CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Model-based Security Testing
in Automotive Industry

Master’s thesis in Computer Systems and Networks

MARTIN KASTEBO, VICTOR NORDH

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2017

MASTER’S THESIS 2017

Model-based Security Testing
in Automotive Industry

MARTIN KASTEBO
VICTOR NORDH

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Model-based Security Testing
in Automotive Industry
MARTIN KASTEBO
VICTOR NORDH

© MARTIN KASTEBO, VICTOR NORDH, 2017.

Industrial Supervisors: Jorgen Borg, Henrik Broberg, Volvo Cars Corporation
Supervisor: Riccardo Scandariato, Dept. Computer Science and Engineering
Examiner: Francisco Gomes, Dept. Computer Science and Engineering

Master’s Thesis 2017

Department of Computer Science and Engineering

Computer Systems and Networks

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in KTEX
Gothenburg, Sweden 2017

iv

Model-based Security Testing

in Automotive Industry

MARTIN KASTEBO, VICTOR NORDH

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

The automotive industry is entering a new era as the cars becomes more complex
and connected to the Internet. Today a modern car consist of over 100 ECUs and
has an Internet connection, which makes the vehicle exposed for malicious attacks.
Therefore, the importance of being confident that the system is behaving as intended
increases.

This thesis survey the state-of-the-art in the model-based security testing (MBST)
field and investigates the possibility to apply a MBST approach within the auto-
motive industry, more specific at Volvo Cars Corporation (VCC). The focus is the
gateway firewall in the infotainment subsystem which is the protection for incoming
and outgoing traffic.

It is concluded that it is infeasible at this point to make use of an existing MBST
approach. An evaluation of model-based testing tools is conducted which can be used
for testing functionality of security mechanisms. However, no model-based testing
tool is appropriate at Volvo Cars and a new tool needs to be implemented. The
final conclusion is that it is possible to make use of a model-based security testing
approach with the new AFT tool, which automatically verifies whether requirements
are fulfilled or not. The result is that 10 out of 11 existing requirements at VCC
can be covered by the MBST approach.

Keywords: MBST, firewall, testing, automotive

Acknowledgements

We would like to thank our supervisors; Jorgen Borg and Henrik Broberg at Volvo
Cars and Riccardo Scandariato at Chalmers University of Technology for supporting
us along this thesis. Lastly, we would also like to thanks Francisco Gomes for being
engaged in our thesis and being our examinator.

Martin Kastebo, Victor Nordh, Gothenburg, May 2017

vii

Contents

List of Figures
List of Tables
Terminology and Acronyms

1 Introduction
1.1 Aim . . o,
1.2 Contribution

2 Background

2.1 Security Testing
2.1.1 Approaches
2.1.2 Security Testing in Firewalls
2.2 Model-based Testing L
2.2.1 Model Specification 0L
2.2.2 Test Generation
2.2.3 Test Execution,
224 Advantages
2.3 Model-based Security Testing
2.3.1 Filter Criteria
2.3.2 Evidence Criteria L
2.4 Related Work
3 Methodology
3.1 Ewvaluation of Tools
3.2 Approach
3.2.1 C(Classification of our Approach
3.2.2 Architecture

4 Implementation

4.1 Input Model
4.2 AFT . . e
4.2.1 Incoming Traffic.
4.2.2 Outgoing Traffic,
4.3 Report generation oL
4.4 An Hlustration of AFT in Action

iX

xi

xiii

XV

19
20
25
25
26

CONTENTS CONTENTS

5 Evaluation 45
5.1 Results. 45
5.1.1 Input Model 45

5.1.2 Generated Report oo 46

5.2 Analysis 47
521 Results. 48

5.2.2 Evidence Criteria 49

6 Discussion 51
6.1 MBST vs Penetration Testing 51
6.2 MBT tools for a MBST approach 51
6.3 AFT 52
6.4 Requirements 53
6.5 CVEdatabase 53

7 Conclusion 55
Bibliography 57

2.1
2.2

2.3

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
2.3
5.4

List of Figures

The overview of the MBT characteristics [1]. 9
A venn diagram illustrating the relation between model-based secu-

rity testing, model-based testing and security testing. 12
Overview of the MBST classification criteria. Picture taken from [2]. 13
An overview of the high-level structure of the approach. 25
An overview of the input model. 28
A simplified overview of the technical architecture of AFT. 29
An input model template. 32
An overview of the technical architecture of AFT. 33
TCP Connect() scan with open port. 34
TCP Connect() scan with closed port. 34
Ping scan with an open host. 35
UDP scan with open port. 35
UDP scan with closed port., 35
ACK scan with stateful firewall. 36
ACK scan with stateless firewall. 36
The response from a CVE query showing one of the found CVE object. 37
The input model based on the requirements. 41
Output from terminal while AFT is running. 42
The produced report from the MBST approach. 42
The input model based on the firewall requirements. 45
The produced report for incoming traffic on external interface. 46
The produced report for incoming traffic on internal interface. 47
The produced report for outgoing traffic. 47

x1

LIST OF FIGURES LIST OF FIGURES

xii

List of Tables

3.1 Summarized tools for MBT.

Xiil

LIST OF TABLES LIST OF TABLES

Xiv

Terminology and Acronyms

VCC - Volvo Cars Corporation

ECU - Engine Control Unit

SUT - System under test

MBT - Model-based Testing

ST - Security Testing

MBST - Model-based Security Testing

CVE - Common Vulnerabilities and Exposures
CPE - Common Platform Enumeration
CVSS - Common Vulnerability Scoring System
AF - Awesome Framework

AFT - Awesome Firewall Tool

Security - "Security is a non-functional property, and defines how a system is sup-
posed to be, in contrast to what a system is supposed to do." [3]

Security Requirements - Security requirements are the high level requirements
that specify what should be allowed and not allowed, considering a security perspec-
tive.

Vulnerability - "Vulnerabilities are flaws in applications that allow attackers to do
something malicious." [4]

Attack - "Attacks are successful exploitation of vulnerabilities." [4]
Test case - is a set of tests that together have a shared goal to verify.

Whitelisted - is stating allowed objects for a certain system.

XV

LIST OF TABLES LIST OF TABLES

xXvi

1

Introduction

The first digital controller in form of a self-contained embedded system was inte-
grated into a vehicle in the late 1970s. The controller was named Engine Control
Unit (ECU) and its purpose was to adjust the mixture between fuel and oxygen
before combustion, which would result in a reduced emission [5]. Since then, digital
controllers have been integrated into the majority of the functions in a car, e.g.
the throttle, brakes and lights, resulting in ECU being generalized into Electronic
Control Unit. A vast majority of these ECUs are implemented to improve safety
functionalities in the car e.g. Anti-lock braking [6].

Today, a modern car is far from being a mere mechanical product and consists
of almost hundreds of ECUs. These create a highly advanced distributed system
controlling the different parts of the car. The ECUs in the in-vehicle network com-
municate with each other over multiple sub-networks and gateways using different
communication protocols e.g. CAN, LIN, MOST and FlexRay [7]. The in-vehicle
network are prone to network attacks, mainly due to the lack of procedures of veri-
fying the authenticity and integrity of the communications. Considering the safety
aspect, a successful attack against the in-vehicle network can cause devastating con-
sequences for not only the passengers but also to the surroundings of the vehicle.
Miller and Valasek have presented a successful remote attack against a car, which
showed the possibility to take control over brakes, steering and acceleration [8].

The development of vehicles is a highly distributed effort, involving individuals from
many different organizations which use different methods. To introduce security as
an integral part of the development, there is a need for a consistent way to interpret
and verify the security requirements. Increased precision and traceability between
analysis, requirements, tests and field data would decrease the risks of missing the
security aspect. Furthermore, by automating this process, it also becomes possible
to decrease lead times which is highly beneficial. Today, the verification of secu-
rity requirements is performed late in the development phase since it requires the
system under test (SUT) to be implemented, where both time and budget are very
restricting factors. To fix a problem this late is prohibitively expensive and not
always an option [9]. Furthermore, security testing (ST) is hard to automate since
it lacks systematic approaches [10] and it is required of the test engineer to have an
expertise within the security field and a deep understanding of the SUT [11]. To
achieve a satisfying confidence, the test engineer’s ability to execute relevant test

1.1. AIM 1. Introduction

cases on the SUT is important. Therefore, by combining the security expertise and
knowledge of the SUT, it is easier to decide what a relevant test case is.

Model-based security testing (MBST) is an approach that enables earlier verification
of security requirements and automated generation of tests based on a model of the
SUT. It is a new research field, mostly applied in academia [3], based on model-based
testing (MBT) with focus on security requirements. These approaches are further
described in Section 2.

1.1 Aim

Considering that a vehicle has a very complex and highly distributed in-vehicle
network, the implementation of the chosen approach will be limited to a subsystem.
This thesis investigates the possibility of applying a MBST approach on a firewall
in the ECU responsible for the connectivity within the infotainment deployed in
Volvos new models: XC90, V90, S90 and XC60. The goal of this thesis is to propose
a suitable MBST approach which improves the verification accuracy of security
requirements and the overall efficiency of the verification process. Additionally, we
suggest how to adapt the existing process into new beneficial approaches for MBST.
To achieve this, a literature study will be conducted, followed by an investigation
whether there are any existing MBST tools that can be used. Furthermore, a review
of model-based tools is performed to determine if they could be applicable for a
MBST approach or if a new tool needs to be implemented.

Research Questions
o Are there a MBST approach suitable to apply at VCC?
— What is required to apply a MBST approach at VCC?
o Are there any available tools for MBST?
— What is required from VCC to use available tools for MBST?

o How much of the requirements of the firewall can be covered with a MBST
approach?

1.2 Contribution

The contribution of this thesis is divided into two different categories, scientific and
technical.

Scientific contribution

1. Introduction 1.2. CONTRIBUTION

o The contribution of this thesis is to investigate the maturity of the security
process at Volvo Cars Corporation to evaluate if MBST is an applicable ap-
proach in an industrial context

o Provide an evaluation of available MBT tools to be used for a MBST approach.
Technical contribution

o Implement a tool that takes text-based requirements of a firewall as input,
generate relevant test cases and executes them to produce a status report
illustrating whether the firewall configuration fulfills the requirements or not.

o Introduce a guideline for describing requirements of a firewall which is used as
an input-model into our developed tool for MBST.

Outline

This report is structured as follows. Section 2 describes the different approaches of
ST, MBT and MBST in more detail to give a better understanding of the concepts.
Section 3 describes the methodology of the thesis. The MBST implementation
will be presented in Section 4 together with an illustration of the implemented
tool. Section 5 presents the results and an evaluation of the MBST approach.
Furthermore, a discussion is presented in Section 6. Finally, Section 7 presents the
conclusions of this thesis MBST approach in the automotive industry.

1.2. CONTRIBUTION 1. Introduction

2

Background

In this section will the core characteristics of the thesis be presented. The different
testing techniques of security testing, model-based testing and model-based security
testing will be described in depth below.

2.1 Security Testing

The increase of connected devices in the society leads to larger, and more complex,
systems. With more complex systems, it becomes easier by mistake to introduce
flaws which possibly leads to an increased amount of vulnerabilities. A common way
of testing the quality assurance of a system is to test that it fulfills the functional
requirements. This is often done by performing dynamical tests to ensure that the
features are correctly implemented [9]. However, security is not a feature but a tool
to make sure that the system behaves correctly or as McGraw et.al. [11] states:
"security should make the system behave correctly in the presence of a malicious
attack". To ensure that a system behaves correctly under attack, it is important that
security requirements are fulfilled. These requirements arise from security properties
such as confidentiality, integrity, availability, authentication and authorization.

It is very challenging to determine if a system is fully secure. A system might behave
correctly according to the functional requirements but can perform other unintended
tasks in the process. Furthermore, testers easily miss these hidden bugs which could
result in a vulnerability of the system. Therefore, security testing is important to
ensure that the security requirements are fulfilled which verifies that the security
features of the implementation are consistent with the design [12]. While traditional
testing verifies that the tasks are performed correctly, security testing investigates
the behaviour of the system when it is under attack. Therefore, a security tester
needs to investigate the security risks by e.g. abuse cases in order to determine how
the system behaves under attack.

