
due to noise from control.

The state distribution is tightened by using measurement data in the
second step of the algorithm. This step is called the update step and is found in
line 3 of Algorithm 1. This step updates the estimated belief, calculated in line 2,
with the probability that measurement zt have been observed at xt. Furthermore
the result has to be normalized, by multiplication of the normalization constant c,
in order to correctly represent a probability. By providing an initial belief as a base
case for the recursion, one can use Bayes filter to solve the task of localization for
a robot. It is important to note that this specific algorithm is only applicable to
simple estimation problems as it loops over xt, which is continuous and can take an
infinite number of values.

Algorithm 1 General Bayes filter algorithm
1: for all xt do
2: bel′(xt) =

∫
(p(xt | ut, xt−1) bel(xt−1) dx

3: bel(xt) = c p(zt | xt) bel′(xt)
4: end for
5: return bel(xt)

9

2. Background

2.2.3 Basic SLAM paradigms
Solutions to the SLAM problem continuously estimates the robots state based on
control, measurements and old estimates often in a similar way to the approach of
the Bayes filter. Furthermore S. Thrun and JJ. Leonard [29] present three main
paradigms that most SLAM algorithms follow, or are derived from. These three are
Extended Kalman Filter (EKF) SLAM, Particle filter based SLAM [7] and Graph-
based SLAM [18].

EKF based SLAM is historically the earliest and probably the most in-
fluential SLAM paradigm [28]. We refrain from giving an extensive background
on the EKF except by saying that it is based on Bayes filter, utilizing Taylor lin-
earization [26]. Naive implementations of this paradigm tends to be computationally
costly since the computational cost grows quadratically with the number of observed
landmarks [8]. However there exist variants of EKF-SLAM which can process large
amount of landmarks efficiently. This SLAM solution also inherits the same prob-
lems as standard EKF solutions where one problem is that it applies linearized
models to non-linear motion and observations.

The second paradigm presented by S. Thrun and JJ. Leonard is based on
particle filters [19]. This was the first concept of representing a non-linear process
model [8]. Particle filtering is another way of calculating probabilities of a process
states with partial or noisy observations. Each particle in the system holds an
estimate of the state of the system. By combination of a set of particles it is possible
to achieve a good estimation of a map which realistically represents the reality.
The SLAM problem makes direct implementation of particle filters impractical, as
they tend to grow extremely large in numbers, and the main challenge with this
approach is then to limit the number of particles. The particle filter based solution
was designed to make improvements to the speed of the EKF-based algorithms [20].

The third paradigm relies on the fact that the SLAM problem can have a
graph-based representation. The basic idea is that observations and robot locations
can be stored as nodes. The edges represent a relation between nodes, which can be
either the motion between two positions or the position at which an observation was
made. The edges can be seen as constraints and by relaxing them one can retrieve
the best estimate for the map and trajectory. This approach has the advantage over
EKF paradigm in regards of required space and update time as inserting nodes in
the graph requires constant time and the required memory grows linearly with the
size of the map. [29]

2.3 The Normal Distribution Transform
Scan matching is a SLAM method which is based on being able to match two scans
or match a scan to a map. The paper "The Normal Distributions Transform: A
New Approach to Laser Scan Matching" [3] introduces the Normal Distribution
Transform (NDT) and presents a new approach to scan matching.

NDT transforms a scan (2D points) into a grid Z2 where every cell is
associated with a normal distribution. In practice this means that each cell has
a mean vector and a covariance matrix and the result of the transformation is a

10

2. Background

continuous probability density for the 2D plane which can be used for scan matching.
Creation of an NDT map works as follows: first, the modeled 2D space is divided into
cells of equal size. Then, by gathering all scan points inside a cell, one can calculate
the mean and covariance of the data inside that cell. This process is mathematically
explained below.

• Gather all scan points {xi}, i ∈ {1, ..., n}, inside cell c.
• Calculate the mean qc = 1

n

∑n
i=1 xi .

• Calculate the covariance matrix Σc = 1
n

∑n
i=1(xi − q)(xi − q)t.

The probability of measuring a point x within cell c can then be modeled
using the Normal Distribution: p(x) ∼ N(qc,Σc). This means that a NDT grid
represents the probability of measuring a point within a cell while for example an
occupancy grid, which are commonly used, represents the probability of a cell being
occupied. Furthermore the paper shows that this representation can be used for
scan matching by creating a score, based on the distributions, and using one step of
Newton’s Algorithm for score optimization. Based on this, ideas of how to implement
position tracking and SLAM using NDT is presented in the paper.

11

2. Background

12

3
Implementation

This chapter describes the implementation of a prototype system for an AGV ap-
plication supporting ROS SLAM. The first subsection describes what hardware re-
sources are included in the system. Then the existing software is detailed as well
as what has been implemented to enable ROS integration. Furthermore, a exten-
sive description of the system setup while performing SLAM is included. Lastly,
methods for conversion between two map representations are proposed.

3.1 System background
Kollmorgen Automation provides a generic control system for automated guided
vehicles called NDC8. The NDC8 system includes a vehicle controller, navigation
sensors, displays, vehicle software as well as system software for configuration and
diagnostics. This project utilizes the hardware provided by the NDC8 but also some
of its software, which has been extended with additional functionality.

Figure 3.1: Vehicle used for implementation and testing. Equipped with the
LS2000 scanner, wheel encoders and a gyroscope. The manual control device can
be used to drive the vehicle.

13

3. Implementation

3.1.1 Hardware
Three types of sensors have been used for navigation. These types are Light Detec-
tion and Ranging sensors, referred to as LIDAR, wheel encoders and gyroscope. A
LIDAR measures distances to closest objects in different directions by using laser
rays. Wheel encoders reports how fast the wheel is rotating and what steering angle
is applied to it. This information can be used for dead reckoning to calculate how
far the vehicle has travelled from a starting point. A gyroscope measures rotational
acceleration per axis.

The LIDAR used in the test setup is a LS2000, which is the same product
Kollmorgen uses in most of their new systems. The LS2000 scanner provides an
angular resolution of 1 milliradian at a rate of 20 scans per second and a range of
30 meters for wall measurements with the current setup.

Kollmorgens vehicle controller, called CVC600, consists of an embedded
ARM Cortex-A8 processor running Linux, and this is where all the vehicle software
is executed. The vehicle controllers main objective is to calculate the vehicles posi-
tion as well as giving control commands to the vehicle based on centralized orders.
Figure 3.2 depicts a system overview that illustrates how the hardware components
are connected in the NDC8 system.

Encoder

Vehicle ControllerLaser
Scanner

Ethernet

CAN bus

Encoder

Gyroscope

Figure 3.2: Hardware architecture overview. The laser scanner is connected
through ethernet and the wheel encoders are connected via a CAN bus. The gyro-
scope is integrated in the vehicle controller.

The sensors are externally connected to the vehicle controller, with the
exception of the gyroscope which is integrated in the CVC600. The wheel encoders
are connected to the vehicle controller through the CAN bus and the LS2000 LIDAR
is connected with ethernet and communicates using UDP packets.

14

3. Implementation

3.1.2 Software
The NDC8 system includes a great amount of software, but only the parts regarding
navigation are explained in this report. Figure 3.3 shows an overview of the vehicle
controller software responsible for navigation.

Encoder

Range Sensor Vehicle Navigator

Kalman Filter

ROS publisher

ROS publisher

Vehicle Driver
Manual Mode

Mode

Auto Mode

Vehicle Model

Position

Control
Command

Gyroscope

ROS publisher

Figure 3.3: Software architecture overview of the vehicle controller. Only the most
vital parts to this thesis are included.

The information flow starts with the sensors, where we observe three soft-
ware modules that handles one sensor each. Sensor measurements are collected and
formatted for passing along to the rest of the system. The Vehicle Navigator in-
cludes a Kalman filter which is continuously updated with sensor reading in order to
provide an estimated position. The NDC8 system supports multiple modes for posi-
tion estimation. Two of these modes, Reflector navigation and Natural navigation,
have been used in this project. Reflector navigation relies on mounted reflectors
on the walls and provides high precision. These reflectors have known positions
and as the vehicle observes multiple reflectors it can calculate its position by tri-
angulation. The other supported navigation mode, Natural navigation, relies on a
NDT map representation and performs a probabilistic scan matching of laser range
measurement and NDT cells in the map. This navigation method utilizes existing
physical obstacles, like walls and pillars, in the environment and does not require
any installation of reflectors.

The estimated position is later passed to the Vehicle Driver module which,
if in Auto Mode, calculates the control command necessary to drive to the desired
destination. The vehicle model is taken into account as the Vehicle Driver calculates

15

3. Implementation

the correct control command it takes. This enables the Vehicle Driver to handle
different types of vehicles. In its current configuration, the vehicle controller software
loop is driven at a rate of 16 Hz, with access to LIDAR, encoder and gyroscope values
at each iteration. This rate provides some level of real-time reassurance and will be
used to publish ROS messages. For this project, the software has been extended and
does, in addition to previous functionality, publish all sensor readings to the ROS
framework which is explained in Section 3.2.

