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FREDRIK FURUFORS
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
In this thesis, a method for real-time transmitter localization is evaluated. An

existing system has acted as testbed for the evaluation. This system uses an elec-
tromagnetic transmitter and a receiver board with 16 antennas. The antenna values
are used to recover the transmitters position and two angles, the five dimensions.
The proposed solution is an inverse modelling feed-forward neural network, a mul-
tilayer perceptron, which is trained and evaluated with the use of the TensorFlow
library.

The project resulted in a purely software based estimator which requires no
change to the testbed and can act as a drop in replacement for the previous al-
gorithm. The new estimator has accomplished improvements in estimation speed
(more than 100× faster), expansion of the volume in which the position can be re-
covered (27× larger), enlarged range of angles (10 % per axis) and has improved the
precision of the position estimates (error at the 95th percentile reduced to ∼ 1

3 of
the previous implementation). The new algorithm is a substantial improvement on
the previous implementation, enabling new use cases for the system.

Keywords: Function approximation, Inverse modelling, Neural networks, Multilayer
perceptron, Machine learning, Localization
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1
Introduction

In inverse modelling, a set of observations is used to estimate the causing factors.
This thesis explores artificial neural networks (ANNs) as a solution to recover five
degrees of freedom in an electromagnetic transmitter from 16 measurements of the
electromagnetic field emanating from the transmitter. Inverse modelling using ANNs
is a powerful tool, with the ability to model multidimensional, nonlinear relation-
ships. It requires little area-specific knowledge, even when other modelling ap-
proaches would require such expertise. Inverse models can also be used when no
known mathematical model is available [1]. Inverse modelling using an ANN allows
the designer to train a system, using a number of input-output pairs. A well de-
signed ANN can produce good output estimations on novel input data with modest
hardware requirements.

This thesis describes the process of implementing an ANN for direct inverse
modelling of an implant’s position in a patient undergoing external beam radiother-
apy (EBRT). Two alternative solutions are proposed, the first a purely software-
based estimator, the other is an embedded hardware neural network (HNN) which
is trained on a workstation computer, off-chip training, and implemented on an
field-programmable gate array (FPGA) which can utilize the inherent parallelism
in ANNs. As the project progressed the focus shifted towards the software based
estimator.

1.1 Context

Micropos Medical AB (publ) is a Gothenburg-based company which has developed
a tumour localization system called RayPilot. The system consists of a receiver
plate and a transmitter which is implanted in close proximity to the tumor, shown
on the cover page. The receiving plate contains 16 antennas which measure the
electromagnetic signal sent out by the transmitter implant, see Figure 1.1.

1



1. Introduction

Transmitter implant

Toroidal radiation pattern

Antenna array4× 4

Figure 1.1: An electromagnetic transmitter implant is placed in close proximity to
the tumor, the 4× 4 antenna array collects data used for localization.

A software suite uses data from the antennas to produce a positional estimate
of the implant, see Figure 1.2. The algorithm which recovers the implant’s position
from the electromagnetic field image is the subject of this thesis.

1.9 V

1.9 V

1.9 V

1.9 V

1.9 V1.9 V

1.9 V

1.9 V 3.0 V

3.0 V

3.0 V

3.0 V 2.4 V

2.4 V

2.4 V

2.4 V
Recovery (x, y, z, v

x

, v

z

)

Figure 1.2: A program recovers the positional data from the measurements of the
4× 4 antenna array.

The estimate is used to improve the precision in the radiotherapy sessions by
providing feedback on the tumour’s position. In addition to the tracking aspect,
some versions of the implant are also capable of measuring the amount of radiation
which reaches them. This feature is called dosimetry and provides additional safety
to the patient by giving feedback on the radiation dose.

1.2 Motivation

While many articles has been published on the topic of inverse modelling using
ANNs, this application is novel. The directional dependency of the electromagnetic
field (EMF) produced by the transmitter in combination with second-order factors
such a antenna coupling and external noise, makes a direct mathematical model
infeasible with regards to research and development costs.

Multi-layer feed-forward neural networks with at least one hidden layer have been
proven capable of universal function approximaton [2]. Hence this type of ANNs is
a candidate for the inverse modelling task.

2



1. Introduction

1.3 Goals and challenges
The project has multiple goals pertaining to different aspects of the RayPilot sys-
tem’s performance:

• Maintaining or improving the accuracy of the positional predictions, see Sec-
tion 4.4 for further details

• Extend the recoverable volume as defined in Section 3.1.2
• Decrease the latency of the predictions; the current algorithm has a minimum

latency of about 10–20 ms. Previous studies has already shown that an ANN
solution can reduce the latency [3]

• Demonstrate that development of an embedded HNN solution is feasible thanks
to the use of modern tools

Associated with these goals are some challenges. The biggest challenge may be the
choice of neural network configuration. There are few general results in the field and
each implementation needs to be tailored. The approach is that of experimentation
and comparative analysis of proposed models. There is no guarantee that a neural
network solution will outperform the current algorithms used by the company. A
negative result may guide future work in the field to different strategies.

A clear drawback of a neural network solution to this problem is the need to
argue for its correctness. How does one for example prove that the network will
produce reasonable estimates in all of the measurement volume without performing
an exhaustive search? This is however the reality for most physical measurement
systems; this question will have to be addressed by the company; in this project
the system is evaluated against a reasonably large set of test examples with known
position and antenna value pairs.

A challenge in working with neural network’s is to optimize the networks ability
to generalize, i.e. get a good interpolation between the known examples. A common
problem is overfitting where the trained network only makes good predictions on
data from the training set, but bad estimates on new data points. Measures such
as early stopping by using holdout validation [4] and weight-regularization [5] can
prevent overfitting.

1.4 Delimitations

The end product is a proof-of-concept which focuses on the scientific/engineering
aspect of the problem. The project is delimited to a stand-alone solution capable
of performing position estimations from the antenna values but will not be tightly
integrated with the RayPilot system. The result may at a later point be integrated
by the company.

This thesis treats the RayPilot hardware in a somewhat idealized manner. There
are revisions of the hardware contained in the RayPilot system; differences emanat-
ing from them are not considered. During the project, a fixed set of hardware has
been used to investigate the proposed recovery algorithm. Under these conditions,
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each instance of the algorithm will only be valid for a specific system.

1.5 Thesis organization
Chapter 2 provides background on radio-therapy, the RayPilot system and previous

work on the topic.
Chapter 3 puts the thesis in context by providing theoretical background on neural

networks, FPGAs and the equipment used throughout the project.
Chapter 4 introduces the methodology and the performance measures upon which

the evaluation of the projects results are based.
Chapter 5 contains the results and metrics with commentary on the performance.
Chapter 6 draws conclusions based on the results and discusses the contributions of

this project.

4



2
Background

2.1 Prostate cancer and treatment

Prostate cancer is the most common diagnosed cancer among Western European
men; in 2008 an estimated 913 000 cases were reported worldwide [6]. Curative treat-
ment methods include active surveillance, radical surgery (prostatectomy), radio-
and brachytherapy [7]. This thesis focuses on advances in EBRT for treatment of
prostate cancer. EBRT is a form of radiotherapy where the patient is situated on a
treatment couch and the X-ray beam of a linear accelerator is aimed at the clinical
target volume (CTV).

2.1.1 External beam radio-therapy

An EBRT treatment is composed of a number of fractions, 5–40 depending on
the method, in which the patient undergoes a radiation exposure according to a
treatment plan. In order to localize the tumor and identify the treatment volume,
medical imaging is done at the start of the treatment.

2.1.1.1 Hypofractionation

Conventional EBRT treatment plans deliver around 80 Gy1 divided into circa 40
fractions. In two recent studies, HyPro [8] and CHHiP [6], conventional and hy-
pofractionational planning have been evaluated in large scale randomized trials.
Hypofractionation uses, as the name implies, fewer fractions, 5–20, but delivers a
comparable total dose of radiation. The CHHiP study reported that “Hypofraction-
ated high-dose radiotherapy seems equally well tolerated as conventionally fraction-
ated treatment at 2 years” [6]. There are many benefits of fewer treatment sessions
including economical, logistical and resource aspects for both the patient and the
clinics.

In conventional fractionation the law of large numbers applies to a higher degree
vis-à-vis hypofractionation; on average the prostate is in its expected position. In
hypofractionated plans, movements of the prostate can potentially have a larger
impact since each intermittent positional deviation will amount to larger deviations
from the dosage planning, given the higher radiation intensity. Given the method’s

1Gy: Gray, the SI unit which measures ionizing radiation dose. 1 Gy = 1 J/kg.
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increased sensitivity to organ movement, real-time movement tracking systems are
emerging.

2.1.2 Prostate movement during radio-therapy

There are two distinct forms of prostate movement: those that occur during the
fractions, intrafractional movements, and those that occur between fractions, inter-
fractional movements. The intrafractional movements can be monitored by using
the RayPilot system. Interfractional movements are detected by medical imaging
prior to the treatment session and the data from these images also serve as a ref-
erence for calibration of the transmitters position in relation to the tumour when
using the RayPilot system.

In Figure 2.1 is an example from a radiotherapy session where the target volume
displays considerable migration, here up to 9 mm in the longitudinal direction, i.e. on
a line between the patient’s hips; other sessions from the study showed movements
of up to 16 mm [9].
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Figure 2.1: Deviations from an in-vivo study of target movement, visualized per
dimension during radiotherapy. Used with permission from the authors.

During the radiotherapy, a volume slightly larger than the prostate is radiated,
the planning target volume (PTV), in order to ensure that the required dose reaches
the CTV. Minimization of the amount of radiation which reaches healthy tissue is
important for the patients’ quality of life after treatment. One of the ways to
accomplish this is real-time position tracking of the prostate during the treatment.
Such monitoring allows for smaller margins around the CTV. Studies have shown
significant organ movement both between and during fractions; in [10] a deviation
of >3 mm was reported 7.7 % of the monitored time in 742 studied fractions. In
[10] the Calypso local positioning system by Varian Medical Systems was used to
measure the deviations.
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2.1.2.1 Tracking prostate movement

The RayPilot system has a couple of competitors; the two primary are developed
by manufacturers of linear accelerators (LINACs): Elekta’s Clarity which uses ul-
trasound and Varian’s Calypso which uses electromagnetic resonance. Another ap-
proach for positional feedback of tumours in soft tissue is magnetic resonance ra-
diation therapy (MR/RT); this method combines magnetic resonance imaging with
radiotherapy; computer vision algorithms are applied to recover the position.

2.1.2.2 Reducing prostate movement

An additional measure to tracking, fixtures can be used in order to reduce organ
migration. One approach is a rectal retractor rod, a fixture which also separates
sensitive, healthy tissue from the prostate thereby aiming to reduce adverse side
effects. A recent study used a combination of the RayPilot system and a rectal
retractor rod observed deviations of >3 mm in 16.0 % of the monitored time in 260
fractions [11].

While not a direct fixture, bladder filling routines has been evaluated as a proce-
dure to reduce interfractional movements, by normalizing the prostate’s surrounding
environment. In a study of this method, different levels of bladder filling moved the
prostate >1 cm in 30 % of the patients [12].

2.2 Micropos Medical and RayPilot

Micropos Medical’s product RayPilot is sold as a third-party accessory to existing
EBRT linear accelerators. The RayPilot system consists of the sensor plate (placed
onto the linear accelerator’s treatment couch), the transmitter implant and a work-
station running the RayPilot software, see figure 2.2. The RayPilot system can also
be used for proton therapy, a specialized form of EBRT using protons instead of
photons. The sensor plate which is placed over the treatment couch, see Figure 2.2,
is an approximately 30 mm thick board containing 16 antennas. This form factor
was chosen to integrate well with typical installations.
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Figure 2.2: The RayPilot system consists of the sensor plate (placed onto the linear
accelerator’s treatment couch), the transmitter implant and a worksta-
tion running the RayPilot software. Figure used with permission from
Micropos Medical.

2.2.1 The RayPilot sensor plate

The sensor plate gathers information about the EMF emitted from the RayPilot
implant. It contains 16 antennas in two groups of 8, as shown in Figure 1.1. In the
area between the antennas is the “low attenuation zone” which is designed not to
interfere and withstand the radiation from the LINAC.

Given the flat layout, the antenna measurements are placed in a plane bisecting
the transmitter’s electromagnetic field, a compromise between the quality of the
collected data and the physical form factor.

Figure 2.3: The RayPilot sensor plate is placed onto the carbon fiber treatment
couch. Exact, replicable placement is enabled by the use of fixtures.

The voltage is the time-averaged, absolute-valued intensity of the EMF travel-
ling perpendicularly through the antenna’s cross-section. The underlying physical
phenomenon is described in Faraday’s law of induction [13].
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2.2.2 The RayPilot transmitter

The transmitter is cylindrical and measures 3 × 17 mm. It is implanted under lo-
cal anesthesia, using a special purpose needle and remains implanted throughout
the whole treatment period. Inside the implant is an antenna, which is driven by
a reference signal from the sensor plate. The reference signal is a sinusoidal wave
with well defined amplitude and frequency. When this signal is sent through the
transmitter it generates EMF which has a toroidal radiation pattern as illustrated
in Figure 2.4. The radiation pattern visualizes the signal intensity’s directional de-
pendence. Here the transmitter is aligned with the y-axis. The EMF is rotationally
symmetric around the implant’s axis. The radiation diagram highlights the angular
dependency of the dipole antenna—the signal is strong in the directions perpendic-
ular to the transmitter. The sensor plate and the transmitter are connected via a
shielded cable.

Figure 2.4: The toroidal radiation pattern of the RayPilot transmitter. Here the
implant is aligned with the y-axis. The simulation was generated with
the Matlab Antenna toolbox.

The implant is placed in close proximity to the tumour, inside the prostate.
Prior to each fraction, a computed tomography (CT) scan is taken to reaffirm the
implant’s position in relation to the tumour. Small changes in position can be
corrected by adding an offset in the RayPilot software. The illustration in Figure
2.5 shows an implanted transmitter.
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Figure 2.5: Implanted transmitter. The white part of the cable is integrated into the
transmitter, while the black part is an extension cable which connects
the system to the transmitter.

2.3 Previous work

The company has performed two studies where neural networks have been trained in
order to recover the position. In a study from 1999, a feed-forward neural network
with one hidden layer of 34 nodes was used to recover the position of a magnet
with the use of 16 magnetic sensors [3]. This experimental setup was a prototype
of the RayPilot product. The neural network was able to produce an estimate in
10 ms on late 1990’s hardware. The network models were trained for approximately
45 minutes and the estimations on the test set had a mean square error of 0.050–
0.052 mm radially; the sensors were placed in a 20 × 20 mm grid and the training
volume was a cube with 10 mm sides [3]. The software used was NeuroShell 2,
a commercial tool designed for stock market predictions. The result was deemed
successful as a proof of concept.

In a 2006 thesis project, ANNs were once again implemented, now using the
current RayPilot technology, but with a 4-by-3 antenna array instead of the current
4-by-4 [14]. Two approaches were evaluated: the NeuroShell 2 (NS2) tool and a
feed forward neural network implemented in Matlab (ML). The outcome of this
experiment is presented in Table 2.1. The numbers in the network type are the
neuron count in the layers: input-hidden-output; the nomenclature is introduced in
Section 3.3.2. The study was limited to networks with a single hidden layer with a
low number of neurons.
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Table 2.1: Results from the company’s previous attempts at position estimations
done with a neural network on the RayPilot data.

Network type Training
set size

Test
set size

Mean
error

Std.
dev.

Max
error

FFNN: 12-8-5 (NS2) 6221 1555 3.40 mm 1.36 mm 12.83 mm
FFNN: 12-8-5 (NS2) 5782 1994 5.40 mm 2.30 mm 15 mm
FFNN: 12-9-5 (ML) 6000 3000 2.16 mm 0.92 mm 8.10 mm

The thesis report has remarkably little information or motivation concerning
the network types used—however neural networks were not the main focus of the
thesis. The report gave some hints on future work: ”Since we have shown that it
is probable that you can create an Artificial Neural Network that performs just as
good as using an Optimization Algorithm does[,] it would be interesting to pursue
this investigation further. Trying to find an optimal network for the problem and/or
setting up guidelines as to how the networks shall be created and trained would
probably be a good thing.” [14].

2.4 Related work

While the specific application is novel ANNs has been used in similar applications
where one of the more common is localization using wireless sensor networks.

In [15] neural networks are used to determine the position of WIFI clients con-
nected to a set of wireless access points. The input to the network was the received
signal strength (RSS) between the client and the different access points. When using
multiple RSS inputs the method is called multilateration, as opposed to the more
common trilateration. The underlying phenomenon is analogous to the work at
hand; however, there are some major differences: two dimensional position instead
of five dimensional, omni-directional transmitter antennas instead of the dipole pat-
tern used here, randomly ordered antennas (access points) instead of ordered grid,
different target ranges and completely different requirements on the accuracy. For
a 40×40m room the system described in [15] achieves an accuracy of approximately
1 m; translated to the work at hand that roughly represents 2.5 mm in a volume
with sides of 100 mm.

The work presented in [16] uses an experimental setup very similar to [15]. This
work dives deeper into filter and pre-processing optimizations which are not directly
applicable to the work at hand. In contrast to [15] this work uses a grid based layout
for the access points, which is more similar to the antenna array of the RayPilot
sensor board.

2.5 Conclusion
The state of EBRT-treatments is in flux; the transition towards hypofractionation
and increased awareness of organ movement is driving a demand for organ tracking
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during the treatments. Micropos has an interesting product and a mature hardware
system which constitutes a good testbed for the proposed research.

If the project’s goals can be fulfilled, the results will likely have a positive impact
on a large number of patients undergoing EBRT. The timing and conditions for the
project at hand are right.
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3
Context

This chapter will provide the necessary theoretical background to follow and under-
stand the project, including the experimental setup, the current algorithm used in
RayPilot and background on artificial neural networks (ANNs).

3.1 Experimental setup

This section provides background on how the data used for modelling is collected,
what the experimental limitations are, and provides definitions concerning the col-
lected data.

3.1.1 Coordinate system

The data is oriented according to standard mathematical orientations, shown in
Figure 3.1. The y-axis points towards the patient’s head and the x-axis towards
the patient’s left. Consequently, the z-axis points perpendicularly upwards from the
treatment couch. The angles vx and vz are defined around the x and z axes. The
EMF emitted from the transmitter is symmetrical around the y-axis, hence the vy

angle is non-recoverable.

x̂

ẑ

ŷ

v̂

z

v̂

x

Figure 3.1: The coordinate system is a standard mathematical right-handed system.