2.1. SECURITY TESTING 2. Background

2.1.1 Approaches

There are different approaches to verify security requirements and some of the most
common are described below. A drawback for all these approaches are that they all
require a physical system to perform the tests. Therefore, all the approaches can
only be performed very late in the development phase where both time and cost are
important factors. A found vulnerability late in the development phase could result
in a very time consuming fix with high economical impact.

Penetration Testing

Penetration testing is the most popular principle for verifying security requirements
[9]. However, penetration testing is not a systematic approach and is applied late
in the development cycle to act as a final acceptance of the system. By using abuse
cases, it is possible to detect anomalies in the system, e.g. by start a port scan on
the system to detect services and potential weaknesses. From the results, further
attacks are executed to try exploiting the found weaknesses.

However, an acceptance from a penetration test only proves that there are not faults
for the performed test conditions. There is still a risk that a vulnerability is present
in the system. Therefore, it is important that the penetration tester possesses an
expertise within the security field and a good knowledge of the SUT to be confident
that the system is secure and that the relevant parts are covered. Furthermore, it
is important to determine relevant test cases in order to verify that the security
requirements are fulfilled.

There are several approaches to verify security requirements, but is is common to
involve two different diverse problems. Firstly, security mechanisms need to be
verified to make sure that their implementation is correctly implemented. Lastly,
different approaches for testing are used for simulating an attack of a potential
adversary.

Risk-based testing

Risk-based testing is a widely used approach in the industry [13]. It uses the idea
of prioritizing tests where the most critical parts of the systems are triggered. Risk-
based testing could be broken down into three parts, Risk Driver, Risk Assessment
and Risk-based test process. Risk drivers are the first part where it considers if
functionality, safety or security is the major risk drivers of the system. This is fol-
lowed up with risk assessment where the process identifies and analyzes the risks in
order to determine the level of risk with e.g. impact ratings. Last is the risk-based
test process which contains a regular test process (planning, design, implementa-
tion, execution, evaluation) with regards to the impacts of the potential risks [13].
A drawback with Risk-based testing is the human factor, since threats should be

2. Background 2.1. SECURITY TESTING

evaluated and prioritized manually, the result is dependent on the tester’s experience
and knowledge within both security and the SUT.

Fault injection-based testing

The main idea of fault injection-based testing is to evaluate fault-tolerant mech-
anisms and determine fault-tolerant measures to improve coverage. This is done
by injecting faults to investigate how the systems react with faults present and are
often combined with stress-testing to evaluate the robustness of the system [14].

Mutation-based testing

A common denominator of testing is to the keep the time of testing as low as possible.
Mutation-based testing is an approach to improving the quality of a test suite during
the development phase and the goal for this approach is to improve the effectiveness
of detecting faults while keeping the testing time shorter [14]. In practice, this is
performed by introducing errors into the system and the quality of the test suites
are measured by how many of these errors that get detected [15].

Vulnerability scan testing

Vulnerability scan testing is an approach where it scans the system to search for
security risks in weak implementations. By performing a port-scan on a system, it
is possible to determine if there exists open ports on the system that have services
that are present of vulnerabilities such as cross-cite scripting or SQL-injection. A
vulnerability scan is often performed as a first step to determine possible attack
vectors. A drawback is that a vulnerability port scan is not broad enough and only
touches the surface of the system.

Property-based testing

Property-based testing focuses on testing some specific security properties. If a
tester wants to test and verify authentication, a property-based testing performs
several tests cases with different input to test the authentication property [16]. This
approach is useful when a specific property needs to be verified. However, it is not
as powerful when testing a complete system on a high level since it is directed into
a specific property.

2.2. MODEL-BASED TESTING 2. Background

Fuzz testing

Fuzz testing is an approach that works by injecting random data into the system
to evaluate its behaviour. Fuzz testing is not logical and can therefore find flaws in
the system which are difficult for logical tests. Furthermore, there exists a concept,
smart fuzz testing, where the tester knows about the system and can perform a
white-box testing which makes it possible to determine smart test cases with injec-
tions of random data [17]. A major drawback is that it is challenging to restrict the
test cases and produce test cases that tests different aspects of the input without
unnecessary redundancy.

2.1.2 Security Testing in Firewalls

The use of a firewall is usually the first step for keeping the network and computer
secure. The aim of a firewall is to prevent undesirable data to pass through onto
the network. To achieve this, firewalls are configured with rules that make them
aware of what types of data to block and what to let through. At VCC, there ex-
ists general requirements for all firewalls. Requirements are important in a large
company as VCC with many different people involved in the process. By having
requirements, it becomes easier for people without a technical background to under-
stand the functionality of the firewall instead of interpreting a configuration file of
the firewall.

The most common approach for testing a firewall is by performing a penetration test.
That makes it possible to detect flaws in the system by executing different types
of attacks against the network, e.g. the Heartbleed attack against the OpenSSL-
protocol [18]. An additional approach is to test the firewall rules to determine if the
requirements hold from the set of rules [19].

However, firewalls are very important to keep the network infrastructure secure. As
stated in Section 2.1.1, penetration testing is not a systematic approach and requires
an expertise of the tester since it only can test for known flaws. There has been
presented systematic approaches for conformance testing of a firewall [20] [21], but
it is very complex since it makes use of formal models. The main difference between
penetration testing and conformance testing of firewalls is that penetration testing
tends to always use the same tests compared to conformance testing which generate
tests based on the requirements [22].

2.2 Model-based Testing

MBT is an approach which is able to automatically generate test cases based on
either one or a composition of several models of the SUT [1]. A model should be
a more abstract representation of viewing the system compared to the SUT itself,

2. Background 2.2. MODEL-BASED TESTING

otherwise, it would be easier to only interpret the SUT. This more abstract model
will lead to a simplified understanding of the SUT for all involved [23]. However,
to generate meaningful tests based on the model, the model needs to be precise
enough to be able to act as the SUT. It is also of importance to maintain the
models updated to ensure that generated tests are relevant and consider the actual
version of the SUT. The basic idea with MBT is to replace the manual test design
into an automated process that generates test cases that could be executed on the
SUT. However, there is a challenge to limit the amount of generated test cases to
maintain an acceptable coverage [15].

There are three stages in the MBT process: Model Specification, Test Generation
and Test Execution as shown in Figure 2.1. The definition of these three stages
give rise to six dimensions of MBT approaches: Scope, Characteristics, Paradigm,
Test Selection Criteria, Technology and On/Offline which will be further described
below.

— Scope Input-only / Input-Output

Untimed / Timed
Deterministic / Non—Det.
Discrete / Hybrid / Continuous

Model

[| Specification Characteristics

Pre—Post or Input Domains
Transition—Based
History-Based

Functional

Operational

Stochastic

Data—Flow

Structural Model Coverage
- Data Coverage
Test Selection Requirements Coverage

—1 Paradigm

N Test Case Specifications
Criteria Randomé&Stochastic
Fault-Based

Test
Generation Random generation
Search-based algorithms
Model—-checking
ngbolic execution
Theorem proving
Constraint Solving

Technology

Online
Offline

L Test On/Offline
Execution

Figure 2.1: The overview of the MBT characteristics [1].

2.2.1 Model Specification

The model specification stage considers how the model should be built, the prop-
erties of the model and what data should be given as input. Furthermore, it also
considers how the system is constructed and which model that could be suitable.
The model specification has three dimensions; scope, characteristics and paradigm.

Scope - the scope of the model is a binary decision and specifies whether the model
only considers inputs to the SUT or if it considers the expected output based on

2.2. MODEL-BASED TESTING 2. Background

the given input to the SUT. While the input-only model is easier to model, with the
drawback that it is harder to verify the correctness of the result, the input-output
model is more complex since it requires the correct output in advance for all given
inputs to the system. This often requires knowledge about the environment and
the behaviour of the system. However, it has the advantage to be able to act as an
oracle and verify whether the output is correct or not.

Characteristics - specifies whether the SUT is continuous or event-discrete, if there
are any timing issues and if the system is deterministic or non-deterministic. The
research within the MBT field has mostly focused on event-discrete systems but
continuous models are subject of on-going research [1].

Paradigm - describes the notation that is used to describe the model. One variant is
transition-based notations where the focus is to describe transitions between different
states, typically illustrated as a Final State Machine (FSM) i.e. a graph of nodes
and arcs. Where the nodes represent the different states of the SUT and the arcs the
actions of the SUT. Another notation is stochastic notations, where Markov chains
could be used to describe a system with a probabilistic model of the events. It is
usually used for describing the environment rather than the SUT.

2.2.2 Test Generation

Test generation creates test cases based on the given set of models specified in the
model specification. Test generation has two dimensions; test selection criteria and
technology.

Test selection - guides and control how the tests should be selected and how to
measure the coverage. Selecting the best criteria in general is not possible [1].
It is the assignment for the test engineer to set up the configuration of the test
generation to choose relevant test selection criteria and test the specifications of the
requirements considering e.g. performance or security.

Technology - one of the most attractive characteristics of MBT is its ability to auto-
mate the test design process [1]. Given an input model and test case specifications,
test cases can be obtained by applying a test generation technology. There exist
different algorithms which are able to automatically derive test cases, e.g. search-
based algorithms, model-checking, constraint solving, random generation, theorem
proving or symbolic proving. Search-based algorithms take the model graph of the
SUT as input and fulfill the coverage criteria by e.g. using the Chinese Postman
algorithm. This approach makes it possible to catch corner cases that easily could
be missed in manual tests. Constraint solving is another technique that can be used
to set a coverage criteria. This approach is useful in combinatorial n-wise testing
where data selection needs to be done in a complex domain. Tools used for test
generation in MBT is usually considering multiple techniques to achieve automated
test generation based on a model since the techniques have different focuses.

10

2. Background 2.3. MODEL-BASED SECURITY TESTING

2.2.3 Test Execution

Test execution is the stage that is concerned with the test execution on the SUT.
It verifies the result and the relation between the test case generation and test
execution. Test execution can be performed either online or offline from the test
generation.

Online/Offline - While offline testing is the easiest approach and means that the
tests are generated strictly before any test execution is performed, the online test
execution makes it possible for test generation algorithms to react on the output of
the SUT. By using online testing, which executes each generated test before creating
the next, a non-deterministic SUTs tests can be optimized since the test generation
algorithm know which path a SUT has chosen and could therefore follow the same
path again for further tests [1]. However, online execution is only applicable in an
input-expected output model since the output needs to be able to determine whether
the tests is successful or not.

2.2.4 Advantages

MBT enables an automatic generation of test cases and is able to guide the tests to
be relevant and limited to a feasible amount. By having a model with an abstract
view of the SUT it is easier to understand, modify and maintain it. After an update
or modification, it is easy to generate new test cases for the updated system. Addi-
tionally, by guiding an algorithm to create test cases of the SUT instead of a human
to review and design the test cases, the risk of missing corner cases and complex
vulnerabilities will be decreased resulting in a higher test quality [23]. Especially
in an advanced system where a computer can find more complex combinations that
are difficult for a human brain to find. By using an online test execution, it is also
possible to test non-deterministic systems which are depended on earlier actions and
almost impossible for a human brain to find. However, MBT is mainly focusing on
testing the functionality of the SUT rather than the security aspect.

2.3 Model-based Security Testing

Model-based security testing is based on models for automatic generation of test
cases to verify security requirements [2] [3] [10]. Testing of security requirements have
existed for a long time, however, MBST is a relatively new research field and almost
only applied in academia [10]. Furthermore, Felderer et.al. mentions that MBST
is of high relevance for industrial applications and can be seen as a combination
of MBT and ST. It could also be described as MBT of security requirements. A
graphical representation of the relation between MBST, MBT and ST can be seen
in Figure 2.2.

11

2.3. MODEL-BASED SECURITY TESTING 2. Background

Figure 2.2: A venn diagram illustrating the relation between model-based security
testing, model-based testing and security testing.

MBST makes use of models to generate test cases and includes security testing ap-
proaches e.g. penetration testing and fuzz testing. Felderer et.al. [2] presents new
criteria that concern security, which complements the MBT classification scheme
presented in Section 2.2. The two criteria are Filter criteria and Evidence criteria
which contain several attributes where one or a combination of these are selected.
Filter criteria includes the Model of System Security, Security Model of the Environ-
ment and Explicit Test selection criterion which is illustrated in Figure 2.3. With
these combined, it is possible to, with one or several models, generate specific test
cases of interest for security. Furthermore, it also includes the different security test-
ing techniques, mentioned in Section 2.1 e.g. fuzz testing, vulnerability scan testing
and risk-based testing. Evidence criteria include maturity of an evaluated system,
evidence measures and evidence level. Furthermore, combining these are important
to determine the applicability and utility of MBST in industry. Filter and Evidence
criteria are more thoroughly described below in Section 2.3.1 and Section 2.3.2. An
overview of the MBST classification criteria can be seen below in Figure 2.3.