The ROS installation is primarily targeting the Linux Ubuntu platform.
Cross-compilation was required in order to be able to execute it on the embedded
Cortex-A8. When building software for the NDC8 system, Kollmorgen Automation
utilizes the build tool Yocto [24]. The Yocto Project is an open source collabora-
tion project that provides templates, tools and methods to ease creation of custom
Linux-based systems for embedded products regardless of the hardware architecture.
There exist an open source Yocto layer, called meta-ros1, which conveniently enables
integration of common ROS packages into the Yocto build.

Yocto recipes (.bb files) are fundamental components in the Yocto Project
environment. Each software component requires a recipe to define the component
in order to build. For the basic system setup, four ROS recipes where included.
The roslaunch recipe was included to provide basic functionality such as running a
roscore and using standard message types. Furthermore, the recipes nav-msgs and
sensor-msgs are included to bring the message types required for the navigation
stack. Last, a recipe for the tf package was included, providing access to transform
function calls. The ROS libraries used in this project require 11.9 MB of disk space
on the vehicle controller.

3.2 Software design
The implementation of ROS for this project was done following the conventions
of the Navigation stack2. This stack contains the most common ROS packages
for navigation tasks such as localization and mapping. It is also compatible with
most ROS SLAM implementations. The stack is based on taking information from
odometry and sensor streams and outputting velocity commands for the robot. The
requirements for the use of the navigation stack includes setting up a correct TF
tree and publish data using standardized message types.

The publishing of odometry, laser scan and gyroscope data has been em-
bedded into the NDC8 code as explained in Section 3.1.2. The ROS Publisher
software packages are represented in a single ROS node, Publisher, responsible for
the transmission of all sensor measurements from the vehicle. Figure 3.4 shows the
ROS Publisher node that publishes LIDAR data on the /scan topic, odometry on
/odom and gyroscope measurements on /imu. The corresponding transforms for all
three sensor types are published on the /tf topic.

1https://github.com/bmwcarit/meta-ros
2http://wiki.ros.org/navigation

16

3. Implementation

/Publisher

/odom

/imu

/scan

/tf

Figure 3.4: Plot showing the implemented ROS node and published topics.

The encoder values, describing wheel motion, are accessible from the soft-
ware and are used as a source of odometry data in this system. The navigation
stack requires that odometry messages are published containing velocity informa-
tion. It also requires that a transform between the odom frame and a fixed world
frame is published, as seen in Figure 3.5. This transform indirectly contains the
robots position in this fixed world frame calculated from the odometry data. The
current vehicle velocity is calculated using the angles and rotation speeds from the
wheel encoders. The velocity x-, y- and rotational velocity is directly published in
the odom.twist message. The velocity is further used to calculate dead reckoning
position required for the odometry transform. The rotation is calculated by accumu-
lating the rotation velocities multiplied by the held time intervals. The translation
is calculated in a basic and typical way using the current rotation together with the
current x- and y-velocities and adding this value to previously calculated position.

The Imu ROS message type is the one most commonly used for gyroscope
values and is therefore used in this project. At each software iteration a mean value
of velocities around the z-axis, measured since last reading, is calculated. This mean
value is published as the angular_velocity.z value in the ROS Imu message. The
standard deviation of the gyroscope values is estimated to be 0.05 rad/s and the
variance published is then 0.025 rad/s. Since the z-rotation is the only IMU value
to be used in this implementation, the IMU message needs to be constructed with
some caution. The linear acceleration in the z direction is set to 9.8m/s2 in order
to represent gravity. Furthermore the variance for the unused parameters is set to
a very high number in order to ensure that they are not used by any subscribing
source.

The data produced by the LIDAR scanners fit the LaserScan ROS message
well and this type is therefore used. To allow extensive testing, code was written to
publish scan data with different parameters. The LS2000 LIDAR scanner provides
an angular resolution up to 1 mrad and a frequency of 20 rotations per second. The
developed software supports producing a reduced resolution and frequency to best
fit any purpose. The transform from the laser scan frame to the base_link frame

17

3. Implementation

is simple since it only has to contain the static translation from the position of the
scanner to the chosen base_link. However it is an important detail in order to get
correct measurements from ROS applications.

The ROS navigation stack further relies on REP 1053 for conventions
regarding coordinate frames. This document specifies how to name frames, the pre-
ferred relationships between them and what authorities that should publish trans-
forms. The TF tree used for this project is shown in Figure 3.5.

Base_linkOdom Laser_frame

Figure 3.5: Illustration of the basic TF tree used in ROS implementation.

The physical position of the sensors in relation to the other parts of the
robot is of great importance and is often expressed with the use of transforms. With
the test vehicle used for this project, the gyroscope is placed in the center of the
controller, which is considered the middle and base_frame. The wheels are located
at a constant distance from the base frame and the exact position was measured.
These positions are used in the velocity calculations where the result is a velocity
for the base of the robot. The transform between odom and base_frame is therefore
simply the dead reckoning position, as previously explained. The position of the
scanner is however important to include in the TF tree. This distance was measured
and is included as a static transform between the base_link and laser_frame, seen
in Figure 3.5.

ROS allows for a distributed computing environment where the nodes
communicate over a network. The ROS packages often use the system clock as the
time source. ROS is not a real-time system and to ensure that correct transforms
are used there are often constraints on the timestamps used. When running a ROS
setup on several machines where the clock differ this causes trouble. The most
common solution is to run a NTP server on each node. However the system used
in this project does not support NTP. During testing, this problem was solved by
manually synchronizing clocks over SSH as a quick fix.

3.2.1 ROS SLAM node
This section describes the system setup that was used to execute the different SLAM
ROS nodes. The three algortihms that have been used in this project are Cartogra-
pher, Hector SLAM and GMapping. The sensor data used when performing SLAM
is published as described in Section 3.2. Namely LIDAR measurments on the /scan
topic and odometry on the /odom topic, together with required transforms on /tf.

Figure 3.6 depicts the system setup with the SLAM node included, in this
case the Cartographer. We observe that the SLAM node subscribes to all topics
that is published by the Publisher node. Based on the data provided on the three
topics the SLAM node is able to generate a map and publish it on the /map topic

3http://www.ros.org/reps/rep-0105.html

18

3. Implementation

Figure 3.6: Illustration of ROS nodes and topics setup during Cartographer exe-
cution. Note that the setup is similar for all tested SLAM algorithms.

formatted as an OccupancyGrid. The occupancy grid ROS message type is used to
represent a 2D map. In this format, the mapped area is divided into a grid where
every cell has a value, between 0 and 100, defining the probability of that cell being
occupied.

It is important to note that some of the SLAM modules may be used
in various setups, utilizing different sensor data, calculating at different pace and
using different coordinate frames. GMapping and Hector SLAM was executed with
the default setup that is provided by the package itself. Whereas the Cartographer
require some configuration. In order to run the Cartographer, a configuration file
must be provided that specifies a number of parameters, such as tracking frames,
frequencies and what sensor data is provided.

Base_linkOdomMap Laser_frame

Figure 3.7: Illustration of TF tree when running SLAM node.

With a SLAM node connected to the system the transform tree has to
be extended as seen in Figure 3.7. The relationships are mostly straightforward,
with the exception of the relations between odom and map. The intuition would be
to have both odom and map attached to base_link, however since only one parent
frame is allowed this is the recommended structure of the TF tree. Transformations
from laser_frame to odom is equal to earlier, as they are provided by the Publisher
node. The TF tree has been extended with one transform, namely the transform
from odom to map frame. This transform is provided by the SLAM algorithms and
translates positions in the odom frame to corresponding position in the frame of the
generated map. This transform represents as a correction of accumulated errors or

19

3. Implementation

drift from the odometry source, where corrections have been calculated with the use
of scan matching.

IMU data is used for a few tests. Imu is then used instead of the Odometry
data and even though the sources do not provide the same type of data data they
can be interchanged in Figure 3.7 and Figure 3.6.

3.3 Map conversion
Kollmorgen’s software tools and Natural navigation support maps with NDT cells
and not occupancy grids, where the latter is the format supported by most ROS
packages. Although there exist experiments of NDT SLAM algorithms, such as
presented in "Normal Distributions Transform Occupancy Map fusion: Simultane-
ous mapping and tracking in large scale dynamic environments" [27] and "Generic
2D/3D SLAM with NDT maps for lifelong application" [9], these are not widely
recognized and not implemented for ROS. One potential solution could be to use
an existing occupancy grid slam algorithm and subsequently access the pose graph,
which contains poses with corresponding scans, and building a NDT grid based on
these. However this solution requires a lot of work and instead a map converter was
created to enable quick and simple testing of SLAM maps.