For simplicity this project deals only with this notation of positions; however, the
RayPilot software conforms to the IEC 61217 standard [17], an industry standard
which defines a set of coordinate systems used in EBRT.
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3.1.2 Data collection and test fixtures

To recover the transmitter’s position the company currently uses a polynomial re-
gression model. This model is constructed with data generated using robotized
fixtures called Autosetups. The fourth incarnation of the Autosetup is shown in
Figure 3.2. It has the capability of moving the transmitter ±150 mm in the axial
dimensions and ±45° around the two rotational axes. The servos for the x-,y- and
z-dimensions have repeatability of 0.1 mm. The fixture is controlled and automated
using an existing LabVIEW interface and stores the positional setpoint and the as-
sociated antenna values. The device was used to generate training and verification
data. The data generated is usable since the human body is almost transparent to
the electromagnetic waves at the transmitter’s frequency; this has been verified by
the company.

During the project, version three and four of the Autosetups were used. Version
four is superior in all aspects; however, it was not fully functional until week 14 of
the project. Hence, some databases were generated with the predecessor which has
a smaller range of motion: ±90 mm and ±40°.

Figure 3.2: The fourth generation Autosetup, a robotized fixture for precise trans-
mitter positioning over a sensor plate. Picture used with permission from
Micropos Medical AB.

The core question of this project is whether a neural network can be adapted to
recover the positional data from the antenna values and whether it can outperform
previous methods used by the company with regards to precision and recoverable
measurement volume. The recoverable volume, Rv, is here defined to be the volume
in which the estimate, p̂, deviates less than 1 mm radially from the physical position
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p:
Rv = {p | ∥p̂− p∥ ≤ 1 mm, p ∈ P}

where P is the maximum trainable volume, limited here by the transmitter fixture.
With the fixture in Figure 3.2 this volume is:

P = {p = (x, y, z) | ∥x− x0∥ ≤ 15 cm, ∥y − y0∥ ≤ 15 cm, ∥z − z0∥ ≤ 15 cm}

where p0 = (x0, y0, z0) is located in the center of the fixture.
With the current algorithm Rv is approximately ±5 cm in each direction from

p0 which can be varied slightly to fit the intended application. Potentially, several
overlapping polynomial models with different p0 could be trained to increase Rv;
this approach will not be explored in this project.

3.1.2.1 Training databases

The Autosetups generate tab separated, flat file databases containing the setpoint
position, angles and the associated antenna voltages. The databases are identified
by DB# where # is a serial number. During this project a number of such databases
have been used. The properties of these databases are listed in Table 3.1. The time
needed to generate a standard database, such as DB271 is approximately 4 hours. A
database for the maximum possible volume, see DB1071, takes just over six days to
generate1.

Table 3.1: Properties for the training databases used throughout the project.

Identifier X (mm) Y (mm) Z (mm) Vx (◦) Vz (◦) Datapoints Autosetup
DB271 37–137 44–144 80–180 -40–40 -40–40 7776 v3
DB476 0–180 0–180 0–180 -40–40 -40–40 161 051 v3
DB1071 20–280 0–300 0–300 -45–45 -45–45 175 616 v4

The databases used for training contains equidistantly spaced points along each
axis, see Figure 3.3a. For example, DB271 uses 65 = 7776 data points, i.e. each
dimension is split into 5 steps. In the case of the x-axis this implies a step size
of (137 − 37)/(6 − 1) = 20 mm. When researching extended volumes, DB476 was
the one of two primary data source and it used 11 data points per dimension. One
important aspect of these training sets are that the data span the whole training
volume. Of these databases, DB476 has the highest spatial resolution while DB1071
uses a spacing closet to the original data set DB271. This is the explanation for the
number of data points in the databases in Table 3.1.

3.1.2.2 Evaluation databases

While the training databases used equidistantly spaced data points in a grid, the
evaluation databases used random points spanning the same data space. The
evaluation-mode of the Autosetup generates the desired number of data points.

1At the end of the project a change was proposed to the order of positions and angles. This,
and some spin-off optimizations, resulted in a reduction of the time taken by 80%
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The LabVIEW program uses a random number generator to generate and measure
uniformly distributed data points, see Figure 3.3b.

These “evaluation” databases are used for three purposes:
• Validation sets—Used during the hyper-parameter search (introduced in Sec-

tion 4.2.3) and training, as cross-validation (introduced in Section 4.2.2.3).
• Test sets—Given a finalized predictor, this data is used for performance eval-

uation.
• Additional training data—Since the training set generated by Autosetup

has data points on a grid, additional uniformly distributed data can be added
giving a more diverse training set; this is explored in Section 5.3.3.
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(a) DB271 training database.
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(b) DB271_eval_1 evaluation database.

Figure 3.3: Distribution of training and evaluation data points from a subset of
DB271. Each line represents the placement and orientation of the trans-
mitter.

3.2 Current implementation
The algorithm used to recover the transmitter’s position in the RayPilot system
has been replaced multiple times. The current implementation was developed as a
master thesis project in 2006 and is called gradient guided approximate minimum
(GGAM) [14]. The GGAM algorithm improved on the previous algorithm primarily
in estimation speed and by introducing an upper bound on the run-time.

GGAM is an iterative search algorithm based on the classic gradient descent
algorithm, which is the subject of Section 3.2.2. The GGAM modifications are
introduced and motivated in Section 3.2.3 as well as some key performance figures
from the thesis project [14].

3.2.1 Line search
One prerequisite for the gradient descent algorithm is a line search algorithm. Given
a function and an interval, a line search aims to find a local optimum of the function
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on the interval. One common method is the bisection algorithm described below
[18, pp.1̃7–19].

Algorithm 1: Bisection line search
Result: On convergence, xn is a local minimum of ϕ(x) between a0 and b0
n← 0
select an interval [a0, b0]
x0 ← a0+b0

2
repeat

compute the derivative ϕ′(xn)
if ϕ′(xn) < 0 then

an+1 ← xn

bn+1 ← bn

else
an+1 ← an

bn+1 ← xn

end
n← n + 1
xn ← an+bn

2
until |xn − xn−1| < ϵ;

3.2.2 Gradient descent
The gradient descent algorithm is an iterative, multidimensional optimization tech-
nique which uses the function’s gradient as the direction for a line search. The
gradient is the multidimensional equivalent to a function derivative:

∇f(x) =
(

∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

)

where x = [x1, . . . , xn]. The gradient is a vector pointing in the direction of maximal
growth. In the algorithm below, each iteration performs a line search in the direc-
tion of maximal decline, −∇f(x), thereby finding a local minimum if the algorithm
converges. There are many variations and applications of gradient descent algo-
rithms, see textbooks such as [18] and [19]. One application is the back-propagation
algorithm used in training of neural networks, see Section 3.3.3.

Algorithm 2: Gradient descent, line search variation
Result: In case of convergence, xn is an approximative, local minimum for

f(xn)
n← 0
select starting point x0
repeat

compute the gradient d = ∇f(xn)
formulate the 1-dimensional optimization problem ϕ(η) = f(xn − ηd)
find η̂ which minimizes ϕ(η) using the algorithm in Listing 1
xn+1 ← xn − η̂d
n← n + 1

until |xn − xn−1| < ϵ;
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3.2.3 Gradient guided approximate minimum
This variation on gradient descent algorithm is described in Listing 3. It was de-
signed as part of the 2006 thesis project [14]. The main differences from algorithm
in Listing 2 are:

• Fixed number of iterations instead of the ϵ-convergence criteria.
• No line search; instead the step size is decreased if the scalar product of the

gradients of two consecutive iterations is negative. A negative scalar product
indicates that the search direction has changed dramatically, the multidimen-
sional equivalent of a u-turn. This requires fewer costly evaluations of f(pi).

Algorithm 3: Gradient guided approximate minimum (GGAM) [14]
Result: After n iterations pn is an approximate minimum
set n as number of iterations
set p0 as the center of the search space
dprev ← ∇f(p0)
set γ as initial step length
for i← 1 to n do

update search direction d← ∇f(pi−1)
if d · dprev < 0 then

γ ← γ
2

end
pi ← pi−1 + γd
if pi is outside the search space then

pi ← closest point inside search space
end
dprev ← d

end

3.2.4 Polynomial model
The polynomial model is constructed from a training database using least square
polynomial regression [20], i.e. solving an overdetermined equation system to find
the coefficients. The current implementation uses 16 sets of five-dimensional, fourth
degree multivariate polynomials, P4, i.e. one polynomial per antenna. The resulting
function transforms a test position to a vector of estimated antenna values:

P4(x, y, z, vx, vz) = P4(p) = â = [â1, â2, . . . , â16]

Where each of the n = 1 . . . 16 polynomials has terms of the form:

P4(x, y, z, vx, vz) · ûn =
4∑

a=0

4∑
b=0

4∑
c=0

4∑
d=0

4∑
e=0

c(a,b,c,d,e)x
aybzcvd

xve
z

Hence each of the 16 polynomials in P4 has 55 = 3125 coefficients which are deter-
mined using the 7776 equations given by the standard sized training database. Each
of the 16 polynomials are overdetermined. In total this model has 50 000 coefficients.
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Prior to the regression, the search space is linearly scaled to a fixed range for
each of the five dimensions and rescaled after the optimization.

3.2.5 Optimization algorithm
The function under optimization is the L2-distance between the estimated, â, and
the measured antenna vectors, a:

EP4(p) = ||P4(p)− a||2 = ||â − a||2

Minimization of EP4(p) results in a position estimate, p̂. The current implementation
uses the GGAM algorithm, described in Listing 3. The gradient is defined as:

∇EP4(p) =
(

∂EP4(p)
∂x

,
∂EP4(p)

∂y
,
∂EP4(p)

∂z
,
∂EP4(p)

∂vx

,
∂EP4(p)

∂vz

)

where each partial derivative if calculated numerically as:

∂EP4(p)
∂x

= EP4(p + ∆xux)− EP4(p)
∆x

where ∆xux is a small step along the x-axis. Since the GGAM-algorithm moves in
the direction of −∇EP4(p) it iteratively produces antenna estimates which better
and better match the measured antenna vector. However, the resulting estimate
is just a local minimum, i.e. the algorithm is not guaranteed to find the globally
optimal position.

3.3 Artificial neural networks
In the following text, a subtype of artificial neural networks (ANNs) is explained
from the most basic component, the neuron, to the full multi-layer perceptron (MLP)
that will be evaluated for potential future usage in the RayPilot’s recovery process.

3.3.1 Artificial neuron
The artificial neuron stems from attempts to mathematically model the behaviour
of biological neurons. Mathematically, the artificial neuron model has a simple
expression:

y(x) = φ (wx + b) (3.1)
where x are the inputs; w represents a weight for each input and represents that
input’s importance to the neuron; b is called the bias and models the neuron’s
tendency to fire; finally φ is a non-linear activation function which forms the response
characteristic. Generally, the input, x, is multidimensional and the output from the
activation function, φ, is scalar. In the neuron, the outgoing signal is determined by
a set of incoming signals. Thereby it performs a decision—a simple computation.

Equation 3.1 can be drawn schematically to illustrate the data flow, see Figure
3.4.
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Figure 3.4: A schematic representation of Equation 3.1. The data flow is indicated
by the arrows.

The choice of activation function can affect the learning abilities of the network
[21]. Some common choices of activation functions are:

• Standard logistic function (sigmoidal)

φ(a) = g(a) = 1
1 + e−a

• Hyperbolic tangent (sigmoidal)

φ(a) = tanh a = ea − e−a

ea + e−a

• Rectifier
φ(a) = max(0, a)

Of special interest for the application at hand are the sigmoidal functions. These
functions have the following characteristics; the domain [−∞,∞] maps onto a finite
range [a, b], they are differentiable and the output is monotonically increasing. Why
these properties are desirable is discussed in Section 3.3.4. The function plots in
Figure 3.5 show these features qualitatively.

−4 −3 −2 −1 0 1 2 3 4

−1

0
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x

y
=

ϕ
(x
)

Standard logistic
Hyperbolic tangent

Figure 3.5: Sigmoidal functions squash the domain [−∞,∞] onto a finite range [a, b],
are differentiable and monotonically increasing.

Remark:
The hyperbolic tangent and the standard logistic function are actually
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equivalent except for scaling and offset, i.e. they share the same shape:

tanh x = ex − e−x

ex + e−x
= ex(1− e−2x)

ex(1 + e−2x)

= g(2x)− e−2x + 1− 1
1 + e−2x

= 2g(2x)− 1.

3.3.2 Multilayer perceptron
The multi-layer perceptron (MLP) arranges multiple perceptrons (neurons), as in-
troduced in Section 3.3.1, into a layered structure. The MLP is a feed-forward neural
network, meaning that the neurons are nodes in a directed acyclic graph; there are
other node topologies such as recurrent networks, these are not discussed here. An-
other property of MLPs is that the nodes in each layer are fully connected, meaning
that every neuron in each layer is connected to every neuron in the adjacent layers,
see Figure 3.6.

The MLP has applications in regression, i.e. continuous function fitting, and
classification, i.e. labeling of data by means of discrete function fitting. The appli-
cation at hand is an example of non-linear function approximation; hence, the MLP
is here used as a regressor.
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Figure 3.6: Neural network nomenclature. Each circle, node, represents a neuron
and the lines show the interconnections between the neurons.

The inner layers, i.e. not in- or output layers, are called hidden layers; the neurons
in such layers are consequently called hidden neurons. MLPs with exactly one hidden
layer with sigmiodal activation functions are capable of approximating any function
Rn → Rm [22]; this is discussed in more detail in Section 3.3.4.

In the following paragraphs, a terse notation for MLPs is introduced. The fol-
lowing, common mathematical conventions hold: bold, capital letters (W) represent
tensors; regular weight, capital letters (W ) matrices; bold, lowercase letters (w) vec-
tors; and regular weight, lowercase (w) scalars.

To extend the mathematical notation for the neuron, introduced in Equation
3.1, into layers, the weight vector w becomes a weight matrix Wi,j where i denotes
the neuron and j the inbound connections; the biases turn into a vector bi where

21



3. Context

i once again represents the associated neuron. Using this notation, the whole layer
can be computed in a single expression:

y = φ (Wx + b)

where the in- and outputs of the activation function are now vectors; the activation
function is generalized to element-wise application. To further extend the model
to handle multiple layers, the weights can be treated as a tensor, Wl,i,j, the biases
as a matrix, Bl,i, and activation functions as a vector of functions, φl. Using this
notation a full MLP with n layers (n− 1 hidden and one output) can be described
as:

y = φn

(
Wnφ(n−1)

(
Wn−1φ(n−2)

(
. . . φ1 (W1x + B1) . . .

)
+ B(n−1)

)
+ Bn

)
(3.2)

where the layers are applied successively, in a chained manner; the innermost entity is
the input signal as applied to the first hidden layer (Equation 3.3) and the outermost
is the output layer (Equation 3.5).

y = φn

(
Wnφ(n−1)

(
Wn−1φ(n−2)

(
. . . φ1 (W1x + B1)︸ ︷︷ ︸

1st hidden layer

. . .
)

+ B(n−1)
)

+ Bn

)
(3.3)

y = φn

(
Wn φ(n−1)

(
Wn−1φ(n−2)

(
. . . φ1 (W1x + B1) . . .

)
+ B(n−1)

)
︸ ︷︷ ︸

(n − 1)st hidden layer

+Bn

)
(3.4)

y = φn

(
Wnφ(n−1)

(
Wn−1φ(n−2)

(
. . . φ1 (W1x + B1) . . .

)
+ B(n−1)

)
+ Bn

)
︸ ︷︷ ︸

output layer

(3.5)

To reiterate, the defining features for a full MLP are:
• Wl,i,j —weights for each layer l, node i and inbound signal j.
• Bl,i —biases for each layer l and node i.
• φl —activation functions for each layer l.

Each layer may have a different number of neurons; hence, the weight tensor is
jagged, i.e. for each layer l = λ the associated weight matrix, Wλ = Wi,j, may have
different dimensions. The same thing applies to the biases; for each layer l = λ we
get a bias vector Bλ = bi with one element for each neuron in the layer.

3.3.3 Training the network
The process of training a given network is that of finding the weights and biases
that produce the best input-output mapping. To give a quantitative measure of the
goodness of this mapping, a loss function is used. The loss function is a part of
the design specification. Generally, this function is a positive function where a low
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value indicates a good fit. In regression, a common choice for the loss function is
the L2-norm:

L2(p, p̂) = ||p− p̂||2 =
(

n∑
i=1

(pi − p̂i)2
) 1

2

.

where p is a set of known, n-dimensional outputs and p̂ is the corresponding set
of estimated outputs by the network. Consequently, a network with a perfect fit
produces a L2 loss of 0. The training process aims to minimize the cost over the
training set, i.e. minimize the loss function.

When using ANNs for regression, supervised training is performed. This is com-
monly done via a method called error back-propagation. Optimizing ANNs is an
area of active research. Most optimization techniques are modified versions of back-
propagation such as RPROP [23], Adadelta [24] and Adam-optimization [25]. There
are also stochastic optimization methods such as particle swarm optimization [18].
The method used here is off-line training, where the network is optimized prior to
usage; the alternative is a system which is trained, or updated, during usage which
is useful in systems where the characteristics change over time.

The training procedure is commonly organized into epochs. In each epoch, every
datum is presented to the ANN once. Figure 3.7 illustrates the progression at
different stages of training. In the figure the estimation errors are shown as lines
between each set point and the estimated position. After only 100 epochs the ANN
produces reasonable estimates, however after 100 000 epochs the average radial error
is as low as 0.453 mm.

In general the trained ANN has the following defining features: topology, weights,
biases and activation functions.

3.3.3.1 Error back-propagation

A common way to train MLP networks is the back-propagation family of algorithms.
The back-propagation algorithm works in two phases: the forward pass which gen-
erates an estimated output ŷ for a given input, x, and the backward pass which uses
the error between the known and estimated output to adjust the weights and biases.
The error is then propagated from the output layer through the hidden layers to-
wards the first hidden layers. Corrections to the weights are made in order to reduce
the error with respect to the known and estimated output pairs. The algorithm is
quite involved and a thorough description is available in, among many others, the
textbooks by Haykin [4, pp. 183–195] or Bishop [26, pp. 241–249].