12

2. Background 2.3. MODEL-BASED SECURITY TESTING

Security Properties

Model of .
System Security Vulnerabilities
Functionality of Security Mechanisms
| Filter Security Model of { Threat Model
the Environment Attack Model
Structural Coverage
Data Coverage
. Requirements-Based Coverage
EXp“C'.t TeSt. . Explicit Test Case Specifications
Selection Criterion Random and Stochastic
Fault-Based
— Assessment-Based
Relationship-Based
. Prototype
Maturity of YP
Evaluated System Premature System
Production System
- Example Application
L_| Evidence Evidence o 'p PP
Measures Effectiveness Measures
Efficiency Measures
) Abstract
Evidence Level —C
Concrete

Figure 2.3: Overview of the MBST classification criteria. Picture taken from [2].

2.3.1 Filter Criteria

The filter criteria contains security-specific models, its environment and the test
selection criteria. Therefore, it describes both the security test objectives and what
to be modeled which makes it possible to generate relevant test cases and the model
specification. Below, each of the different properties of the Filter criteria is described
more thoroughly.

Model of System Security

Model of system security are one or several models, covering a part of a SUT and
focuses on its security requirements. Security properties, vulnerabilities and func-
tionality of security requirements are the different properties of a model of system
security which describes the model or models of the SUT. It is possible to cover
several of these properties by using a composition between models. The properties
are briefly described below.

Security Properties - a model of security requirements e.g. confidentiality, integrity,
availability, authorization and authentication.

13

2.3. MODEL-BASED SECURITY TESTING 2. Background

Vulnerabilities - a model containing the vulnerabilities of the SUT.

Functionality of Security Mechanisms - a model of functional security which are
defined by security specifications of the SUT.

Security Model of the Environment

The security model of the environment are models describing the security issues of
an SUT. The difference between modelling a vulnerability and an exploit is that
a vulnerability covers a part of the SUT compared to an exploit that covers the
environment of the SUT [2]. Although, an exploit is a description how a vulnerability
should target with specific attacks or a description of the vulnerability, making the
exploit a threat. Therefore, there exists two different types of security models of
the environment: threat model and attack model which can be composed. While a
threat model describes the threats of an SUT, an attack model describes types of
attacks to exploit different vulnerabilities of the SUT.

Explicit Test Selection Criterion

Test selection criteria make it possible to choose relevant test cases. It defines which
paths to take depending on the different properties e.g. vulnerabilities and attacks.
Test selection criteria are used to control the generation of test cases, i.e. it acts as
a guidance for the test generation. Different types criteria are listed below.

Structural Model Coverage - a criteria that exploits the structure of a model. It
verifies that every part of the model has been extensively tested e.g. every state has
been visited in the model.

Data Coverage - filter only a subset of test cases that still represent the whole data
set. The basic idea is to divide the large data set into different classes and choose
candidates from each class, with the assumption that each candidate will represent
the group in terms of failure detection.

Requirement-based Coverage - ensure that all requirements of the SUT have been
fulfilled from the set of generated tests if the requirements can be determined from
the model.

Ad-hoc test case specifications - makes it possible to focus on testing the important
parts in the model i.e. limit the paths to be tested. A test case specification needs
to be described by the tester in order to determine which test cases to be generated.

Fault-based Criteria - focus on finding faults in the SUT. A common approach to
finding faults is to consider mutation coverage. This approach mutates the model,
then generating tests that can be compared to the mutated model and the original
model.

14

2. Background 2.3. MODEL-BASED SECURITY TESTING

Random and Stochastic - criteria that consider probabilities of actions or randomly
generated input.

2.3.2 Evidence Criteria

Evidence criteria is a valuable measure for evaluating if MBST is an applicable
or useful approach. It depends on the maturity of the evaluated system, evidence
measures and the evidence level which each contains several properties. It is an
optional criteria since it evaluates the applicability or usefulness of the approach
and can be seen as an extension. The evaluation is performed by manual analysis
of the SUT.

Maturity of Evaluated System

The maturity of an evaluated system is the criteria which evaluates if the SUT
is appropriate for an MBST approach. It depends on one of the following values
Prototype, Premature System and Production System which are described further
below.

Prototype - a first early version of a system to test the concept. It means that it is
under development and limited. It is not a final product.

Premature System - a running system. It is more mature than a prototype but not
a final product.

Production System - the final product of a running system.

Evidence Measures

Felderer et.al. describes the evidence measures as a determination of the qualitative
and quantitative assessment criteria to evaluate a MBST approach on the SUT [2].
It contains of the following properties: Example Application, Effectiveness Measures
and Efficiency Measures which are described below [24].

FExample Application - an approach that is used in a text-based context. It describes
the feasibility of the approach in a qualitative way.

Effectiveness Measures - measures the input-output and compare it to the expected
input-output. It could be measured by number of faults divided by number of test
cases to get a ratio of faults per tests.

Efficiency Measures - measures the efficiency by time and cost. It could measure by
how many faults that are found depending on the cost to produce test cases.

15

2.4. RELATED WORK 2. Background

Evidence Level

The evidence level evaluates whether an application can perform non-executable
abstract test cases or executable test cases.

Abstract - the approach is evaluated for non-executable test cases. The evidence
measures are limited because it is not possible to measure the concrete effect of the
approach on the SUT.

FEzxecutable - the approach is evaluated for the executable test-cases on the SUT.
The evidence measures are not limited to this level compared to the abstract level.

2.4 Related Work

MBST is a relatively new research field which extends the MBT approach with
a security aspect. There is ongoing research and the topic has high relevance for
an industrial contexts. Today, practical implementations mostly exist in academia
and are highly theoretical [3]. This thesis will investigate the possibility to apply a
MBST approach within the automotive industry.

There exists a case study on smart cards applying MBST based on UMLsec models
[25]. The aim of the research was to investigate if it was possible to, in a systematic
way, gain confidence that the implemented security-critical system holds. Jiirjens
presents a systematic approach of security testing using a formal specification lan-
guage to generate test sequences to find vulnerabilities. More particularly, they
focus on testing the load transaction, a central part of Common Electronic Purse
Specifications (CEPS). The specification of the load transaction is slightly simplified
by ignoring security-irrelevant details but including exception processing. It is pos-
sible to verify the resistance of an implemented load transaction function for CEPS
by using UMLsec models with a specification-based testing approach. Where the
specifications could be, for example, that a component should reach an accepted
state. The paper also concludes that it is much harder to test a system for an
absence of undesired than for the presence of desired behaviour.

2012, Ina Schieferdecker et al. published a paper providing a survey of MBST tech-
niques and related models [10]. According to their paper, MBST includes different
techniques e.g. security functional testing, model-based fuzzing, risk- and threat-
oriented testing and security test patterns. In software security testing, there are
two different approaches that can be used to verify and validate that the SUT fulfill
its security requirements, functional security testing and security vulnerability test-
ing. However, they state that security testing lacks systematic approaches. They
provide three different types of models that could be used for test generation, but
to securing the system it is needed to base the tests on several models since they
consider different perspectives of covering security. The three suggested models are
Architectural and functional models, Threat, faults and risk models and Weakness

16

2. Background 2.4. RELATED WORK

and vulnerabilities models. Architectural and functional models consider the system
requirements regarding the behaviour of the SUT, these models exist on a different
level of abstraction and granularity. They are typically considering the structure
and properties of the SUT. While threat, faults and risk models focus on causes and
consequences an eventual system failure or vulnerability might implicate, weakness
and vulnerabilities models focus on the fault or vulnerability itself. Finally, they also
mention an European ITEA2 project called Development and Industrial Application
of Multi-Domain Security Testing Technique (DIAMONDS) that are developing two
main approaches for MBST: Risk-based security testing and Model-based fuzzing.
Model-based fuzzing is one kind of white box testing since it considers the knowledge
about the structure to systematically generate relevant tests, this approach is mainly
used to detect flaws and vulnerabilities in the SUT that usually not are revealed by
using incorrect input data. On the other hand, risk-based security testing can be
used to optimize the overall test process. Since the result of a risk analysis could
be used as a guidance for what to prioritize and how the requirements are fulfilled,
it is possible to make the test process more efficient. For this thesis, the system
is considered as a black box where only the requirements for the SUT is known.
Therefore, neither risk-based security testing nor Model-based fuzzing seems to be
useful approaches.

Research regarding firewall testing is a widespread area with different approaches.
A common way of testing firewalls is to test for vulnerabilities in the implementa-
tion, however, there is research that focuses on testing the firewalls policy. Testing
a firewalls policy could also be described as conformance testing of a firewall which
is similar to our approach of testing. Several papers of specification-based firewall
testing have been proposed. Jirjens and Wimmel [26] propose a new way of testing
firewalls, specification-based firewall testing. It works by first introducing a formal
model of the network to automatically derive test cases. El-Atawy et al. [27] [28]
propose a new way of handling policies with a policy segmentation technique. As
a result, it is possible to measure a policy which makes it possible to perform more
thoroughly tests on the important segments. Additionally, they present a new frame-
work that provides a better coverage of the different states of the firewall. Brucker et
al. [20] present a case study with the model-based tool HOL-TESTGEN. It is based
on a formal model of firewalls and the requirements are described with higher-order
logic (HOL). The paper presents a method for minimization of requirements and
discusses different test plans for test specification.

17

2.4. RELATED WORK 2. Background

18

3

Methodology

This thesis is driven by an interest and need from VCC to improve the security
verification and detect anomalies as early as possible in the development process.
There is a need for improving the confidence of satisfying the security requirements as
the cars become more complex and connected to the Internet for providing different
services. One major reason that VCC want to achieve an early verification in the
development phase is to avoid expensive and intractable vulnerabilities and bugs late
in the development as it mostly is performed today. Additionally, a more automated
process will improve the efficiency in the development and thereby decrease the
develop time in total. Hopefully, MBST could be one approach that fulfills this
desirable improvement.

An investigation has been conducted at VCC to analyze the current process and
the handling of security requirements to evaluate the maturity for implementing an
MBST. Since MBST is based on models, the modeling maturity for the different
departments is relevant. VCC involves modelling a lot into the daily development
process e.g. Simulink models, but only in a functional perspective. The maturity of
managing the security requirements is still in a text-based representation, therefore,
it is a large gap between the models presented in the active research today and
the text-based models at VCC. Furthermore, the maturity of the specification and
verification of security requirements are also of importance. Since the models that
exist today are usually only considering the functionality aspect, the maturity of
following security requirements is of highest relevance for this thesis since the model
should be based on the given requirements. This was mainly why the infotainment
department were chosen to be further investigated for this thesis. The infotainment
department is responsible for the interaction between the car and the driver. This
thesis has focused on the firewall in the connectivity component since it is the most
exposed part to potential remote attacks over the network. The firewall considered
is located late in the development phase and has been penetration tested. VCC
has several functionalities that requires Internet connection e.g. Volvo on Call [29],
therefore, the security aspect is highly relevant to consider for these functionalities
and this thesis.

One reason that the infotainment was chosen except the maturity for security re-
quirements, is that suppliers to different ECUs only takes responsibility for their
own ECU and not the overall system. This put VCC in a position where they have

19

3.1. EVALUATION OF TOOLS 3. Methodology

the main responsibility to ensure that the system work as it should with all ECUs
connected and prevent security threats. Is there any problem with an ECU, the
responsible supplier need to be contacted and solve the problem, which usually are
very time consuming since it always is a question whether it is stated as a require-
ment in the specification given at the initialization of the project or not. This might
be improved by being able to send test cases to the supplier that must be fulfilled
before delivery to VCC. This thesis will investigate the possibility to achieve this by
apply a MBST approach.

Furthermore, an evaluation of different MBT tools has been conducted to decide if
they could be suitable for a MBST approach since, from our knowledge, it only exists
one MBST tool which is infeasible to use for this thesis [30]. It is a tool presented
in a paper that needed a license to be allowed to use and thereby not feasible for
this thesis. The MBT tool evaluation is a scientific contribution since there has not
been any comparison between MBT tool and if they could be applicable for a MBST
approach. The conclusion of the evaluation is in regard to the scope of this thesis
and its prerequisites.