The original idea for creating NDT grids, presented by Biber and W.
Strasser [3], is to use all the gathered scan points to calculate the distribution within
a grid cell in order to create the NDT map. The resulting occupancy grid from the
ROS SLAM algorithms contains a probability of each cell being occupied but no
data regarding the scan points used is available. This conversion is therefore by
design flawed. However, the most important part of the NDT cell grid is that it
represents real world objects and that kind of information is possible to translate
from the occupancy grid to a NDT grid with a basic conversion.

The NDT cell grids most commonly used by Kollmorgen have a cell res-
olution of 30 cm since this is determined to be sufficient. The default setting for
SLAM algorithms in ROS is to produce an occupancy grid with 5 cm resolution.
This is something that was taken advantage of in the conversion by sampling the
occupancy grid cells to create NDT cells. The basic idea of the conversion is to
gather all 36 (6x6) occupancy grid cells which represent the same area as one NDT
cell. The next step is to calculate the mean and covariance matrix of the occupied
occupancy grid cells within that NDT cell. The occupancy grid cells are used in a
similar way to how scan points are used in the original paper [3]. An occupancy
grid cell contain a single value which represents the probability of that cell being
occupied. The trick is then to chose which cells that are "occupied enough" to be
considered to contribute to the mean and covariance of the corresponding NDT cell.
Each cell has a value between 0 and 100 which represents its certainty of being oc-
cupied. The threshold for the conversion algorithm was set to 65% since this is the
default value for the ROS module which was used to save maps. This means that a
occupancy grid cell is contributing to a NDT cell only if it has a value greater than
65.

However, by only using the middle position of each occupancy grid cell as
a point, the NDT cells might get somewhat flat. The map conversion algorithm was

20

3. Implementation

extended to also use a point from each corner of a cell, if that point is not already
included. This addition ensures that a single line of occupancy grid cells become a
NDT cell which representing something with a depth. Below (Algorithm 2) is the
basic pseudo code for the conversion.

Algorithm 2 Pseudo code for map conversion algorithm.
1: for all ndtCellx,y in ndtGrid do
2: occupancyGridCells := getAssociatedCells(ndtCellx,y)
3: for all occupied occCellx′,y′ in occupancyGridCells do
4: add occCellx′,y′ to set C
5: end for
6: meanx,y := calculateMean(C)
7: covariancex,y := calculateCovariance(C, meanx,y)
8: end for

The conversion algorithm was implemented as a Python script. The script
works as a ROS node which requests an occupancy grid map via the service provided
by the map_server ROS module in order to access stored maps. The occupancy grid
ROS message contains meta data for the map as well as a simple array containing
the map data in row-major order. The received map is first extended to have a
sufficient number of cells for sampling. The occupancy grid cells are then converted
as previously explained and the resulting NDT cells are written to a file with XML
syntax. Figure 3.9 shows the resulting NDT cells using input as seen in Figure 3.8.
The NDT cells are displayed using a visual tool showing the covariance as an ellipse
around the mean position. A large scale NDT map created using this converter can
be found in Figure A.8 in the appendix.

Figure 3.8: Mockup occupancy grid
with 5 cm resolution.

Figure 3.9: Map in Figure 3.8 converted
to NDT cells with 30 cm resolution.

21

3. Implementation

22

4
Evaluation

In order to validate the performance of ROS SLAM and navigation, specific tests
were planned. These tests are divided into two sections. In each section, tests are
described and the results of those tests are presented. Section 4.1 presents tests
regarding the map quality. These tests are mainly intended to test how well the
SLAM generated maps represent reality but also to compare SLAM algorithms to
each other as well as to test the resource requirements. Section 4.2 includes tests
for positioning and navigation. These tests provide results regarding the usefulness
of the SLAM generated maps specific to AGV industry use cases. This separation
enables simpler testing and clearer results while conclusions still can be drawn re-
garding a potential use case where navigation is run simultaneous with SLAM. The
separation also serves to produce results interesting to a separate use case, where
SLAM would not be run at every vehicle but instead only be used to automate the
creation of a static environment map.

During development, early tests were conducted to ensure correctness of
individual sub functions. By using RViz1, a visualization tool, it was established
that the odometry calculations based on encoder feedback were not perfect. Starting
the vehicle from a static position creates a jump in odometry that is not correctly
representative of the actual movement. Furthermore, turning the vehicle 360 degrees
does result in a slight skew of scan angle perception. This behavior was however
expected since encoder values and calculations are not believed to be perfect.

4.1 Mapping

In order to verify if the quality of maps, obtained by available SLAM algorithms,
meets the requirements of today’s industry, tests have been conducted to compare
the maps. In these tests three different SLAM implementations, referred to as
Cartographer, Gmapping and Hector Slam, were compared to each other.

The algorithms were executed with the same input feed consisting of laser
scan, odometry and gyroscope measurments. The three different sensor types were,
however, used in different combinations by different iterations of the SLAM algo-
rithms. The Cartographer and Gmapping were first run with LIDAR and odometry
data. Then, for the sake of comparison, the Cartographer was run a second time
using gyroscope instead of odometry data. Hector SLAM was also executed with
LIDAR and gyrocope data as input.

1http://wiki.ros.org/rviz

23

4. Evaluation

All SLAM algorithms were configured to use a grid cell resolution of 0.05
m and a laser cutoff range of 24 m. The test vehicle was run at a max speed of
0.5m/s when gathering data. The tests evaluate the precision of the resulting maps
as well as algorithm performance.

The system setup used for obtaining the evaluated maps in this section is
depicted in Figure 3.6. However, the different parts of the software are not deployed
on the same hardware. The Publisher node is executed on the CVC 600 embedded
system, publishing all sensor measurements over the ROS framework. The SLAM
node on the other hand is deployed on an external system, in this case a laptop
running Ubuntu Linux. Figure 4.1 illustrates the hardware that facilitates the two
ROS nodes.

Figure 4.1: Illustration of the system setup used while executing SLAM.

The SLAM nodes all outputs a 2D Occupancy Grid on a ROS topic. In-
stead of subscribing to the topic and performing the tests on that data the maps were
stored to make sure that the maps were static throughout the test process. Storage
of the obtained maps published on a ROS topic is achieved with the map_server
module. The obtained map is binarized and stored as a row-major-order array in a
.pgm file.

4.1.1 Map alignment
First off, the generated maps were aligned with a Computer Aided Design (CAD)
floor drawing for a visual comparison. Below, in Figure 4.2, the result of this align-
ment for the map created by Gmapping is shown. The results of the other algorithms
can be found in the appendix in Figures A.1, A.2 and A.3.

Both maps created by the Cartographer fit the CAD drawing well. How-
ever in the map created by Gmapping, seen in Figure 4.2, it can be noticed that the
right most part deviates from the reference drawing. The same kind of error can be
observed in the map created by Hector SLAM as well, although not as significant.

24

4. Evaluation

Figure 4.2: Map from Gmapping aligned with CAD drawing. Areas in white and
black are from the occupancy grid. The only contribution to the figure from the
CAD drawing are the coloured walls.

4.1.2 Manual measurements
A second test with aim to compare the obtained maps to the reality was performed.
A combination of manual measurements and distance calculations in the map were
used to calculate errors. The visualization software RViz provides tools for measuring
distances between points in a map. With the use of a hand-held laser rangefinder,
the Leica DISTO D210, the distance was measured in reality between the same
reference points.

To achieve as exact results as possible the points of reference must be cho-
sen wisely. The points used should preferably be unambiguously identified both in
the occupancy grid as well as in reality. In our tests reference points have been cho-
sen as distances between two straight walls, distance between corners and between
clear landmarks such as pillars.

Figure 4.3 shows the points of measurements. Table 4.1 includes the
results from the distance measurements comparisons between the real world and
produced SLAM maps. All measurements used can be found in Table A.1.

The mean error shows the overall performance while the max error mea-
surement indicates if an algorithm produced a serious error at some location. The
Cartographer, both with gyroscope and odometry, has the best results in all metrics.
Hector SLAM and Gmapping show worse results, even though the differences are
small.

25

4. Evaluation

Figure 4.3: Map with marked (red) reference points used for manual measurements
when evaluating the correctness of the maps. The red lines shows what distances
that were measured.

Table 4.1: Results from map distance measurements for all tested SLAM algo-
rithms. The errors are computed with respect to the manual measurements per-
formed between the same reference points.

Algorithm mean error (m) max error (m) SD (m)
Hector SLAM(gyro) 0.058 0.141 0.036
Gmapping(encoders) 0.049 0.183 0.039
Cartographer(encoders) 0.035 0.104 0.029
Cartographer(gyro) 0.036 0.110 0.023

4.1.3 Performance and system requirements
The computer used in all tests is a laptop running Linux Ubuntu 14.04 on a Intel
Core i5-540M with 4 GB of RAM. During execution of every SLAM algorithm
the CPU load and memory usage was logged in order to draw conclusions about
performance and system requirements.

A script which logs the CPU and memory usage was executed when the
maps, seen in Section 4.1.1, where built. Figure 4.4 shows the CPU load during
SLAM. It should be noted that the recording of measurements only lasted for about
900 seconds. The results show that Cartographer uses significantly more CPU power
than the other algorithms and that it continues to optimize even after all sensor data
is received. It is also clear that Gmapping is single threaded and hits the maximum
CPU load at several occasions. Hector SLAM is only using a small portion of the
available CPU power.

