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Abstract

The field of machine learning have had an upswing in popularity in the recent years. Com-
putation of complex neural networks, previously not applicable due to hardware restraints,
have been made more viable with recent advancements in GPU-acceleration technology.

Software life cycle management is the administration of the cyclic software development
process involving planning, building, testing and publishing.

The purpose of this thesis was to investigate if supervised learning, a type of machine
learning task, can be used as an useful tool for software life cycle management. The goals
were to develop machine learning software capable of analysing vehicle data, which could
bring additional information about faults. The thesis presents the machine learning methods
and strategies used to construct and optimise the software.

The software created can recognise faults in data resembling data collected from cars’ electri-
cal system and classify which faults. The potential of analysing vehicle data with supervised
learning models is acknowledged during a discussion section along with a proposition for
further application with real world vehicle data.

Keywords: Machine learning, supervised learning, neural networks, data.
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Examensarbete

Sammanfattning

Maskininlärning är ett omr̊ade som har ökat i popularitet under de senaste åren. Beräkning
av komplexa neurala nätverk, som tidigare var opraktiska p̊a grund av h̊ardvarurestriktioner,
har blivit enklare att genomföra tack vare de senaste framstegen inom GPU-accelerationsteknologi.

Software life cycle management är hanteringen av den cykliska mjukvaruutvecklingspro-
cessen som innefattar planering, byggande, testning och publicering.

Syftet med detta arbete var att undersöka om supervised learning, en typ av maskininlärnings-
uppgift, kan användas som ett användbart verktyg för software life cycle management.
Målsättningen var att utveckla maskininlärnings-mjukvara som kan analysera fordonsdata,
vilket kan ge ytterligare information om fel. Rapporten presenterar maskininlärningsmetoder
och strategier som används för att konstruera och optimera denna mjukvaran.

Den skapade mjukvaran kan känna igen fel i data som ska efterlikna datan fr̊an bilars el-
system och kan specificera vilket fel det är. Möjligheten att analysera fordonsdata med
supervised learning modeller utreds i diskussions avsnittet. Detta diskuteras tillsammans
med förslag för vidare tillämpning med verklig fordonsdata.

Nyckelord: Maskininlärning, supervised learning, neurala nätverk, data.
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Dictionary

machine learning
model

A set of software components capable of learning from and making
assumptions on data.

convergence rate How fast a machine learning model reaches its optimal point.

hyperparameters Parameters for configuring machine learning models.

learning rate A hyperparameter for how large corrections optimisers perform.

data sample A set of values defining an instance.

feature A value corresponding to a specific attribute.

labels Desired outputs from a machine learning model when facing a cor-
responding set of inputs.

cost A quantitative measurement for a model’s performance.

preprocessor An operation that modifies data before usage.

epoch Complete training series on all available data.

CLI Short for Command Line Interface. An interface of which commu-
nication and interaction between users and computer programs are
made through commands in the form of consecutive lines of text.
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Introduction

1.1 Background

The electrical system in today’s and upcoming cars can be monitored to provide detailed in-
formation about almost all aspects of the car. This large amount of data could potentially be
used to detect and identify problems within the car. Problems that could possibly be found long
before they are visible to the user.

The ability to find problems and make predictions based on data from the cars’ electrical system
could provide software and hardware developers with useful information to improve upcoming
software and hardware. This is becoming increasingly more interesting as the software develop-
ment often is iterative and as the deployment of new software becomes easier. Machine learning
could potentially be used to do this by being able to learn without being explicitly programmed
to.

Semcon Sweden AB wants to investigate the use of different machine learning tasks to extract
useful information from cars’ electrical systems.

This project is done as a part of the NGEA (Next Generation Electrical Architecture) project.
The aim of the NGEA project is to improve the automotive industry by strengthening research
involving connected cars to encourage a quicker and more flexible development.

1.2 Purpose

The purpose of this work is to explore the possibility of using supervised learning to improve
the software life cycle in the automotive industry.

1.3 Goal

The main goal of this project is to create and train supervised learning models so they can be
used to provide useful information from data logs containing either errors or a failure. The focus
of the work will be programming working models to showcase if supervised learning would be
applicable in the software life cycle. To achieve this, the following needs to be done:

• Program a parser to rearrange the provided data to work with the machine learning li-
braries and tools.

• Research supervised learning and develop models that best suits the data and the desired
result.

• Present and evaluate the results from the models.

1



1.4 Delimitations

The data needed to train and test the supervised learning models will be provided by Semcon.
This project will take advantage of pre-made tools and libraries to create, train and evaluate
the supervised learning models. The main library to be used will be TensorFlow.
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Introduction to machine learning

2.1 Machine learning

Machine learning is a study of computer science that enables computer programs to learn without
being explicitly programmed. Programs utilising machine learning can improve their ability to
perform tasks based on past experience. Machine learning algorithms iteratively learns from
and can find patterns in the inserted data.

2.2 Types of machine learning systems

Machine learning systems can be classified in different categories based on the type and amount
of supervision they are given, the accessibility of data they are given and how the systems
proceed with learning.

2.2.1 Supervision

Machine learning systems can be classified by the type and amount of supervision they receive
during training. Machine learning systems classified under supervised learning are trained with
data containing desired outputs (also known as labels). Supervised systems train with examples
containing a set of inputs and the desired outcome expected from the system. The system
algorithms will attempt to minimise the error between the system’s output and the desired
output in order to improve the system’s prediction accuracy. [1, p.8]

Machine learning systems classified under unsupervised learning are trained with data lacking
desired outputs. Unsupervised systems train using only inputs and its algorithms learn by
finding underlying structures of the training data. [2, p.52]

2.2.2 Model-based and instance-based learning

Model-based machine learning systems generalise by using training data to construct a model
used to make predictions. The contrary for model-based learning is instance-based learning,
which memorise examples from training data and generalise though comparing new instances
with memorised instances. [1, p.17-18]

3



2.2.3 Batch-based and online-based learning

Machine learning systems using batch-based learning learn through training on all available
data during a training phase and cannot learn after being deployed into production. Systems
using online-based learning incrementally learns from smaller or even individual instances. A
drawback of the batch-based learning systems is that in order to adapt to new training data,
it has to retrain the entire system from the beginning with the new data and the old. Online-
based systems can learn from new data as it arrives, increasing the knowledge already learned.
[1, p.14-15]

2.3 Features

An attribute can be described as a measurable characteristic of an object or phenomenon such as
the temperature of a certain sensor or the current running through a motor. In machine learning
a feature is usually described as an attribute and its value, for example sensorTemperature = 21
or motorCurrent = 2.