3.3.3.2 Batch training

Both the standard back-propagation technique presented in [4, pp.1̃83–195] and the
ADAM-optimizer used in the TensorFlow implementation in this project can be used
in one of two modes: sequential mode where the weights are updated after every
example is shown and mini-batch mode where many, or all, examples are evaluated
with the same weights and the weight updates are applied after the mini-batch.
The mini-batch mode allows for more parallelism than the sequential mode, since
multiple examples can be evaluated in parallel between the weight updates.
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(a) 100 epochs, Ēr = 4.84 mm.

0

100
0

100

0

100

X Y

Z

(b) 10 000 epochs, Ēr = 0.727 mm.
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(c) 100 000 epochs, Ēr = 0.453 mm.

Figure 3.7: Estimation errors on novel test data for different amounts of training
using the DB476 database. Each line represents the deviation (x, y, z)
between the set point and estimate
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According to Haykin, it is good practice to randomize the order of the examples
between epochs [4].

3.3.3.3 ADAM-optimization

In classic back-propagation a learning rate is chosen and is a scaling factor which ap-
plies to all weight updates. ADAM, which is short for adaptive moment estimation,
keeps separate learning rates for each parameter in the model and additionally keeps
two degrees of moments [25]; this supposedly improves the algorithm’s performance
in finding optimal weights, by reducing the risk of getting stuck in a local minimum.
This algorithm has three parameters which can be customized the initial learning
rate and two decay parameters for the first and second order moment estimates.

According to [25], this optimizer combines the advantages of two other popular
back-propagation algorithms, AdaGrad [27] and RMSProp [28].

3.3.4 Function approximation with ANN
In a seminal paper by Hornik, it was rigorously proven that “multilayer feedforward
networks with as few as one hidden layer are indeed capable of universal approxi-
mation in a very precise and satisfactory sense” [2]. Hence any Rm → Rn-mapping
can be approximated with one layer, including the mapping under study, which has
the form R16 → R5. However, the proof in [2] is just that of an existence of such an
approximation and gives no bounds of the required amount of neurons.

3.3.5 TensorFlow
The TensorFlow software library is an open-source toolkit targeting machine learning
tasks. TensorFlow allows the programmer to give a high-level description of the
problem and enables execution on heterogeneous, distributed platforms [29].

The library is developed by the Google Brain Team [30]. In this project, Tensor-
Flow is used as a rapid prototyping tool for different network designs. The details
are presented in Section 4.2.3. Most computations were performed on a high-end
graphics card, Nvidia GTX1080TI. A comparison of the TensorFlow performance
on different hardware used during the project is available in Section 5.2.3.2
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At the top level, the project is structured into three distinct phases:

1. Exploratory modeling to find a suitable network topology.
2. Implementation of the model in software.
In the first phase, the high-level TensorFlow library was applied on existing

data sets provided by Micropos Medical and new sets generated during the project.
The Tensorflow library allowed for rapid prototyping of neural networks of different
configurations.

4.1 Choice of regression algorithm

It is probable based on the studies [3] and [14] that neural networks can be success-
fully implemented for the described purpose. In this section some further motiva-
tions for the use of this regression method are presented.

The polynomial regression method requires iterated function evaluation since
it uses the gradient descent algorithm. The workstations used with the RayPilot
system typically use 30% of its resources for the positioning while producing 30
estimates per second. The results from [3] highlight the fact that a trained ANN can
make fast estimates. The neural network estimation is a set of matrix multiplications
and applications of transfer functions. Hence the computation has a deterministic
and fixed run time, as in the modified version of the gradient descent algorithm,
GGAM—this is a desirable feature. Lower latency and higher estimation rate is
of value for the product; it improves the system’s ability to perform gating—the
process where RayPilot signals to the linear accelerator’s software that the prostate
has deviated from the desired position.

4.2 Neural network implementation

The intention is to train a MLP to take the antenna inputs and produce an output
that represents the position and angles of the transmitter. This is shown schemati-
cally in Figure 4.1.
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Figure 4.1: Schematic overview of the proposed positional recovery.

In order to create a MLP that performs well, as introduced in Section 3.3.2, some
optimization on the construction of the network have to be made. The search for a
suitable network topology is a nested problem, i.e. it is an optimization of an opti-
mization; for each candidate topology the weights and biases needs to be optimized
and the performance of the resulting estimator needs to be evaluated. Numerous
training sessions will be performed to give a representation of each topology’s per-
formance. The parameters that govern the overall layout and training of the ANN
are called hyper-parameters as opposed to the parameters that are associated with a
specific layout, such as weights and biases. The procedure to determine the parame-
ters is called training whereas the search for the topology is called a hyper-parameter
search. In the following sections, the methods employed to solve these optimization
problems are treated.

4.2.1 Data pre-processing

Before the details of the optimization methods can be introduced, some aspects of
the data processing must be treated. The training data collected from the RayPilot
test fixture has the properties listed in Table 4.1.

Table 4.1: The properties of the training data collected from the RayPilot test fix-
ture.

Data direction
Property Data range Training Estimation

Antenna voltages 1–3 V Input Input
x, y and z 0–300 mm Input Output
vx and vz −45–45° Input Output

In order to gain efficient learning, the input data was normalized to the range
of [−1, 1]. This procedure is also called feature scaling. The ranges of all input and
output variables are known in advance from the training databases. The resulting
model is only intended to give predictions within its trained volume; hence unseen
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data will be confined to these intervals. The inputs are scaled as:

xnew = −1 + 2 x−Xmin

Xmax −Xmin

where X denotes the set of all inputs, x, in the training data. The outputs are
scaled correspondlingly:

ynew = −1 + 2 y − Ymin

Ymax − Ymin
.

Another common procedure is to standardize the data, giving it zero mean and
unit variance:

xnew = x− x̄

σX

.

Given that both the training databases and evaluation databases already have uni-
form distribution, normalization was deemed sufficient. The resulting dataflow is
shown in Figure 4.2.

ADC measurement
Voltages

Pre-scaling
Normalization: dimensionless

Neural network
Dimensionless

Post-scaling
Rescaling: position & angles

Figure 4.2: The stages of data processing and the interpretation of the data in each
step.

Remark:
A late realization in the project was that the antenna measurements
were done using a logarithmic analog-to-digital converter (ADC). Had
this been known at an earlier stage, an investigation of different normal-
ization methods on the inputs would have been warranted. However,
the input normalization is mainly performed to aid the learning in the
network; the self-learning abilities of the ANN should be able to adapt
to the input, whether a good scaling is performed or not—as long as the
information in the signals is preserved.

4.2.2 Network optimization
For any given network topology that is being evaluated, that ANN will need to be
trained and performance measures have to be gathered, in order to compare the rel-
ative performance of different configurations. In Section 4.2.2.1, the implementation
specific details of the training are presented. Later, the method of hyper-parameter
search is defined, which is used to find an ANN configuration that performs well.

4.2.2.1 Training algorithm

The optimization goal is defined to be minimization of the squared error of each
normalized output variable:

eloss = 1
n

n∑
i=1
|ŷi − yi|2
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where the sum over n is each datum in the training set. The eloss function appears
to sum outputs of different units (mm and °), however in the normalization process,
explained in Section 4.2.1, the outputs were made dimensionless. In the network
representation, all quantities are dimensionless.

The process of weight and bias optimization is complex. TensorFlow offers a
number of methods based on the classic back-propagation algorithm, see Section
3.3.3.1. The Adam optimization algorithm [25] was selected, since it is considered
state of the art.

The activation function used in the hidden layers was optimized to enable good
learning performance according to the general guidelines available in [4], [21]:

φ(a) = 1.7159 tanh
(2

3
a
)

.

This gives the activation function the range [−1.7159, 1.7519] and the gain at zero
is approximately unit-gain:

φ′(a) = d(c1 tanh c2x)
dx

= c1c2 sech2 c2a

φ′(0) = [sech 0 = 1] = 1.71592
3

= 1.1424

This activation function is optimized for use with an input in the domain of [−1, 1];
better learning is obtained when the input data is contained inside the function
domain with some padding [21]. Based on initial testing, linear activation functions
were chosen for the output layer.

4.2.2.2 Weight and bias initialization

Prior to the first pass of the network optimization algorithm, each neuron has to be
assigned an initial value. The approach chosen here is that proposed by Glorot and
Bengio called Xavier initialization, where the neuron weights are initialized normally
distributed with a variance dependent on the neuron’s fan-in and fan-out, i.e. the
number of incoming and outgoing connections, see Equation 4.1; their research has
shown this initialization to be efficient in multilayer networks [31]. The biases are
set to zero at initialization.

Var(w) =
√

6
nin + nout

(4.1)

4.2.2.3 Holdout method

When training an ANN, input-output pairs are feed into the optimization algorithm
used to iteratively adjust the weights and biases, to better reflect the relation be-
tween inputs and outputs. The aim is to gain a generalizing property where good
predictions can be made from previously unseen inputs. To ensure this, the method
of early stopping using a validation set is used [4]. When using the holdout method
the input-output pairs are partitioned into three distinct sets:
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• Training set: Used to adjust the network’s parameters by, for example, error
back-propagation methods (see Section 4.2.2.1).

• Validation set: Given a network in training, this data set is used to estimate
how well the network generalizes by applying the model to new data. The
average cost provides a measure on the correctness of the predictions.

• Test set: After the training when the best performing parameters (on the
validation set) have been found the average cost on the test set is a measure
on the trained network’s performance.

4.2.2.4 Parallelism in the inference

The neurons in a feed-forward neural network are arranged into layers. The com-
putations of each neuron in any given layer are independent and may therefore be
executed in parallel. However the layers must be calculated sequentially since each
layer is dependent on the input values from the previous layer. In Figure 4.3 the par-
allelism inside each node is visualized; and each node in every layer can be evaluated
independent of the others, i.e. in parallel.

w1x1 
w2x2 
w3x3 
w4x4 
w5x5 
w6x6 
w7x7 
b1 

+

+

+

+

+

+

+

Clock cycle: 1 32 4 5

ϕ(wx + b) output signalinput signals

Figure 4.3: Internal parallelism in a neuron with 7 inputs which evaluates the func-
tion φ(wx + b)

4.2.2.5 Parallelism in the training

The parallelism in the training includes the parallelism found in the inference, since
each training example needs to be evaluated to generate the error which guides the
back-propagation algorithm. At an even higher level of abstraction, each training
example in a training batch, see Section 3.3.3.2, can be evaluated in parallel since
the gradient based on the combined error of multiple training examples. In this
project the training parallelism will be exploited by the use of a high-end graphics
processing unit (GPU) and its many CUDA cores.
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4.2.3 Hyper-parameter search
The hyper-parameters are the higher-level options that govern the layout and train-
ing of the network. The parameters of interest here are the number of nodes per
layer, the number of layers, the training algorithm’s learning rate and the batch size
used during training.

The method employed here is called grid-search, in which all combinations of
parameters, from a predefined set of values, are tested [32]. Visually, the individual
parameter combinations will be vertices in a grid, hence the name. The algorithm in
Listing 4 describes the procedure. If more than two parameters are to be searched,
the algorithm generalizes straight forwardly; additional for-loops are added and the
output becomes a tensor with as many dimensions as search parameters.

Algorithm 4: Hyper-parametser search, grid variation
Data: L1...l is a list of desired number of layers & N1...n ditto of nodes.

Training, validation and test sets
Result: Performance measures for all the combinations of layers and nodes
let R be a p× n matrix intended to store some desired measurement
for i← 1 to l do

for j ← 1 to n do
Cbest will contain the best configuration
foreach epoch do

foreach mini-batch do
perform training operation on training set

end
evaluate performance on validation set
if validation result has improved then

Cbest ← network configuration
end

end
use Cbest to evaluate the test set
store the performance metric in Ri,j

end
end
The chosen search space is listed in Table 5.1; the number of hidden neurons per

layer was chosen to be constant. In order to reduce the search space’s dimensionality,
the network configuration is treated separately from the batch size and learning rate.
Moderating the number of nodes and layers aids the learning by reducing the weights
and biases search space [4]. If too many nodes are used the network becomes prone
to overfitting and if too few are used it might not be able to fully represent the
underlying model, i.e. underfitting.

4.3 Implementation
The target platforms for the project are the software suite developed by Micropos
Medical. In Figure 4.4 the overall organization of the languages used is presented.
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The Python bindings for TensorFlow are used to design the neural network at a high
level. The C♯ implementation is intended for integration into the software suite,
while the C implementation was used for prototyping and standalone performance
evaluations.

ANN training

Software implementation Hardware implementation

Weights, biases etc. Weights, biases etc.

TensorFlow bindings for Python
CUDA-acceleration

   & C VHDL, Embedded Ruby TemplatingC�

Data visualization & analysis
Matlab, Python

Estimations

Figure 4.4: Languages used in the implementation and their domain. Training was
performed on a GPU using while inference targeted central processing
units (CPUs) and FPGAs.

4.3.1 ANN training in TensorFlow
In Listing 1, the single hidden layer MLP shown in Figure 4.5 is built from scratch
in TensorFlow. Since TensorFlow is a dataflow language, and the gritty details are
built-in functions, the example is quite compact.

input1

input2
input3

input4

output2

output1

Figure 4.5: The toy MLP implemented in Listing 1.

Listing 1: A small MLP, shown in Figure 4.5.
NUM_FEATURES = 4
NUM_HIDDEN = 3
NUM_OUTPUTS = 2
X = tf.placeholder(tf.float32, [None, NUM_FEATURES])
Y = tf.placeholder(tf.float32, [None, NUM_OUTPUTS])

def model(x):
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# Activation function constants
a = tf.constant(1.7159, dtype=tf.float32)
b = tf.constant(2.0/3.0, dtype=tf.float32)
hidden_weights = tf.Variable(tf.random_uniform([NUM_FEATURES, NUM_HIDDEN]))
hidden_biases = tf.Variable(tf.zeros([NUM_HIDDEN))
# 1.7159 * tanh( 2/3 * (W*x + b) ):
hidden_layer = tf.scalar_mul(a, tf.nn.tanh(tf.scalar_mul(b,
tf.add(tf.matmul(x, hidden_weights), hidden_biases))))↪→

output_weights = tf.Variable(tf.random_uniform([NUM_HIDDEN, NUM_OUTPUTS]))
output_biases = tf.Variable(tf.zeros([NUM_OUTPUTS))
return tf.add(tf.matmul(hidden_layer, output_weights), output_biases)

Y_hat = model(X)

loss = tf.nn.l2_loss(tf.subtract(Y, Y_hat))
train_op = tf.train.AdamOptimizer().minimize(loss)

sess = tf.Session()
sess.run(tf.global_variables_initializer())

# Some training data
trainx = [[1,2,3,4],...,[2,3,4,5]]
trainy = [[2,3],...,[1,2]]
# Some validation data
validx = [[1,3,3,4],...,[2,4,4,5]]
validy = [[2,4],...,[2,2]]

for i in range(0,10): # Train 10 epochs
sess.run(train_op, feed_dict = {X: trainx, Y: trainy})

# Validation cost:
cost = sess.run(loss, feed_dict={X: validx, Y: validy})
print("%g" % (float(cost)))

A variation of the TensorFlow-script used throughout the project is listed in
Listing 9 in Appendix D.2. This program performs training, validation and outputs
performance statistics on the test set to a text file.

To get some qualitative feedback during the training, performance statistics were
printed every 100th epoch, see Listing 2; the first figure is the number of epochs
followed by statistics on the test set, using the currently best weights and biases,
and finally the elapsed time since the previous output.

Listing 2: Example output of TensorFlow training session.
0 cost: 3620.38 E_rad: 64.4913 E_vx: 19.9328 E_vz: 15.0677 dur: 0s
100 cost: 89.7535 E_rad: 9.58531 E_vx: 2.35122 E_vz: 2.62714 dur: 27s
200 cost: 44.1303 E_rad: 6.83425 E_vx: 1.57363 E_vz: 1.92475 dur: 23s
300 cost: 28.3651 E_rad: 5.40191 E_vx: 1.39835 E_vz: 1.5074 dur: 22s
400 cost: 20.1648 E_rad: 4.80712 E_vx: 1.12527 E_vz: 1.26142 dur: 22s
...

The version used throughout this project was TensorFlow 1.0 running under
Ubuntu 16.04LTS. TensorFlow was compiled from source and optimized for NVIDIA
Compute Capability 6.1 to match the NVIDIA GTX1080TI’s specifications.
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4.3.2 Software implementation
At the end of a TensorFlow training session, the weights and biases are stored to files
in javascript object notation (JSON) format. Small Python programs were written
to generate C header files from these JSON records. Example outputs are shown in
Listing 3 and 4. The code listed here was also ported with very minor adjustments
to C♯ .
Listing 3: biases.h.
// Generated from DB475
const double bias_0[250] = {-0.018169883638620377, 0.023609327152371407,

0.0014619482681155205, 0.019450053572654724...};↪→

const double bias_1[250] = {-0.018169883638620377, 0.023609327152371407,
0.0014619482681155205, 0.019450053572654724...};↪→

const double bias_2[250] = {-0.018169883638620377, 0.023609327152371407,
0.0014619482681155205, 0.019450053572654724...}↪→

Listing 4: weights.h.

// Generated from DB475
#define INPUT_NODES 16
#define OUTPUT_NODES 5
#define HIDDEN_NODES 250
const double weight_0[16][250] = {{0.13025599718093872, -0.05873103439807892,

-0.059857774525880814, -0.052826669067144394...}...};↪→

const double weight_1[250][250] = {{0.13025599718093872, -0.05873103439807892,
-0.059857774525880814, -0.052826669067144394...}...};↪→

const double weight_2[250][5] = {{0.13025599718093872, -0.05873103439807892,
-0.059857774525880814, -0.052826669067144394...}...};↪→

Before the training each database was normalized using a program written in
Ruby. The normalization procedure was described in Section 4.2.1. The program
also generates a C header file containing the scaling factors. An example output is
shown in Listing 5.