26

4. Evaluation

The memory usage during SLAM is shown in Figure 4.5. Hector uses
a static amount of memory which is approximately equal to the amount used by
Gmapping. The Cartographer has continuously increasing memory usage and keeps
increasing even after it stops receiving sensor data.

Figure 4.4: The plot shows the CPU load logged running the different SLAM
algorithms on the same input data. Note that sensor readings stopped after ap-
proximately 900 seconds. The Cartographer shows the greatest CPU load, with
an average of approximately 300%. Gmapping and Hector is measured to approxi-
mately 100% and 10% CPU load respectively.

27

4. Evaluation

Figure 4.5: The plot shows the memory usage logged running the different SLAM
algorithms on the same input data. Note that sensor readings stopped after ap-
proximately 900 seconds. The Cartographer shows a continuous growth in memory
usage, whereas Gmapping shows an increased usage during the first 100 s followed
by almost static utilization. Hector SLAM shows a completely static memory con-
sumption.

Table 4.2 includes mean, median and standard deviation for the CPU load
of each algorithm while mapping.

Table 4.2: CPU loads measured during SLAM.

Algorithm mean (CPU %) median (CPU %) SD (CPU %)
Cartographer 277 317 99
Gmapping 56 94 48
Hector SLAM 8 6 9
Cartographer(gyro) 272 303 91

4.2 Navigation
This section presents tests related to positioning and navigation. The tests are
based on maps generated by previously presented SLAM setup and the results are
compared to the demands of industrial use.

28

4. Evaluation

The tests are performed at a test location environment set up to model
real use cases to the extent possible with limited time and resources. Turning the
vehicle just before heading into a station is recognized to be one of the toughest
tasks for navigation and this scenario will be used in several of our tests. The tests
require a map compatible with the Kollmorgen NDC8 system which is what the map
converter, explained in Section 3.3, is used for.

4.2.1 Repeatability in positioning estimation
By using mounted reflectors on the walls for navigation, the vehicle controller is
able to get millimeter precision. A test was conducted by driving the test vehicle
along a pre-defined path with a stop at the end running positioning estimation.
Both NDC8 Reflector navigation and AMCL was run simultaneously. The Reflector
navigation is used as a reference of performance and AMCL is run with a SLAM-
generated map of the area. The purpose of this test is to look at the performance of
AMCL in conjunction with the SLAM map. It’s important to note that the reflector
navigation is run at the vehicle controller while AMCL runs on a PC. Initially the
AMCL package was cross-compiled and run on the vehicle controller, however the
results were substandard due to the CPU load exceeding reasonable quantities. The
results were gathered using a script that, on command, reads the latest AMCL ROS
message and matches it with a reflector position estimate with a corresponding time
stamp from the system logs.

Figure 4.6: Path driven during repeatability tests. This pattern is recognized to
be a tough, yet common scenario in warehouse AGV localization.

The path on which the test vehicle drove during this test is illustrated in
Figure 4.6. This path is inspired by what is recognized to be one of the toughest
situations in AGV navigation; the path is designed as a straight line, followed by
a sharp turn and finally a shorter straight path towards the stopping point. A
common situation for docking or going straight through corridors and taking sharp
turns to pick up a load.

29

4. Evaluation

Figure 4.7 shows the measured positions at the stop point of AMCL and
Figure 4.8 shows the position estimates from the reflector navigation. The tests were
conducted with different coordinate systems but the mean value has been moved to
(0,0) for increased readability. Table 4.3 shows the resulting standard deviations
and root square mean distances from the test. More comprehensive test data can
be found in Appendix A.

The figures shows a greater dispersion of the points using AMCL compared
to using the reflector navigation. This results is further supported by the higher
value for standard deviation for the y-axis for AMCL.

Table 4.3: Standard Deviations and Root Mean Square values for the position
estimates from the repeatability test.

Technique SD-y (m) SD-x (m) RMS (m)
Reflector 0.00872 0.13981 0.13873
AMCL 0.01375 0.12911 0.12859

30

4. Evaluation

Figure 4.7: Position estimates at each stop during repeatability test by AMCL
using a SLAM-generated map.

Figure 4.8: Estimated reflector navigation positions at each stop during repeata-
bility test.

31

4. Evaluation

4.2.2 Repeatability in automatic driving
In order to evaluate the quality that can be achieved of automatic driving with
a SLAM-generated map, another test was conducted. This test was performed
using Kollmorgens Natural navigation together with a SLAM generated map. The
test was performed by drawing driving segments for the vehicle, using Kollmorgen
software tools, and then letting the vehicle navigate according to these with a SLAM-
generated map. The vehicle was ordered to repeatedly drive according to the drawn
path and stop at a station. At each stop at the station, the position of the vehicle
was marked. By measuring the marked real world position at each stop, the variance
in real world positioning could be determined. This presents a metric for evaluation
of repeatability in positioning.

Figure 4.9 shows the positions measured during testing, within a local
coordinate system. The standard deviation is calculated to be 1.6949 mm in the X
direction and 2.6859 mm in Y direction. Further, the largest distance between two
points was measured to be 11.4 mm and the root square mean of distances 3.099
mm.

Figure 4.9: Visualization of real-world variance when testing repeatability in au-
tomated driving with SLAM-generated map.

32

4. Evaluation

4.2.3 Navigation level
NDC8 includes tools for reading the navigation level of the vehicle in real time. The
navigation level is a metric used to represent the certainty of the vehicles navigation
ability where 0% means that the vehicle is lost.

In order to further investigate the quality of the SLAM-generated maps,
the test vehicle was driven, using Natural navigation, in a track which is showed
in Figure 4.10. The same path was used with both a SLAM generated map and
a manually created one. The navigation level during these trips were logged and
is displayed in Figure 4.11 and Figure 4.12. The corresponding plots of the match
ratio can be found in Figures A.5 and A.4.

Figure 4.10: NDT grid used to log the navigation level. The path driven by the
robot is marked by solid lines with arrows.

33

4. Evaluation

Figure 4.11: The navigation level during test run with SLAM-generated map.

Figure 4.12: The navigation level during test run with manually drawn map.

The navigation level is constructed by a combination of three other values
which are match ratio, correction and reliability. The match ratio is simply a per-
centage value for how well the scans match the NDT cells with the current position
estimate. The corresponding plots of the match ratio can be found in Figures A.5
and Figure A.4. The reliability metric is used as a way to check that scans are

34

4. Evaluation

matched in all directions. Figures A.7 and A.6 displays the Reliability level during
the test. Reliability is calculated by accumulating the covariances of all matched
cells and calculating the ratio between the values for the different directions. As an
example, this means that solely matching with one straight wall will lead to a low
reliability value.

The third and last part of the navigation level metric is the accumulated
correction. The key reason of having this metric is to find out when the vehicle
has lost itself by matching on a erroneous location. In practice, jumps in position
estimates are shown in the accumulated correction metric, which are a sign of un-
certainty in positioning. These three metrics are all percentage values which are
multiplied to get the navigation level.

The results for the navigation level test show that the manually created
map has a higher average of certainty as well as a greater amount of accumulated
time with values at 100% than the SLAM-generated one. The match ratio as well as
accumulated correction have high values and are therefore almost negligible and it
is mostly the reliability that is represented in the navigation level plot. The vehicle
was able to navigate through the track as both plots are above 0% at all times.

35

4. Evaluation

36

5
Discussion

This chapter presents discussions regarding elements of this thesis worthy of note.
The implications of the results are examined and points of improvements are pointed
out. Discussion around problems that occurred during the project and material for
future work is included as well.

5.1 Software implementation
The following section includes discussions regarding design choices and technical
limitations of the presented prototype system developed in this thesis work. Poten-
tial drawbacks are highlighted and a discussion of their impact is included. Some
suggestions for improvements are proposed as well.

5.1.1 Sensor publisher node
As previously mentioned the software, of which the ROS publishers were built upon,
limits the publishing frequency to 16 Hz. This is considered to be enough, based on
the moving speed of the used AGVs. The Gyroscope produces measurements with
a higher rate than this and the average of these values are used when publishing
the IMU message. Furthermore, the LS2000 provides a resolution of 6300 values
per scan which is higher than what is used in most applications. Different ratios of
angular resolution were tested, where high numbers resulted in duplicated walls in
SLAM and also caused Wi-Fi problems due to the increased amount of transmitted
data. Also, the developers of GMapping has limited the input size to 2048 values
per measurement. The published scan messages was therefore scaled to 630 values
per scan in order to minimize the stress on the system while still providing good
results. It should however be noted that the main benefit from having higher angular
resolution is that it is possible to better estimate objects far away, which is useful
in large spaces.