2.3.1 The curse of dimensionality

Learning from data become increasingly more difficult as the amount of features increase. The
higher dimensionality of data processed, the more instances of data are needed to recognise a
pattern in the dimensional space. [3, p.22-23, 649]

Quote from ”The Elements of Statistical Learning” illustrating a manifestation of the curse of
dimensionality:

”Another manifestation of the curse is that the sampling density is proportional to
N1/p, where p is the dimension of the input space and N is the sample size. Thus, if
N1 = 100 represents a dense sample for a single input problem, then N10 = 10010 is
the sample size required for the same sampling density with 10 inputs. Thus in high
dimensions all feasible training samples sparsely populate the input space.”[3, p.23]

2.3.2 Feature engineering

The selected sets of features used as input can have a great effect on the machine learning
systems’ ability to learn. The process of selecting the right features, combining features and
adding more features from new data is called feature engineering. The feature engineering
process is an important step during machine learning projects. [1, p.25-26]

Feature selection

Feature selection is the process of selecting the most fruitful features for constructing a useful
model. The feature selection process also includes disregarding irrelevant features that would
increase dimensionality without any significant benefit. [1, p.26]

4



Feature extraction

During feature extraction, new features are created by combining original features that become
more informative and less redundant when derived into one. [1, p.26]

For an example of feature extraction, Machine learning models can be used in the stock market
to estimate what shares are most likely to return profit. A share’s percentage gain or loss
over a day can be derived from the share’s opening price and closing price by the equation:
percentage = (closingprice− openingprice)/(openingprice).

This would reduce the amount of dimensions while generating a feature that firmly indicates
the success of a share.

Feature scaling

The range of values may vary significantly between different sets of features. For example, values
logged from cars can have ranges of 0 < sensorTemperature < 100 and 0 < throttleRatio < 10.

Features with smaller value ranges might be neglected by machine learning algorithms in favour
of features with broad ranges of values. Feature scaling is a method that either normalises
or standardises the feature sets during data preprocessing, adjusting all feature values to scale
within the same span, lessening the effects of divergent value ranges among feature sets.[1, p.65]

To better illustrate, here is an example two sets of features undergoing preprocessing with min-
max normalisation:

Original feature sets Sets normalised with min-max scaling

sensorTemperature = [0, 40, 100] sensorTemperature = [0.0, 0.4, 1.0]

throttleRatio = [0.0, 5.0, 10.0] throttleRatio = [0.0, 0.5, 1.0]

2.4 Supervised learning tasks

2.4.1 Regression

A common type of tasks in supervised learning are regression tasks. A regression task is to
predict numeric values based on a set of given features as input. During training, regression
algorithms models relationships between the features and the output. [1, p.8][3, p.10]

2.4.2 Classification

Classification tasks are similar to regression tasks with the exception that the model outputs
predictions on a set of categories, e.g predicting what type of fault a car has by analysing its
log data.[1, p.8][3, p.10]

2.5 Artificial Neural Networks

Artificial neural networks are models that have extensive amounts of artificial neurons connected
with each other through layers, inspired by how the neural networks of biological brains are
structured. Artificial neurons are nodes in an artificial neural network that upon receiving a
number of inputs, outputs values based on the neurons’ activation functions. The first layer
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of an artificial neural network is called the input layer, which receives the data inserted to the
network. The output layer is the last layer of an artificial neural network, which neurons emit
the final output of the network. Artificial neural networks can also have hidden layers, placed
amidst the input and output layers, which increase the complexity of what the network is capable
of output. See Figure 2.1 for a representation of an artificial neural network. [2, p.33-36]

Figure 2.1: Illustration of a neural network

2.5.1 Propagation functions

The propagation function of a neuron transforms the outputs received from other neurons to
scalar input which is used by the activation function. [2, p.35]

2.5.2 Activation functions

Each neuron of an artificial neural network has an activation function that outputs a reaction
based on the input from the propagation function. There are various types of activation functions
that calculate the input differently resulting in different output characteristics, see Figure 2.2
for plotted activation functions. [2, p.36]

Common activation functions used in artificial neural networks:

• Logistic (Referred as Sigmoid in the context of TensorFlow)

f(x) =
1

(1 + e−x)

• TanH

f(x) = tanh(x) =
2

1 + e−2x
− 1

• ReLU

f(x) =

{
0 if x < 0

x if x ≥ 0

• ELU

f(α, x) =

{
α(ex − 1) if x < 0

x if x ≥ 0

6



Figure 2.2: Plotted activation functions

2.5.3 Output functions

The output function of a neuron calculates the values that are distributed to the neurons con-
nected to its output, based on the neuron’s activation function. Often, the output from the
activation function is directly used as output by the output function. [2, p.38]

2.5.4 Feedforward Neural Networks

Artificial neural networks can have different interconnection patterns between its neurons. In
feedforward neural networks, information flow in only one direction. Neurons of any layer cannot
output information to any other layers than the next layer towards the output layer. [2, p.39]

2.6 Weights and biases

The signals between neurons in an artificial neural network can be modified using weights which
magnifies or compress connections between neurons. During training, the weights of artificial
neural networks are individually modified in order to achieve desired output from the networks’
output layer. The weights are applied by the propagation function. Applying bias to an activa-
tion function shifts its curve along the x-axis changing the characteristics of the output, which
can be used for tuning network output. A visualisation of the effects of biases and weights can
be seen in Figure 2.3. [2, p.34,44]

7



Figure 2.3: Graph demonstrating how bias and weight effects an output of a neuron

2.7 Performance measuring functions

Performance measuring functions are used to calculate machine learning models efficiency during
evaluations and optimisation. Utility and cost functions measure the performance of the model.
[1, p.37]

Common cost functions used:

• Root Mean Square Error

RMSE(X,h) =

√√√√ 1

m

m∑
i=1

(
h
(
x(i)
)
− y(i)

)2

• Mean Absolute Error

MAE(X,h) =
1

m

m∑
i=1

∣∣∣∣∣h(x(i))− y(i)
∣∣∣∣∣

• Mean reduced Softmax cross entropy

softmax.C.E(X,h) = − 1

m

m∑
i=1

(
(x(i)log(h(x(i))) + (1− x(i))log(1− h(x(i)))

)
• Mean reduced Sigmoid cross entropy

sigmoid.C.E(X,h) =
1

m

m∑
i=1

(
max(x(i), 0)− x(i)h(x(i)) + log(1 + exp(−abs(x(i))))

)

X = Matrix of all feature values

xi = A vector containing all feature values of instance i

yi = A vector containing the label of instance i

h = The system’s hypothesis, the system’s prediction

m = The number of instances in data set being evaluated

8



2.8 Optimisation algorithms

Optimisation algorithms, in the context of machine learning, modify the weights and biases of
models in order to minimise the cost function. Most optimisation algorithms have configurable
parameters that regulate how momentous its corrections are.

2.8.1 Gradient descent

Gradient descent is an iterative optimisation algorithm performing gradual network adjustments
to minimise the cost emitted from performance measuring functions. The algorithm will grad-
ually attempt to decrease costs until it reaches a point of convergence, the point of which it
cannot further decrease the cost.

One significant drawback of the gradient descent algorithm is that it is prone to get stuck on
local minimums. It presumes that it have reached the lowest cost it can achieve, but there are
weight and bias arrangements of the network that can render lower costs. The cause of these
pitfalls is that adjustments made at each step are too minuscule [1, p.112]. The steps are not
large enough to scale the peaks between local and global minimums, as illustrated by Figure 2.4.

Figure 2.4: An example of a gradient descent pitfall
x: parameter vector | y: cost

2.8.2 Momentum

Momentum is based on gradient descent but additionally utilises an exponentially decaying
average of the previous gradients to gain a momentum effect. The momentum effect lessens
chances of getting stuck at local minimums and improves the rate of which the models converge.
[1, p.294]

9



2.8.3 Adam

Short for adaptive moment estimation, is an optimisation algorithm that achieves adaptive
learning rates in a similar manner to the Momentum algorithm. It uses an exponentially decaying
average of past gradients like Momentum, but in conjunction uses an exponentially decaying
average of past squared gradients. Adam is considered to be one of the best adaptive learning
algorithms for machine learning at the time of writing this report [1, p.293,299][4, p.6-10]. [4]

10



Method and tools

In this chapter, the methodology used in the project will be explained.