Listing 5: scaling.h.
// Generated from DB475
const double output_base[5] = {0.0, 0.0, 0.0, -40.0, -40.0};
const double output_scale[5] = {180.0, 180.0, 180.0, 80.0, 80.0};
const double input_base[16] = {1.096824, 1.085655, 1.297084, 1.209919, 0.748555,

0.752851, 0.767847, 0.679667, 0.758084, 0.716923, 0.746837, 0.731763,
1.064957, 1.056678, 1.05043, 0.95358};

↪→

↪→

const double input_scale[16] = {1.25397, 1.308722, 1.131815, 1.203515, 1.917314,
1.875137, 1.927233, 1.89435, 1.869357, 1.946759, 1.891148, 1.916688,
1.223041, 1.211247, 1.32364, 1.324343};

↪→

↪→

The estimation program is written as a standard UNIX text stream processor
operating on stdin and stdout [33]. This design decision provided flexibility. The
training and evaluation databases generated by the Autosetups differed in format-
ting, which was easily corrected by use of the UNIX cut command, as shown in
Listing 6.
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Listing 6: UNIX style pipelines enables chaining of simple commands to accomplish
more complex tasks .

# In the training database there are 5 fields preceding the antenna values
$ cut -f6-21 DB476.tsv | ./forward_network_DB476 > DB476_estimated.tsv

# In the evaluation files there are even more fields
$ cut -f14-29 DB476_eval.tsv | ./forward_network_DB476 > DB476_eval_estimated.tsv

# The program can be parallelized using GNU Parallel
# Here the input is split into chunks of 250 records
# The output order is not conserved
# The speedup is almost linear but is mainly useful for offline estimations
$ cut -f6-21 DB476.tsv | parallel --pipe -L250 ./forward_network_DB47 >

DB476_estimated_parallel.tsv↪→

Listing 7 is a full forward implementation of a fictional example network. Even
though the training and design of a neural network is complex, the inference program
is surprisingly straight forward.

Listing 7: forward_network.c

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "weights.h"
#include "biases.h"
#include "scaling.h"

double activation(double output) {
return 1.7159 * tanh(2.0/3.0 * output);

}

void antenna2network(double input[INPUT_NODES], double output[INPUT_NODES]) {
// From raw antenna values to [-1,1], constants declared in scaling.h
for (int i = 0; i<INPUT_NODES; i++)
output[i] = -1.0 + 2.0 * (input[i] - input_base[i]) / input_scale[i];

}

void network2position(double input[OUTPUT_NODES], double output[OUTPUT_NODES]) {
// From network [-1,1] to position, constants declared in scaling.h
for (int i = 0; i<OUTPUT_NODES; i++)
output[i] = 0.5 * output_scale[i] * (input[i] + 1) + output_base[i];

}

void layer(int node_inputs, int nodes,
const double inputs[node_inputs],
const double weights[node_inputs][nodes],
const double biases[nodes],
double output[nodes],
int output_layer /* true values indicates special case for output layer */
) {

for (int node = 0; node < nodes; node++) {
double input_sum = biases[node]; // Add bias
// For each node in the layer: sum up the weighted inputs
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for (int node_input = 0; node_input < node_inputs; node_input++)
input_sum += weights[node_input][node] * inputs[node_input];

// Apply activation function if hidden layer
output[node] = output_layer ? input_sum : activation(input_sum);

}
}

int main() {
// Declaration of intermediate signals between layers
double input_antennas[INPUT_NODES], scaled_antennas[INPUT_NODES],

out_1[HIDDEN_NODES], out_2[HIDDEN_NODES], prediction[OUTPUT_NODES],
position[OUTPUT_NODES];

↪→

↪→

char *line = NULL; //
size_t len = 0;
while(getline(&line, &len, stdin) != -1) {

for (size_t i = 0; i < len; i++) // Replace all commas with dots
line[i] = (line[i] == ',') ? '.' : line[i];

// Parse antenna inputs
sscanf(line, "%lf...\t%lf", &input_antennas[0], ... , &input_antennas[15]);

antenna2network(input_antennas, scaled_antennas); // Pre-scaling
// Sequentially apply the layers to the input signal
layer(INPUT_NODES, HIDDEN_NODES, scaled_antennas, weight_0, bias_0, out_1, 0);
layer(HIDDEN_NODES, HIDDEN_NODES, out_1, weight_1, bias_1, out_2, 0);
layer(HIDDEN_NODES, OUTPUT_NODES, out_2, weight_2, bias_2, prediction, 1);
network2position(prediction, position); // Post-scaling

for (size_t i = 0; i < len; i++) // Replace newline with EOL
line[i] = (line[i] == '\n' || line[i] == '\r') ? '\0' : line[i];

// Append estimated position
printf("%s\t%f\t%f\t%f\t%f\t%f\n", line, position[0], position[1],
position[2], position[3], position[4]);↪→

}

free(line);
exit(EXIT_SUCCESS);

}

4.4 Evaluation

Evaluation of the system is based on a series of benchmarks that have been defined
as previous work by the company. They include positional and angular recovery in
a range of different measurement volumes. The results of these benchmarks form
a precision baseline for any new implementation. Proposed performance indicators
are for each of the five variables:

• Mean error
• Standard deviation; or rather the sampled 95th percentile error
• Maximal observed error
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The RayPilot targets sub-millimeter localization. With the current algorithm
this limits the recoverable volume, see definition in Section 3.1.2, to around ±5 cm
with the center chosen at the typical height of the patient’s prostate. The ultimate
goal would be to extend this volume to ±15 cm, giving the system more flexibility
with regards to patient positioning, and enabling it for use in breast cancer, for
example.

For evaluation of trained estimators, new data is introduced, called the test set,
which is generated by the robotized fixture and contains stored actual position,
angles and antenna values. The trained MLP is then used to generate estimations
creating pairs of known and estimated positions and angles. The exact definitions
and evaluation metrics are introduced in Section 4.4.1.

4.4.1 Evaluation measures
In the following text, a number of definitions are made; great care has been taken
to use these throughout the rest of this thesis, in order to make the text succinct
and precise.

The physical/known position:

p = [x, y, z, vx, vz] = [p1, p2, p3, p4, p5].

The estimated position:

p̂ = [x̂, ŷ, ẑ, v̂x, v̂z] = [p̂1, p̂2, p̂3, p̂4, p̂5].

The radial error:

Er = Er(p, p̂) =
√
E2

x + E2
y + E2

z =
√
|x− x̂|2 + |y − ŷ|2 + |z − ẑ|2.

Remark:
The radial error has a greater or equal magnitude than the largest error
of the axial components:

Er ≥ max (Ex, Ey, Ez)

since if we assume Ex to be larger than Ey and Ez then

E2
r − E2

x = E2
x + E2

y + E2
z − E2

x

= E2
y + E2

z ≥ 0
=⇒ E2

r ≥ E2
x

⇐⇒ Er ≥ Ex

hence, Er is larger than the largest axial error, the same thing holds for
Ey and Ez as largest axial error. In some graphs Ex, Ey and Ez will be
signed, other times it will indicate their magnitude; this should be clear
from the context.
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The angular error around the x-/z-axis:

Evx = |v̂x − vx|, Evz = |v̂z − vz|.

The mean radial error, given n physical (pi) and estimated position (p̂i) pairs:

Ēr = 1
n

n∑
i=1
Er(pi, p̂i).

Mean errors for the angular errors (Ēvx , Ēvz) are defined analogously.

To study the worst case performance the max(·)-measure is used. Given a num-
ber of p and p̂ pairs, max(E) returns the largest error with regards to the error
measurement E .

The 95th percentile, p95(·), is used to give a measure on the typical performance,
disregarding outliers. Given a number of p and p̂ pairs and an error measure E ,
p95(E) is found by applying the error measure to the pairs, sort the resulting error
values from low to high error into a list and selecting the value 95% into the sorted
list.

The L2 cost function:

L2(p̂) = ||p− p̂||2 =
( 5∑

i=1
(pi − p̂i)2

) 1
2

.

This measure is the five-dimensional Euclidean distance between the estimate and
the physical position. When this measure is used to compare the performance of
different estimations, the square root is often dropped since

a, b ∈ R+ :
√

a <
√

b ⇐⇒ a < b.

One example of this is the TensorFlow tf.nn.l2_loss function.

4.4.2 Verification
To verify the results of the position estimators, their performance is measured on
novel data sets with random, uniformly distributed points spanning the measure-
ment volume. This procedure is done off-line, i.e. data is collected in the same
fashion as the generation of the training databases, and then the trained estimator
(be it C or C♯ ) is applied to generate predictions of the output variables. The
characteristics of the predictions will then be studied in order to determine the es-
timators performance or, in the case of a design or experimental failure, find any
systematic errors. The verification performed in this report is intended to verify
that the estimators produce sound estimations. This is separate and different to the
company’s verification procedures and regulatory routines.
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5
Results

This chapter presents the outcomes from the modelling phase. Performance is eval-
uated according to the measures described in Section 4.4, and compared to the
company’s existing algorithm.

5.1 Network modelling
This section presents the results from the software based search for a well performing
network configuration. This includes the hyper-parameter search and inspection of
inference quality of the resulting estimators.

5.1.1 Hyper-parameter search
Separate hyper-parameter searches were performed for the data sets with different
volumes. The rationale is that the larger volumes contain all the information of the
standard volume and cover a 1.83 ≈ 5.8 (DB476) respective 33 · 1.1252 ≈ 34.2 larger
(DB1071) data space. The expectation is that the larger data space will require more
nodes, in comparison to the standard volume, to provide as good fit to the data.

5.1.1.1 Layers and nodes, standard volume

The search for a well performing configuration of nodes and layers was a grid search.
The search space is defined in Table 5.1. While the variables spanning the search
space were altered, all others where kept constant; a listing of the constant param-
eters is available in Table B.1 and B.2 in the Appendix. A word on notation, since
the configurations are limited to constant number of nodes per hidden layer the
notation layers× neurons is introduced; the number of neurons are hidden neurons
per hidden layer.

Table 5.1: Hyper-parameters and bounds for the associated search space.

Parameter Range
Nodes per layer 10–200, increments of 10

Layers 1–15
Batch size 50, 100, 250, 500, 750, 1000

Learning rate 0.0001, 0.0005, 0.001, 0.005, 0.01
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In Figure 5.1, the average radial error is plotted as a function of layers and nodes
per layer; 8 hidden layers of 130 nodes performed best with Ēr = 0.452 mm. The
best performing combinations seem to form a valley along the combinations with
around 1000 nodes: lowest Ēvx = 0.581°, 5× 180 = 900; lowest p95(Evx) = 1.19 mm
7 × 160 = 1120; lowest Ēr = 0.452 mm and p95(Er) = 0.801 mm, 8 × 130 = 1040.
The vz errors were smallest with a 14 × 130 configuration yielding Ēvz = 0.4° and
p95(Evz) = 0.964°. With regards to the max(·)-measure the results were too noisy to
draw any conclusions; alas, the lowest maximum radial error, max(Er), was 2.11 mm
using 15 hidden layers of 90 nodes. Similarly, the p95(Er) was minimized with 8
hidden layers of 130 nodes, resulting in 0.452 mm. All statistics are based on a novel
test set of 4000 examples. Exact values for each set of parameters are available in
Table A.1 in the Appendix.
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Figure 5.1: Average radial error as function of layers and nodes per layer.
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Figure 5.2: The maximum and 95th percentile radial errors as functions of hidden
layers and nodes per layer.
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(a) p95(Evx) was minimized with 7 hid-
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(b) p95(Evz) was minimized with 14 hid-
den layers of 130 nodes, 0.964°.

Figure 5.3: p95(·)-errors for the angles as functions of hidden layers and nodes per
layer.

Conclusion:
The optimal configuration for the 100 mm volume was found to be 8
hidden layers with 130 nodes each; this is based on the fact that the the
p95(·)-measure for radial errors is the most important metric.

5.1.1.2 Layers and nodes, extended volume

While the chosen configuration for the standard volume performed well, it did not
handle the expanded volume as well. This led to a new exploration to find more
suitable layer/node configurations for the 180 mm and 300 mm data sets. Under
the assumption that the extended volume would require a larger network than the
standard volume, the search space in Table 5.2 was chosen. Additional details on the
configuration are listed in Table B.3. In Table A.2 in the Appendix, the performance
for each parameter set is listed.

Table 5.2: Hyper-parameters search space for the extended volume.

Parameter Range
Nodes per layer 100–350, increments of 25

Layers 8, 10, 12, 14

Remark:
In order to better visualize the results of the test at hand, the graphs
are shown from a different perspective from the graphs in section 5.1.1.1
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Figure 5.4: Mean radial error as function of layers and nodes per layer.
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Figure 5.5: The maximum and 95th percentile radial errors as functions of hidden
layers and nodes per layer.
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Figure 5.6: p95(·)-errors for the angles as functions of hidden layers and nodes per
layer.

With regards to the average radial error, 8 hidden layers of 225 nodes performed
best with Ēr = 1.14 mm. The lowest maximum radial error, max(Er) was 7.40 mm
using 10 hidden layers of 175 nodes. The radial error at the 95th percentile was
minimized with 10 hidden layers of 175 nodes, resulting in 2.29 mm.Best performance
with regards to p95(Evx) was achieved with 12 layers of 125 hidden nodes, resulting
in 1.31°. Best performance with regards to p95(Evz) was achieved with 14 layers of
100 hidden nodes, resulting in 1.35°.

The well performing networks had configurations of 8× 225 = 1800, 10× 175 =
1750, 12× 125 = 1500 and 14× 100 = 1400.
Conclusion:

For the 300 mm volume, 10 hidden layers with 175 nodes each performed
best, based on the p95(·)-measure for radial errors. Generally, the larger
volume required a larger node count as expected. This is roughly:

8
8
·
(225

130

)2
≈ 3.0

times the number of weights, which represents the models’ degrees of
freedom.

5.1.1.3 Batch size

The batch size, introduced in Section 3.3.3.2, affects the performance of the training.
In Figure 5.7, the same network has been trained five times per configuration, listed
in Table 5.3. The cost function is plotted against the number of elapsed epochs in
Figure 5.7.

Table 5.3: Hyper-parameters search space for the batch size.

Parameter Range
Batch size 50, 100, 250, 500, 750, 1000
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Figure 5.7: The cost function over 1200 epochs. The curves represent batch sizes
1000, 750, 500, 250, 100 and 50, averaged over five separate runs each.
Best performance, both with regards to convergence rate and minimiza-
tion of the cost function, was achieved with mini-batches of 250 samples.

Remark:
When the GPU acceleration was introduced, it mandated larger batch
sizes to utilize the available parallelism. The result was slower conver-
gence per epoch, but the improvement in speed by far outweighed this
loss.

Conclusion:
A batch size of 250 samples performed best on the standard sized training
set

5.1.1.4 Learning rate

ADAM optimization has an adaptive learning rate which is maintained per neuron;
however, a start value is supplied in the TensorFlow implementation. The learn-
ing rate is a factor which scales how large the correction shall be in the training
algorithm, i.e. it scales the step size used when iteratively updating the neurons.
The parameter configurations which were evaluated are listed in Figure 5.4 and the
results are plotted in Figure 5.8.

Table 5.4: Hyper-parameters search space for the learning.

Parameter Range
Learning rate 0.0001, 0.0005, 0.001, 0.005, 0.01

46



5. Results

0 100 200 300 400 500 6000

5

10

15

20

25

30

Epochs

Va
lid

at
io

n
co

st

0.0001
0.0005
0.001
0.005
0.01

Figure 5.8: The cost function over 600 epochs for different learning rates. The curves
represent batch sizes 0.0001, 0.0005, 0.001, 0.005 and 0.01, averaged
over five separate runs each. Best performance, both with regards to
convergence rate and minimization of the cost function, was achieved
with a learning rate of 0.0005.

Conclusion:
A learning rate of 0.0005 was found to perform best on the standard
sized data set. However, during the experiments 0.0001, 0.00025 and
0.0005 has been used with similar performance.

5.2 Performance
To reiterate, the performance goals defined in Section 1.3 were:

• Maintaining or improving the accuracy of the positional predictions, see Sec-
tion 4.4 for further details

• Extending the recoverable volume as defined in Section 3.1.2
• Decreasing the latency of the predictions; the current algorithm has a minimum

latency of about 10–20 ms. Previous studies has already shown that an ANN
solution can reduce the latency [3]

Each of these performance oriented goals will be treated in the following sections.
Where applicable, there will be comparisons to the polynomial model.

5.2.1 Accuracy
This sections deals with the goal to maintain or improve the accuracy of the posi-
tional and angular predictions. The first subsection compares the two methods in
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the standard volume. In the two following subsections, properties of the errors are
visualized and discussed.

5.2.1.1 Comparison with previous model

A central question is whether the ANN-based estimator can outperform the existing
implementation, P4. Here the same database, DB271, is used to make a fair compar-
ison between the algorithms. The standard procedure for the P4 model is to train it
using a data set with the extent of DB271 but evaluate the performance on a data set
with restricted angles (< 20°); this gives the model some overhead in the evaluation
process since the boundaries of the test set is in the interior of the training set. This
process is replicated here and the same test set is used. The training of the ANN
uses a separate set as validation data.

Table 5.5: Performance metrics for the standard volume. The performance statistics
are for a test set of 2000 points with novel data with limited angles < 20°.

Model Ēr p95(Er) max(Er) p95(Evx) p95(Evz)
P4 0.670 mm 1.693 mm 8.530 mm 1.839° 1.996°

ANN 10× 70 0.389 mm 0.690 mm 2.350 mm 1.525° 1.053°
ANN 10× 70 / P4 58.1 % 40.8 % 27.5 % 82.9 % 53.6 %

Conclusion:

As demonstrated in Table 5.5 the ANN-based estimator clearly outper-
forms the P4 estimator with regards to all relevant performance metrics.
The most important metric p95(Er) is reduced by 59 %.

5.2.1.2 Spatial error distribution

An interesting aspect of the estimator is whether the errors have a spatial depen-
dence. In order to visualize this, plots were made from the test sets, where a line
connects the set point’s (x, y, z)-position and the estimates (x̂, ŷ, ẑ). The lengths
and orientations of the lines would illustrate and highlight any systematic devia-
tions. An example for the DB476 database is shown in Figure 5.9, where a test set
of 20 000 novel data points was used. The errors are evenly distributed and do not
have any obvious spatial correlation. This is explored in more detail in the error
correlation plots in Figure 5.11.
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Figure 5.9: Spatial error distribution for a 10×250 ANN trained on database DB476.
Each line connects a set point and the corresponding estimate.

Conclusion:

The lack of a spatial dependence validates the choice of method—it is
capable of providing a good function approximation. The errors are only
marginally larger close to the boundary than in the interior of the test
set; hence, measurement volumes larger than 180 mm are plausible.