3.1 Evaluation of Tools

There exist many different tools available for applying MBT. They all have ad-
vantages and disadvantages dependent on the SUT. The tools will be systematic
evaluated of how suitable they are for applying MBST at VCC by considering avail-
ability, the input model, the effort to implement the approach and finally if they can
perform tests online and/or offline. The availability of the tool is either commercial
or open-source, since there is no budget for this thesis, open-source tools are the
only tools considered. The important part considered for the input model is that
all the requirements can be covered by the model. It is also important to consider
that the effort to adapt the VCC’s requirements into the input model are feasible
since it would cost both time and money to deploy new techniques. If the tool sup-
ports online and/or offline testing is also considered but is not main priority since
tests could be integrated into VCC'’s existing testing framework. The result of the
evaluation for the different tools is presented in Table 3.1.

SpecExplorer

SpecExplorer [31] is a tool created by Microsoft. It is an extension for Microsoft
Visual Studio and provides a graphical visualization analysis and performs a validity
check of the behaviour models of the SUT and finally generate test cases based on
the models. The input is a program model, which is implemented in C# .NET, and
provide opportunity to express both interaction- and state-oriented modeling styles.
The tool take usage of the program model stating the set of rules together with a
behavioral description to make testable models of the SUT. Finally, SpecExplorer

20

3. Methodology 3.1. EVALUATION OF TOOLS

is compatible with both online and offline test execution.

License Type: Spec Explorer is a commercial tool from Microsoft for model-based
testing in Microsoft Visual Studio. Input: The input for test generation is a pro-
gram model specified in C#. Generated output: The generated output from Spec
Explorer is a sequence of actions which are executed online or offline. Security At-
tributes: From our knowledge, no security attributes are described in the program
models. Therefore, only functional security can be considered. Effort: To use Spec
Explorer, it benefits with knowledge in C# due to the input models. Spec Explorer
is an extension to Visual Studio for creating models of software behavior and for
graphical representation. Therefore, it would benefit to have knowledge with the
Microsoft Visual Studio software which facilitate the effort to learn the tool.

GraphWalker

GraphWalker [32] is an open-source MBT framework in Java which takes models in
the shape of directed graphs as input. Given the input model and guidance for the
generator, Graphwalker uses mathematical algorithms to generate test cases in form
of different paths through the model until the given stop conditions are fulfilled.
The path is a series of pairs of edges and vertices, where actions are specified in the
edges and verification of the action in the vertex. GraphWalker is compatible with
both online and offline test execution.

License Type: GraphWalker is an open-source tool for model-based testing in
Java. Input: The input for test generation in GraphWalker is a FSM. Generated
output: The generated output is a sequence of actions which are executed online
or offline. Security Attributes: From our knowledge, no security attributes are
described in the FSM models. Therefore, only functional security can be considered.
Effort: It benefits to have knowledge in modelling FSM’s since it is used as input
model to Graphwalker. Java is also relevant since the models are modelled in Java.
GraphWalker is well documented with several examples which facilitates the effort
to learning the tool.

PyModel

PyModel [33] is an open-source MBT framework in Python. It has three main
program that makes it possible to create and analyze the model, generates test
cases and executes them on the SUT. The input model could be represented by
either a model program, a FSM and test suites. PyModel can use a composition
of models to combine several models into a new model called product. The test
generation could be based on either random generation or be guided by a strategy
provided by the user. It is also possible to visualize the model’s behaviour by using
an analyzer. PyModel is compatible with both online and offline test execution.

21

3.1. EVALUATION OF TOOLS 3. Methodology

License Type: PyModel is an open-source project for model-based testing and a
framework in Python. Input: The input for PyModel is a program model specified
in Python. Generated Output: The generated output are a sequence of actions
which are executed online or offline. Security Attributes: From our knowledge, no
security attributes are modelled in the program models. Therefore, only functional
security can be considered. Effort: To make use of PyModel, it would benefit to
be familiar with Python since the models are created in Python. It also benefits
to have knowledge in modelling FSM since program models are similar. PyModel
is well documented with several examples available which facilitates the effort of
learning the tool.

T-VEC Tester

T-VEC Tester [34] is a tool to automatically verify and test Simulink models by
generating test vectors passing all paths in a system. It takes usage of an advanced
test generation algorithm that analyzing the constraints in the models and select
tests to expose every condition in the SUT and extreme values. Therefore, the
generated test cases are very effective to detect flaws and errors. It is based on
various structural coverage criteria. T-VEC Tester is a commercial tool and from
our knowledge, it makes use of offline testing.

License Type: T-VEC Tester is commercial tool from T-VEC Technologies for
model-based testing. Input: The input for test generation is Simulink models.
Generated output: The generated output for T-VEC Tester are test vectors to
cover all different paths in the model. T-VEC Tester makes use of offline testing.
Security Attributes: From our knowledge, no security attributes are specified in
the Simulink models. Therefore, only functional security can be considered. Effort:
To use T-VEC Tester, it is beneficial to have knowledge in modelling Simulink
models. T-VEC Tester are well documented which facilitates the effort to learning
the tool.

4Test

4Test [35] is a commercial tool that makes use of text-based models as input to
generate test cases, i.e. no flows or diagrams are needed. The advantage of the text-
based models is that it is human-readable and improve the understandable of the
tests. The text-based models are based on the Gherkin language which is a domain
specific language [36]. 4Test combines Constraint Driven Testing and Keyword
Driven API Testing and aims to generate executable tests for test automation tools.
From our knowledge, 4Test makes use of offline testing.

License Type: 4Test is a commercial tool from 4D Soft Kth where a test design
method and a test automation method are combined. Input: The input for test
generation is a test-based model described with the Gherkin language. Generated

22

3. Methodology 3.1. EVALUATION OF TOOLS

output: The generated output from 4Test is executable test cases. 4Test makes
use of offline testing. Security Attributes: From our knowledge, no security
attributes are specified in the input models. Therefore, only functional security can
be considered. Effort: Since it makes use of the Gherkin language to specify their
input models, it is very easy to understand the models and constraints. However,
it is briefly documented with no complete example which makes the effort to learn
the tool harder.

HOL-TESTGEN

HOL-TESTGEN is an open-source tool that takes formal models as input and gen-
erates test-cases [37]. The formal models are written in high-order logic (HOL) and
generates test scripts. As a result of using HOL, it is possible to use minimization
to reduce a number of test-cases produced to fulfill the requirements. From our
knowledge, it makes use of offline testing.

License Type: HOL-TESTGEN is an open-source tool for model-based testing
developed at the University of Sheffield. Input: The input for test generation is
a model described with HOL. Generated output: The generated output from
HOL-TESTGEN is abstract test cases which can be connected to a test-harness
which enables both online and offline testing. Security Attributes: From our
knowledge, no security attributes are specified in the HOL models. Therefore, only
functional security can be considered. Effort: The effort to learn HOL-TESTGEN
is more challenging compared to the other tools in this evaluation since it is based on
mathematics and formal models. Thereby knowledge within HOL and mathematics
are beneficial. It is well documented with several publicized papers with extensive
examples which facilitate to effort to learn the tool.

Table 3.1: Summarized tools for MBT.

MBT Tools
Name License Input model Execution Sec.
Attr.
PyModel Open-source | PM! Python Online & offline | No
Graphwalker Open-source | FSM Online & offline | No
Spec Explorer Commercial | PM! C# Online & offline | No
T-VEC Tester Commercial | Simulink model | Offline No
4Test Commercial | Text model Offline No
HOL-TESTGEN | Open-source | HOL Offline No

The conclusion for this thesis regarding the evaluation of tools considers mainly the
license type, input model and effort. Therefore, it is of importance that the tool
is open-source and compatible with how the security requirements are modelled at

Program models. Describes the behaviour of infinite systems.

23

3.1. EVALUATION OF TOOLS 3. Methodology

VCC today. The effort is considered to determine if it is suitable to model our
own input model, based on the requirements, to be applicable to the corresponding

tool. Although, since only open-source tools are considered, three different tools are
extracted from the evaluation; PyModel, GraphWalker and HOL-TESTGEN.

Since there is a gap between the input models for each tool and VCC’s approach
to model requirements, the applicability of these tools at VCC are limited. VCC’s
maturity in state-models are low since state-models becomes very complex in larger
systems. Furthermore, there is no maturity for making models in HOL at VCC which
is as expected since it has only been applied in academia. Another consideration
from the evaluation is that there is no tool that specifies security attributes, they
are only able to handle functional security. Therefore, we could conclude that none
of the tools would be of any help to introduce a MBST approach at VCC. There is
too little experience for making state-models and HOL-models, and there is no time
for education of these. The final conclusion regarding the MBT tools are that this
thesis need to develop a tool that handles text-based models, which would make it
feasible to apply at VCC.

From this evaluation of the tools, the following research questions can be an-
swered.

o Are there any available tools for MBST?
— What is required from VCC to use available tools for MBST?

From our knowledge, there is only one MBST tool that has been applied
in practice. It is a commercial tool and requires UMLsec models as input.
Therefore, it is unfeasible for this thesis to apply this approach consider-
ing the modeling maturity at VCC today. Therefore, an investigation of
existing MBT tools were performed to determine whether they could be
used for a MBST approach. Unfortunately, it was concluded that neither
of the MBT tools at their current stage could to be used at VCC. There is
a lack of maturity at VCC for modelling state-models and formail-models.
Today, text-based requirements are the standard for specifying require-
ments which are very far from the MBT tools input models. Finally, to
make it possible for VCC to use existing tools, we suggest the following:

MBS'T tool

x Adapt existing models into UMLsec models.

x Include security attributes in their UML models.
MBT tools

x Adapt existing functional requirements into models

* Increase maturity in making state-models or formal models (HOL).

24

3. Methodology 3.2. APPROACH

3.2 Approach

The approach for solving the demand of an earlier verification of security require-
ments is by introducing a new systematic approach for verifying security require-
ments and implementing our own tool, Awesome Firewall Tool (AFT). Our MBST
approach is based on text-based models since the requirements used at VCC today
are illustrated in text. The requirements at VCC are presented at an abstract level to
make it easier for people without a technical background to understand. Therefore,
the text-based input model to AFT is derived from the requirements and specified
in more detail, e.g. whitelisted ports are listed. Furthermore, the input model is
non-complicated to adapt from the requirements at VCC today. AFT will generate
and execute different commands in order to verify different requirements specified
in the input model and if there exist any vulnerabilities. The result of the program
will generate a report which describes the vulnerabilities and if the requirements
are fulfilled or not. A picture showing a brief overview of how the structure of the
approach is presented in Figure 3.1.

Our contribution

. r—
Requirements -Input Model AFT Report

-
CVE - =!,; Firewall

—
Database . =’

Figure 3.1: An overview of the high-level structure of the approach.

3.2.1 Classification of our Approach

This approach, in relation to the classification of MBST described in Section 2.3,
is as follows. The filter criteria consist of three different parts: model of system
security, security model of the environment and explicit test selection criterion. The
considered property for the model of system security is functionality of security
mechanisms since the approach aims to verify security requirements for a firewall
i.e. testing a security mechanism. The model received from VCC is a text-based
model, describing the security specification of a firewall. Therefore, it is convenient
to translate the VCC requirements to a more formal model which the AFT tool use
as input. The input model is a more detailed form of stating the requirements which
ensure coverage when translating them. This approach focus on the requirement-
based coverage in explicit test selection criterion since the model of system security

25

3.2. APPROACH 3. Methodology

only considers the different security requirements of the firewall. For this thesis,
the security model of the environment is not considered because it is no need to
determine if the requirements are fulfilled or not.

3.2.2 Architecture

The purpose of the different steps in the approach presented in Figure 3.1 is more
thoroughly described in this section. Firstly, a description of the VCC requirements
are presented with examples of common requirements for firewalls. Based on those
requirements, the input model is specified. AFT’s aim is presented with its high-level
structure. Lastly, the report that is generated from the AFT is described.

VCC requirements

The requirements are in a text-based document and are described in a very high-
level perspective. The major reason to why it is stated in a high-level is because
this is general requirements for all firewalls within the vehicle with different purposes
and different locations in the vehicle. Therefore, a more detailed requirement could
cause an unwanted limitation of the application. Instead, VCC provide the general
policy that every firewall should consider but the technical details are different for
different firewalls. The requirements are given below.