3.1 Tools

This section lists and describes various tools used in the project.

3.1.1 TensorFlow

TensorFlow is an machine learning library that enables construction of machine learning models
expressed through code written in conventional programming languages.

Python language

The TensorFlow API can be used in several programming languages such as Java, C++, Go
and Python. The API support for python is currently much stronger than the others due to it
being the most complete, easiest to use and most stable version according to the TensorFlow
creators themselves [5]. The Python API also has more comprehensive documentation than its
counterparts.

CUDA acceleration

One significant feature of TensorFlow is the support for GPU-acceleration with NVIDIA CUDA
Deep Neural Network library[6]. A large collection of operations can be greatly GPU-accelerated
due to them having exceptional parallel computing capabilities. By offloading tasks which
scales well with parallel computing, the training time of machine learning models can be greatly
reduced. See Figure A.1 for benchmarks.

TensorBoard

TensorFlow has support for logging variables and operations, called events, during sessions to
event files. The content of these files can be visualised by the tool TensorBoard. TensorBoard
can plot events and draw histograms for complex data. Graphs of the models’ structure and
components can also be rendered. TensorBoard is a useful tool for understanding models and for
troubleshooting seemingly incomprehensible behaviour. TensorBoard services hosts the websites
which acts as the interface for navigating different visualisations.

3.2 Project phases

The progress of the project can be divided into four main phases:

11



I. Researching the computer science of machine learning and how to use TensorFlow to
construct machine learning models.

II. Create software to parse and preprocess data.

i) The data variables are to be extracted from comma separated variable files and parsed
accordingly.

ii) Create function for selecting the desired features out of the parsed data.

iii) Create function for extracting labels out of the parsed data.

iv) In order to obtain a memory functionality for the machine learning models, the ability
to introduce additional time deltas, i.e. including features from earlier data samples,
should be created.

III. Construct machine learning models.

i) Constructing neural networks.

ii) Selecting cost function and optimisation functions.

iii) Implement batch normalisation.

IV. Refinement stage.

i) Examine model performance with different amounts of hidden layers and neurons.

ii) Evaluate layer components performance and investigate alternatives.

iii) Implementing regularisation techniques.

iv) Implement TensorBoard to improve troubleshooting.

3.3 Method

The initial part of the project will be to gather and parse data that would later be used in the
machine learning models. The data to be used by the models will not be available at the start of
the project. To work around this simulated data will be used from a pre-made car transmission
model in Simulink.

The parser will be developed in Python and needs to be able to read desired values from CSV-
files. The different values also needs to be grouped into features and labels. This will be achieved
using standard Python libraries and NumPy, a Python library that includes array and matrix
related functions. A basic regression-based supervised learning model will be created using the
simulated data. The model will be created using TensorFlow and programmed in Python.

During the development of the supervised learning model, testing and evaluation will be done
on private computer hardware with support for CUDA acceleration. TensorBoard will serve as
an aid for debugging and evaluating the model.

To explore the different supervised learning tasks two models will be created. The fundamental
parts of both models will be shared but one will be regression-based and the other will be
classification-based. The regression model will require one of the data values to be used as the
label. This label would preferably be dependent upon all other features. The classification model
will require the original data to be manually labelled as either faulty or working. The parser
needs to be modified to use the manually labelled data. During optimisation of the models
different machine learning model elements, such as optimisation functions and cost functions,
will be evaluated.
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When the provided data becomes available the parser and the models would be changed to ac-
commodate the new data. These changes will heavily depend upon the structure and complexity
of the data. The final models will be evaluated with parts of the provided data reserved for
testing. The results of the final models will be compiled into graphs to showcase the abilities of
the models.
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Implementation

This chapter describes the decision and solutions made during the project.

4.1 Simulation data

In order to compensate for the lack of genuine vehicle data during the start of the project,
the initial data used to test constructed parsers and machine learning models was simulated.
Simulations were achieved using the Simulink model Parallel Hybrid Transmission [7].

Functions that simulates the environmental influence of the vehicle, such as wind resistance
and road incline, was kept with the default configuration due to satisfactory standard setup.
Parameters were set to regulate how and when the vehicle accelerates and stops. This was done
to establish a simulation sequence that was longer and more varying.

Signals of the simulation’s electrical system was logged and exported to CSV-files where each
row represents one time sample.

4.2 Data parsers and preprocessors

The content of the CSV-files’ need to be transformed to an array data structure in order to be
used by models constructed with TensorFlow. This was achieved by creating a function that
iterate through each row of the file, splits the comma separated variables and appends them to an
array. (See Appendix B, Figure B.1, for an illustration of the function’s operational principle.)

The ability to select which features to use from the data array is mandatory in order to perform
feature selection. Therefore, the NumPy function delete was utilised for removing unwanted
features from arrays. Figure B.2 shows a typical implementation of NumPy.delete.

Adding features from samples of earlier time deltas to preceding samples gives the machine
learning model a sense of memory of what have happened in the past. This was done with a
function that iterates through all samples of an array and stacks the features of earlier samples
to the current sample. The first samples of an array that have insufficient amounts of previous
samples have to be discarded. See Figure B.3.

The machine learning models in this project benefits from training on small batches of samples
instead of all training data at each training step [8, p.2]. In order to serve batches to machine
learning models, a function that strategically selects parsed data and sends it as a batch was
implemented. See Figure B.4 for a classification batch fetcher and Figure B.5 for a regression
batch fetcher.

14



4.3 Initial construction of the machine learning models

The initial construction of the machine learning models will be discussed in this section. The
choice of initial network structure, performance measurements, optimisers and session environ-
ments will be presented and motivated.

Code samples presented in this section will have the TensorFlow library imported as tf.

4.3.1 Placeholders

In order to pass data through the neural network, so called placeholders are needed. A place-
holder, in the context of TensorFlow, is a variable that will be assigned data at a later stage.
It enables creation of operations and construction of models without requiring the data to be
available. During training and evaluation sessions, placeholders need to be fed with data before
running any operations.

Example of placeholders for samples and labels:

X = t f . p l a c eho ld e r ( dtype=t f . f l o a t32 , name=”SampleValues” )
Y = t f . p l a c eho ld e r ( dtype=t f . f l o a t32 , name=”LabelValues ” )

4.3.2 Forming artificial neural networks

Modelling the network using TensorFlow started with declaring the structure of which the layers
and neurons would take.

Layer substance

The weights and biases of layers consists of variable arrangement in the form of float matrices.
These weight and bias arrays are used by the layer’s propagation functions to adjust neuron
input. The arrays are initially filled with normal distributed random values, to speed up con-
vergence rates.

l a y e r v a r i a b l e s = {
’ we ights ’ : t f . Var iab le ( t f . t runcated normal (

( [ neuron amount prev ious layer , neuron amount th i s l aye r ] ) ) ,
’ b i a s e s ’ : t f . Var iab le ( t f . t runcated normal ( [ neuron amount th i s l aye r ] ) )
}

The weights of the input layer exclusively process the input data, acting as an entry for the features to be inserted.