5.2.1.3 Error distributions, correlation

The error distributions give insight into the typical performance of the algorithm.
Figure 5.10 shows the magnitude of the error in each dimension plotted as distri-
butions. Additionally, the radial error is shown and has a different shape than the
other curves. The explanation is simple; for the radial error to be small, each error
in x, y and z has to be small simultaneously, which is unlikely. Hence, the radial
errors have a different distribution than the axial errors.
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Figure 5.10: Error magnitude distributions per dimension and radially for DB476.
About 98% of the test points have a radial error of less than 1 mm.

In figure 5.11, the errors in each dimension and the position in each dimension
are shown as scatter plots. Each plot has the Pearson correlation coefficient [34]
shown next to the x-axis; this is a measure of each position’s linear relationship to
the error in the associated dimension. The pairs having some linear dependence are
(x, Ex), (vx, Ey), (vx, Evx), (z, Ez) and (y, Ey); this indicates that there are still some
improvements to make with regards to the goodness of fit. The peculiar shapes in
the (vx, Evx) and (vz, Evz) plots are likely caused by the the fact that the training
set only contains angles such that vx ∈ −40,−32,−24,−16,−8, 0, 8, 16, 24, 32, 40;
at these points the error is smaller and between the points larger.

Additionally, rows four and five in Figure 5.11 show that the positional recovery
is stable with regards to different implantation angles; i.e. the performance is not
degraded if the transmitter is implanted with a slight angle (< 40°) measured against
the y-axis.
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Figure 5.11: Correlation plot for DB476 using 20 000 novel datapoints as basis for the
statistics. Larger versions are available in appendix C, figure C.13.

Conclusion:
The correlation plots in Figure 5.11 show that the algorithm produces
good estimates for all implantation angles < 40°. The plots also indicate
that any systematic errors are negligible.

5.2.2 Expanding the recoverable volume

One of the major goals of this project is to expand the recoverable volume, as defined
in Section 3.1.2. Due to the issues with the fourth generation Autosetup, this had
to be approached in two stages. After good hyper-parameters were found for each
configuration, tests were performed to give details of the estimators’ performance.
Table 5.6 gives performance figures for the different configurations.

Table 5.6: Performance metrics for the expanded volumes. The performance statis-
tics are for a test set with novel data.

x× y × z × vx × vz (mm, °) Configuration Ēr p95(Er) p95(Evx) p95(Evz)
100× 100× 100× 80× 80 8× 130 0.301 mm 0.513 mm 1.103° 1.098°
180× 180× 180× 80× 80 10× 250 0.453 mm 0.859 mm 0.598° 0.432°
300× 300× 300× 90× 90 10× 175 0.956 mm 1.769 mm 1.238° 1.349°
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Remark:
The databases used for the 180 mm model, DB476 and the 300 mm model,
DB1071, uses 161 051 and 175 616 data points respectively; however, the
300 mm model spans a 5.86× larger data space making its resolution
lower. The effects of data spacing are addressed in Section 5.3.4. Given
more time, this would have warranted further investigation; the results
are nevertheless indicative.

Conclusion:
The results in Table 5.6 clearly indicate that the ANN-based estimator
accomplishes the goal of extending the recoverable volume. The 300 mm
volume is the largest data set the Autosetups can produce. Hence it
may be possible to train the system to recover positions within an even
larger volume.

5.2.3 Speed and latency measures

By lowering the latency of the data processing pipeline in the RayPilot system, the
quality of the data presented to interfacing equipment improves in the temporal
sense. Procedures such as gating, where the EBRT’s beam is disabled when the
target volume has deviated beyond a predefined threshold, benefit greatly from
lowered latency.

Remark:
The algorithm is only one link in a long chain of processes which affect
the latency. The data path, among other factors, includes electrical
averaging, sampling delay, serial communication to the workstation, the
algorithm and serial communication to interfacing units.

5.2.3.1 Estimation speed

The previous implementation, GGAM, was developed to improve the estimation
time. The ANN estimator further improves the estimation time. Some rough per-
formance measurements are shown in Table 5.7. The measurements for the ANNs
were generated on a AMD Ryzen 7 1700 processor and generated by running an av-
erage over 100 000 estimations; the measurements for P4 are approximate and were
provided by the company.

Table 5.7: Estimation speed for different estimators.

Model Lang. Latency Estimates/s Speedup
P4 C♯ ∼ 10 ms ∼ 100 1×

ANN 10× 80 C ∼ 0.072 ms ∼ 13 930 139.3×
ANN 10× 250 C ∼ 0.59 ms ∼ 1540 15.4×

A rough estimate for the difference in execution time between the 10 × 80 and
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10× 250 networks is (250
80

)2
≈ 9.77

which is the ratio of the number of multiplications performed in each layer for the
two models; this is in line with the measured performance difference of ∼ 9.045×.

Conclusion:
The ANN’s estimation speed, for the network configurations considered
here, is so fast that the bottleneck has moved to the physical setup, more
precisely the communication with the ADC. The ADC is the hardware
which converts the physical voltages into digital representations. Fur-
thermore, the run times are more deterministic than the search based
implementation.

5.2.3.2 Training using TensorFlow

TensorFlow has the capability to use different target architectures such as various
CPUs, GPUs and the custom designed application specific integrated circuit (ASIC)
called tensor processing unit (TPU) [35]. This is achieved by using a high-level
description with various back-ends, as described in Section 3.3.5.

The training performance of TensorFlow running on different hardware used
throughout this project is presented in Table 5.8. In the table, the number of
“threads” is an apples-to-oranges comparison. For the GPU, the thread count is the
number of CUDA cores [36]; the intention is to showcase the amount of available
parallelism. The CPU program is a sequential implementation; however, the com-
piler can make use of the SIMD (single instruction, multiple data) instructions such
as Intel’s Streaming SIMD Extensions 2 (SSE2) which utilizes the instruction level
parallelism described in Section 4.2.2.4.

The switch from a laptop to a high-end workstation was mandated by the larger
data sets associated with the larger volumes. The GPU from NVIDIA has a floating-
point performance of 11.3 TFLOPS. In the context of Micropos’ previous studies
on ANN-based estimators, from 1999 and 2006, this was considered supercomputer
processing power; In fact the worlds fastest supercomputer in 2001, the IBM Asci
White, peaked at 7.226 TFLOPS [37]. Put in perspective, the Asci White consumed
6 MW [38] and cost $110 million [39] while the GTX 1080 Ti has a power consump-
tion of 250 W and cost less than $900. Hence the GPU at hand is 37500× more
power efficient than the IBM Asci White while delivering comparable performance,
with less than two decades of technological progress separating them.

Table 5.8: Training performance of the same TensorFlow program executed on dif-
ferent hardware. The execution time was measured as the time required
to complete 100 epochs of training using a 30 MB data set.

Hardware Type Clock freq. Threads Exec. time Speedup
Intel® Core™ i5-3230M (MacBook Pro) CPU 2.6 GHz 4 737 s 1x
AMD Ryzen™ 7 1700 CPU 3.65 GHz 16 426 s 1.73x
NVIDIA GeForce® GTX 1080 Ti GPU 1.58 GHz 3582 12 s 62x
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5.2.4 Model size

The file size used to store the model data is an interesting measure of the amount
of information collected in the model. From Table 5.9, it is clear that the P4 model
and the 10 × 70 ANN is of comparable size. Here both models have been saved to
ASCII text files using the same numeric precision. This gives an interesting insight
to the models suitability to the problem, the ANN-based estimator outperforms the
polynomial model while requiring less space, i.e. fewer parameters.

Table 5.9: Comparison of storage space required to save the different models.

Model Coefficients Weights Biases
P4 1095 kB - -

ANN 10× 70 - 981 kB 15 kB
ANN 10× 250 - 12.3 MB 57 kB

Conclusion:

The ANN-based estimator requires fewer coefficients to produce higher
quality positional predictions in the standard volume. This measure,
once again, validates the choice of method since a better approximation
is generated using fewer degrees of freedom.

5.3 Additional experiments

In addition to the experiments defined at the start of the project, some ad hoc ideas
were explored. Antenna gain normalization was tried as a method to add extra
robustness towards variations in antenna gain. The alteration of the number of
antennas was performed to gain insight, by extrapolation, into whether the RayPilot
system had anything to gain from an increased number of antennas.

5.3.1 Antenna gain normalization

In this setup, each antenna voltage was modified using the average over the 16
antenna voltages. The results were mediocre. The angles had comparable results
to the regular model, while the positional estimate, especially in the z-dimension,
was significantly worse. If the experiment had been successful, the resulting system
would have been more robust to production variations in antenna gain. Additional
details of the configuration are found in Table B.4 in the Appendix.
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Table 5.10: Performance comparison: Gain normalization. Three models were
trained, two with and one without gain normalization. A novel data
set of 20 000 points was used to generate the statistics.

Model Ēr p95(Er) p95(Evx) p95(Evz)
Standard 0.453 mm 0.859 mm 0.598° 0.432°

Gain-norm. div 0.631 mm 1.309 mm 0.705° 0.539°
Gain-norm. sub 0.720 mm 1.562 mm 0.635° 0.450°

Figure 5.12: Correlation plot for DB476 using 20 000 novel data points as basis for
the statistics. Here the input to the neural network was scaled by
the average over all antennas to normalize the gain. The patterns are
close to the standard model, confer figure 5.11, but the points are more
scattered. Larger versions are available in appendix C, figure C.26.

Conclusion:
While functional, the positional performance was crippled with regards
to the p95(Er)-measure. However, the angular recovery had unaffected
performance; if such an application is required, the antenna gain normal-
ization could be beneficial since the approach could provide additional
robustness.

Remark:
The fact that the ADCs were logarithmic (dB/V) had not been com-
municated at the time of this test; had this been known, a different
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experiment setup would have been used. While theoretically likely, no
tests has been performed to ensure that the gain normalization imple-
mented here actually improves robustness.

5.3.2 Altering number of antennas

While one of the benefits of the ANN-based estimator is its ability to utilize a
multitude of inputs, experiments were made with a reduced number of antennas.
The order in which the antennas were included in the model is shown in Table 5.11
with the numbering of the antennas shown in Figure 5.13. While this is not the
optimal order, it is chosen somewhat strategically (i.e. not on a line or on just one
side) and the results are nevertheless interesting. In Figure 5.14, the results are
shown. The experiment was conducted using the DB271 database for training; 2000
random data points were used for validation and another 4000 for testing. Further
configuration details are available in Table B.5

4

3

2

1

8

7

6

5

9

10

11

12

13

14

15

16

Measurement volume

y

x

Figure 5.13: Numbering of the antennas and the measurement’s placement in rela-
tion to the antennas.
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Table 5.11: Antenna configurations used during the experiments with altered num-
bers of antennas.

Active antennas
# antennas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 ✓
2 ✓ ✓
3 ✓ ✓ ✓
4 ✓ ✓ ✓ ✓
5 ✓ ✓ ✓ ✓ ✓
6 ✓ ✓ ✓ ✓ ✓ ✓
7 ✓ ✓ ✓ ✓ ✓ ✓ ✓
8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Figure 5.14: Different error-measures with respect to the number of antennas used
to train the model. The y-axis is logarithmic to better illustrate the
diminishing return of adding more antennas. The results are averaged
over 10 runs.

Conclusion:
From Figure 5.14 it is clear that more antennas improve the quality of
the estimations. Also, there was a change of improvement rate at nine
antennas; the performance gain per antenna was reduced beyond nine
antennas. However, this test was performed with one set of antenna
combinations. For reference there are

16∏
n=1

(
16
n

)
≈ 7.9 · 1045

ways to choose 16 antenna combinations with 1–16 antennas! If the
configurations are restricted to sets where a chosen antenna remains
included in the selection (as in Table 5.11), the expression becomes

16! ≈ 2.1 · 1013

which is way smaller, but still not a feasible search space.
Recommendation:

Given the trend seen in Figure 5.14, using more antennas in combination
with a single ANN will likely only provide minor improvements to the
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system’s accuracy. Another approach is ensemble methods; using dif-
ferent input partitions, this method could be applied to further improve
prediction quality and robustness by using committee predictions [40].
Such ensemble systems can benefit from a larger number of antennas,
which provide redundant signal information.

5.3.3 Training using random data
The training databases have been of the type introduced in Section 3.1.2.1, where
the training examples are placed on a grid. One may wonder how the performance
would be affected if the case was reversed; a training set of random positions and a
test set with a fixed grid layout, or a random training set combined with a random
test set. New databases were generated for the experiment, their properties are
listed in Table 5.12.

Table 5.12: Properties for the training databases used in this experiment and the
reduced step size experiment.

Identifier X (mm) Y (mm) Z (mm) Vx (◦) Vz (◦) Datapoints Autosetup
Grid Fine 100–200 100–200 100–200 -45–45 -45–45 133 100 v4
Grid 100–200 100–200 100–200 -45–45 -45–45 10 584 v4
Random 1 100–200 100–200 100–200 -45–45 -45–45 7776 v4
Random 2 100–200 100–200 100–200 -45–45 -45–45 7776 v4
Validation 100–200 100–200 100–200 -45–45 -45–45 2500 v4

Table 5.13: Reversed case, training using random data, and random data for both
training and test.

Training set Test set Conf. Ēr p95(Er) max(Er) p95(Evx) p95(Evz)
Grid Random 1 8× 130 0.411 mm 0.689 mm 1.992 mm 1.116° 1.157°
Grid Random 2 8× 130 0.458 mm 0.824 mm 1.913 mm 1.131° 1.132°

Random 1 Grid 8× 130 0.862 mm 2.380 mm 51.14 mm 1.510° 1.735°
Random 1 Random 2 8× 130 0.286 mm 0.506 mm 1.515 mm 1.182° 1.010°

Grid ∪ Random 1 Random 2 8× 130 0.301 mm 0.513 mm 0.880 mm 1.103° 1.097°

Recommendation:
It is obvious from the results of Grid ∪ Random 1 that this diverse data
set generates a better performing model. For future use, this type of
data set is strongly recommended.

Conclusion:
When training with random data and evaluating against the grid, the
max(·)-measure is critically affected; this is likely due to fact that the
bounds of the data set are not guaranteed to be present in the random
data set. However, a mix of random and grid based training data per-
formed excellently! Additionally, this experiment shows the importance
of including edge cases in the validation examples; an alternative would
be a training set with a larger extent than the volume intended for use.
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5.3.4 Reduced step size, standard volume

Providing more data using a smaller step size is likely to improve the precision of
the function approximation. The database use here is Grid Fine from Table 5.12
with Validation as validation set and Random 1 as test set. The results are listed
in Table 5.14.

Table 5.14: Comparison between grid of 10 584 and 133 100 examples with the same
training volume.

Training set Test set Conf. Ēr p95(Er) p95(Evx) p95(Evz)
Grid Random 1 8× 130 0.411 mm 0.689 mm 1.116° 1.157°

Grid Fine Random 1 8× 130 0.711 mm 1.108 mm 1.109° 1.083°
Grid Fine Random 1 8× 175 0.431 mm 0.736 mm 1.092° 1.171°

Conclusion:

Tighter example spacing is likely beneficial; the results in Table 5.14 are
largely inconclusive since no hyper-parameter search has been performed
for Grid Fine and 8 × 175, which was chosen arbitrarily, outperforms
the 8× 130 model which works well for the regular grid.

5.3.5 A linear sweep through the volume

An interesting question arises; does the network produce continuous predictions
given a data set of a linear translation through the volume?

Let p0 = (20, 0, 0) be the start point and p1000 = (280, 300, 300) be the end
point of a line. This line cuts diagonally through the measurement volume. 1000
test points were generated as

pi = p0 + i

1000
· (p1000 − p0)

where i ∈ 1 . . . 1000. Configuration details are available in Table B.6.
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Figure 5.15: Radial deviations plotted as lines between each (p, p̂) pair for a sweep
diagonally through the measurement volume.
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Figure 5.16: Absolute x-, y- and z-deviations from the reference line during a sweep
diagonally through the measurement volume, shown in Figure 5.15.

Remark:
This test was performed with a 10 × 175 model (DB1071) which didn’t
perform as well, but covered the whole volume. There is some noise es-
pecially with higher z-values which is expected; the signal to noise ratio
is lower since the electric field strength decreases rapidly with distance.
The estimator performs better in the interior of the search space. How-
ever, the idea with this test is primarily to showcase that the estimator
produces a reasonably continuous predictions given approximately con-
tinuous input. Since the system is generally used in a relative mode,
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rather than absolute, this property is important. The test was per-
formed again with a better model trained in a 100 mm volume trained
with Grid ∪ Random 1 from Section 5.3.3, see Figure 5.17. The average
radial error over the interval shown is 0.474 mm and the largest radial
deviation is 0.808 mm.
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Figure 5.17: The same experiment as in Figure 5.16 estimated with the model trained
with Grid ∪ Random 1 from Section 5.3.3 in a smaller volume. The
average radial error over the interval shown is 0.474 mm and the largest
radial deviation is 0.808 mm.

Remark:
When performing the test in Figure 5.17, there was test data available
outside the trained interval. This provided a nice insight into the gen-
eralizing property of the network estimator.

This is a fascinating result since the estimates are reasonable±25 mm
outside the volume, per axis. The results for the z-axis are even bet-
ter, especially above the trained volume—at z = 300 mm, i.e. 100 mm
outside, Ez = 20.4 mm.

Conclusion:
The estimations are continuous in x-, y- and z-dimensions, as demon-
strated in Figure 5.17. The estimator in Figure 5.16 is obviously not
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production ready. The estimator has some relevance outside the trained
volume, see preceding remark.

5.4 Discussion

In the following sections questions raised on various topics of the works are presented
and reflected upon.

5.4.1 Method

The type of exploratory work performed in this thesis, with many parameters and
somewhat stochastic performance in the training of the networks, has the inherent
downside of an enormous search space. As work progressed, many old tests were
invalidated by new discoveries. Ideally, when better performing parameters were
found, all previous test would have been re-run. This is however not not always
possible, due to resource constraints; personal judgment was used to decide when a
change had enough impact to merit a re-run of the affected experiments.

5.4.2 Performance measures

The performance measures were chosen to match the company’s previous work.
Perhaps other measures, such as the mean squared error, would have been better
suited for performance comparisons.