Firewall Requirements

Firewalls shall be used to block unintended IP traffic on internal (IP traffic between
ECUs) as well as external network interfaces.

The firewall shall perform stateful packet inspection, keep track of connection states
and have the following rule set:

Outgoing traffic on external interfaces:

o Accept packets to whitelisted destination ports and/or IP addresses only. Only
source ports above 1023 allowed.

e Drop packets to non-whitelisted destination ports, i.e. use a default drop
policy

Incoming traffic on external interfaces:

o Accept solicited incoming packets for active connections initiated in the vehi-
cle, only.

o Drop unsolicited incoming packets, i.e. use a default drop policy

Incoming traffic on internal interfaces:

26

3. Methodology 3.2. APPROACH

o Accept incoming packets on whitelisted ports only
e Drop incoming packets on non-whitelisted ports, i.e. use a default drop policy
Firewall and routing rules when Vehicle ECU is WiFi HotSpot:

o For devices on the in-vehicle hot-spot network, the firewall shall only allow
access to Internet and not allow access to resources on the ECUs.

o The firewall shall perform stateful packet inspection, keep track of the state
of all connections and have the following rule set in addition to the above:

— Accept outgoing packets from a device on the in-vehicle hot-spot network.
All destination ports and IP addresses allowed.

— Accept incoming packets for active connections initiated from a device
on the in-vehicle hot-spot network.

Input Model

The requirements are adapted into the text-based input model, which is presented
in a text file that AFT can interpret. For AFT to be able to perform tests on the
firewall, more detailed data than the one stated in VCCs existing requirements are
needed, e.g. the IP address to the target i.e. the device behind the firewall. As
shown in Figure 3.2, the input model is divided into four different sections: general
information, incoming traffic on external interfaces, incoming traffic on internal
interfaces and outgoing traffic. The input model is divided into these categories
since the different interfaces of the firewall have different requirements e.g. there
are different services provided at the internal network compared to the external
network and thereby other requirements are needed. The general information is
covering requirements that could be set for multiple interfaces to avoid repetition.
In general information, requirements that are independent on whether the traffic is
incoming or outgoing are specified i.e. if the firewall should have stateful packet
inspection and if it should have a default drop or default accept policy. For the
incoming and outgoing categories, more details from the high-level requirements are
needed to be specified e.g. which ports that are whitelisted or blacklisted.

27

3.2. APPROACH 3. Methodology

Inputfile Template

-- General --

Stateful: True

Policy: Default drop

-- Incoming external --

Target IP address: scanme.nmap.org
Whitelisted ports: [22, 53, 80]

-- Incoming internal --

Target IP address: 192.168.1/30
Whitelisted ports: [25, 53, 80, 44505]
-- Outgoing --

type: ports or ip or combination
Type:

Target IP address:

Whitelisted ports: []

Whitelisted ip addresses: [scanme.nmap.org]
Combination: []

Figure 3.2: An overview of the input model.

The aim for the input model is to be able to cover all existing requirements but still
be easy to adapt from the existing approach for handling requirements at VCC. As
illustrating in the bullet list below, whitelisted ports that should be allowed to access
could be stated as a list and the IP address to the SUT that should be evaluated.

» Whitelisted ports for incoming traffic: [22, 53, 80]

o Target IP Address: 192.168.1.2

AFT

AFT is the core of the approach. It is the tool where the actual test generation
and test execution is performed. Based on the text-based input model, the tool
performs relevant test cases to verify the requirements from the input model. The
goal is to be able to verify if the requirements from the input model is fulfilled and
to present the requirement-based coverage. The AFT considers traffic from three
different interfaces; outgoing traffic on external interface, incoming traffic on internal
interface and incoming traffic on external interface. Furthermore, for each of these
network interfaces, different requirements can be considered and the goal is to cover
all of them with both positive and negative testing.

AFT will make use of port scanning since it is a powerful way for determine if traffic
are accepted or dropped. Then it will be possible to detect if a port is open or closed
and to determine if a firewall performs a stateful packet inspection. Additional,
AFT should also be able to determine if there exist vulnerabilities on the services
at the whitelisted ports and present that information. This approach is presented
in Figure 3.3, where the incoming traffic represent both incoming traffic on internal

28

3. Methodology 3.2. APPROACH

and external interface since they will perform the same test but with different input
data. The main goal with AFT is that it should in an automated way determine if
the requirements are fulfilled or not.

AFT
/ Outgoing Traffic \
| .
I v—
I V —
I V—
| Port scan Vulnerability . Report
search .
\ Incomlng Traffic /

|
=’/¢: Firewall CVE
= Database

Figure 3.3: A simplified overview of the technical architecture of AFT.

Report

The output should visualize for the stakeholder whether the firewall fulfill the given
requirements or not and if there are any vulnerabilities detected. The report is
generated part wise during the execution of AFT, as soon as a requirement is verified
it is appended to the report. The purpose of the report is to present a simplified
view for the stakeholder whether the requirements are fulfilled or not. Being able to
present an overview of how the SUT is following its requirements is beneficial and
of high importance since the software developed for the automotive industry differs
from software developed for personal computers in a way that patching a bug is a
balance between the potential risk and the cost for the patch. To recall cars on the
road to a service update entails a huge cost. Therefore, a found vulnerability needs
to be proven to be critical to be worth the cost for patching it. To achieve this, it
would be desirable to present how a certain vulnerability could be exploited and get
a perception how complicated the exploit is to convince the responsible people to
prioritize the measures needed. The level of importance for each vulnerability will
be stated in the report to simplify the process of which vulnerabilities to prioritize.

29

3.2. APPROACH 3. Methodology

30

4

Implementation

This section describes the implementation process and decisions made along the
thesis. It is divided into the three parts of our contribution: Input model, AFT and
the generated report. Finally, an illustration of the MBST approach with the AFT
tool is presented.

4.1 Input Model

To create the input model, AFT can generate a template that the stakeholder fill
with the relevant data for the SUT. The template can be generated by executing
the command seen in Listing 4.1.

Listing 4.1: Initialization of the template for the input model.

./nmap.py --template

The template created after the command is presented in Figure 4.1. In the template,
the different sections can be filled with the information from the requirements. If
the firewall should perform a stateful packet inspection, stateful is set to true in the
input model, otherwise false. This thesis has only considered default drop as policy
since it is the most common policy and is therefore the only option to fill in. The
IP address is the target address for each interface the scan is performed on. The
whitelisted ports in each interface is the allowed ports. Under the outgoing interface
in the template, the type can be filled in with three different types of options: ports,
IP or combination. The port option should be chosen if the requirement regarding
outgoing traffic only mentions whitelisted ports, IP if the requirement only mentions
whitelisted IP addresses and combination if it mentions a combination between IP
addresses and ports. The whitelisted ports is filled if the ports is chosen, whitelisted
ip addresses is filled if the IP is chosen and combination is filled if the combination
is chosen.

31

4.2. AFT 4. Implementation

Inputfile Template

-- General --

Stateful: True or False

Policy: Default drop or Default accept

-- Incoming external --

Target IP address: IP to the target

Whitelisted ports: [Port,Port]

-- Incoming internal --

Target IP address: IP to the target

Whitelisted ports: [Port,Port]

-- Qutgoing --

Type: Specify the type of outgoing traffic to test
Target IP address: IP address to the external target
Whitelisted ports: [port, port]

Whitelisted IP addresses: [IP, IP]

Combination: [(IP: port, port), (IP: port)]

Figure 4.1: An input model template.

4.2 AFT

VCC has an increasing focus on continuous integration testing on different level of
abstraction. This is performed by developing Awesome Framework, a test framework
implemented in Python. AF is compatible to execute tests suits on different system
in the vehicle or even for a complete vehicle. Thereby, AFT is implemented in
Python as well to simplify the possibility for integration with AF. The tool considers
the functional security aspect i.e. verifying that security mechanisms are behaving
as intended. Security attributes like confidentiality and integrity will be excluded in
the tool. AFT consider three aspects, messages sent internally, messages sent from
the internal network to an external network and messages sent from an external
network to the local network. To execute the different parts of the tool, the user
specifies the desired part by an extra argument to the program. The architecture
of AFT is presented in Figure 4.2 where the handling of the different interfaces
are illustrated. Incoming traffic on internal interfaces and external interfaces are
represented as one flow in the figure, even if they consider different requirements
and data because they perform the same type of tests.

32

4. Implementation 4.2. AFT

Outgomg Traffic Nmap

O—N_ o \: I>

I
I
| |
I Port Scan /
I - Incoming Traffic I Stateful Scan Port Scan I Vulnerability
I — search .I
P 1
— 1 —
=7 Firewall CVE
—d Database

Figure 4.2: An overview of the technical architecture of AFT.

The first section of the tool is to receive and interpret the input model. Since the
input model has predefined keywords, a function in AFT open the input model and
search for the different words to be able to consider the requirements during the
execution. In Listing 4.2, it is showed how AFT achieve the information from the
input model whether the firewall should be stateful or not.

Listing 4.2: Initialization of Nmap object.

with open("input.in") as f:
for line in f.readlines():
Check if the firewall should be stateful
if ’Stateful’ in line:
stateful = True if
(1ine.split(’:?) [1] .rstrip() .strip() .lower() == ’true’)
else False

To simplify the implementation of AFT, two frameworks have been used. One
to simplify the implementation of performing port scans with AFT, a framework
for Python providing that functionality had to be found. One that provide Nmap
functionality for Python programs were python-nmap[38]. It was chosen since it
provided scan results in a suitable format for AFT, had thorough documentation
and useful examples to follow. Another useful framework considered in AFT is cve-
search [39], it provides functionality for detection of vulnerabilities for a specific
service given from a scan. This is achieved by searching for CVEs stored in a
database containing all known vulnerabilities with service as input. It was chosen
for this thesis since it was an open-source software compatible with Python and
store all CVEs in a database locally i.e. avoiding sending queries for each service to
a public CVE database online which slow down the look up speed. The functionality
of Nmap and the CVE database will be further described below.

33

4.2. AFT 4. Implementation

Nmap

Nmap is a free and open-source tool used for network discovery and security auditing.
It is widely used with thousands of downloads each day and have received numerous
awards e.g. 'Information Security Product of the Year" by Linux Journal, Info
World and Codetalker Digest [40]. By sending raw IP packets, it can by different
techniques determine which hosts that are available on the network, services (name
and version) available, operating systems used, type of firewall used and much more.
Nmap can be utilized on all operating systems and can be used to scan both large
networks and single hosts. The different techniques that is relevant for this thesis
are further described below mentioning both usage and functionality.

TCP connect() scan - makes use of the UNIX socket programming system call
connect(). It is used to initiate a TCP connection on a remote host. If the connect()
command succeeds with establishing a connection to the host, the responding port is
open. Otherwise, if the connect() fails, it could be due to that the host is offline, port
is closed or some other error that occurred. An illustration of the packet exchange
for both an open and closed port is presented below in Figure 4.3 and Figure 4.4.
An advantage of using the TCP connect() scan is that it easily can determine if a
port is open since it will establish a connection to it. A disadvantage is that it easily
can be detected on systems being scanned. However, that does not apply to this
thesis since the stakeholders want the system to be scanned.

e — T

Ack RST
> —

Figure 4.3: TCP Connect() scan Figure 4.4: TCP Connect()
with open port. scan with closed port.

Ping scan - is used to determine available hosts on the network. It is achieved by
sending an ICMP ECHO REQUEST to the specified range/host and by interpreting
the corresponding reply. If the received packed is an ICMP ECHO REPLY, it can
be concluded that the host is online. A illustrating picture of the packet exchange
is presented below in Figure 4.5. If there is no response, it could depend on ICMP
packets being blocked and a TCP Ping is initiated to determine if ICMP packets
are being blocked or if the host is offline. The TCP Ping scan can use two different
techniques, initiating with an ACK or SYN/ACK packet to any port on the remote
system (default 80). If the response is RST or SYN/ACK, the host is online. If
there is no response, the remote system is either closed or the targeted port marked
as "filtered" and not responding to anything.

34

4. Implementation 4.2. AFT

ICmp g
CH
REQuEgT

|cMP ECHO

REPLY

Figure 4.5: Ping scan with an open host.