The hidden and output layers receives input from their preceding layer.

Propagation functions applying weights and biases were implemented using TensorFlow matrix
and arithmetic operators:

weighted input = t f . matmul ( ou tput p r ev i ou s l aye r ,
l a y e r x [ ’ we ights ’ ] )

l ay e r p ropaga t i on = t f . add ( weighted input , l a y e r x [ ’ b i a s e s ’ ] )

The initial activation function for all hidden layers in the neural network was ReLU, which
is considered to be one of the most computation efficient activation function while generating
preferable output [1, p.272]. It was chosen in assumption it was a good activation function to
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establish the initial network with. Later on in the project, different activation functions were
evaluated in comparison to ReLU (see subsection 4.6.2).

Implementation of a ReLU activation function with TensorFlow:

l a y e r a c t i v a t i o n = t f . nn . r e l u ( l ay e r p ropaga t i on )

The output function of each layer at the initial stage of modelling was just the activation
functions output. An example containing the same layer setup as the models used:

# Post l ay e r v a r i a b l e s i n i t i a l i s a t i o n
# Layer 5
we i gh t ed input l 5 = t f . matmul ( l aye r 4 output ,

l a y e r 5 [ ’ weights ’ ] )
l ay e r 5 p ropaga t i on = t f . add ( we ighted input l5 , l a y e r 5 [ ’ b i a s e s ’ ] )
l a y e r 5 a c t i v a t i o n = t f . nn . r e l u ( l ay e r p ropaga t i on )
l ay e r 5 ou tpu t = l a y e r 5 a c t i v a t i o n

# Layer 6
we i gh t ed input l 6 = t f . matmul ( l aye r 5 output ,

l a y e r 6 [ ’ weights ’ ] )
l ay e r 6 p ropaga t i on = t f . add ( we ighted input l6 , l a y e r 6 [ ’ b i a s e s ’ ] )
l a y e r 6 a c t i v a t i o n = t f . nn . r e l u ( l ay e r 6 p ropaga t i on )
l ay e r 6 ou tpu t = l a y e r 6 a c t i v a t i o n

Note that during network tuning described in subsection 4.6.6, a method that alters the output function is used.

Neuron and layer quantity

At the initial stage of the neural network construction phase, there was no concrete strategy
for finding the optimal numbers of hidden layers and neurons. Therefore several networks with
varying amounts of hidden layers and neurons were to be created, in order to evaluate and select
the optimal layer set up.

Regardless of hidden layer and neuron quantity, all networks adhered to the same interconnection
structure from input layer to the output layer. The process of altering the amount of hidden
layers and neurons were quite painless due to layer creation being partially modular. The size
of input and output layers remained the same throughout different networks.

Output layer for regression and classification

The model arrangement chosen for performing regression tasks consist of predicting one feature.
In order for the network’s output to be one single value, there is only one neuron in the output
layer.

Classification tasks involve predicting which classes samples are a subset of. The method im-
plemented to identify classes involved the network’s outputs being as many as the amount of
classes. Each output corresponds to the sample’s probability to belong to a certain class.

Batch normalisation

The features of data used to train and evaluate models will have varying value ranges of which
they can assume. This causes problems when features with small value ranges are neglected, in
favour of features with large ranges, by the machine learning models. To prevent this, batches
passed to the network will encounter a normalisation layer.
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A simplified example of a batch normalisation implementation:

s c a l e = t f . Var iab le ( t f . ones ( [ node amount input layer ] ) )
beta = t f . Var iab le ( t f . z e r o s ( [ node amount input layer ] ) )
batch mean , batch var = t f . nn . moments ( i nput l aye r , [ 0 ] , name=’moments ’ )
batch norm = t f . nn . batch norma l i za t i on ( input l aye r , batch mean , batch var

, beta , s ca l e , 1e−3)

we ighted input = t f . matmul ( batch norm , l a y e r 1 [ ’ weights ’ ] )
l ay e r 1 p ropaga t i on = t f . add ( weighted input , l a y e r 1 [ ’ b i a s e s ’ ] )
l a y e r 1 a c t i v a t i o n = t f . nn . r e l u ( l ay e r p ropaga t i on )

4.3.3 Selecting training components

The selection of training components can alter the models’ learning rapidness and quality.

Performance measuring

The models constructed during the project uses cost functions instead of utility functions as
performance measurements. This decision was made due to TensorFlow’s optimisers computing
gradients based on costs (synonymy called loss in reference)[9, Optimizers section].

Selecting a cost function that accurately depicts distances between predictions and desired out-
comes can have a significant impact on the entire models’ performance. Due to regression and
classification tasks involving dissimilar desired outcomes, the regression and classification models
need to have separate types of cost functions.

Cost functions for classification

Classification tasks involve predicting which class or classes a sample can be classified as. The
cost function of a classification model needs to receive input from several neurons of the networks
output layer and compare each neuron’s emission to its desired value. The classification models
created during this project trains on sets of samples, creating a need for having a cost function
that would equitably determine the losses of all predictions made.

The cost for each sample needs to be calculated based on how similar its output is to its
label. The function chosen to perform this was softmax cross entropy with logits, a built in
TensorFlow operation that measures error probability in discrete classification. The function
computes softmax cross entropy between predictions (in the form of log probabilities) and labels
(in the form of a probability distribution).

The output of this function is a one dimensional tensor holding, one entry for every sample’s
calculated cost. In order to quantify the total cost of the tensor’s content, the TensorFlow
function reduce mean is used to compute the mean of all elements of the tensor. (See Appendix,
Figure B.6, for a simplified example illustrating the general methodology of this solution.)

Mean reducing the softmax cross entropy of all samples results in a good performance represen-
tation of the complete set of samples inserted. One drawback of using softmax cross entropy is
that all classes are mutually exclusive. In essence, one sample must belong to exactly one class.
The usage of another cost measuring strategy will be discussed in subsection 4.6.5.
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Cost functions for regression

The regression task addressed in this project concerns the prediction of a single float value for
each sample. The function chosen for measuring the total cost of a batch was root mean square
error, full equation defined at section 2.7. (See Appendix, Figure B.7, for an example of a simple
root mean squared error implementation.)

Optimisation algorithms

The initial optimiser for the models was TensorFlow’s GradientDescentOptimizer, which is a
optimiser that performs a gradient descent algorithm to minimise the cost of the network. The
gradient descent optimiser resulted in satisfactory end result but converged slowly, requiring a
lot of training steps to reach desirable results.

The gradient descent optimiser was only used during a brief period of the project, being replaced
by the TensorFlow’s AdamOptimizer. Implementing an adaptive moment estimation algorithm
resulted in remarkably improved converge rates and costs for the models.
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4.4 Session procedures

In order to perform TensorFlow operations, session objects needs to be created. A session
encapsulate the environment of which all TensorFlow operations are executed in. The structure
of two types of sessions, one for training and one for evaluation, will be presented and motivated
in this section.

4.4.1 Training session procedures

In order to train the created models, a session containing training procedures needs to be de-
clared.

Fundamental session components for training

The instructions for conducting the training are executed inside a session object. The instruc-
tions required to perform a single training step are:

• Initialising all global variables.

• Fetching the data to be used in the training step.

• Selecting the operations to be performed. (The session will automatically execute any
operations that are needed for performing the selected operation.)

• Feeding the training data and other step specific variables to the placeholders.