The laser scanner limits the range of measurements to about 25 m. If
it would be possible to increase the angular resolution, then it would also be in-
teresting to be able to utilize a higher range for measurements. Supposedly, the
probability of loop closures failing in SLAM algorithms can be reduced by having
a longer range for scan measurements [2]. Furthermore, the LS2000 also provides
intensity measurements which is based on the return strength of a laser beam. Since
most applications today have no use for these they are not published in the imple-
mentation. There does however exist interesting research, such as by R. A. Hewitt

37

5. Discussion

and J. A. Marshall [14], where the intensity of scans is used to improve the SLAM
performance. The intensity could be used as an additional constraint to the robot
pose and landmark estimates. It is also interesting to consider using intensity to
include reflectivity and surface normals to the map.

5.1.2 Map converter
The map converter developed in this project has some obvious flaws or shortcomings.
The foundation of which to build a NDT grid [3] is the scan points measured within
each cell. As mentioned in Section 3.3, the occupancy grid does not have explicit
information regarding the measured scan points causing the need for an alternative
approach. These problems are known, however it is still important to point out the
shortcomings of the algorithm as this limits the results.

The map converter uses several sampling points from one occupancy grid
cell in order to solve the problem of thin walls, as discussed in Section 3.3. However,
it is possible that the result would be better using something like a quincunx sample
scheme that gives higher weight to the middle coordinate of the occupancy grid cell.
Since the relation between occupancy grid cells and NDT cells is non-trivial in its
nature, finding an optimal sampling scheme would require extensive testing and we
settled for a simple solution which still provides sufficient results.

The difference in navigation level between the SLAM-generated and the
manually created map during the test presented in Section 4.2.3 is mostly explained
by the difference in reliability. As explained, this metric is considering the direction
of matching NDT cells. The map converter used is far from perfect, and this could
very well be the reason for the lower reliability level. A drop in reliability could
be the result of a low amount of matching scan points. However, when the match
ratio is considered separately the results show no distinct difference between the
manually created map and the SLAM-generated one. Figure 5.1 and Figure 5.2
show a zoomed in version of the maps used when logging the navigation levels seen
in Section 4.2.3. It is clear that the SLAM generated map is more sparse.

38

5. Discussion

Figure 5.1: Zoomed in manually
created NDT map used in navigation
level test. The ellipses represents the
covariance around the mean.

Figure 5.2: Zoomed in picture of SLAM-
generated map converted to NDT cells.
The ellipses represents the covariance
around the mean.

In the version of the map converter used to generate Figure 5.2, only
occupancy grid cells with a probability level over 65% was registered. This threshold
was chosen as it is the default value of the ROS module which was used to save maps.
The map conversion algorithm was further modified by lowering this threshold to
55%, in order to experiment with a more dense NDT map. In addition, weights
were added for the cells in order to transfer the certainty level from the occupancy
grid cell to the NDT cells in a reasonable way. A occupancy grid cell with a high
probability of being occupied gets a high weight. The weight of a occupancy grid
cell determines its contribution to the mean and covariance for the resulting NDT
cell. Figure 5.3 displays the NDT cells of the same corner area as seen in Figure 5.2,
but these have been created with the modified map converter. As intended, the
NDT map is now more dense.

39

5. Discussion

Figure 5.3: Zoomed in picture of SLAM-generated map converted to NDT cells
with the modified map converter. This version includes occupancy grid cells with
lower probability of being occupied than the one used for tests in Chapter 4. This
results in a more dense NDT map compared to Figure 5.2.

The navigation level test was re-run with the more dense SLAM-generated
map shown in Figure 5.3. The resulting navigation level is shown in Figure 5.4. It
should be noted that the three metrics which are combined to create the navigation
level each have their own maximum threshold. This means, for example, that when
the Reliability is higher than 30% it is considered to be 100% when combining with
the other metrics to create the navigation level. Plots of the individual values for
the Reliability and Match ratio from the test with the updated map converter can
be found in Figures A.9 and A.10 and they show higher values than those from the
manually created map. It should also be noted that the navigation level and its
different sub components have limited usefulness when making comparisons since
they were created for debugging-specific purposes. It is however possible to conclude
that the navigation level does not have to be worse with a SLAM-generated map
than with a manually created map. The test also show one of the strengths of
using a SLAM solution, namely the ability to keep a map updated with the current
environment which is believed to be the reason for these exceptional results.

40

5. Discussion

Figure 5.4: Navigation level when running the same track as presented in Sec-
tion 4.2.3 but with a updated version of the map converter. This version includes
occupancy grid cells with lower probability of being occupied than the one used for
tests in Chapter 4.

5.2 Test results
This section presents our thoughts around the implications of the results presented
in Chapter 4 as well as discussions regarding the methods used. Furthermore some
related work is presented with the purpose of putting the results into a bigger context
and comparing approaches.

5.2.1 Mapping
The alignment of SLAM-generated maps to a CAD floor plan showed interesting
results. Based on visual comparison it is determined that the cartographer algorithm
produced a pretty much flawless result whereas Hector SLAM and Gmapping showed
errors in the output. It is important to note that since the alignment is made
manually, there is room for error causing misleading results. The skew that can be
seen in the resulting maps of Gmapping and Hector SLAM is a typical error for
SLAM algorithms. Figure 5.5 showcases this problem, where the map to the left
is constructed using LIDAR and encoder measurements while the map to the right
was created with LIDAR and gyroscope measurements. This mapping (Figure 5.5)

41

5. Discussion

with gyroscope was made using a much higher vehicle speed, compared to the SLAM
map built with gyroscope in the mapping test, in order to highlight the problems
that occur when the algorithms "fails". As can be seen, the right-most picture shows
distinct errors in the lower part of the map. One should also be aware of the fact
that the CAD drawing might not represent reality perfectly.

Figure 5.5: SLAM generated maps with floor plan overlay. The picture demon-
strates the phenomenon where some parts of a map gets skewed. The white parts
are from the occupancy grid produced by SLAM.

Manual measurements were made to further emphasize the results. This
test also showed that the Cartographer produced the best results among the tested
algorithms. The measurements in the SLAM-generated maps where made manually
with the RViz visualization tool. The occupancy grids has a resolution of 5cm,
which means that each cell represents an area of 5cm2. The resolution implies that
errors, in the tests, in the range of 5-10 cm is reasonable. The average error for all
algorithms are satisfying when the measurement error is taken into account. The
measured maximum error shows potential problems in the maps, however not very
big ones for any of the algorithms.

Hector SLAM was run with rotational velocity from a gyroscope as input
instead of odometry. This decision was made since Hector SLAM is developed with
this purpose in mind, allowing for better results when odometry is unreliable for
example due to non-planar environments [15]. While one can assume that AGVs in
warehouses have good conditions for odometry, there are other reasons for excluding
odometry. Examples of such reasons would be that sensors such as wheel encoders

42

5. Discussion

are expensive to mount and that with the use of only IMU measurements one would
not require an actual vehicle for mapping. This makes it interesting that Hector
SLAM produces as good results as Gmapping in the tested environment. Further-
more, results also show that Cartographer basically provides the same result with
a gyroscope as with encoders. Odometry would however most likely show better
results than using the gyroscope if higher moving speed would have been used since
it provides a better measurement of translation.

Evaluation of SLAM performance is most often found in papers presenting
new algorithms in order to prove validity. Sometimes the authors are satisfied with
using simple visual inspection while some papers [13] [27] include evaluations based
on some metric similar to the one presented in "On measuring the accuracy of slam
algorithms" [16], which measures the errors between the calculated trajectory and
a ground truth. That is, how well the estimated poses match reality. This kind of
evaluation requires access to more information, such as ground truth trajectory, than
the ones used in this thesis. The errors in trajectory estimation that can be found
using this type of test are also found in the resulting map and therefore indirectly
represented in the results presented in this report. In this thesis, simply testing the
quality of the resulting map and its performance used in navigation was determined
to be sufficient.

The paper "An evaluation of 2D SLAM techniques available in Robot
Operating System" [25] compares the most popular SLAM algorithms available in
ROS. As the Cartographer had not been developed at that time, it is missing from
that evaluation. The authors proposes an interesting comparison method for maps.
The concept of the test is to align the obtained map narrowly with a ground truth
map and calculate the error of each occupied cell. The error for each occupied cell
in the ground truth can be calculated as follows: a k-Nearest Neighbour (KNN) [1]
search finds the k nearest neighbours. As we are only interested in the distance of the
closest occupied cell we would let K equal to one. The array of distances provided
by the KNN search for each occupied cell in the ground truth map should then be
summarized and divided by the length of the array. Summation of the errors of each
cell and division by number of cells gives a total error and standardized metric of
the obtained map is retrieved.

A test, similar to the one presented by Santos, Portugal and Rocha [25],
was planned for this thesis and the ground truth based on CAD drawings of the
mapped environment was retrieved and converted to an Occupancy Grid. Further-
more, the ground truth was then supposed to be aligned with the slam generated
maps. However, the tested underlying alignment techniques (openCV and Matlab
image processing toolbox) which are based on matching pair of points to find a fit,
were unable to align the maps correctly. The visual inspection used in this thesis
was successfully able to differentiate the algorithms and the error based alignment
test was therefore abolished.