When moving to the larger volumes, there was no performance reference, since
the P4 algorithm was tailored to the standard search space. However, from Table 5.6
is is clear that the ANN-based estimator outperforms the P4 algorithms in the unfair
comparison of 100 mm volume versus 180 mm volume. For the 300 mm volume, the
ANN-based estimator is on par with the P4’s performance in the 100 mm volume.

5.4.3 Hyper-parameter search

The hyper-parameter search experiments generally gave clear results, except for the
tests on the max(·)-measure, which would have benefited from an averaging over
several runs. However, neighbouring configurations of hidden layers and nodes per
layer should have comparable performance and the visual impression from the graphs
paints a clear picture. Given more time, the search for a good configuration for the
300 mm model could have covered a larger search space but the evaluations were
very time consuming.

The result of the batch size parameter search was not used when training on the
GPU, the reason being improved performance per time-unit when running larger
batch sizes.
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5.4.4 Training data sets
One of the more interesting tests was the training on random data in Section 5.3.3.
The results were clear; a more diverse training set improves the performance. This
test was done at the very end of the project; had this been known at an earlier stage,
combined training data, i.e. grid and random examples, would have been used more
often. Additionally, the test indicates that the grid is a tough test which is well
suited for validation.

The test on tighter grid spacing in Section 5.3.4 was largely inconclusive. It
seems intuitive that tighter spaced data should perform much better. Perhaps a
separate hyper-parameter search on the tighter spaced data set would have given
more insight.

5.4.5 Linear sweep
The linear sweep test of Section 5.3.5 illustrates some properties of the regular use
case of the system. Figure 5.17 is a highlight of the project and demonstrates
the desired properties of the estimator; the predictions are continuous which is
important for relative positioning, the predictions are accurate with a maximum
radial deviation of 0.808 mm and the estimator has a reduced latency. If the company
is unable to finalize the 300 mm volume estimator for production, this model is a
great improvement over the current estimator.

As mentioned previously, the RayPilot system is commonly used in relative mode
where the estimations are relative to a start point within the trained volume, opti-
mally in the center of the trained volume; this means that the repeatability of the
Autosetup and the trained model is the most important property. The RayPilot
can be software calibrated to interface with other coordinate systems by using a
calibration fixture and generating the necessary offsets.

64



6
Conclusion

6.1 Summary
The two previous attempts to adapt MLPs for use with the RayPilot system have
failed to improve on the existing algorithm—third time’s a charm.

The project has fulfilled the goals of improving on the accuracy of the positional
predictions, extending the recoverable volume to at least 180 mm volume and de-
creasing the latency of the estimations, with speedups between 15–150×. For the
standard volume, the tolerance of rotated implants has been improved from ±20° to
±45° while improving the positional accuracy, the 95th percentile radial error has
been reduced to ∼ 1

3 .
A set of additional experiments has validated some assumptions:
• By plotting the spatial error distribution, it was shown that the model was per-

forming equally well in all of the test volume, further explored in the Pearson
correlation plots.

• Smaller model size for comparable performance; this indicates that the ANN-
based estimator is a better fit to the problem than the P4-model.

• By altering the number of active antennas the project has shown that the
quality of the estimations increases with more inputs.

• The test using random data showed that grid training data is suboptimal.
The performance is improved when the training data had additional randomly
distributed data points.

• The test with a linear sweep concluded that the estimators produced contin-
uous output signals for continuous inputs.

The experimental nature of the work has shown its true colors; many things in
the test setups have broken down, cables have been torn off, servo engines driven
to the point of failure, a file system corrupted spontaneously, important data were
overwritten, an unaviodable operating restart ruined a six day long measurement,
et cetera.

6.2 Thesis contribution
Some of the estimators developed in this thesis improve quite dramatically on the
best performing, to the company’s knowledge, system in the world: the kilovolt
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intrafraction monitoring (KIM) system which has an average systematic accuracy
of 0.46 mm [41]. The KIM system uses X-ray for the image generation, adding to
the radiation dosage of the patient; the system also has a lower refresh rate, 8 Hz.

With the ability to generate different data distributions for the training, valida-
tion and test data, the project highlights some properties of the resulting networks
when the different distributions are used, as demonstrated in Section 5.3.3. These
results are rather intuitive, nevertheless they may provide guidance for data collec-
tion tasks.

In the tests with different number of inputs to the network, both during training
and inference, it is clear that the network can provide better results with an overde-
termined input set. This is an interesting result with applications in the domain of
sensor networks. This result is also in line with the observations in [15] where the
positional accuracy is plotted as a function of the number of access points.

6.3 Future work

The 300 mm model still needs some tweaking before performing as well as the smaller
models. However, performing a hyper-parameter search on this size of data sets is
costly with regards to time, even on the GPU. Run-times for the hyper-parameter
search in this thesis was 4 days for 44 parameter combinations—that would have
been eight months on the MacBook Pro. One possibility is to use cloud based
compute servers equipped with multiple powerful GPUs; hyper-parameter search
is an example of an “embarrassingly parallel” problem, solved by running multiple
instances with different parameters in parallel.

The project resulted in lots of unexplored ideas. One of the delimitations of this
project was to treat the hardware in an idealized manner; the company would like
to have models which could be calibrated to fit any system. This would reduce the
workload in building each system. Perhaps a small regression stage can be built to
adapt the antenna responses to some reference responses, thereby calibrating the
input features to the ANN-based estimator.

As remarked in the text, better input scaling could be performed to reverse the
effects of the logarithmic ADC. Since the electromagnetic field decreases with the
distance squared, a first attempt would be anew = e

1
2 a, since this would make the

voltage linearly related to the distance from the transmitter. As a consequence the
work on antenna gain normalization initiated in this project needs futher exploration.

One of the initial goals of the project was an FPGA implementation of the
forward estimator. This goal was not successful, due to part disinterest from the
company, part the large scope of the project; the HNN-solution was dropped mid
project.

An FPGA solution would have enabled the estimations to be performed inside
the RayPilot sensor plate. This would have been desirable for a few reasons:

• Models are physically attached to the hardware which prevents mix-ups.
• Lower latency for real-time gating, since the need for communication with an

intermediate PC can be eliminated.
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• It lowers the requirements of the associated workstation.
The company might pursue such a solution in the future.

One interesting question that didn’t get a resolution during the project was
whether it is the data span or the number of data points, in the training set, that
governs the suitable number of nodes.
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A
Hyper-parameter search data

A.1 Layers and nodes

Table A.1: The hyper-parameter search with respect to nodes and layers indicated
that 8 layers of 130 nodes each performed the best.

Config. Ēr p95(Er) max(Er) Ēvx p95(Evx ) Ēvz p95(Evz )
1 × 10 5.02 9.22 19.9 2.13 4.75 1.89 4.81
1 × 20 2.22 4.34 17.3 1.36 3.28 1.24 3.09
1 × 30 1.74 3.35 13.4 1.15 2.64 1.08 2.83
1 × 40 1.41 2.95 10.7 1.11 2.64 1.05 2.6
1 × 50 1.34 2.71 9.85 0.974 2.38 0.877 2.23
1 × 60 1.21 2.47 10.5 0.996 2.44 0.909 2.18
1 × 70 1.2 2.46 10.5 0.947 2.3 0.894 2.21
1 × 80 1.24 2.52 7.71 0.932 2.21 0.888 2.17
1 × 90 1.23 2.49 10.1 0.954 2.35 0.893 2.2
1 × 100 1.13 2.33 10.8 0.891 2.17 0.881 2.2
1 × 110 1.12 2.32 8.17 0.925 2.23 0.912 2.29
1 × 120 1.23 2.36 8.55 0.858 2.01 0.87 2.12
1 × 130 1.18 2.35 8.1 0.812 1.88 0.79 1.98
1 × 140 1.22 2.37 6.46 0.778 1.86 0.834 2.07
1 × 150 1.12 2.24 6.58 0.776 1.83 0.762 1.98
1 × 160 1.13 2.29 8.01 0.835 1.99 0.824 2.14
1 × 170 1.1 2.12 8.58 0.886 2.09 0.854 2.16
1 × 180 1.3 2.56 9.68 0.816 1.95 0.862 2.17
1 × 190 1.14 2.21 9.74 0.86 2.09 0.794 2.04
1 × 200 1.27 2.4 10.1 0.845 1.95 0.848 2.1
2 × 10 2.44 4.42 12.2 1.48 3.47 1.37 3.36
2 × 20 1.24 2.57 7.92 1.02 2.42 0.929 2.31
2 × 30 1.03 2.02 12 0.867 2.1 0.716 1.86
2 × 40 0.923 1.7 9.87 0.69 1.5 0.687 1.71
2 × 50 0.903 1.67 5.05 0.699 1.67 0.674 1.75
2 × 60 0.915 1.73 6.1 0.703 1.62 0.653 1.61
2 × 70 0.852 1.52 6.91 0.722 1.71 0.669 1.65
2 × 80 0.805 1.47 5 0.707 1.7 0.593 1.46
2 × 90 0.798 1.43 4 0.684 1.45 0.565 1.4
2 × 100 0.818 1.49 5.14 0.686 1.39 0.592 1.44
2 × 110 0.742 1.38 5.46 0.68 1.47 0.562 1.4
2 × 120 0.867 1.44 3.34 0.689 1.54 0.578 1.4
2 × 130 0.715 1.3 3.86 0.664 1.34 0.553 1.38
2 × 140 0.745 1.32 6.37 0.667 1.41 0.62 1.52
2 × 150 0.803 1.41 5.24 0.661 1.4 0.601 1.45
2 × 160 0.668 1.22 3.79 0.691 1.36 0.564 1.38
2 × 170 0.695 1.24 7.79 0.678 1.31 0.597 1.43
2 × 180 0.66 1.18 5.09 0.68 1.62 0.538 1.33
2 × 190 0.704 1.27 4.7 0.671 1.5 0.615 1.48
2 × 200 0.693 1.27 5.15 0.669 1.45 0.539 1.29
3 × 10 1.99 3.56 13 1.26 2.89 0.996 2.52
3 × 20 1.22 2.34 6.12 0.807 1.88 0.719 1.79
3 × 30 0.887 1.69 5.78 0.737 1.61 0.681 1.69
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A. Hyper-parameter search data

Config. Ēr p95(Er) max(Er) Ēvx p95(Evx ) Ēvz p95(Evz )
3 × 40 0.874 1.64 4.33 0.704 1.53 0.609 1.49
3 × 50 0.754 1.42 3.48 0.676 1.46 0.595 1.41
3 × 60 0.731 1.3 3.85 0.675 1.51 0.601 1.44
3 × 70 0.729 1.31 6.27 0.678 1.34 0.576 1.44
3 × 80 0.709 1.24 3.76 0.687 1.59 0.543 1.28
3 × 90 0.73 1.23 3.24 0.699 1.6 0.526 1.31
3 × 100 0.642 1.2 4.24 0.685 1.5 0.574 1.35
3 × 110 0.675 1.22 5.51 0.66 1.34 0.509 1.23
3 × 120 0.632 1.15 3.88 0.67 1.49 0.538 1.33
3 × 130 0.576 1.09 3.45 0.696 1.34 0.515 1.25
3 × 140 0.621 1.11 2.87 0.68 1.52 0.508 1.28
3 × 150 0.571 1.03 5.57 0.675 1.54 0.497 1.21
3 × 160 0.558 1.01 2.48 0.644 1.46 0.524 1.33
3 × 170 0.661 1.16 4.28 0.67 1.42 0.51 1.27
3 × 180 0.613 1.16 2.88 0.672 1.28 0.482 1.17
3 × 190 0.651 1.15 3.76 0.622 1.41 0.492 1.23
3 × 200 0.708 1.21 3.09 0.627 1.2 0.477 1.15
4 × 10 1.6 3.09 9.67 0.981 2.52 0.991 2.38
4 × 20 0.992 1.9 5.95 0.863 2.15 0.657 1.65
4 × 30 0.906 1.68 9.13 0.756 1.77 0.607 1.5
4 × 40 0.855 1.52 5.21 0.698 1.62 0.564 1.37
4 × 50 0.862 1.48 6.03 0.693 1.39 0.584 1.41
4 × 60 0.807 1.36 4.12 0.681 1.34 0.558 1.32
4 × 70 0.631 1.13 5 0.664 1.3 0.572 1.32
4 × 80 0.666 1.2 3.42 0.662 1.48 0.529 1.27
4 × 90 0.645 1.16 3.85 0.631 1.26 0.51 1.22
4 × 100 0.689 1.24 2.32 0.675 1.27 0.517 1.25
4 × 110 0.666 1.2 2.79 0.614 1.24 0.518 1.21
4 × 120 0.59 1.05 2.51 0.664 1.31 0.532 1.26
4 × 130 0.598 1.09 5.59 0.658 1.37 0.457 1.1
4 × 140 0.559 0.986 4.22 0.638 1.26 0.507 1.22
4 × 150 0.57 1.07 2.79 0.65 1.54 0.456 1.09
4 × 160 0.525 0.943 4.98 0.618 1.44 0.42 1.02
4 × 170 0.63 1.11 3.87 0.649 1.25 0.437 1.08
4 × 180 0.612 1.08 2.5 0.631 1.32 0.492 1.18
4 × 190 0.732 1.18 3.16 0.6 1.35 0.426 1.04
4 × 200 0.638 1.15 3.43 0.622 1.25 0.466 1.12
5 × 10 1.79 3.44 13.9 1.24 2.9 0.843 2.09
5 × 20 1 1.86 6.56 0.748 1.76 0.636 1.65
5 × 30 0.877 1.55 6.3 0.731 1.75 0.584 1.46
5 × 40 0.811 1.42 4.59 0.675 1.53 0.494 1.23
5 × 50 0.723 1.23 4.07 0.66 1.46 0.521 1.26
5 × 60 0.69 1.18 4.06 0.666 1.43 0.522 1.24
5 × 70 0.612 1.05 2.29 0.651 1.39 0.526 1.25
5 × 80 0.67 1.21 3.14 0.659 1.37 0.518 1.24
5 × 90 0.708 1.26 4.13 0.638 1.33 0.476 1.13
5 × 100 0.645 1.15 3.96 0.631 1.42 0.461 1.14
5 × 110 0.526 0.94 4.42 0.651 1.5 0.482 1.14
5 × 120 0.544 1.03 4.03 0.622 1.38 0.445 1.12
5 × 130 0.533 0.955 3.09 0.652 1.24 0.48 1.15
5 × 140 0.638 1.1 4.03 0.652 1.51 0.43 0.991
5 × 150 0.56 0.994 3.35 0.643 1.52 0.426 1.05
5 × 160 0.524 0.946 3.68 0.656 1.47 0.439 1.03
5 × 170 0.559 0.971 2.34 0.682 1.4 0.472 1.09
5 × 180 0.699 1.13 3.07 0.581 1.26 0.465 1.13
5 × 190 0.541 1 3.22 0.624 1.46 0.461 1.11
5 × 200 0.681 1.14 2.97 0.638 1.5 0.43 1.06
6 × 10 1.35 2.69 7.7 0.841 1.95 0.861 2.04
6 × 20 0.985 1.76 5.71 0.697 1.61 0.625 1.5
6 × 30 0.746 1.39 3.55 0.712 1.7 0.56 1.34
6 × 40 0.808 1.45 4.32 0.682 1.53 0.554 1.35
6 × 50 0.637 1.16 7.02 0.689 1.34 0.514 1.23
6 × 60 0.636 1.14 3.5 0.671 1.43 0.537 1.28
6 × 70 0.651 1.15 2.21 0.675 1.57 0.49 1.17
6 × 80 0.541 0.957 2.96 0.69 1.58 0.487 1.17
6 × 90 0.555 1 2.3 0.658 1.36 0.496 1.24
6 × 100 0.53 0.942 4.31 0.668 1.5 0.476 1.09
6 × 110 0.515 0.948 3.72 0.663 1.28 0.43 1.01
6 × 120 0.615 1.12 2.43 0.602 1.37 0.439 1.07
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A. Hyper-parameter search data