The instructions for performing a single training step realised in code:

{Model p l a ceho lde r s , v a r i a b l e s and ope ra t i on s are dec l a r ed in forehand }
with t f . S e s s i on ( ) as s e s s :

s e s s . run ( t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( ) )

f e a t u r e s e t , l a b e l s = getNextBatch ( )
s e s s . run ( [ opt imize r ] , f e e d d i c t = {X: f e a t u r e s e t , Y: l a b e l s })

Scheduling batches and epochs

Preforming only one step of training would not give any useful result. Several thousands of
training steps are needed to render fruitful results. A series of procedures were implemented for
iterating through batches of training data. In order to train on all batches of data available, a
loop for iterating through all batches is implemented. New batch data is fetched and fed to the
placeholders at each iteration, along with running the training operations.

The instructions for performing several training steps on all batches, realised in code:

{ I n s i d e the s e s s i o n }
f o r batchnr in range ( i n t ( d a t a s i z e / ba t ch s i z e ) ) :

f e a t u r e s e t , l a b e l s = getNextBatch ( )
{Run t r a i n i n g ope ra t i on s }

Generally, training once on the complete set of training data is insufficient. The process of
training on all batches needs to be repeated a number of times. An epoch is a complete training
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on all available data set aside for training, equivalent to running the ”batch loop” once. A loop
for repeating the ”batch loop” was implemented to run several epochs.

The instructions for performing several epochs, realised in code:

{ I n s i d e the s e s s i o n }
f o r epoch in range ( t r a i n i ng epo ch s ) :

f o r batchnr in range ( i n t ( d a t a s i z e / ba t ch s i z e ) ) :
f e a t u r e s e t , l a b e l s = getNextBatch ( )
{Run t r a i n i n g ope ra t i on s }

Providing feedback through the CLI

The Python program is executed inside a CLI, in which the program can print feedback to
the user. Receiving useful information during training session, such as the number of epochs
remaining and summed step costs for epochs, is a useful debugging feature that can indicate the
training progress of the models. If unwanted model behaviour is observed, the training can be
manually preempted saving time that would be spent on fruitless computation.

Print command added to the end of the epoch loop:

pr in t ( ”Epoch : ” , epoch , ” done out o f : ” , t r a in ing epochs ,
”\nEpoch co s t : ” , e po ch l o s s )

Saving the model

Training a model can take several hours, making it impractical having to retrain the model
whenever the model is to be practically used. This was the reasoning for implementing training
session preservation, making it possible to resume sessions for further evaluation or prediction.

To achieve this, the TensorFlow class Saver was implemented. Saver contains operations for
saving and restoring model variables. The implementation was straightforward, creating a saver
object inside the model and calling it inside the session when the model is to be saved.

Saving initialisation added to a session:

{Model p l a ceho lde r s , v a r i a b l e s and ope ra t i on s are dec l a r ed in forehand }

saver = t f . t r a i n . Saver ( )

with t f . S e s s i on ( ) as s e s s :
{ Se s s i on i n i t i a l i s e d }
{Training epochs are executed }
saver . save ( s e s s , save path )

4.4.2 Evaluation session procedures

The models that have been successfully trained have presumably a acceptable capability to
predict on samples from the training data. To test how well the model have generalised to its
task, an evaluation session was created. The session introduces new data to the model and
presents the prediction accuracy.
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Restoring model variables

To restore the network and other model variables saved from the training session, an identical
variable setup as the training session needs to be declared for the evaluation session. This was
solved by using the same model as the training session.

The TensorFlow class Saver was used for restoring the variables saved prior evaluation.

The process of restoring sessions expressed in code:

{The same p laceho lde r s , v a r i a b l e s and ope ra t i on s as t r a i n i n g model
are dec l a r ed in forehand }

saver = t f . t r a i n . Saver ( )

with t f . S e s s i on ( ) as s e s s :
t f . t r a i n . Saver ( ) . r e s t o r e ( s e s s , ” save path ” )

Defining accuracy operations

To better visualise the results emitted from the network, prediction and accuracy operations were
defined. These operations are called inside the evaluation session and returns values quantifying
the success of predicting test samples.

The accuracy operations for classification models using softmax cross entropy:

c o r r e c t = t f . equal ( t f . argmax ( network output , 1) , Y)
accuracy = t f . reduce mean ( t f . c a s t ( co r r e c t , ’ f l o a t ’ ) )

The correct operation takes the network output and compares it to the desired outputs, returning
a list of Boolean data types having one ”correct or incorrect” value for every sample tested. The
accuracy function returns a percentage of how many samples was correctly predicted.

The accuracy operations for regression models:

d i f f e r e n c e = t f . abs ( t f . subt rac t (Y, network output ) ) )
accuracy = t f . reduce mean ( d i f f e r e n c e )

The difference operation returns a list of absolute differences between each samples predicted
output and desired output. The accuracy operation return the mean for all differences.
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Evaluation procedure

The remaining step in evaluation is to fetch the training data and executing the operations
needed for evaluating the models and printing the results.

A session for evaluating the restored model:

{The same p laceho lde r s , v a r i a b l e s and ope ra t i on s
are dec l a r ed in forehand }

with t f . S e s s i on ( ) as s e s s :
t f . t r a i n . Saver ( ) . r e s t o r e ( s e s s , ” save path ” )
f e a t u r e s e t , l a b e l s = getTestData ( )
d i f f , acc = s e s s . run ( [ d i f f e r e n c e , accuracy ] ,

f e e d d i c t = {X: f e a t u r e s e t , Y: l a b e l s })

p r i n t ( ”Eval s e s s i o n accuracy : ” , acc ,
”\ nLi s t o f samples ’ d i f f e r e n c e s :\n” , d i f f )
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4.5 Acquiring vehicle data

This section explains the process of gathering data and the structure of the acquired data.

4.5.1 RC car

The main data used in this project was gathered using a RC car. The RC car was provided,
setup and operated by Benjamin Vedder. Vedder had both developed the code used to control
the car and assembled the car itself.

The car was controlled by autopilot and used RTK (Real Time Kinematic) GPS in addition
to other sensors to determine the direction and speed of the car. The routes to be driven
were mapped out by manually driving the car and logging its positions. The car was equipped
with an IMU (Internal Measurement Unit), containing an accelerometer, a gyroscope and a
magnetometer. The IMU was a part of the car’s controller board. It was also possible to log
the current of the motor and both current and voltage of the battery. The rotational speed of
the motor could also be measured with a tachometer.

4.5.2 Collecting the data

The RC car was driven on a parking lot with a relatively even surface. The routes had slight
variations between runs. The courses was setup to include a few accelerations and deceleration
as well as loose and sharp turns. This was done to hopefully better highlight the differences
between the normal runs and the runs with faults that was later added. The courses were quite
short due to the limited amount of space. They were repeated to achieve more log data.

Faults were introduced to the car with the criteria of being detectable by at least one of the
car’s sensors. The first fault served to simulate a possible suspension fault. This was done by
loosening the suspension of a front wheel. For the second fault, a resistance was soldered on in
series with the battery of the car. This was to emulate an electrical error, such as deterioration
of wires or connectors.