When examining the CPU load and memory usage during mapping, some
interesting results were found. First off, it is clear from Figure 4.4 that GMapping
is restricted to a single core while Cartographer is written for multi-threading. A
distinct difference in CPU load between Hector SLAM and the other algorithms
can be observed as well, proving the intention of Hector SLAM, namely to run on

43

5. Discussion

low power and low cost processors [15]. The most interesting finding is that the
Cartographer does not "finish" but instead keeps optimizing the map even after all
measurements are received. This is seen as the CPU load does not drop and the
memory usage keeps increasing after the 900 seconds of sensor measurements that
was recorded.

As previously stated, loop closure is one of the most important components
of SLAM. One failed loop closure will most likely cause the map to diverge from
reality [2]. GMapping is often referred to as state of the art for particle filter-based
SLAM. The algorithm is supposed to provide good results with small loops however
struggle with larger areas which is probably what is expressed in our tests.

Graph-based SLAM algorithms has the advantage of having a better basis
for dealing with loop closures explicitly. The Cartographer, which is graph-based,
is implemented using submaps and global optimization. Scans are inserted into
the submaps at estimated positions and when a submap is finished, it is further
considered for loop closure with all other submaps and scans [13]. The Cartographer
has previously shown promising results and these are validated in our tests showing
convincing results compared to other state of the art algorithms. A problem of
the graph-based SLAM algorithms is that memory usage grows with the amount of
scans while GMapping has almost a fix sized map [2], which is also seen in our tests.

Hector SLAM is designed to be a lightweight fast SLAM algorithm and
runs without explicit techniques for loop closure [15]. The tests presented in this
thesis shows that the algorithm does just that. The produced map shows good
quality even though some errors can be found. CPU and memory usage of Hector
SLAM is significantly lower than the other tested algorithms. These result contradict
those found in "An evaluation of 2D SLAM techniques available in Robot Operating
System" [25] where GMapping and Hector SLAM expresses the same CPU load. The
algorithm settings used in this paper is supposed to be the default configuration,
just like in our case. The difference in the results could potentially be derived from
the difference in scan update frequencies, where 10 Hz is used in that paper and 16
Hz is used in this thesis. Hector SLAM is presented to better take advantage of a
higher update rate [15].

The idea of running a SLAM algorithm, directly on the vehicle controller,
was experimented with during this project however this resulted in immediate soft-
ware crashes, due to the restricted CPU capacity. The fact that most areas of use
are related to small-scale embedded systems makes development of computationally
cheap SLAM algorithms, like Hector SLAM, an important research topic. Attempts
exist where the aim is to optimize SLAM together with the hardware to achieve
this, such as presented in the paper "Design and evaluation of an embedded system
based SLAM applications" [30]. The paper presents a solution to the SLAM problem
where hardware architecture is designed to fit with a feature detector and SLAM al-
gorithm. A related idea is presented in "Synchronized Visual-Inertial Sensor System
with FPGA Pre-Processing for Accurate Real-Time SLAM" [21] where a inertial
sensor unit is presented which is supposed to aid the deployment of a system with
SLAM capabilities.

44

5. Discussion

5.2.2 Navigation
The test presented in Section 4.2.1 showed that the reflector positioning performed
better than the AMCL SLAM map positioning. The fact that there is a "line" of
estimates(dots) in the results can be explained by two different theories. The results
may have been gathered in the same line which is seen in the plot, due to some delay
in communication and logging. The other explanation would be that the direction
of which results of both techniques are spread wide is particularly hard to estimate.
The test was however conducted a second time on a second location, in order to
rule out any obvious flaw with the environment, with the same result. The main
purpose of the test was to verify the precision of the SLAM-generated map as well as
the AMCL ROS package, where the reflector navigation acts as a guideline for the
"optimal performance". The dispersion seen in the results are at a very small scale
with results only departing with a few millimeters on the y-axis. This indicates that
positioning estimation with a SLAM-generated map has the potential of performing
at the level required in industry settings.

Furthermore, it should be noted that the Reflector navigation is executed
on the vehicle controller while AMCL had to be executed on an external PC due to
the limited system resources. The AMCL ROS package is somewhat demanding, in
terms of CPU load and memory. AMCL is an implementation of the adaptive Monte
Carlo localization approach, which uses particle filters for position tracking [11].

In order to directly test a SLAM-generated map for industrial use cases
the repeatability in automatic driving was tested. The most basic, and important,
use case is the simple task of driving onto the position of a loading dock or vehicle
station. These stations are often placed in a corridor where the vehicle has to follow
the movement pattern shown in Figure 4.6. The test shows that with a SLAM-
generated map, the vehicle is able to navigate to the same position over and over
again with very small deviation. The vehicle could perhaps be ordered to pick up
a pallet, and the resulting worst case position deviation of roughly 1 cm is then a
satisfying result.

The navigation level test shows that navigation with a SLAM-generated
map can achieve the same performance as with a manually created map. There
are of course advantages to either solution. As an example, a SLAM algorithm
will include all existing objects in the environment and there is no simple solution
to manually exclude objects whereas it is problematic to take advantage of small
objects with manually created maps.

The two navigation level curves follow each other and share similar drops
and gains. This shows that the most critical problems encountered are not because of
the map but instead are caused by a difficult area or vehicle movement. Furthermore
an important result to note from this test is that the vehicle, with only a modest
setup time, performed as well as what is achieved using a manually created map.
The only setup work used was a quick run with a SLAM algorithm together with a
simple and flawed map converter.

It should be noted that none of these tests look into any particularly hard
cases. One such example could be when there are a lot of moving objects in a
warehouse which occludes the sight. These kind of situations are not specific to
the use of SLAM-generated maps and the solution is often some manual fix. The

45

5. Discussion

relevance of these kind of tests was therefore determined to be small.
Finding new solutions for localization is always an interesting topic. With

the increased availability of 3D sensors, one might want to consider using more
environment data such as full 3D scans for AGV localization. The 2D localization
solutions might then not be extendable into 3D and other techniques might be
required, which is one point where NDT might prove more useful [23]. While the
most common localization technique used for AGVs is range scanners, researching
other new indoor localization techniques is interesting to reduce cost or increase
precision. The paper "A realistic evaluation and comparison of indoor location
technologies: Experiences and lessons learned" [17] includes an extensive look at
various localization technologies. One of the most promising techniques would be
UWB radio [5] which is based on a time-of-arrival method for measuring the time of
flight for UWB pulses. The results of this paper shows that the best UWB solution
proved an average localization error of 0.72 m while the best wifi-based solution had
a resulting accuracy of 1.6 m.

Many attempts to recreate a GPS-like solution for indoor environment
exists, however the precision of such solutions is not enough for problems presented
to AGV systems. High precision is required in these systems to avoid collision with
other vehicles, and to get through narrow spaces for example. To further put this
in perspective, impressive indoor localization accuracy, using UWB, can be found
at around 0.5 m [6]. The LS200 laser scanner used in this thesis has a accuracy of
25 mm 1 and the results presented in this report shows vehicle position accuracy
somewhere around 0.01 m.

1https://files.pepperl-fuchs.com/webcat/navi/productInfo/doct/tdoct3124d_eng.pdf?v=20160204155755

46

6
Conclusion

The aim of this thesis was to investigate automated mapping solutions for AGV
systems. This was evaluated by developing a prototype system, based on the Robot
Operating System and conducting tests on the performance.

This report presents details for a ROS implementation compliant to the
navigation stack. It is no doubt that ROS is powerful when developing applications
or prototypes for automated vehicles. The framework includes state of the art
navigation packages and enables testing in a simple way. The potential weaknesses
are related to real-time constraints and message transmission time guarantees [12],
however this has not shown to be a problem during this thesis project.

The evaluation of existing SLAM algorithms shows that there exist algo-
rithms able to produce high quality environment maps without excessive resource
use. The Hector SLAM algorithm shows a lot of promise in smaller areas where it
requires minimalistic amounts of resources. The environment used in testing for this
thesis is of moderate size, and even though the Cartographer showed exceptional
performance, the algorithm might require further testing in larger areas with larger
loop closures.

A map converter was created, creating a bridge between the NDT and
occupancy grid map representations. The converter successfully enabled further
application-specific tests. With focus on repeatability, additional tests were con-
ducted to evaluate the navigational performance when using static SLAM gener-
ated maps. By comparison with existing techniques, which have proven solid per-
formance, the presented tests have been put in context. The results from the tests
presented in this thesis shows that the overall performance achieved with SLAM-
generated maps is satisfying. In addition to providing accurate maps, the technique
reduces the setup time and the amount of manual work required for map creation
significantly. In the algorithms current condition, SLAM might require putting a
more powerful computer on the robot for increased computational power.