UDP scan - is used to find open ports that uses UDP. The scan starts with sending
a 0-byte UDP packet to each specified port on the target host. If the response is an
ICMP Port Unreachable, it is considered as closed. Otherwise, it is assumed to be
open. An illustration of the packet exchange is presented below in Figure 4.6 and
Figure 4.7. If outgoing ICMP Port Unreachable messages are blocked, the ports will
appear as open and it will be very hard to determine if the port is actually open or
not. It also happens that services sometimes reply with a UDP packet. However, if
there is no answer from the re-transmission, the port is classified as openlfiltered.

A common practice is to limit the ICMP Port Unreachable packets that can be
generated during a time period. Therefore, to avoid flooding a network with useless
packets, Nmap adjusts its speed for generating packets. Therefore, a UDP scan of
all 65536 ports can take more than 18 hours.

u u
%} %}
|CMP Port Unreachable
Figure 4.6: UDP scan with Figure 4.7: UDP scan with
open port. closed port.

Version Detection - is performed to collect information for a service running on
an open port and includes the name of the service and the corresponding version.
Version detection is based on a series of complex probes [40] and can use both OS
fingerprinting and version detection.

ACK scan - makes it is possible to test if a firewall is stateful or not. The scan starts
by sending an ACK packet to the remote host and either it responds with a RST or
by dropping the packet. If the response is RST, it will mark the port as "unfiltered"
and the firewall is not considered to be stateful. If there is no response, the port is

35

4.2. AFT 4. Implementation

marked as "filtered" and the firewall is considered to be stateful. An illustration of
the packet exchange for a stateful and stateless firewall is presented below in Figure
4.8 and Figure 4.9. However, with a ACK scan, it is not possible to determine if a
port is open or not since it only marks a port as "unfiltered" or "filtered".

&) &)
%

Figure 4.8: ACK scan with Figure 4.9: ACK scan with
stateful firewall. stateless firewall.

By taking usage of the python-nmap framework it is very easy to initiate a Nmap
object which is able to take advantage of all functionality Nmap provides directly
in AFT [38], as shown in Listing 4.3. By taking advantage of the string operator in
Python, the scan command becomes very flexible and can perform several scans for
several ports.

Listing 4.3: Initialization of a Nmap object.

import nmap
try:
nm = nmap.PortScanner() # instantiate nmap.PortScanner object
nm.scan(ip_addr, arguments=’%s -p %s’ % (flag, p))
except nmap.PortScannerError:
print (’Nmap not found’, sys.exc_info() [0])
sys.exit (1)

CVE database

CVE is a database of known vulnerabilities and exposures. Today, it is the industrial
standard for vulnerabilities [41], it was initialized 1999 aiming to provide a common
database to avoid having several databases referring to the same vulnerability dif-
ferently. Furthermore, it also resulted in an approach to evaluate the vulnerabilities
fairly since they could be compared based on the same criteria. A CVE object
describes a specific vulnerability for a certain service and a certain version of that
service, it is stored in a database and each object is assigned a unique id to provide
efficient look up. This makes it possible to search for vulnerabilities connected to
a given service and version. A CVE object consists of the unique identifier, a brief
description of the problem, references and Common Vulnerability Scoring System

36

4. Implementation 4.2. AFT

(CVSS). The CVSS is a scoring system grading each vulnerability within a scale
between 0 and 10, where 10 is the most serious threat.

To improve the performance of queries in AFT, the CVE database is populated
locally to avoid public look ups in a public CVE database. By using the commands
shown in Listing 4.4, the scripts will fetch all known vulnerabilities and exposures
from 2002 until 2017 and link them together in MongoDB, a noSQL database. The
last of the three commands, is the updater script that also could be used whenever
one want to update the database with new CVE objects.

Listing 4.4: Initialization of the CVE database.
./sbin/db_mgmt.py -p
./sbin/db_mgmt_cpe_dictionary.py
./sbin/db_updater.py -c

The CVEs could be found by searching for specific services and/or versions, e.g. as
shown in Listing 4.5, a query searching for vulnerabilities for cisco’s iOS products
with version 12.4 is performed. One of the detected CVE objects of the response is
shown in Figure 4.10.

Listing 4.5: Searching for a specific service and version in the CVE database.

./bin/search.py -p cisco:ios:12.4

CVE : CVE-2009-0635

DATE : 20@9-03-27 12:30:02.077000

CV5ss 1 7.1

Memory leak in the Cisco Tunneling Control Protocol (cTCP) encapsulation feature in Cisco I0S 12.4, when
an Easy VPN (aka EZVPN) server is enabled, allows remote attackers to cause a denigl of service (memory
consumption and device crash) via a sequence of TCP packets.

References:

http://www.cisco.com/en/US/products/products_security_advisory@9186a0080a9@459, shtml
http://www.cisco.com/en/US/products/products_security_advisory@9186a0080a9@469 , shtml

http://www,securityfocus.com/bid/34246
http://www,securitytracker. com/id?1021895
http://www.vupen, com/english/advisories/20@9/0851
http://xforce.iss.net/xforce/xfdb/49417

Vulnerable Configs:
o:ciscorios:l2.4t

cpe:2.3:0:ciscorios:l2, 4xz
cpe:2.3:0:ciscorios:12,.4ya

Figure 4.10: The response from a CVE query showing one of the found CVE
object.

4.2.1 Incoming Traffic

The incoming traffic is tested by two approaches. One consider incoming traffic
from an external network and the other consider incoming traffic within the local
network. This is achieved by connecting the computer with AFT to the car’s gateway

37

4.2. AFT 4. Implementation

IP address from either an external IP address to verify external requirements or an
internal IP address to verify internal requirements. Then will AFT perform different
scans to verify whether the requirements for the incoming traffic are fulfilled or not.
This part is executed in two separately commands since the computer with AFT
needs to have an internal IP address in one case, and an external IP address in the
other case, and that needs to be switched manually between the two executions. The

execution consists of three steps: stateful scan, port scan and vulnerability search.
They will be further described below.

Stateful scan

The first scan to perform on incoming traffic is a stateful scan. This is performed
with an ACK scan, described in Section 4.2, on all ports (65 536 ports) and if a
port is classified as "filtered", this thesis considers the firewall as stateful. To make
AFT more efficient, it will not continue the ACK scan after finding a filtered port
since the firewall is either completely stateful or completely stateless. This scan is
performed to verify the stateful requirement stated in the input model.

Port scan

To verify whether the whitelisted ports are open or not, and if there exist any other
open port that not should be, a port scan is performed. All ports are considered and
it is taking usage of the TCP and UDP scan, described in Section 4.2, to test if it is
possible to get a connection to each port on the chosen protocols. AFT consider the
whitelisted ports in the input model and note if anything is breaking it. This are two
very time consuming scans, especially the UDP scan, additionally, by performing
it on all ports makes it even more time consuming. However, it is still necessary
to perform this scan for each port to be confident that all services that should be
accepted success, but more important, that services that not should be allowed not
could be found or accessed. This is a valuable scan to perform to detect eventual
mistakes during the development or forgot to close ports support with debugging
services e.g. SSH.

Vulnerability search

The functionality of detecting vulnerabilities is not necessary for AFT to determine
whether the requirements are fulfilled or not but provides a feature for the stake-
holder to also detect potential threats to the system. The vulnerability search take
usage of the CVE database, by considering the result from the port scan, it can
search for vulnerabilities for all open whitelisted ports. The reason why the vul-
nerability scan only search for vulnerabilities on open whitelisted ports is because
all other ports should just be closed since the requirements states to only allow the

38

4. Implementation 4.2. AFT

whitelisted ports. All vulnerabilities above the specified CVSS for each port are
stated to the stakeholder to consider and prioritize.

4.2.2 QOutgoing Traffic

For outgoing traffic, there are three different test scenarios. The firewall is either con-
figured to allow outgoing traffic to whitelisted destination IP addressed, whitelisted
destination ports or a combination of those. Dependent on which case the firewall
consider, AFT will test all whitelisted IP addresses or whitelisted ports to verify that
they can be accessed. If there are specific ports for specific IP addresses, will all
those be tested together. The three different scenarios: whitelisted ports, whitelisted
IP addresses and whitelisted ports and IP addresses will be further described below.

Whitelisted ports

If the requirements state that only packets addressed to specific ports should be
allowed, AFT perform a TCP scan, described in Section 4.2, to determine if it is
possible to initiate a connection for each port in the whole port range. AFT will then
make sure that all whitelisted ports could be accessed and no non-whitelisted ports
could get an established connection, otherwise AFT will notify the stakeholder.

Whitelisted IP addresses

In case that the requirements restrict the outgoing traffic to only allow access to
specific IP addresses, AFT performs a ping scan. First a positive test is performed,
by sending ping probes to all whitelisted addresses to verify that they are allowed to
pass the firewall and could achieve an established connection. Secondly, a negative
test is performed to verify that non-whitelisted IP addresses are blocked. This is
performed in the same way as the positive test, but with a predefined set of non-
whitelisted IP addresses to consider. This set of non-whitelisted IP addresses could
be modified by the user to consider relevant non-whitelisted IP addresses that should
be blocked.

Whitelisted ports & IP addresses

Probably the most common approach is to allow a combination of ports and IP
addresses, certain ports should be allowed for specific IP addresses. AFT will start
by testing all whitelisted ports for the different IP addresses to verify that they
could be accessed by doing a TCP scan and an UDP scan. Lastly, non-whitelisted
ports will be tested for each IP address to check that they not could be accessed.
For this thesis, it is assumed to provide enough confidence by randomly choosing 50

39

4.3. REPORT GENERATION 4. Implementation

ports from the non-whitelisted port space. However, this number could be modified
to increase the confidence but will also affect the execution time.

4.3 Report generation

The report states whether the firewall fulfill the stated requirements. As soon as
the AFT can determine whether a requirement are fulfilled or not after performing
the different tests, it is appended to the report. After AFT has been executed, the
report contains information about how the firewall have handled the test. If any
vulnerabilities are found, all connected CVEs are stated as well. An example is
illustrated in Listing 4.6, where the logic for how AFT interpret the results from the
scan compared to the requirements in the input model. The variable stateful scan
is set to True if the response from any ACK scan returns filtered, then it is compared
to the stateful requirement to determine whether the requirement is fulfilled or not.

Listing 4.6: Initialization of Nmap object.

if (stateful_scan is stateful_requirement):

writeReport("The stateful requirement is fulfilled\n")
else:

writeReport("The stateful requirement is not fulfilled\n")

Since the report is a text file, it is easy in Python to just append a text string to an
existing file. Dependent on the outcome from the different tests, different messages
are appended to the report to state how the different requirements are fulfilled. Since
AFT is dependent on a user to execute the different parts of the tool separately,
the report is created with the date in the filename, meaning that the different tests
are written to the same file if they are performed after each other in the same day.
Thereby, all information regarding the requirements are stated in the same report.

4.4 An Illustration of AFT in Action

This section presents an illustration of how the MBST approach is applied with the
target scanme.nmap.org. The website is provided by the Nmap organization for
testing that the Nmap configuration works as intended. It should be scanned with
care and only with a limited number of scans per day.

Requirements

The following made up requirements applies to the firewall of scanme.nmap.org.

Incoming traffic from external interfaces

40

4. Implementation 4.4. AN ILLUSTRATION OF AFT IN ACTION

e The firewall should perform a stateful packet inspection
o All whitelisted port should be allowed

o Default drop policy

Input Model

From the requirements stated in Section 4.4, the following input model is created
which is presented in Figure 4.11.

Tnputfile Template
General --
: True

2. nmap.arg

sted por
d ip addr

Figure 4.11: The input model based on the requirements.

As can be seen in the input model, the stateful option is true, the policy is default
drop and the whitelisted ports are numbered under the incoming external interface.
All other options are empty since the requirements do not cover incoming traffic on
internal interfaces and outgoing traffic.

AFT

The AFT tool takes the input model as input and will produce a report which
describes if the requirements are fulfilled or not. Since the requirements only cover
incoming traffic from external interfaces, the command presented in Listing xx is
executed.

Listing 4.7: Command to execute the AFT tool for incoming traffic on external
interfaces.

sudo ./nmap.py --inExt

41

4.4. AN ILLUSTRATION OF AFT IN ACTION 4. Implementation

During the execution of the AFT, the stakeholder has interaction from the termi-
nal to know the progress and what action AFT performs. An illustration of the
interaction is presented in Figure 4.12.