4.5.3 Structure of the log files

The log files contained 28 types of values and were stored as CSV-files. (See Appendix A,
Figure A.2, for a list of all of the value types.) Samples were logged 20 times a second and the
resulting files contained approximately 30 000 samples. These were split into files without faults
and separate files for each of the different faults.
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4.6 Tuning the machine learning models

This section presents the different techniques that were utilised to fine tune and optimise the
models.

4.6.1 TensorBoard

Tracking different model variables was seen as an useful ability for debugging purposes. To
achieve this, the visualisation tool TensorBoard was implemented. To use TensorBoard, variable
logging during TensorFlow session were needed to be configured. Sessions with logging activated
generates log files readable by TensorBoard.

Running TensorBoard was near effortless, with the only configuration needed was to set the
path of log file to be read. The plots drawn by TensorBoard was useful for detecting undesirable
model behaviour. Figure 4.1 shows a TensorBoard plot rendering the amount of cost over
training steps.

Figure 4.1: TensorBoard plotting a session with 1000 of epochs where x: training steps | y: cost

4.6.2 Evaluating activation functions

The choice of ReLU as activation function for both types of models was based on recommen-
dations from literature and web blogs. The group did not know by own experience if there are
other solutions that should be implemented in its stead. In order to distinguish ReLU as the
optimal choice, several tests with different alternatives was performed.

Both regression and classification models performed indistinguishably when using ELU compared
to ReLU. Knowing ELU involve more computation, due to logarithmic calculations on negative
input, ELU was discarded as a potential replacement.

The classification models performed significantly worse when switching to TanH and logistic
activation functions, converging much slower and reaching worse predictions. The regression
model had about the same level of results as using ReLU. In addition the TanH and logistic ac-
tivation functions are also more computation heavy than ReLU, making the activation functions
not viable alternatives.

This evaluation process settled the choice of activation function for both models to remain ReLU.

4.6.3 Feature engineering

The Feature engineering process was an important step of the project. The collected vehicle data
contained an abundance of features that could potentially interfere with the models’ ability to
predict, making feature selection a crucial step to carry out. Features involving GPS coordinates
and timestamps was removed due to them potentially enabling cheating, E.g. the classification
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model would detect class patterns based on position and time of testing.

In the case of classification, the model seemed to base its predictions heavily on the tachome-
ter and calculated speed features. The consequence observed from this was incorrect pattern
detection, making predictions in a peculiarly strange manner.

The predictions between the resistance and suspension fault classes were noticeably vague, mak-
ing correct distinctions between the classes just 50 to 60 percent of the time. These features
was removed at the last stages of the project where most model tuning was finished, but had a
larger effect on the results than the all other tuning procedures. Training accuracy for all class
predictions was increased from sub 60 percent to post 85 percent.

4.6.4 Initialisation methods for weights

An unwanted initialisation behaviour, in the way models converged, was observed in the CLI
output printed by the models. During training, the model started to find a pattern in the data
at immensely different rates. The number of epochs needed for reaching an accuracy over 50
percent could differ between 300 epochs and over 1000 epochs. This behaviour was examined
and one potential cause was inadequate weight initiation.

All weights were initialised with normal distributed random values, with the values bound be-
tween the neuron amount of the previous layer and neuron amount of the current layer, using
the TensorFlow function truncated normal.

Another method for initialising weights called Xavier initialisation, designed to maintain the
gradient scale the same throughout all sets of weights in the network, was tested. Tensor-
Flow has a built-in function for performing Xavier initialisation named xavier initializer in the
contrib.layers module. [10] [1, p.277,278]

The final initialisation solution is as follows:

w in i t = t f . c on t r ib . l a y e r s . x a v i e r i n i t i a l i z e r ( )
l a y e r v a r i a b l e s = {

’ we ights ’ : t f . g e t v a r i a b l e ( shape=[ neuron amount prev ious layer ,
neuron amount th i s l aye r ] , i n i t i a l i z e r=w in i t , dtype=t f . f l o a t 3 2 ) ,
’ b i a s e s ’ : . . . . . { { unchanged } } . . . . . }

Using this, the rate of which models started to find patterns was drastically improved. It
decreased the amount of epochs needed to reach 50 percent training accuracy, to a range between
6 and 20 epochs.

4.6.5 Changing performance measurements

Sigmoid cross entropy for classification

The major drawback of softmax cross entropy is that it restricts the model to predict exactly
one class for every sample. Another cross entropy function available in the TensorFlow library
is sigmoid cross entropy with logits. This function calculates the sigmoid cross entropy based on
predictions and labels, and do not restrict predictions to be of one class.

Sigmoid cross entropy also enables predictions to be of no class, which means that samples that
are fault free can be defined by having no assigned class. This is considered a perk of sigmoid
cross entropy due to enabling a more natural format for classes where only faults are marked as
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classes, one output neuron represent the probability of one specific fault.

Mean absolute error

The predictions emitted from the regression model was of poor quality after initial construction.
One potential fault of the regression model was the choice of cost function, root mean square
error. Root mean square error respond harshly to large differences, exponentially increasing the
cost impact of the error. This cost function was deemed poor for the models to use. A cost
function that treats all differences equally would be more preferable.

Mean absolute error, defined in section 2.7, fulfil our new criteria for regression cost functions.
Mean square error was implemented and tested to see if performance was improved:

d i f f = t f . abs ( t f . subt rac t ( des i r ed output , network output ) )
co s t = t f . reduce mean ( d i f f )

Sessions configured with very large amounts of epochs with different input batch sizes and
activation function setups was performed, comparing the effectiveness between root mean square
error versus mean absolute error. No real benefit was observed. The regression model had not
improved its prediction capabilities in a beneficial way.

4.6.6 Reducing overfitting

The classification model made better generalisations than expected on the training data after
extensive training sessions, making correct predictions a large majority of the time. However, the
generalisation to the testing data was poor having the majority of its predictions incorrect. This
phenomenon was quite evidently identified as overfitting. The model had gotten so complex that
it was accounting noise and inconsistencies in the training data to its generalisation, instead of
just the fundamental relationships [1, p.26]. The following subsections describes three methods
that were evaluated to reduce overfitting.

Adding neuron-dropout to layers

Dropout is a method for reducing overfitting by randomly dropping connections between neu-
rons. This restrains the neurons of a network from co-adapting excessively. [11]

On large network, with ten hidden layers or more which overfitted to an substantial degree,
dropout significantly improved the accuracy of evaluations. The dropout did not have as desir-
able effect on smaller networks, such as the shrunk network solution in the next sub-subsection.

Reducing the amount of hidden layers

A more primitive way to reduce model complexity is to trim the amount of hidden layers in the
network of the model.

By reducing the amount of hidden layers from ten to five layers, the testing accuracy went from
sub 40 percent to past 60 percent in observed training sessions for classification. This strategy
seemed to render the same results as dropout while reducing the amount of computation required
at each training step, due to having a decreased amount of neuron activations to calculate.
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Early quitting

Another seemingly primitive method for reducing complexity is early quitting. The number of
epochs executed are reduced to a point where the model yet has not perceived the data noise and
inconsistencies. Early quitting had a significant impact on testing performance on the models
with large networks. The performance of the ten hidden layer model, mentioned in the sub-
subsection above, was increased roughly in the same proportion as reducing the hidden layer
amount to five.

But finding the amount of epochs optimal for testing were tedious. Sessions running identical
models and configurations can have varying rates of which it starts to converge and ultimately
overfitting, depending on weight and bias initialisation of the network. The varying points of
which the model starts overfitting made it difficult to find the optimal point of which the model
is moderately trained.