Config. Ēr p95(Er) max(Er) Ēvx p95(Evx ) Ēvz p95(Evz )
6 × 130 0.507 0.885 3.19 0.65 1.28 0.479 1.13
6 × 140 0.535 0.97 3.87 0.663 1.6 0.434 1.01
6 × 150 0.512 0.916 4.16 0.659 1.3 0.462 1.1
6 × 160 0.574 1.01 3.96 0.635 1.36 0.43 1.04
6 × 170 0.653 1.17 3.26 0.6 1.23 0.407 0.977
6 × 180 0.565 1.02 5.57 0.619 1.46 0.432 1.03
6 × 190 0.641 1.08 4.25 0.669 1.26 0.416 0.982
6 × 200 0.488 0.881 4.52 0.618 1.26 0.516 1.19
7 × 10 1.46 2.65 7.89 0.942 2.12 0.798 1.97
7 × 20 0.897 1.71 5.26 0.789 1.9 0.675 1.64
7 × 30 0.839 1.52 5.59 0.699 1.7 0.555 1.34
7 × 40 0.69 1.17 2.7 0.691 1.68 0.527 1.28
7 × 50 0.736 1.26 2.98 0.647 1.46 0.51 1.23
7 × 60 0.606 1.08 3.03 0.685 1.49 0.477 1.13
7 × 70 0.605 1.07 4.58 0.674 1.62 0.485 1.15
7 × 80 0.549 0.962 5.16 0.645 1.35 0.44 1.04
7 × 90 0.589 1 2.69 0.665 1.25 0.465 1.12
7 × 100 0.627 1.16 2.9 0.66 1.25 0.497 1.19
7 × 110 0.625 1.09 2.94 0.638 1.34 0.415 0.977
7 × 120 0.491 0.884 5.75 0.635 1.43 0.422 1.01
7 × 130 0.466 0.841 2.86 0.627 1.33 0.426 0.986
7 × 140 0.531 0.94 4.5 0.652 1.39 0.468 1.12
7 × 150 0.535 0.982 2.87 0.657 1.22 0.459 1.06
7 × 160 0.621 1.07 5.33 0.648 1.19 0.442 1.07
7 × 170 0.548 0.963 3.1 0.651 1.46 0.425 1
7 × 180 0.494 0.879 3.59 0.686 1.61 0.46 1.08
7 × 190 0.608 1.07 3.28 0.689 1.44 0.424 1.04
7 × 200 0.592 0.992 4.34 0.641 1.43 0.435 1.06
8 × 10 1.4 2.62 9.93 0.932 2.22 0.696 1.75
8 × 20 0.885 1.65 4.51 0.757 1.87 0.664 1.57
8 × 30 0.823 1.47 4.39 0.661 1.52 0.552 1.31
8 × 40 0.802 1.4 5.25 0.646 1.42 0.566 1.33
8 × 50 0.623 1.12 3.59 0.635 1.37 0.505 1.24
8 × 60 0.563 1.02 3.28 0.652 1.49 0.468 1.1
8 × 70 0.629 1.1 2.25 0.648 1.49 0.498 1.15
8 × 80 0.608 1.1 4.35 0.677 1.27 0.514 1.2
8 × 90 0.608 1.08 3.89 0.644 1.48 0.465 1.1
8 × 100 0.578 0.969 3.75 0.673 1.2 0.494 1.14
8 × 110 0.53 0.95 5.93 0.688 1.42 0.448 1.07
8 × 120 0.482 0.869 2.16 0.665 1.22 0.483 1.14
8 × 130 0.452 0.801 4.25 0.669 1.5 0.453 1.05
8 × 140 0.511 0.935 4.73 0.656 1.38 0.455 1.08
8 × 150 0.507 0.91 2.59 0.666 1.28 0.418 0.988
8 × 160 0.601 1.09 2.71 0.653 1.24 0.42 0.968
8 × 170 0.563 1.04 3.31 0.637 1.22 0.437 1.04
8 × 180 0.507 0.869 4.54 0.643 1.36 0.472 1.13
8 × 190 0.532 1.01 4.31 0.649 1.45 0.457 1.09
8 × 200 0.569 1.04 3.81 0.631 1.36 0.437 1.01
9 × 10 1.6 3 10.8 0.959 2.33 0.775 2
9 × 20 0.935 1.69 6.84 0.743 1.67 0.675 1.63
9 × 30 0.795 1.4 4.24 0.694 1.66 0.563 1.34
9 × 40 0.715 1.23 3.25 0.656 1.45 0.507 1.21
9 × 50 0.64 1.13 3.65 0.669 1.5 0.517 1.23
9 × 60 0.577 1.03 3.07 0.668 1.22 0.495 1.2
9 × 70 0.689 1.24 2.87 0.666 1.25 0.483 1.17
9 × 80 0.547 0.984 2.2 0.668 1.28 0.448 1.08
9 × 90 0.54 0.927 2.63 0.665 1.45 0.437 1.02
9 × 100 0.573 1.04 2.6 0.66 1.33 0.443 1.08
9 × 110 0.502 0.873 3.83 0.692 1.25 0.445 1.05
9 × 120 0.525 0.904 3.41 0.655 1.54 0.453 1.04
9 × 130 0.518 0.927 3.08 0.672 1.44 0.449 1.05
9 × 140 0.604 1.1 2.73 0.629 1.23 0.418 0.976
9 × 150 0.566 1.06 3.46 0.659 1.23 0.442 1.09
9 × 160 0.499 0.867 2.44 0.668 1.29 0.46 1.09
9 × 170 0.533 0.966 3.48 0.683 1.33 0.444 1.04
9 × 180 0.66 1.14 2.8 0.668 1.42 0.405 0.965
9 × 190 0.638 1.05 5.6 0.622 1.44 0.444 1.05
9 × 200 0.499 0.918 5.09 0.644 1.53 0.435 0.995
10 × 10 1.68 3.11 11.5 0.887 2.13 0.818 1.91
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A. Hyper-parameter search data

Config. Ēr p95(Er) max(Er) Ēvx p95(Evx ) Ēvz p95(Evz )
10 × 20 1.01 1.82 7.64 0.739 1.63 0.619 1.54
10 × 30 0.769 1.43 4.65 0.715 1.69 0.516 1.24
10 × 40 0.731 1.24 4.91 0.672 1.37 0.525 1.25
10 × 50 0.618 1.03 3.68 0.674 1.54 0.478 1.1
10 × 60 0.607 1.05 4.15 0.657 1.3 0.472 1.13
10 × 70 0.559 1.06 2.22 0.672 1.54 0.451 1.08
10 × 80 0.5 0.909 3.68 0.669 1.42 0.451 1.09
10 × 90 0.638 1.18 3.47 0.669 1.35 0.413 1.03
10 × 100 0.602 1.04 3.88 0.656 1.2 0.475 1.09
10 × 110 0.498 0.869 5.02 0.674 1.37 0.505 1.18
10 × 120 0.565 1.02 3.78 0.64 1.3 0.429 1.04
10 × 130 0.534 0.965 2.21 0.684 1.34 0.433 1.01
10 × 140 0.527 0.979 3.67 0.674 1.48 0.448 1.07
10 × 150 0.559 0.989 5.01 0.684 1.35 0.457 1.09
10 × 160 0.577 1.08 3.22 0.656 1.25 0.443 1.06
10 × 170 0.527 0.942 3.83 0.637 1.49 0.472 1.09
10 × 180 0.537 0.936 2.39 0.684 1.43 0.46 1.07
10 × 190 0.577 1.01 4.4 0.645 1.24 0.495 1.15
10 × 200 0.659 1.23 5.48 0.663 1.3 0.448 1.04
11 × 10 1.59 3.04 9.01 0.976 2.4 0.861 2.13
11 × 20 0.906 1.69 5.77 0.747 1.75 0.624 1.51
11 × 30 0.7 1.26 4.13 0.676 1.59 0.504 1.21
11 × 40 0.702 1.24 4.47 0.668 1.52 0.532 1.26
11 × 50 0.642 1.1 2.78 0.672 1.42 0.486 1.19
11 × 60 0.568 1.04 4.06 0.67 1.53 0.456 1.09
11 × 70 0.482 0.844 3.95 0.649 1.42 0.444 1.04
11 × 80 0.516 0.941 3.92 0.675 1.37 0.483 1.14
11 × 90 0.51 0.904 5.46 0.681 1.25 0.467 1.08
11 × 100 0.495 0.872 3.01 0.681 1.48 0.446 1.05
11 × 110 0.556 1.02 2.64 0.702 1.46 0.463 1.13
11 × 120 0.586 1.05 4.04 0.693 1.32 0.42 1
11 × 130 0.591 1.07 2.53 0.664 1.36 0.418 1.01
11 × 140 0.643 1.12 2.96 0.645 1.41 0.424 1.02
11 × 150 0.523 0.93 3.92 0.675 1.56 0.422 0.986
11 × 160 0.611 1.04 2.64 0.672 1.45 0.469 1.12
11 × 170 0.561 1.01 2.26 0.676 1.41 0.484 1.15
11 × 180 0.583 1.07 2.3 0.639 1.46 0.426 1.02
11 × 190 0.583 1.02 3.33 0.67 1.38 0.471 1.11
11 × 200 0.528 0.914 4.78 0.659 1.42 0.469 1.12
12 × 10 1.68 3.11 7.67 0.923 2.14 0.82 1.99
12 × 20 0.914 1.73 5.82 0.694 1.52 0.599 1.46
12 × 30 0.784 1.37 4.02 0.704 1.61 0.553 1.32
12 × 40 0.631 1.1 13.5 0.686 1.65 0.5 1.21
12 × 50 0.694 1.22 4.69 0.633 1.42 0.49 1.16
12 × 60 0.61 1.13 2.82 0.664 1.4 0.503 1.19
12 × 70 0.587 1.07 3.38 0.657 1.37 0.45 1.09
12 × 80 0.546 0.969 2.44 0.669 1.48 0.449 1.06
12 × 90 0.541 0.982 2.95 0.659 1.44 0.427 1.06
12 × 100 0.556 1.01 5.1 0.673 1.38 0.459 1.1
12 × 110 0.505 0.911 2.13 0.668 1.26 0.434 1.02
12 × 120 0.577 1.06 3.68 0.658 1.45 0.472 1.12
12 × 130 0.62 1.15 4.84 0.645 1.25 0.426 1.02
12 × 140 0.534 0.953 2.74 0.655 1.3 0.439 1.05
12 × 150 0.639 1.09 5.05 0.651 1.34 0.476 1.15
12 × 160 0.608 1.05 4.24 0.677 1.39 0.443 1.04
12 × 170 0.651 1.12 3.45 0.652 1.4 0.404 0.99
12 × 180 0.502 0.923 2.84 0.654 1.5 0.447 1.08
12 × 190 0.601 1.09 5.34 0.659 1.42 0.424 1.01
12 × 200 0.626 1.1 3.68 0.68 1.5 0.467 1.12
13 × 10 1.65 3.07 7.41 0.805 1.98 0.796 1.97
13 × 20 0.967 1.77 5.46 0.736 1.8 0.661 1.56
13 × 30 0.733 1.34 3.02 0.71 1.69 0.547 1.29
13 × 40 0.58 1.09 2.62 0.68 1.54 0.49 1.21
13 × 50 0.607 1.08 2.64 0.641 1.41 0.495 1.21
13 × 60 0.514 0.932 3.07 0.69 1.53 0.524 1.24
13 × 70 0.575 0.987 2.26 0.671 1.44 0.441 1.06
13 × 80 0.568 1 2.53 0.667 1.23 0.441 1.08
13 × 90 0.631 1.1 3.57 0.67 1.47 0.436 1.03
13 × 100 0.666 1.22 3.02 0.652 1.39 0.437 1.05
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A. Hyper-parameter search data

Config. Ēr p95(Er) max(Er) Ēvx p95(Evx ) Ēvz p95(Evz )
13 × 110 0.542 0.98 3.62 0.645 1.32 0.466 1.08
13 × 120 0.593 1.04 3.39 0.68 1.33 0.474 1.11
13 × 130 0.567 1 4.83 0.685 1.49 0.45 1.07
13 × 140 0.711 1.29 2.93 0.65 1.39 0.462 1.08
13 × 150 0.703 1.26 4.58 0.661 1.34 0.447 1.08
13 × 160 0.631 1.12 5 0.658 1.52 0.436 1.04
13 × 170 0.612 1.11 2.83 0.658 1.4 0.457 1.09
13 × 180 0.668 1.16 4.1 0.647 1.41 0.448 1.09
13 × 190 0.672 1.2 6.22 0.644 1.27 0.454 1.09
13 × 200 0.684 1.24 5.37 0.653 1.33 0.426 1
14 × 10 1.75 3.19 10.4 0.908 2.12 0.908 2.24
14 × 20 0.979 1.76 9.95 0.716 1.68 0.618 1.44
14 × 30 0.7 1.3 4.03 0.714 1.7 0.592 1.37
14 × 40 0.596 1.08 2.84 0.7 1.61 0.482 1.16
14 × 50 0.645 1.12 4.2 0.649 1.38 0.435 1.04
14 × 60 0.578 1.07 2.44 0.686 1.55 0.474 1.11
14 × 70 0.522 0.968 2.58 0.672 1.45 0.457 1.07
14 × 80 0.565 1.01 7.63 0.655 1.44 0.472 1.13
14 × 90 0.622 1.06 3.43 0.67 1.42 0.447 1.04
14 × 100 0.57 0.991 2.78 0.676 1.32 0.445 1.04
14 × 110 0.568 1.05 3.99 0.643 1.41 0.414 1.02
14 × 120 0.62 1.07 3.56 0.663 1.46 0.439 1.04
14 × 130 0.734 1.39 2.5 0.658 1.34 0.4 0.964
14 × 140 0.597 1.08 3.86 0.658 1.4 0.459 1.09
14 × 150 0.655 1.21 4.17 0.679 1.32 0.447 1.08
14 × 160 0.668 1.22 4.45 0.656 1.35 0.476 1.13
14 × 170 0.694 1.24 3.89 0.652 1.39 0.467 1.14
14 × 180 0.654 1.24 4.65 0.69 1.37 0.496 1.18
14 × 190 0.664 1.18 3.33 0.679 1.48 0.438 1.04
14 × 200 0.856 1.52 5.2 0.672 1.39 0.465 1.1
15 × 10 1.82 3.39 7.67 0.977 2.45 0.754 1.99
15 × 20 1.04 1.96 5.79 0.753 1.67 0.659 1.55
15 × 30 0.707 1.3 3.97 0.739 1.44 0.58 1.35
15 × 40 0.61 1.09 3.5 0.656 1.36 0.524 1.28
15 × 50 0.66 1.17 2.85 0.655 1.34 0.477 1.18
15 × 60 0.695 1.24 2.6 0.643 1.41 0.451 1.07
15 × 70 0.522 0.967 2.56 0.686 1.49 0.45 1.07
15 × 80 0.631 1.15 6.45 0.663 1.29 0.426 0.985
15 × 90 0.522 0.931 2.11 0.667 1.49 0.422 0.992
15 × 100 0.57 1.01 3.83 0.668 1.41 0.466 1.08
15 × 110 0.597 1.05 3.94 0.668 1.47 0.455 1.12
15 × 120 0.645 1.15 3.78 0.674 1.47 0.455 1.06
15 × 130 0.709 1.23 4.82 0.677 1.48 0.426 1.01
15 × 140 0.659 1.16 3.46 0.677 1.56 0.431 1.03
15 × 150 0.585 1.07 4.27 0.676 1.37 0.454 1.08
15 × 160 0.64 1.17 4.39 0.693 1.55 0.433 1.02
15 × 170 0.691 1.26 5.19 0.684 1.55 0.433 1.05
15 × 180 0.75 1.36 7.32 0.68 1.48 0.48 1.13
15 × 190 0.827 1.42 5.07 0.683 1.53 0.491 1.18
15 × 200 0.759 1.38 4.94 0.675 1.45 0.501 1.19

Table A.2: The hyper-parameter search for the 300 mm volume. With regards to the
radial errors the best performing model was 8× 225 and 10× 175.

Config. Ēr p95(Er) max(Er) Ēvx p95(Evx ) Ēvz p95(Evz )
8 × 100 1.51 3.14 11.9 0.645 1.51 0.646 1.52
8 × 125 1.74 3.05 12.8 0.607 1.38 0.62 1.46
8 × 150 1.25 2.55 8.49 0.686 1.65 0.615 1.42
8 × 175 1.34 2.57 13.4 0.597 1.34 0.611 1.39
8 × 200 1.23 2.44 9.91 0.618 1.4 0.625 1.46
8 × 225 1.14 2.33 10.6 0.704 1.64 0.618 1.37
8 × 250 1.36 2.68 14.5 0.632 1.48 0.651 1.53
8 × 275 1.37 2.73 13.1 0.63 1.44 0.619 1.4
8 × 300 1.58 3.01 11.5 0.665 1.55 0.64 1.48
8 × 325 1.3 2.62 16.2 0.753 1.69 0.706 1.62
8 × 350 1.77 3.2 11.4 0.667 1.55 0.678 1.62
10 × 100 1.47 3.09 17.7 0.629 1.46 0.641 1.48
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Config. Ēr p95(Er) max(Er) Ēvx p95(Evx ) Ēvz p95(Evz )
10 × 125 1.34 2.51 14.5 0.64 1.48 0.627 1.46
10 × 150 1.33 2.61 9.17 0.587 1.33 0.645 1.48
10 × 175 1.18 2.29 7.4 0.663 1.52 0.617 1.39
10 × 200 1.37 2.53 13.2 0.624 1.41 0.625 1.42
10 × 225 1.28 2.48 8.82 0.649 1.45 0.669 1.55
10 × 250 1.56 2.89 11.3 0.66 1.51 0.668 1.54
10 × 275 1.81 3.43 15.3 0.694 1.65 0.658 1.52
10 × 300 1.69 3.26 12.5 0.703 1.64 0.694 1.61
10 × 325 1.89 3.67 13.4 0.733 1.72 0.698 1.63
10 × 350 1.84 3.62 19.8 0.734 1.67 0.746 1.76
12 × 100 1.36 2.65 9.25 0.621 1.47 0.636 1.48
12 × 125 1.25 2.6 9.68 0.595 1.31 0.643 1.53
12 × 150 1.3 2.47 12.8 0.609 1.37 0.631 1.46
12 × 175 1.31 2.43 14.3 0.658 1.49 0.643 1.48
12 × 200 1.61 3.04 12.7 0.633 1.47 0.641 1.55
12 × 225 1.76 3.34 11.8 0.664 1.49 0.662 1.5
12 × 250 1.66 3.3 7.73 0.687 1.57 0.739 1.76
12 × 275 2.09 3.74 8.87 0.691 1.58 0.749 1.73
12 × 300 2.27 4.21 11.6 0.686 1.57 0.755 1.81
12 × 325 2.15 4.18 21.5 0.729 1.74 0.777 1.84
12 × 350 2.1 4.03 13.4 0.781 1.82 0.796 1.86
14 × 100 1.32 2.59 9.08 0.604 1.38 0.603 1.35
14 × 125 1.41 2.62 12.8 0.6 1.38 0.62 1.48
14 × 150 1.55 2.86 13.8 0.608 1.39 0.619 1.43
14 × 175 1.61 3.09 10.2 0.675 1.61 0.654 1.53
14 × 200 1.8 3.25 9.3 0.668 1.54 0.703 1.69
14 × 225 1.8 3.4 10.4 0.677 1.6 0.746 1.73
14 × 250 1.78 3.5 9.33 0.749 1.72 0.763 1.79
14 × 275 2.02 3.84 10.9 0.73 1.66 0.789 1.84
14 × 300 2.34 4.48 15.8 0.782 1.8 0.742 1.77
14 × 325 2.49 4.68 27.3 0.74 1.78 0.836 2.01
14 × 350 2.12 4.22 13.2 0.766 1.76 0.824 1.98
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B
ANN Configurations

This appendix contains additional configuration details for the experiments per-
formed.

Table B.1: Common parameters through all tests.

Parameter Setting
Optimization algorithm ADAM-optimizer

β1, β2 0.9, 0.999 (ADAM defauls)
Weight initialization Xavier initialization

Bias initialization Zeros
Activation function φ(x) = 1.7159 tanh

(
2
3x
)

Cost function L2-norm

Table B.2: Hyper-parameter search standard volume.

Parameter Setting
Database DB271

Learning rate 0.0005
Batch size 4000

Training examples 7776
Validation examples 2000

Test examples 4000
Epochs 25 000

Post-processing None
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Table B.3: Hyper-parameter search 300 mm volume.

Parameter Setting
Database DB1071

Learning rate 0.0005
Batch size 10 000

Training examples 175 616
Validation examples 10 000

Test examples 10 000
Epochs 10 000

Post-processing None

Table B.4: Antenna gain normalization.