Incoming traffic

Figure 4.12: Output from terminal while AFT is running.

Report
Based on the requirements stated in Section 4.4, the following report is produced
from the AFT.
Incoming traffic on external interfaces
e stateful requirement is fulfilled
e following non-whitelisted ports are open:
following whitelisted ports are not open: [53]

= default drop policy requirement 13 not fulfilled

for open whitelisted ports:

Ij one, tot |'_].|_ 2

Figure 4.13: The produced report from the MBST approach.

As seen in the report, the firewall performs a stateful packet inspection and fulfills
the stateful requirement. The non-whitelisted port 22 is open which should be
closed and therefore is the default drop requirement not fulfilled. Furthermore, the
whitelisted port 53 is not open and the requirement of allowing all whitelisted ports
is not fulfilled. 11 vulnerabilities are found for the open whitelisted port 80 with
the service Apache httpd with version 2.4.7 and only one CVE is presented since

42

4. Implementation 4.4. AN ILLUSTRATION OF AFT IN ACTION

the lower limit of the CVSS score is set to 6. As described earlier, it is possible to
search on a specific CVE-ID to get a more thoroughly description of the CVE.

43

4.4. AN ILLUSTRATION OF AFT IN ACTION 4. Implementation

44

O

Evaluation

This chapter presents the result from the MBST approach applied on a test rig at
VCC. Furthermore, the results from the tests are evaluated.

5.1 Results

This section presents the results from the MBST approach. Firstly, the input model,
based on the requirements of the firewall from VCC, is presented. Lastly, a snippet
from the report for each test case is presented with its corresponding result.

5.1.1 Input Model

Based on the requirements stated in Section 3, the input model presented in Figure
5.1 is created.

jrmp

ncoming inte
et IP addr

: DﬁPtE or ip or combination

get IP aoddress: scanme.nmap.org

Whi tE‘llE‘f’ d pr
=listed ip ;1 [google.se, scanme.nmap.org

Figure 5.1: The input model based on the firewall requirements.

45

5.1. RESULTS 5. Evaluation

As seen in Figure 5.1, the stateful packet inspection requirement is set to true and the
default drop requirement is set under policy. The whitelisted ports and the target
addresses for incoming traffic on both interfaces are not presented due to being
sensitive data for VCC. Furthermore, for the test case regarding outgoing traffic,
there was no information provided by VCC in order to confirm the requirements.
Therefore, random data was used to demonstrate that the functionality of the AFT
regarding outgoing traffic behaves as intended.

5.1.2 Generated Report

The report is generated after running the AFT tool for each test case; incoming traf-
fic on external interface, incoming traffic on internal interface and outgoing traffic.
Below is a snippet from the report for each test case and are presented in Figure
5.2, Figure 5.3 and Figure 5.4.

Incoming Traffic on External Interface

Incoming traffic on external interfaces

The stateful reqguirement is fulfilled

= filtered and need further inwvestigation: [
Mo non-whitelisted ports are open

The defaul t drop policy requirement is fulfilled

Figure 5.2: The produced report for incoming traffic on external interface.

As seen in Figure 5.2, the stateful packet inspection requirement is fulfilled. No
whitelisted ports are open, however, some of them are classified as filtered and need
further inspection to determine if they are open or closed. No non-whitelisted ports
are open and therefore the default drop requirement is fulfilled.

46

5. Evaluation 5.2. ANALYSIS

Incoming Traffic on Internal Interface

Incoming troffic on internal interfaces

Mo non-whitelisted ports are open
The defaul £ drop policy requirement 1s fulfilled

wh1te
ce could not be identified

Figure 5.3: The produced report for incoming traffic on internal interface.

As seen in Figure 5.3, the stateful packet inspection requirement is fulfilled. The
report presents the whitelisted ports that not are open. Some of the whitelisted
ports are marked as filtered and need further investigation to determine if they are
open or closed. No non-whitelisted ports are open and therefore the default drop
requirement is fulfilled. One of the whitelisted ports were open, however, no CPE
was found from the port scan which makes it impossible to search for vulnerabilities
in the CVE database.

Outgoing Traffic

Figure 5.4: The produced report for outgoing traffic.

As seen in Figure 5.4, all addresses shown in the input model were successfully
accessed and the requirement is fulfilled.

5.2 Analysis

This section considers the analysis of the results from AFT and the analysis of the
maturity at VCC to introduce a MBS'T approach.

47

5.2. ANALYSIS 5. Evaluation

5.2.1 Results

As mentioned in Section 3, the SUT is late in its development phase and a penetra-
tion test has been performed on it i.e. it is well validated. The result is as expected,
no information is revealed and the SUT works as intended. The list of whitelisted
ports is the same for all incoming traffic, both on internal and external interfaces,
and consists of totally 8 ports. For incoming traffic on external interface, 0 out of
8 whitelisted ports are classified as open, 3 ports as filtered and 5 as closed. The
3 filtered ports could potentially be open and needs therefore to be further investi-
gated manually. The same result applies regarding the incoming traffic on external
interface except that 1 port is classified as open, 4 ports is classified as filtered and
3 ports classified as closed. Furthermore, it was not possible to find a CPE con-
nected to the open port for incoming traffic on external interface. Therefore, it is not
possible to search in the CVE database for vulnerabilities. Regarding the outgoing
traffic, the requirement holds. However, since no valid requirements were provided
by VCC for the outgoing traffic data were made up and cannot be considered as
relevant result more than that the functionality holds.

Based on the requirements of the SUT, our MBST approach could cover 10 out of
11 requirements. However, AFT could not verify the two requirements of outgoing
traffic since we were only able to connect to the Wi-Fi hotspot which is a different
interface from the one considered for the requirement regarding outgoing traffic.
Secondly, since AFT is automated, it is infeasible for this thesis to create and capture
traffic that are initiated from the in-vehicle. Therefore, AFT only performs negative
testing on these requirements to verify if they are fulfilled or not. To determine the
default drop policy requirement, negative testing are used as well, to verify that no
non-whitelisted ports are accessible.

From the result we can conclude that all requirements could not be covered. This
is more thoroughly described in the research question below.

o How much of the requirements of the firewall can be covered with a MBST
approach?

With the MBST approach, 10 out of the 11 requirements can be covered. All
the requirements for incoming traffic can be covered by different port scans
to determine if whitelisted ports are accepted and that the default drop pol-
icy is fulfilled. The stateful packet inspection requirement is covered by an
ACK-scan to investigate if a port gets classified as "filtered". We could also
successfully connect to the WiFi-hotspot to evaluate if all outgoing traffic and
incoming traffic on internal interface succeeds. However, there are one re-
quirement that not can be covered by this approach: verifying source ports
for outgoing traffic. Since AFT is based on different scans, it is not possible
to affect or control the source ports and can therefore not determine whether
the requirement regarding source port is fulfilled.

However, only 6 out of the 10 covered requirements were fulfilled. Based on an

48

5. Evaluation 5.2. ANALYSIS

ACK-scan, it is determined that the firewall performs a stateful packet inspection
by classifying a port as 'filtered". For incoming traffic on both interfaces, the de-
fault drop policy is verified since all traffic is dropped. We also consider requirements
regarding "initiated from in-vehicle" to be fulfilled by negative testing which is con-
firmed with the different port scans.

5.2.2 Evidence Criteria

Evidence Criteria is the optional criteria for the MBST classification which is used to
validate if MBST is an applicable or useful approach at VCC, described in Section
2.3.2. Tt is evaluated by manual analysis of the SUT and consist of Maturity of
Fvaluated System, Evidence Measures and Evidence Level presented in Figure 2.3.

Maturity of Evaluated System

The system considered for this thesis is a Premature System since it is still under
development. Although, it has been performed a penetration test on the system,
indicating it is located in the end of the development phase and is therefore mature
enough to be considered as a Production System.

Evidence Measures

The evidence measure for this thesis is Effectiveness Measures. The approach con-
siders predefined tests that is modified based on the input model to cover common
firewall requirements. The AFT then executes tests to compare the output with the
expected output based on the input from the input model.

Evidence Level

The evidence level of this thesis is Frecutable which not restrict the Evidence mea-
sure. The approach considered in this thesis makes use of executable test cases to
validate the generated output from AFT. The executable test cases are predefined
and matched against common firewall rules, e.g. allow or block certain type of
traffic.

Conclusion

The conclusion is that the system is mature enough to make it applicable to apply
a MBST approach. The system is late in its development phase and a penetration
test has been conducted on it. Therefore, it can be seen as a final system that is

49

5.2. ANALYSIS 5. Evaluation

ready for release. The evidence measures of the approach is an effectiveness measure
with an executable evidence level. The MBST approach of this thesis makes use of
executable test cases to evaluate the output considering the expected output and
determine if a requirement is fulfilled or not.

This thesis aim to verify security requirements of a firewall with a MBST approach.
However, in order to determine if a MBST approach is applicable at VCC, the
maturity of handling and modelling security requirements needs to be considered
as well. The SUT is mature enough to make it applicable to introduce a MBST
approach, but only for functional security testing. VCC does not model security
notations in their UML models which makes it impossible to make use of the only
existing MBST tool, the UMLsec tool. Although, it is possible to make use of MBT
tools to test functional security, but unfortunately there is a lack of experience in
modelling state machines and formal models at VCC. As a result, VCC is not mature
enough to make it applicable to introduce a MBST approach today. However, this
is not surprising since MBST is a relative new research field and almost only used
in academia.

From the evaluation of the results, the following research questions can be an-
swered.

o Are there a MBST approach suitable to apply at VCC?
— What is required to apply a MBST approach at VCC?

To apply a MBST approach at VCC, it depends on whether functional
security is enough or not for fulfilling the requirements. To use a MBST
approach to test functional security, existing MBT tools or the AFT tools
is applicable to use. However, in order to use existing MBT tools, a deeper
knowledge in modelling of state machines and formal models is necessary.
The only existing MBST tool, UMLsec tool, makes us of UMLsec models
which considers security notations. The UML models at VCC does not
consider security notations and needs therefore to introduce UMLsec into
their UML models.

Although, it is possible to make use of a MBST approach at VCC as
demonstrated in this thesis. The drawback is that it is only available
for functional security testing of firewalls. This thesis approach is very
limited and only general for firewalls. By introducing UMLsec models, it
would possible to get a wider scope for MBST.

50

O

Discussion

In this section, interesting findings and decisions that appeared during the thesis
are further analyzed and discussed.

6.1 MBST vs Penetration Testing

AFT is considered to be a MBST tool that takes text-based requirements and gen-
erate tests automatically to verify each requirement for a firewall. However, this is
not a replacement for Penetration Testing (PT), where the focus is to find flaws in
the SUT by using a mindset of a hacker. The focus of the approach used in this
thesis is to verify specified security requirements and that the SUT behave as in-
tended. Therefore, both these approaches are necessary to test a SUT. The purpose
of MBST approach is to support the stakeholder during the development and to sim-
plify testing the implementation for mistakes meanwhile PT is usually performed
late in the development phase when the SUT is almost complete. The aim of AFT
is to reduce the faults found during the PT by making it feasible for testing more
frequent and have more interaction between test results and implementation.

6.2 MBT tools for a MBST approach

As presented in Section 3.1, a MBT tool could be used for applying a MBST ap-
proach considering functional security i.e. verify security mechanisms. However, as
mentioned about the characteristics of MBST, there are two other perspective of
Model of System Security except Functionality of security mechanisms to consider:
security properties and vulnerabilities. These two could not be considered with any
of the MBT tools investigated in this thesis. By not being able to consider secu-
rity attributes or vulnerabilities in the modeling, the process of developing security
models becomes otiose. However, as mentioned in Section 3.1, dependent on the
models of the SUT and the purpose of testing it, a MBT tool could be relevant e.g.
testing the functionality of the security mechanisms for a SUT modelled in a state
models or formal models. Considering that MBST is a relatively new research field
with only one MBST tool available, it is reasonable to expect that more tools will

51

6.3. AFT 6. Discussion

be available in the future as security becomes more prioritized.