Having a decentralized version of SLAM, where an environment map can
be continuously updated and shared between several vehicles is an interesting topic
for future work. Assuming offline SLAM algorithms provide acceptable performance,
the next natural step is to run it online, in a decentralized way, at the same time as
the AGVs carries out orders in a warehouse. The decentralization introduces many
new problems, such as when and how to share or fuse data between vehicles [4],
but this could potentially further reduce the maintenance work required in industry
use.

47

6. Conclusion

48

Bibliography

[1] N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician, 46(3):175–185, 1992.

[2] P. Beinschob and C. Reinke. Graph slam based mapping for agv localization in
large-scale warehouses. In 2015 IEEE International Conference on Intelligent
Computer Communication and Processing (ICCP), pages 245–248, Sept 2015.

[3] P. Biber and W. Strasser. The normal distributions transform: a new approach
to laser scan matching. In Proceedings 2003 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453),
volume 3, pages 2743–2748 vol.3, Oct 2003.

[4] G. Bresson, R. Aufrère, and R. Chapuis. Real-time decentralized monocular
slam. In 2012 12th International Conference on Control Automation Robotics
Vision (ICARCV), pages 1018–1023, Dec 2012.

[5] K. C. Cheok, M. Radovnikovich, P. Vempaty, G. R. Hudas, J. L. Overholt,
and P. Fleck. Uwb tracking of mobile robots. In 21st Annual IEEE Inter-
national Symposium on Personal, Indoor and Mobile Radio Communications,
pages 2615–2620, Sept 2010.

[6] B. Denis, L. Ouvry, B. Uguen, and F. Tchoffo-Talom. Advanced bayesian filter-
ing techniques for uwb tracking systems in indoor environments. In 2005 IEEE
International Conference on Ultra-Wideband, pages 6 pp.–, Sept 2005.

[7] Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, and Stuart J. Russell. Rao-
blackwellised particle filtering for dynamic bayesian networks. In Proceedings
of the 16th Conference on Uncertainty in Artificial Intelligence, UAI ’00, pages
176–183, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[8] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part
i. IEEE Robotics Automation Magazine, 13(2):99–110, June 2006.

[9] E. Einhorn and H. M. Gross. Generic 2d/3d slam with ndt maps for lifelong
application. In 2013 European Conference on Mobile Robots, pages 240–247,
Sept 2013.

[10] T. Foote. tf: The transform library. In 2013 IEEE Conference on Technologies
for Practical Robot Applications (TePRA), pages 1–6, April 2013.

[11] Dieter Fox. Kld-sampling: Adaptive particle filters. In NIPS, volume 14, pages
713–720, 2001.

[12] A. M. Hellmund, S. Wirges, Ö. Ş. Taş, C. Bandera, and N. O. Salscheider.
Robot operating system: A modular software framework for automated driv-
ing. In 2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC), pages 1564–1570, Nov 2016.

49

Bibliography

[13] W. Hess, D. Kohler, H. Rapp, and D. Andor. Real-time loop closure in 2d lidar
slam. In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 1271–1278, May 2016.

[14] R. A. Hewitt and J. A. Marshall. Towards intensity-augmented slam with lidar
and tof sensors. In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1956–1961, Sept 2015.

[15] S. Kohlbrecher, O. von Stryk, J. Meyer, and U. Klingauf. A flexible and scal-
able slam system with full 3d motion estimation. In 2011 IEEE International
Symposium on Safety, Security, and Rescue Robotics, pages 155–160, Nov 2011.

[16] Rainer Kümmerle, Bastian Steder, Christian Dornhege, Michael Ruhnke, Gior-
gio Grisetti, Cyrill Stachniss, and Alexander Kleiner. On measuring the accu-
racy of slam algorithms. Autonomous Robots, 27(4):387, 2009.

[17] Filip Lemic, Jasper Buesch, Zhiping Jiang, Han Zou, Hao Jiang, Chi Zhang,
Ashwin Ashok, Chenren Xu, Patrick Lazik, Niranjini Rajagopal, Anthony
Rowe, Avik Ghose, Nasim Ahmed, Zhuoling Xiao, Hongkai Wen, Traian E.
Abrudan, Andrew Markham, Thomas Schmid, Daniel Lee, Martin Klepal,
Christian Beder, Maciej Nikodem, Szymon Szymczak, Pawel Hoffmann, Leo
Selavo, Domenico Giustiniano, Vincent Lenders, Maurizio Rea, Andreas Mar-
caletti, Christos Laoudias, Demetrios Zeinalipour-Yazti, Yu-Kuen Tsai, Arne
Bestmann, Ronne Reimann, Liqun Li, Chunshui Zhao, Stephan Adler, Simon
Schmitt, Vincenzo Dentamaro, Domenico Colucci, Pasquale Ambrosini, Andre
Ferraz, Lucas Martins, Pedro Bello, Alan Alvino, Vladica Sark, Gerald Pirkl,
Peter Hevesi, Xue Yang, Romit Roy Choudhury, Vlado Handziski, Souvik Sen,
Dimitrios Lymberopoulos, and Jie Liu. A realistic evaluation and comparison
of indoor location technologies: Experiences and lessons learned. In The 14th
ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN
’15). ACM – Association for Computing Machinery, April 2015.

[18] F. Lu and E. Milios. Globally consistent range scan alignment for environment
mapping. Auton. Robots, 4(4):333–349, October 1997.

[19] Nicholas Metropolis and Stanislaw M. Ulam. The Monte Carlo Method. Journal
of the American Statistical Association, 44(247):335–341, September 1949.

[20] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit.
Fastslam: A factored solution to the simultaneous localization and mapping
problem. In Eighteenth National Conference on Artificial Intelligence, pages
593–598, Menlo Park, CA, USA, 2002. American Association for Artificial In-
telligence.

[21] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale, and
R. Siegwart. A synchronized visual-inertial sensor system with fpga pre-
processing for accurate real-time slam. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 431–437, May 2014.

[22] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating
system. In ICRA Workshop on Open Source Software, 2009.

[23] J. Saarinen, H. Andreasson, T. Stoyanov, J. Ala-Luhtala, and A. J. Lilienthal.
Normal distributions transform occupancy maps: Application to large-scale

50

Bibliography

online 3d mapping. In 2013 IEEE International Conference on Robotics and
Automation, pages 2233–2238, May 2013.

[24] Otavio Salvador and Daiane Angolini. Embedded Linux Development with Yocto
Project. Packt Publishing Ltd, 2014.

[25] J. M. Santos, D. Portugal, and R. P. Rocha. An evaluation of 2d slam techniques
available in robot operating system. In 2013 IEEE International Symposium
on Safety, Security, and Rescue Robotics (SSRR), pages 1–6, Oct 2013.

[26] Randall C. Smith and Peter Cheeseman. On the representation and estimation
of spatial uncertainly. Int. J. Rob. Res., 5(4):56–68, December 1986.

[27] T. Stoyanov, J. Saarinen, H. Andreasson, and A. J. Lilienthal. Normal distribu-
tions transform occupancy map fusion: Simultaneous mapping and tracking in
large scale dynamic environments. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 4702–4708, Nov 2013.

[28] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005.

[29] Sebastian Thrun and John J. Leonard. Simultaneous Localization and Mapping,
pages 871–889. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[30] B. Vincke, A. Elouardi, and A. Lambert. Design and evaluation of an embedded
system based slam applications. In 2010 IEEE/SICE International Symposium
on System Integration, pages 224–229, Dec 2010.

51

Bibliography

52

A
Appendix 1

The appendix includes test results that were determined to be superfluous and
therefore not included in the report.

Figures A.1, A.2 and A.3 displays alignment of the CAD drawing on top
of the maps generated by different SLAM algorithms.

Figure A.1: Map from Cartographer, using gyroscope, aligned with CAD drawing.

I

A. Appendix 1

Figure A.2: Map from Cartographer, using encoders, aligned with CAD drawing

Figure A.3: Map from Hector SLAM aligned with CAD drawing.

II

A. Appendix 1

Table A.1 includes the test data from the manual measurements test.
The reference values measured by the handheld laser range finder are followed by
the distance between the corresponding positions in the SLAM-generated maps.

Table A.1: Distance between reference points measured both in reality and in all
four SLAM generated maps.