Parameter Setting
Database DB476

Learning rate 0.0001
Batch size 10 000

Training examples 171 051
Validation examples 10 000

Test examples 10 000
Epochs 500 000

Post-processing None

Table B.5: Altered number of antennas.

Parameter Setting
Database DB271

Learning rate 0.0001
Batch size 4000

Training examples 7776
Validation examples 2000

Test examples 4000
Epochs 25 000

Post-processing Averaged over 10 runs
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Table B.6: Linear sweep.

Parameter Setting
Database DB1071

Learning rate 0.0001
Batch size 4000

Training examples 175 616
Validation examples 10 000

Test examples 10 000
Epochs 15 000

Post-processing None
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C
Graphs and plots

This appendix provides larger versions, for readability, of selected graphs and plots
from the text.
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C. Graphs and plots

Figure C.13: Larger versions of the correlation plot for DB476 using 20 000 novel
datapoints as basis for the statistics.
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C. Graphs and plots

Figure C.26: Larger verions of correlation plot for DB476 using 20 000 novel data
points as basis for the statistics. Here the input to the neural network
was divided by the average over all antennas to normalize the gain.
The patterns are close to the standard model, confer Figure 5.11, but
the points are more scattered.
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D
Code listings

This appendix contains listings for the different ANN-implementations developed
during this project.

D.1 Shell script for the TensorFlow implementation

Shell scripting and communication via environment variables were used to separate
configuration and function in the TensorFlow script.

Listing 8: Shell script for invocation of TensorFlow.
#! /usr/bin/env bash
# Hyper parameter search using enviornment variables
export HPS_COMMENT='Layers and nodes for db1071'
export HPS_DATABASE='./MPOS_data/DB1071/DB1071+Eval.csv.scaled.csv'
export HPS_PATH='./layer_nodes_db1071'

for layers in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
do

for nodes in 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
do

export HPS_NODES_PER_LAYER=$nodes
export HPS_NUMBER_OF_LAYERS=$layers
python tf_script.py

done
done

D.2 TensorFlow implementation

The TensorFlow program was implemented using the Python API. In Listing 9 is
a basic version of the program used to train the ANNs. Many experiments used
alterations or additions of this code to test different aspects of the training.

Listing 9: A sample TensorFlow program in Python.
## -*- coding: UTF-8 -*-
import tensorflow as tf
import numpy as np
import math, random
import csv
import json
import os
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import datetime
import time
import sys

COMMENT = os.environ['HPS_COMMENT']
NODES_PER_LAYER = int(os.environ['HPS_NODES_PER_LAYER'])
NUMBER_OF_LAYERS = int(os.environ['HPS_NUMBER_OF_LAYERS'])
HIDDEN_NODES = map(lambda x: NODES_PER_LAYER, range(0, NUMBER_OF_LAYERS))
NUM_FEATURES = 16
NUM_OUTPUTS = 5
NUM_EXAMPLES = 358400+10000
TRAIN_SIZE = 358400
VALID_SIZE = 5000

TRAIN_END = TRAIN_SIZE
VALID_START = TRAIN_END
VALID_END = VALID_START + VALID_SIZE
TEST_START = VALID_END

MINI_BATCH_SIZE = 4000
LEARNING_RATE = 0.0005
NUM_EPOCHS = 25000
weights = [] # Used to store best weights
biases = [] # Used to store best biases

mpos_data = []
database = os.environ['HPS_DATABASE']
with open(database, 'rt') as csvfile:
mpos_reader = csv.reader(csvfile, delimiter=';')
for row in mpos_reader:

mpos_data.append(map(float, row))

path = os.environ['HPS_PATH']
if not os.path.exists(path):
os.makedirs(path)

train = mpos_data[:TRAIN_SIZE]
np.random.shuffle(train) # Shuffle training data
mpos_eval = mpos_data[TRAIN_SIZE:]
np.random.shuffle(mpos_eval) # Shuffle evaluation
valid = mpos_eval[0:VALID_SIZE]
test = mpos_eval[VALID_SIZE:]

get_features = lambda row: row[5:21] # Acceces the inputs/features in a CSV-row
get_values = lambda row: row[0:5] # Acceces the outputs/values in a CSV-row

def init_weights(shape, init_method='xavier', name=None, xavier_params = (None,
None)):

if init_method == 'zeros':
return tf.Variable(tf.zeros(shape, name=name, dtype=tf.float32))

elif init_method == 'uniform':
return tf.Variable(tf.random_normal(shape, name=name, stddev=0.01, dtype=tf.float32))

elif init_method == 'xavier':
(fan_in, fan_out) = xavier_params
low = -np.sqrt(6.0/(fan_in + fan_out))
high = np.sqrt(6.0/(fan_in + fan_out))
return tf.Variable(tf.random_uniform(shape, name=name, minval=low, maxval=high,
dtype=tf.float32))↪→

else:
raise ValueError('Undefined init_method')

def model(X, hidden_nodes=[10]):
prev_layer = X # Input layer is first "previous layer"
ns = [NUM_FEATURES] + hidden_nodes

# phi(x) = a tanh(bx)
a = tf.constant(1.7159, dtype=tf.float32)
b = tf.constant(2.0/3.0, dtype=tf.float32)

# Append all hidden layers: use xavier initialization and zero bias
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for i in range(0,len(ns)-1):
weights.append(init_weights([ns[i], ns[i+1]], 'xavier', name='weight_' + str(i),
xavier_params=(ns[i], ns[i+1])))↪→

biases.append(init_weights([ns[i+1]], 'zeros', name='bias_' + str(i)))
prev_layer = tf.scalar_mul(a, tf.nn.tanh(tf.scalar_mul(b, tf.add(tf.matmul(prev_layer,
weights[-1]), biases[-1]))))↪→

# Finally add the output layer
weights.append(init_weights([ns[-1], NUM_OUTPUTS], 'xavier', xavier_params=(ns[-1], 1)))
biases.append(init_weights([NUM_OUTPUTS], 'zeros'))
return tf.add(tf.matmul(prev_layer, weights[-1]), biases[-1])

def run_evaluation():
file_name = path + "/%d_%d_%s.txt" % (NUMBER_OF_LAYERS, NODES_PER_LAYER,

datetime.datetime.utcnow().isoformat())↪→
print("starting on file %s" % file_name)
with tf.device('/gpu:0'):

X = tf.placeholder(tf.float32, [None, NUM_FEATURES], name="X")
Y = tf.placeholder(tf.float32, [None, NUM_OUTPUTS], name="Y")

yhat = model(X, HIDDEN_NODES)
loss = tf.nn.l2_loss(tf.subtract(Y, yhat))
train_op = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE).minimize(loss)

sess = tf.Session(config=tf.ConfigProto(log_device_placement=False, allow_soft_placement=False))
sess.run(tf.global_variables_initializer())

with tf.device('/gpu:0'):
#Initiate constant data
trainx = sess.run(tf.constant(np.array(list(map(get_features, train)), dtype=np.float32),
dtype=tf.float32))↪→

trainy = sess.run(tf.constant(np.array(list(map(get_values, train)), dtype=np.float32),
dtype=tf.float32))↪→

validx = sess.run(tf.constant(np.array(list(map(get_features, valid)), dtype=np.float32),
dtype=tf.float32))↪→

validy = sess.run(tf.constant(np.array(list(map(get_values, valid)), dtype=np.float32),
dtype=tf.float32))↪→

testx = sess.run(tf.constant(np.array(list(map(get_features, test)), dtype=np.float32),
dtype=tf.float32))↪→

testy = sess.run(tf.constant(np.array(list(map(get_values, test)), dtype=np.float32),
dtype=tf.float32))↪→

RESCALE = tf.constant([300/2.0, 300/2.0, 300/2.0, 0.0, 0.0], dtype=tf.float32)
ALPHA = tf.constant([ 0.0, 0.0, 0.0, 90/2.0, 0.0], dtype=tf.float32)
BETA = tf.constant([ 0.0, 0.0, 0.0, 0.0, 90/2.0], dtype=tf.float32)
# Define computations performed on GPU:0
# Train #
mean_train_radial_err = tf.reduce_mean(tf.sqrt(tf.reduce_sum(tf.square(tf.multiply(RESCALE,
tf.subtract(trainy, yhat))), axis=1)))↪→

# Validation #
mean_valid_rad_err = tf.reduce_mean(tf.sqrt(tf.reduce_sum(tf.square(tf.multiply(RESCALE,
tf.subtract(validy, yhat))), axis=1)))↪→

# Test #
test_rad_error = tf.sqrt(tf.reduce_sum(tf.square(tf.multiply(RESCALE, tf.subtract(testy,
yhat))), axis=1))↪→

test_mean_radial_error = tf.reduce_mean(test_rad_error)
test_max_radial_error = tf.reduce_max(test_rad_error)
test_alpha_err = tf.sqrt(tf.reduce_sum(tf.square(tf.multiply(ALPHA, tf.subtract(testy, yhat))),
axis=1))↪→

test_mean_alpha_err = tf.reduce_mean(test_alpha_err)
test_beta_err = tf.sqrt(tf.reduce_sum(tf.square(tf.multiply(BETA, tf.subtract(testy, yhat))),
axis=1))↪→

test_mean_beta_err = tf.reduce_mean(test_beta_err)

errors = []
radial_errors = []
alpha_errors = []
beta_errors = []
mean_radial_errors = []
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costs = []
min_validation_cost = 1.0E6
best_weights = []
best_biases = []
mean_rad_err = 0
max_rad_err = 0
p95 = 0
train_rad_err = 0
mean_alpha = 0
mean_beta = 0
mean_train_rad_err = 0
start_time = time.time()
for i in range(NUM_EPOCHS):

try:
# Batch training
permutation = np.random.permutation(TRAIN_SIZE) # Shuffle
for start, end in zip(range(0, TRAIN_SIZE, MINI_BATCH_SIZE), range(MINI_BATCH_SIZE, TRAIN_SIZE,
MINI_BATCH_SIZE)):↪→

sess.run(train_op, feed_dict={X: trainx[permutation[start:end]], Y:
trainy[permutation[start:end]]})↪→
validation_cost = sess.run(loss, feed_dict={X: validx, Y: validy})
if validation_cost < min_validation_cost:

min_validation_cost = validation_cost
# Log best weights
best_weights = []
for w in weights:
best_weights.append(sess.run(w))

# Log best biases
best_biases = []
for b in biases:
best_biases.append(sess.run(b))

# Train
train_mean_rad_err = sess.run(mean_train_radial_err, feed_dict={X: trainx})
# Test
radial_errors = sess.run(test_rad_error, feed_dict={X: testx})
alpha_errors = sess.run(test_alpha_err, feed_dict={X: testx})
beta_errors = sess.run(test_beta_err, feed_dict={X: testx})
mean_rad_err = sess.run(test_mean_radial_error, feed_dict={X: testx})
max_rad_err = sess.run(test_max_radial_error, feed_dict={X: testx})
mean_alpha = sess.run(test_mean_alpha_err, feed_dict={X: testx})
mean_beta = sess.run(test_mean_beta_err, feed_dict={X: testx})
# Valid
valid_mean_rad_err = sess.run(mean_valid_rad_err, feed_dict={X: validx})

if i%1000 == 0: # Print online results
duration = time.time() - start_time
print("%d\tcost: %g\trad: %g \talpha: %g\tbeta: %g\tdur: %ds" % (i,min_validation_cost,

mean_rad_err, mean_alpha, mean_beta, duration))↪→
mean_radial_errors.append(float(sess.run(mean_valid_rad_err, feed_dict={X: validx})))
costs.append(float(sess.run(loss, feed_dict={X: validx, Y: validy})))
start_time = time.time()

except KeyboardInterrupt:
# Allow early interrupt while still printing results!
break # Exits training and writes session results

# Calculate p95
radial_errors.sort()
p95 = radial_errors[int(0.95*len(radial_errors))]
alpha_errors.sort()
p95a = alpha_errors[int(0.95*len(alpha_errors))]
beta_errors.sort()
p95b = beta_errors[int(0.95*len(beta_errors))]
# Write session results to file
f = open(file_name, 'a')
f.write("comment\t%s\n" % (COMMENT))
f.write("nodes\t%d\n" % (NODES_PER_LAYER))
f.write("layers\t%d\n" % (NUMBER_OF_LAYERS))
f.write("mini batch size\t%d\n" % (MINI_BATCH_SIZE))
f.write("learning rate\t%d\n" % (LEARNING_RATE))
f.write("database\t%s\n" % (database))
f.write("validation Radial (mm)\t%g\n" % (mean_rad_err))
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f.write("mean Alpha (°)\t%g\n" % (mean_alpha))
f.write("mean Beta(°)\t%g\n" % (mean_beta))
f.write("train Radial (mm)\t%g\n" % (mean_train_rad_err))
f.write("max Radial (mm)\t%g\n" % (max_rad_err))
f.write("p95 Radial (mm)\t%g\n" % (p95))
f.write("p95 Vx (°)\t%g\n" % (p95a))
f.write("p95 Vz (°)\t%g\n" % (p95b))
f.write("mean radial errors\t%s\n" % (json.dumps(mean_radial_errors)))
f.write("final radial error distribution\t%s\n" % (json.dumps(radial_errors.tolist())))
log_biases(best_biases, file_name)
log_weights(best_weights, file_name)
sess.close()

def log_biases(biases, file_name):
f = open(file_name + '_biases', 'w')
for i, bias in enumerate(biases):

f.write("bias_%d\t%s\n" % (i, json.dumps(bias.tolist())))

def log_weights(weights, file_name):
f = open(file_name + '_weights', 'w')
for i, weight in enumerate(weights):

f.write("weight_%d\t%s\n" % (i, json.dumps(weight.tolist())))

run_evaluation()
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E
Ethical concerns

The motivation for the system is clear; real-time local positioning during external
beam radiotherapy has an instrumental value for patients by potentially lowering the
damage done to healthy tissue, thereby avoiding side-effects such as bowel, urinary
and potency problems. In this section some ethical implications of the proposed
work are discussed.

E.1 Estimation of positions

The proposed system will produce estimates of the position and angles. Systemati-
cally wrong estimations will misguide other equipment and potentially cause severe
harm to a patient undergoing radiotherapy. Estimation is necessary in the case of
RayPilot, the physical problem requires approximations at several levels: voltage
measurements, external interference and the positional recovery-process.

These facts are well known within the company and among customers. Anyhow,
as a contributor to such a system it becomes important to acknowledge the limita-
tions of the estimator in documentation and in communication with colleagues.

E.2 Pushing hypofractionation

Similar systems like Calypso (Varian Medical Systems) and Clarity (Elekta) are
promoted as tools that enable hypofractionated Stereotactic Body Radiation Therapy
(SBRT). The hypofractionation method uses fewer fractions but with a higher dose;
SBRT indicates the use of positional tracking or fixtures in order to obtain higher
precision.

In a randomized trial of hypofractionation and conventional fractionation of 168
patients, no difference in late1 radiation toxicity were found, in another indicator
of treatment efficiency hypofractionation performed slightly better [1]. There are

1as opposed to acute; months to years after radiation therapy
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large ongoing studies (HyPro, CHHiP) to further explore the area of hypofraction-
ation. An ethical question arises; Are equipment retailers pushing the change in
methodology or is the transition fundamentally based on medical progress?

A sales argument for hypofractionation is the possibility to shorten health care
waiting lists, since the number of factions are lower which allows a higher throughput
of patients. This fact creates an economic incentive for the change in methodology
which might challenge the patients individual interest in minimization of side effects.
The best combination may very well be improved positioning with conventional
fractionation.

98



Appendix bibliography

[1] G. Arcangeli, B. Saracino, S. Gomellini, M. G. Petrongari, S. Arcangeli, S. Sen-
tinelli, S. Marzi, V. Landoni, J. Fowler, and L. Strigari, “A prospective phase
iii randomized trial of hypofractionation versus conventional fractionation in
patients with high-risk prostate cancer”, International Journal of Radiation
Oncology* Biology* Physics, vol. 78, no. 1, pp. 11–18, 2010.

99


	List of Figures
	List of Tables
	Glossary
	Introduction
	Context
	Motivation
	Goals and challenges
	Delimitations
	Thesis organization

	Background
	Prostate cancer and treatment
	External beam radio-therapy
	Hypofractionation

	Prostate movement during radio-therapy
	Tracking prostate movement
	Reducing prostate movement


	Micropos Medical and RayPilot
	The RayPilot sensor plate
	The RayPilot transmitter

	Previous work
	Related work
	Conclusion

	Context
	Experimental setup
	Coordinate system
	Data collection and test fixtures 
	Training databases
	Evaluation databases


	Current implementation
	Line search
	Gradient descent
	Gradient guided approximate minimum 
	Polynomial model
	Optimization algorithm 

	Artificial neural networks 
	Artificial neuron
	Multilayer perceptron 
	Training the network
	Error back-propagation 
	Batch training
	ADAM-optimization

	Function approximation with ANN 
	TensorFlow 


	Method
	Choice of regression algorithm
	Neural network implementation
	Data pre-processing 
	Network optimization
	Training algorithm 
	Weight and bias initialization
	Holdout method 
	Parallelism in the inference
	Parallelism in the training

	Hyper-parameter search 

	Implementation
	ANN training in TensorFlow
	Software implementation

	Evaluation 
	Evaluation measures
	Verification


	Results
	Network modelling
	Hyper-parameter search
	Layers and nodes, standard volume 
	Layers and nodes, extended volume
	Batch size
	Learning rate


	Performance
	Accuracy
	Comparison with previous model
	Spatial error distribution
	Error distributions, correlation

	Expanding the recoverable volume
	Speed and latency measures
	Estimation speed
	Training using TensorFlow 

	Model size

	Additional experiments 
	Antenna gain normalization
	Altering number of antennas
	Training using random data 
	Reduced step size, standard volume 
	A linear sweep through the volume 

	Discussion
	Method
	Performance measures
	Hyper-parameter search
	Training data sets
	Linear sweep


	Conclusion
	Summary
	Thesis contribution
	Future work

	Bibliography
	Hyper-parameter search data
	Layers and nodes

	ANN Configurations
	Graphs and plots 
	Code listings
	Shell script for the TensorFlow implementation
	TensorFlow implementation 

	Ethical concerns
	Estimation of positions
	Pushing hypofractionation

	Appendix bibliography