Using the early quitting method on a smaller and well balanced network resulted in underfitting,
the model could not find any fruitful relationships before being preempted. The early quitting
method was discarded in favour of reducing the amount of hidden layers due to the ease of
configuration.
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Result

5.1 Parser

Two parsers have successfully been constructed. The parsers have functions capable of converting
CSV-files to data structures usable by the models. The parsers can also package training data
in batches for model training and deliver testing data.

5.2 Classification model

The final classification model produced during this project is able to find patterns in the vehicle
data and make competent predictions. The optimal model was configured with five hidden
layers, sigmoid cross entropy cost function and no dropout. A representation of the model’s
accuracy can be examined in Figure 5.1.

Figure 5.1: The classification model’s prediction accuracy over 7 different training runs, each
trained with 200 epochs. The training accuracy staples shows the model’s prediction
capabilities on the complete set of training data. The testing accuracy staples show
the prediction accuracy on data reserved for evaluation, data which the model has
not trained on.
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The model render stable and accurate results throughout the training and evaluations. At no
observed circumstances has the model’s testing accuracy dipped under 85%.

Since the classification model predicts the status of each sample, it is relatively easy to find
which samples are faulty. The percentage of samples deemed faulty can be used to analyse the
likeliness of a vehicle having faults.

5.3 Regression model

The final regression model was not able to render any results adequate for analytic usage. The
predictions made by the model resembled a mean value of all desired values instead of an active
prediction for each sample.
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Discussion and conclusion

This chapter discusses the project’s results, model construction and the potential of using su-
pervised machine learning for real world application.

6.1 Result assessment

The classification model could potentially preform better with further optimisation but the
resulting accuracy from the model did reach an acceptable level. The model still has some
generalisation issues with test data which was not completely resolved. This could be the reason
behind the testing accuracy being a bit lower than the training accuracy. A higher training
accuracy would be hard to reach due to some data being to similar for an accurate classification.
An example of this is when the vehicle is stationary. The uncertainty of certain parts of the
data could explain the variance in accuracy.

The regression model was not able to make any proper predictions regardless of layer and neuron
counts. The variables estimated to be the most achievable as labels was the tachometer and
motor current. They were seemingly depended on other variables, but not to a degree which
our model could detect.

6.2 Potential real world application

A similar model to the classification model created in this project could work using data from
a real world car. The created model is made for the data used in this project and would most
likely not work optimally, or not at all, with different data. Real world data might improve the
model’s capability. Assuming real world cars’ data contains a larger amount of sensor values
usable as features, more faults could potentially be correctly classified. One issue might be that
adding more types of faults would require substantially more data for each fault during training.
Another issue would be that all faults needs to be manually labelled appropriately. This could
potentially become easier if the data is first analysed with a regression model, to find which
features differ from the expected value.

A regression model using real world data would not need as much preparation as the classification
model. This is because the regression model does not require manual additions of labels nor any
faulty data during training. A regression model could potentially be an aid for identifying the
cause of faults in vehicles.

6.3 Using supervised machine learning for
software life cycle management

The prediction capabilities demonstrated by the classification model shows that distinctions
between faults can be made quite clearly. Real world implementations, with models more refined
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than ours, should end up with similar or even better results in its ability to establish data
patterns.

We believe that it is possible to use supervised machine learning as an helpful tool during the
testing stages of a car’s software life cycle. With the extended knowledge provided by supervised
machine learning models, the vehicle industry could improve the management capabilities of the
software development phases past testing. By having more information about the faults, better
planning can be made to resolve issues.

Three examples of useful knowledge for software life cycle management that supervised learning
could provide are:

• Using classification to find out if problems experienced resemble any of the faults the model
has been trained on.

• Using regression to find how faults manifests throughout the features of a car. For example:
Engine cooling malfunction leads to a specific set of features to increase notably.

• Using regression to find if and how faults happen in conjunction. For example: The battery
outputs low voltage, which leads to several microcontrollers to malfunction.

6.4 Additional discussion

It was difficult for us to learn about machine learning and the tool TensorFlow, having no
practical knowledge about machine learning at the start, during such a short period of time.
Due to uncertainty about how much time was required for us to construct models, some choices
in the project was rushed and not optimal. Correcting these missteps ended up taking more
time than it would be to do them sufficiently in the first place.

Additionally there were small amounts of literature about TensorFlow and recent methods of
machine learning. Even web forums like Stackoverflow lacked the answers for many questions we
had during the project. The book Hands-On Machine Learning with Scikit-Learn & TensorFlow
was a great step into machine learning and TensorFlow. It had a good content structure,
pedagogical content for people unfamiliar with machine learning and was thorough describing
various recommended machine learning methods.

Fortunately our mentors at Semcon was really helpful and supportive, giving us expert feedback
on our work and proposing alternative methods for improving our results.

6.5 Critical discussion

Many development phases were rushed leaving some decisions not being thoroughly evaluated,
leading to time spent on problem solving sub-optimal implementations. The missteps which
cost us the most time and effort was:

• Overlooking features during feature selection.

• Not investigating enough on cost functions for regression.

• Using oversized networks for the models.

• Choosing poor weight initialisation methods.
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The missteps had such a large impact that both models did not produce any results that even
resembled correct predictions. In addition, the missteps listed were not discovered until the
later stages of the project, costing us precious time that could have been spent on productive
development. One solution which could have been better implemented, if its development phase
was not rushed, was reduction of model overfitting. Further attempts to reduce model overfitting
could have improved the evaluation accuracy of the classification model.

The labels used by the regression model did not have strong enough connections to other features.
Making it hard to recreate the desired output. If better features was extracted from the test
data, maybe the regression model could find a pattern to use when predicting its output.

6.6 Conclusion

The goals set up for the project has been completed:

• Two parsers have been made, customised for parsing and feeding data with regression
labels and with classification labels.

• Supervised learning models have been created, and optimised to the extent we could, for
the vehicle data available.

• The models’ prediction ability have been evaluated.

By accomplishing the goals set up and examining the results, we achieved our purpose of inves-
tigating supervised learning as a tool for software life cycle management.

Supervised learning was reckoned to be a useful tool, for collecting more information, to be used
when managing software life cycles.
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Future work

A potential path to continue this project, would be to try to create a working regression model.
This would most likely require collection of new data. This data should contain values that have
a dependence on as many features as possible, values that would later be used as a label. An
example of a possible label is the total power leaving the vehicle.

If a similar project would be done in the future then TensorFlow would be recommended to take
into consideration. It allows for complex machine learning models to be created using higher level
code, reducing both coding time and code length. This could be beneficial for less experienced
developers, but become more of a hindrance for others. The data used is also important. A lack
of data, or poorly selected features, could make predictions hard or even impossible to make.
The possibilities of machine learning is limited by the data used.
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Appendix A

Cifar 10 image recognition training performance:

CPU: Intel i7-4770k @stock | GPU: NVIDIA 980ti @stock

Oscar’s Workstation(CUDA) : 1300− 1600samples/sec

Oscar’s Workstation(CPU) : 240− 260samples/sec

Figure A.1: These are benchmarks demonstrating the power of GPU-acceleration
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Value types in log data

Variable name Description

time Timestamp

temp mos Temperature

current in Battery current

current motor Motor current

v in Battery voltage

px Car x position

py Car y position

lx GPS x position

ly GPS y position

lz GPS z position

ix Initial GPS ENU x

iy Initial GPS ENU y

iz Initial GPS ENU z

speed Speed

roll Roll

pitch Pitch

yaw Yaw

accel[0] Accelerometer1

accel[1] Accelerometer2

accel[2] Accelerometer3

gyro[0] Gyroscope1

gyro[1] Gyroscope2

gyro[2] Gyroscope3

mag[0] Magnetometer1

mag[1] Magnetometer2

mag[2] Magnetometer3

tachometer Tachometer

steering angle Commanded steering angle

Figure A.2: List of value types in the log data of the RC car
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Figure A.3: Picture of the RC car.