#Test Reality Cartographer Hector Gmapping Cartographer(gyro)
1 13.043 13.032 12.957 13.061 13.091
2 9.6212 9.568 9.558 9.507 9.591
3 16.417 16.394 16.339 16.379 16.388
4 1.655 1.654 1.637 1.609 1.663
5 42.706 42.701 42.592 42.523 42.727
6 8.312 8.289 8.311 8.395 8.374
7 2.836 2.866 2.804 2.81 2.812
8 2.45 2.425 2.423 2.386 2.394
9 6.255 6.225 6.165 6.223 6.22
10 1.5 1.502 1.42 1.454 1.522
11 2.765 2.717 2.681 2.706 2.73
12 1.497 1.499 1.47 1.482 1.43
13 1.5 1.571 1.483 1.475 1.537
14 2.326 2.324 2.271 2.29 2.291
15 5.877 5.864 5.785 5.879 5.987
16 2.85 2.954 2.787 2.79 2.9
17 1.681 1.725 1.658 1.636 1.737
18 7.092 7.002 6.951 6.997 7.031
18 6.5 6.448 6.434 6.457 6.447
19 38.188 38.258 38.221 38.16 38.183
20 1.53 1.483 1.496 1.529 1.541
21 2.875 2.859 2.836 2.895 2.885
22 7.245 7.247 7.235 7.243 7.249
23 7.787 7.765 7.714 7.699 7.815
24 5.833 5.798 5.802 5.768 5.874
25 2.178 2.11 2.152 2.132 2.143
26 8.519 8.504 8.468 8.47 8.503
27 6.357 6.33 6.264 6.348 6.37
28 10.56 10.482 10.441 10.482 10.53

III

A. Appendix 1

Table A.2 includes all measurements gathered when comparing position
estimation with SLAM and AMCL to reflector positioning. Each row includes the
unix time at which the measurements were logged as well as what position was
estimated. Both positioning techniques were run simultaneously but two separate
coordinate systems were used.

Table A.2: Position estimation - full data for the test presented in Section 4.2.1.

Reflector AMCL
Test Time X Y Time X Y
1 1492758659.98 -0.1328 -0.0085 1492758659.90 31.7294 149.7073
2 1492758706.18 -0.4028 -0.0274 1492758706.10 31.4167 149.6921
3 1492758750.13 -0.2465 -0.0001 1492758750.14 31.6304 149.7071
4 1492758795.52 -0.3769 -0.0278 1492758795.50 31.4809 149.6964
5 1492758841.32 -0.4798 -0.0378 1492758841.34 31.4053 149.6935
6 1492758888.63 -0.3334 -0.0432 1492758888.62 31.6756 149.7085
7 1492758933.51 -0.1075 -0.0079 1492758933.50 31.7606 149.7110
8 1492758975.38 -0.3467 -0.0245 1492758975.33 31.6228 149.7051
9 1492759020.80 -0.3607 -0.0380 1492759020.74 31.4975 149.6974
10 1492759066.45 -0.2394 -0.0349 1492759066.40 31.6124 149.7052
11 1492759108.64 -0.4566 0.0014 1492759108.64 31.4240 149.6931
12 1492759163.86 -0.2926 -0.0193 1492759163.84 31.7166 149.7088
13 1492759208.98 -0.5671 -0.0303 1492759208.90 31.2740 149.6747
14 1492759257.43 -0.2643 0.0071 1492759257.44 31.6047 149.7053
15 1492759303.22 -0.2049 -0.0171 1492759303.22 31.6736 149.7039
16 1492759346.19 -0.4409 -0.0183 1492759346.12 31.4792 149.6983
17 1492759389.81 -0.3093 -0.0285 1492759389.81 31.5483 149.7030
18 1492759478.96 -0.1983 -0.0163 1492759478.90 31.6400 149.7061
19 1492759601.44 -0.3011 -0.0112 1492759601.42 31.5599 149.7032
20 1492759648.88 -0.0776 -0.0130 1492759648.82 31.8018 149.7093
21 1492759689.99 -0.3497 -0.0028 1492759689.92 31.4775 149.6973
22 1492759736.81 -0.1787 -0.0242 1492759736.85 31.7834 149.7116
23 1492759830.67 -0.2947 -0.0114 1492759830.62 31.5747 149.7024
24 1492759874.57 -0.1805 -0.0005 1492759874.54 31.6702 149.7051
25 1492759971.36 -0.4093 -0.0247 1492759971.33 31.4391 149.6931
26 1492760016.20 -0.2352 -0.0032 1492760016.26 31.6564 149.7088
27 1492760065.49 -0.1777 0.0057 1492760065.40 31.7247 149.7069
28 1492760110.55 -0.3974 -0.0072 1492760110.53 31.4525 149.6954
29 1492760155.54 -0.3379 0.0042 1492760155.52 31.5479 149.7016
30 1492760201.59 -0.5182 -0.0277 1492760201.54 31.3252 149.6789
31 1492760258.38 -0.4318 -0.0140 1492760258.30 31.3893 149.6895
32 1492760349.22 -0.2094 -0.0175 1492760349.20 31.6556 149.7039
33 1492760392.72 -0.4275 -0.0041 1492760392.70 31.4473 149.6954
34 1492760437.46 -0.2061 -0.0165 1492760437.40 31.6386 149.7069
35 1492760480.76 -0.4385 0.0005 1492760480.72 31.4226 149.6910
36 1492760524.91 -0.5379 -0.0381 1492760524.94 31.3246 149.6804

IV

A. Appendix 1

37 1492760570.90 -0.3530 -0.0228 1492760570.90 31.5043 149.6984
38 1492760617.40 -0.1062 -0.0073 1492760617.34 31.7526 149.7103
39 1492760659.59 -0.2431 -0.0110 1492760659.52 31.5915 149.7017
40 1492760705.69 -0.8316 -0.0701 1492760705.60 31.0062 149.6086
41 1492760752.78 -0.2879 0.0007 1492760752.70 31.5584 149.7029
42 1492760798.13 -0.0913 0.0022 1492760798.13 31.7763 149.7095
43 1492760840.23 -0.2276 -0.0119 1492760840.24 31.6352 149.7080
44 1492760884.27 -0.3884 -0.0354 1492760884.22 31.4482 149.6925
45 1492760926.42 -0.4865 -0.0101 1492760926.40 31.3746 149.6857
46 1492760970.66 -0.2680 -0.0126 1492760970.62 31.5864 149.7043
47 1492761016.66 -0.0899 0.0147 1492761016.64 31.7805 149.7110
48 1492761060.40 -1.1073 -0.2232 1492761060.45 30.7828 149.4924
49 1492761106.75 -0.3763 -0.0362 1492761106.70 31.4698 149.6981
50 1492761153.35 -0.0675 -0.0036 1492761153.33 31.7872 149.7121
51 1492761219.94 -0.1089 -0.0170 1492761219.98 31.7801 149.7075
52 1492761263.54 -0.2874 -0.0052 1492761263.54 31.5817 149.7014
53 1492761315.58 -0.3688 -0.0019 1492761315.50 31.4553 149.6923
54 1492761359.18 -0.3881 -0.0145 1492761359.12 31.4423 149.6931

V

A. Appendix 1

Table A.3 holds the stopping positions measured when ordering the vehicle
to drive, with a SLAM-generated map, to the same reference position over and over
again. A local coordinate system was used and the tests are not presented in the
same order that they were conducted.

Table A.3: Navigation precision - measured stopping position at each test.

Test x-pos y-pos
1 0.70 1.80
2 0.80 1.40
3 1.00 1.60
4 0.90 1.40
5 0.80 1.35
6 0.70 1.10
7 1.00 1.30
8 1.10 1.30
9 1.10 1.00
10 0.80 1.60
11 1.00 1.30
12 1.10 1.10
13 0.90 1.00
14 1.25 0.90
15 1.00 0.70
16 0.90 0.90
17 0.70 0.90
18 0.80 1.20
19 0.75 1.20
20 0.75 1.30
21 0.60 1.30

VI

A. Appendix 1

Figure A.4 and Figure A.5 show the match ratio corresponding to the
Navigation levels presented in Section 4.2.3.

Figure A.4: Match ratio with handmade map used in navigation test.

Figure A.5: Match ratio with SLAM-generated map used in navigation test.

VII

A. Appendix 1

Figure A.6 and Figure A.7 show the reliability corresponding to the Nav-
igation levels presented in Section 4.2.3.

Figure A.6: Reliability with handmade map used in navigation test.

Figure A.7: Reliability with SLAM-generated map used in navigation test.

VIII

A. Appendix 1

Figure A.8 shows the result of converting the cartographer map, of the
full environment, to NDT cells.

Figure A.8: Map, created by the Cartographer, converted to NDT cells.

Figures A.9 and A.10 display the result from the navigation level test
when run with a modified version of the map converter. This version is explained
in Section 5.1.2.

IX

A. Appendix 1

Figure A.9: Match ratio when running the same track as presented in 4.2.3 but
with a updated version of the map converter. The features of this version is presented
in Section 5.1.2.

Figure A.10: Reliability when running the same track as presented in 4.2.3 but
with a updated version of the map converter. The features of this version is presented
in Section 5.1.2.

X

	Introduction
	Related work
	Our contribution

	Background
	Robot Operating System
	Simultaneous Localization and Mapping
	Problem definition
	Bayes filter
	Basic SLAM paradigms

	The Normal Distribution Transform

	Implementation
	System background
	Hardware
	Software

	Software design
	ROS SLAM node

	Map conversion

	Evaluation
	Mapping
	Map alignment
	Manual measurements
	Performance and system requirements

	Navigation
	Repeatability in positioning estimation
	Repeatability in automatic driving
	Navigation level

	Discussion
	Software implementation
	Sensor publisher node
	Map converter

	Test results
	Mapping
	Navigation

	Conclusion
	Bibliography
	Appendix 1