Figure A.4: Picture of the RC car with resistance added.
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Appendix B

This appendix contains additional code

array = 2d−array
f o r row in CSVfi le :

{ s p l i t the row o f comma separated va lue s to a l i s t }
{append the l i s t to the array }

Figure B.1: This is psedu code for parsing CSV-files containing machine learning data.

newArray = numpy . d e l e t e ( oldArray , [ unwanted columns ] , ax i s=1)

# ”unwanted columns” i s an array o f i n t marking columns to be removed
# ” ax i s ” marks which ax i s to remove e lements along
# ax i s i s s e t to 1 f o r column based removal

Figure B.2: Demonstration of numpy.delete function.

newArray = [ ]
f o r sample in range o f o ldArray :

new sample = [ ]
f o r d e l t a in range ( deltaAmount ) :
{ j o i n time d e l t a s to new sample}

{append new sample to newArray}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Example o f adding one time de l t a :
Before After

[ [ a , b , c ] , [ [ d , e , f , a , b , c ] ,
[ d , e , f ] , [ g , h , i , d , e , f ] ,
[ g , h , i ] , [ j , k , l , g , h , i ] ]
[ j , k , l ] ]

Figure B.3: A function that adds so called ”time deltas” to an array.
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de f getNextBatch ( ) :
g l oba l po in t e r1 # Pointer f o r data o f type 1
g l oba l po in t e r2 # Pointer f o r data o f type 2
g l oba l po in t e r3 # Pointer f o r data o f type 3

X, Y = arrays ac t ing as p l a c eho l d e r s batch data .

f o r in range ( batchLoop ) :
po in t e r1 = po in te r1 % ( t r a i n a r r a y 1 l e n−s e c t i o nS i z e )
X1 = getData ( t ra in data1 , po inter1 , po in t e r1+s e c t i o nS i z e )
Y1 = getData ( t r a i n l a b e l s 1 , po inter1 , po in t e r1+s e c t i o nS i z e )
po in t e r1 += s e c t i o nS i z e

X = numpy . vstack ( (X, X1) )
Y = numpy . vstack ( (Y, Y1) )

po in t e r2 = po in te r2 % ( t r a i n a r r a y 2 l e n−s e c t i o nS i z e )
X1 = getData ( t ra in data2 , po inter2 , po in t e r2+s e c t i o nS i z e )
Y1 = getData ( t r a i n l a b e l s 2 , po inter2 , po in t e r2+s e c t i o nS i z e )
po in t e r2 += s e c t i o nS i z e

X = numpy . vstack ( (X, X1) )
Y = numpy . vstack ( (Y, Y1) )

po in t e r3 = po in te r3 % ( t r a i n a r r a y 3 l e n−s e c t i o nS i z e )
X1 = getData ( t ra in data3 , po inter3 , po in t e r3+s e c t i o nS i z e )
Y1 = getData ( t r a i n l a b e l s 3 , po inter3 , po in t e r3+s e c t i o nS i z e )
po in t e r3 += s e c t i o nS i z e

X = numpy . vstack ( (X, X1) )
Y = numpy . vstack ( (Y, Y1) )

re turn X, Y

Figure B.4: This is a batch fetcher for classification models with 3 sets of data.

de f getNextBatch ( ) :
g l oba l po in t e r1 # Pointer f o r data o f type 1

po in te r1 = po in te r1 % ( t r a i n a r r a y 1 l e n−batchS ize )
X = getData ( t ra in data1 , po inter1 , po in t e r1+batchS ize )
Y = getData ( t r a i n l a b e l s 1 , po inter1 , po in t e r1+batchS ize )
po in t e r1 += batchS ize

re turn X, Y

Figure B.5: This is a batch fetcher for regression models, only one set of data is used.
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de s i r ed output = [ [ 1 , 0 , 0 ] , # Sample 1
[ 0 , 1 , 0 ] , # Sample 2
[ 0 , 0 , 1 ] , # Sample 3
[ 0 , 1 , 0 ] , # Sample 4
[ 1 , 0 , 0 ] ] # Sample 5

network output = [ [ 1 . 5 , 0 . 1 , 0 . 3 ] , # Sample 1 , good p r ed i c t i on
[ 0 . 1 , 2 . 0 , 0 . 4 ] , # Sample 2 , good p r ed i c t i o n
[ 0 . 2 , 1 . 1 , 0 . 3 ] , # Sample 3 , poor p r ed i c t i o n
[ 0 . 1 , 0 . 3 , 2 . 5 ] , # Sample 4 , r e a l l y poor p r ed i c t i on
[ 3 . 0 , 0 . 5 , 0 . 3 ] ] # Sample 5 , r e a l l y good p r ed i c t i on

{ I n s i d e a t f . S e s s i on ob j e c t }
d i f f = t f . nn . s o f tmax c r o s s e n t r opy w i t h l o g i t s ( l o g i t s=network output ,

l a b e l s=de s i r ed output )
co s t = t f . reduce mean ( d i f f )

p r i n t ( d i f f ) −−> [ 0 .43682885 # Sample 1 , low cos t
0 .30118927 # Sample 2 , low cos t
1 .41836905 # Sample 3 , high co s t
2 .38358831 # Sample 4 , r e a l l y high co s t
0 . 1 3914485 ] ] # Sample 5 , r e a l l y low cos t

p r i n t ( co s t ) −−> 0.935824

Figure B.6: A demonstration of one classification model’s cost function, predicting on 3 possible
classes and a batch of 5 samples has been passed through the network.

de s i r ed output = [ 10 . 0 , # Sample 1
20 . 0 , # Sample 2
30 . 0 , # Sample 3
20 . 0 , # Sample 4
1 0 . 0 ] # Sample 5

network output = [ 11 . 0 , # Sample 1
18 . 0 , # Sample 2
33 . 0 , # Sample 3
20 . 0 , # Sample 4
3 . 0 ] # Sample 5

{ I n s i d e a t f . S e s s i on ob j e c t }
d i f f = t f . square ( t f . subt rac t ( des i r ed output , network output ) )
co s t = t f . s q r t ( t f . reduce mean ( d i f f ) )

p r i n t ( d i f f ) −−> [ 1 . 0 # Sample 1 , low cos t
4 . 0 # Sample 2 , mediocre co s t
9 . 0 # Sample 3 , high co s t
0 . 0 # Sample 4 , r e a l l y low cos t
4 9 . 0 ] # Sample 5 , r e a l l y high co s t

p r i n t ( co s t ) −−> 3.54965

Figure B.7: A demonstration of a root mean squared error function, predicting 1 variable and
a batch of 5 samples has been passed through the network.
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