6.3 AFT

AFT is a useful tool during the development of a firewall. It is a fully automated
tool that are able to detect common mistakes during the configuration and presents
potential vulnerabilities to stakeholders. This thesis considers an in-vehicle firewall,
however, AFT can be used on an arbitrary firewall to evaluate if the requirements
holds. In Section 4.4, the approach with AFT is used on a different firewall as a
proof-of-concept on a web server. As seen in Section 5.2.1, a firewall that has reached
a late state in the development and already has been penetration tested with the
flaws fixed do not reveal that much information for AFT to present. For example,
most of the whitelisted ports cannot be determined whether they are open or not
and then needs to be manually verified by the stakeholder.

Balance between factors

This implementation is very time consuming to execute since it requires several
network scans to be performed on all ports available. Therefore, it is a balance
between execution time and confidence of the result to set a realistic part of all
ports to be tested to decrease the time but still achieve enough confidence to trust
the outcome of AFT. This will be set differently dependent on the SUT and the
importance of a fully secure system. One approach to avoid testing all ports is to
choose a fixed amount of ports to test and then randomly select them, either from
the whole port range or from different sections of it to achieve a desired distribution
of ports in the port scans.

It is also important to highlight the potential problem with UDP scans. As men-
tioned in Section 4.2, UDP scans can be very time consuming with only one scan
potentially taking more than 18 hours. Therefore, it is important to determine if
the time of performing a UDP scan on all 65536 ports is necessary in order to have
enough of credibility that a requirement is fulfilled.

Limitation of AFT

A problematic requirement to fully verify is when a connection only should be al-
lowed to be established from the source, in this case in the vehicle. Since AFT is
the client that connect to the SUT, it is infeasible for this thesis to test positive
testing because all attempts to connect will be refused and dropped by the firewall.
However, the negative testing is still able to determine whether not allowed traffic
will be denied and is decided to be enough for this thesis since from a security per-
spective, it is more valuable that a port scan detect that a non-whitelisted port is

52

6. Discussion 6.4. REQUIREMENTS

open than detecting that a whitelisted port is closed. Since the whitelisted ports are
supposed to be open, they are probably more protected than services behind ports
that not should be open e.g. debug services used during the development. Further-
more, requirements restricting source ports for outgoing traffic is also infeasible for
AFT since the scan tool only specify the destination ports and not affect the source
port.

6.4 Requirements

It is a new era within the automotive industry with new threats that needs to be
carefully measured, as the new vehicles gets connected. By dividing the require-
ments, it could be seen as an additional layer of protection. The first potential
threat would be if an adversary could get access of the system from incoming traffic
on an external interface. By having requirements for incoming traffic on internal
interfaces and for outgoing traffic, an infected computer would then not be able to
be used for further intrusions or malicious intentions, e.g. DDoS-attacks. It could
be seen as adding additional layers of security.

It is a very strict requirement to restrict the outgoing traffic to specified whitelisted
IP addresses and/or ports, but it is a huge advantage in a security perspective. In
case of a successful attack, where the attacker get access to one device in the system,
it makes it much harder to communicate outside the system if the outgoing traffic
is restricted. Even worse, a scenario considering the fact that it is a vehicle, would
be if the attacker could establish a connection to communicate with the internal
network with ECUs and take control of critical functions e.g. braking and steering.

6.5 CVE database

For this thesis, all available CVEs from 2002 were selected to be included in the
database. However, it is possible to modify how old CVEs to consider when popu-
lating the CVE database. Since CVE from 2002 most likely is outdated, it would be
more efficient to populate the database with only more recent CVE’s. The frame-
work used stores the CVEs in a NoSQL database, which is not as efficient as a SQL
database considering the performance and flexibility. Since the lack of functionality
to query objects with several criteria for the noSQL database, like CVE-ID, rele-
vant years and CVSS, a SQL database would yield better performance and more
flexibility.

Since it is not possible in the framework to search for a CVE by a specific year or
range of years, it would be more efficient to make use of a relation database. It has
big impact on the performance to make use of the existing database due to that each
CVE is connected to the product which makes it hard to determine if is relevant for
the specific version of the product.

33

6.5. CVE DATABASE 6. Discussion

o4

I

Conclusion

This thesis survey the state-of-the-art in the MBST field and propose a new approach
to apply MBST to verify security requirements for a firewall within a vehicle. After
a thorough literature study, we could find one available MBST tool. The tool makes
use of UMLsec models which is UML models including security notations. VCC
today have UML models on a more abstract layer which do not consider security
notations. Therefore, it is concluded that VCC is not mature in their modelling
to make use of the MBST tool. As a result, an evaluation of MBT tools were
conducted to decide if these could be used in a MBST approach. However, since the
input models of the MBT do not consider security notations, only functional security
can be verified. From the evaluation, we concluded that VCC is not mature enough
to make us of the existing MBT tools due to lack of experience of modelling state
machines and formal models. As a result, AF'T was implemented to test functional
security of a firewall and covers 10 out of 11 requirements. The final conclusion
is that it is possible to make use of a model-based security testing approach with
the new AFT tool, which automatically verifies whether firewall requirements are
fulfilled or not.

Future Work

The future work of this thesis is to further develop the AFT tool. By extending the
tool with more functionality, more requirements would be possible to be considered
and also achieve more confidence regarding the result. Furthermore, an investigation
to validate the process of adapting the text-based requirements into the input model
would be beneficial since this thesis did not verified it. Additionally, evaluating
different approaches that enables adaption of requirements into an input model in
regards to usability. Since this thesis only consider functional security of firewall
requirements, a further investigation of possibilities to use security notations in
models used as input would be of interest to make use of the full potential of MBST.

35

7. Conclusion

56

Bibliography

[1] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of
model-based testing approaches. Software Testing, Verification and Reliabil-
ity, 22(5):297-312, 2012.

[2] Michael Felderer, Philipp Zech, Ruth Breu, Matthias Biichler, and Alexander
Pretschner. Model-based security testing: a taxonomy and systematic classifi-
cation. Software Testing, Verification and Reliability, 26(2):119-148, 2016.

[3] Michael Felderer, Berthold Agreiter, Philipp Zech, and Ruth Breu. A clas-
sification for model-based security testing. Advances in System Testing and
Validation Lifecycle (VALID 2011), pages 109-114, 2011.

[4] Hossain Shahriar and Mohammad Zulkernine. Automatic testing of program
security vulnerabilities. In Computer Software and Applications Conference,
2009. COMPSAC’09. 33rd Annual IEEE International, volume 2, pages 550—
555. IEEE, 2009.

[5] M Melosi. The automobile and the environment in american his-
tory. Online: http://www. autolife. umd. wmich. edu/Environmen-
t/E_Qverview/E__Ouverview. htm, 2004.

[6] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi
Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, et al. Experimental security analysis of a modern automobile.
In Security and Privacy (SP), 2010 IEEE Symposium on, pages 447-462. IEEE,
2010.

[7] Nicolas Navet and Frangoise Simonot-Lion. In-vehicle communication networks-
a historical perspective and review. Technical report, University of Luxem-
bourg, 2013.

[8] Charlie Miller and Chris Valasek. Remote exploitation of an unaltered passenger
vehicle. Black Hat USA, 2015, 2015.

[9] Brad Arkin, Scott Stender, and Gary McGraw. Software penetration testing.
IEEFE Security & Privacy, 3(1):84-87, 2005.

[10] Ina Schieferdecker, Juergen Grossmann, and Martin Schneider. Model-based

o7

BIBLIOGRAPHY BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[19]
[20]

[21]

[22]

[23]

security testing. arXiv preprint arXiw:1202.6118, 2012.

Bruce Potter and Gary McGraw. Software security testing. IEEE Security €
Privacy, 2(5):81-85, 2004.

Gu Tian-yang, Shi Yin-Sheng, and Fang You-yuan. Research on software se-
curity testing. World Academy of science, engineering and Technology, 70:647—
651, 2010.

Michael Felderer and Ina Schieferdecker. A taxonomy of risk-based testing,
2014.

Roberto Natella, Domenico Cotroneo, Joao A Duraes, and Henrique S Madeira.
On fault representativeness of software fault injection. IEEFE Transactions on
Software Engineering, 39(1):80-96, 2013.

Guido Wimmel and Jan Jirjens. Specification-based test generation for
security-critical systems using mutations. In International Conference on For-
mal Engineering Methods, pages 471-482. Springer, 2002.

George Fink and Matt Bishop. Property-based testing: a new approach to
testing for assurance. ACM SIGSOFT Software Engineering Notes, 22(4):74—
80, 1997.

Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. Finding
software vulnerabilities by smart fuzzing. In Software Testing, Verification and
Validation (ICST), 2011 IEEE Fourth International Conference on, pages 427—
430. TEEE, 2011.

Zakir Durumeric, James Kasten, David Adrian, J Alex Halderman, Michael
Bailey, Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias
Payer, et al. The matter of heartbleed. In Proceedings of the 2014 Conference
on Internet Measurement Conference, pages 475-488. ACM, 2014.

Gerry Zaugg. Firewall testing. ETH Zurich, 2005.
Achim D Brucker, Lukas Briigger, and Burkhart Wolff. Model-based firewall

conformance testing. In Testing of Software and Communicating Systems, pages
103-118. Springer, 2008.

Achim D Brucker, Lukas Briigger, and Burkhart Wolff. Formal firewall confor-
mance testing: an application of test and proof techniques. Software Testing,
Verification and Reliability, 25(1):34-71, 2015.

Diana Senn, David Basin, and Germano Caronni. Firewall conformance testing.
In IFIP International Conference on Testing of Communicating Systems, pages
226-241. Springer, 2005.

Eckard Bringmann and Andreas Kramer. Model-based testing of automotive
systems. In Software Testing, Verification, and Validation, 2008 1st Interna-

o8

BIBLIOGRAPHY BIBLIOGRAPHY

[24]

[25]

[26]

tional Conference on, pages 485-493. IEEE, 2008.

Michael Felderer and Elizabeta Fourneret. A systematic classification of secu-
rity regression testing approaches. International Journal on Software Tools for
Technology Transfer, 17(3):305-319, 2015.

Jan Jirjens. Model-based security testing using umlsec: A case study. Flec-
tronic Notes in Theoretical Computer Science, 220(1):93-104, 2008.

Jan Jirjens and Guido Wimmel. Specification-based testing of firewalls. In
International Andrei Ershov Memorial Conference on Perspectives of System
Informatics, pages 308-316. Springer, 2001.

Adel El-Atawy, Khaled Ibrahim, Hazem Hamed, and Ehab Al-Shaer. Pol-
icy segmentation for intelligent firewall testing. In Secure Network Protocols,
2005.(NPSec). 1st IEEE ICNP Workshop on, pages 67-72. IEEE, 2005.

Adel El-Atawy, Taghrid Samak, Zein Wali, Ehab Al-Shaer, Frank Lin, Christo-
pher Pham, and Sheng Li. An automated framework for validating firewall
policy enforcement. In Policies for Distributed Systems and Networks, 2007.
POLICY’07. Fighth IEEE International Workshop on, pages 151-160. IEEE,
2007.

Volvo on call http://www.volvocars.com/se/kop/uppkopplad/
volvo-on-call, 2017. [Online; accessed 2-May-2017].

umlsec tool. https://rgse.uni-koblenz.de/jj/umlsectool/index.html,
2017. [Online; accessed 2-May-2017].

Specexplorer. https://msdn.microsoft.com/en-us/library/ee620512.
aspx. [Online; accessed 9-May-2017].

Graphwalker. https://rgse.uni-koblenz.de/jj/umlsectool/index.html.
[Online; accessed 9-May-2017].

Pymodel. http://staff.washington.edu/jon/pymodel/www/. [Online; ac-
cessed 9-May-2017].

T-vec tester. https://www.t-vec.com/solutions/simulink.php. [Online;
accessed 9-May-2017].

4test. http://www.testautomationday.com/
4test-model-based-testing-agile/. [Online; accessed 9-May-2017].

Matt Wynne and Aslak Hellesoy. The cucumber book: behaviour-driven devel-
opment for testers and developers. Pragmatic Bookshelf, 2012.

Achim Brucker and Burkhart Wolff. hol-testgen. Fundamental Approaches to
Software Engineering, pages 417-420, 20009.

39

http://www.volvocars.com/se/kop/uppkopplad/volvo-on-call
http://www.volvocars.com/se/kop/uppkopplad/volvo-on-call
https://rgse.uni-koblenz.de/jj/umlsectool/index.html
https://msdn.microsoft.com/en-us/library/ee620512.aspx
https://msdn.microsoft.com/en-us/library/ee620512.aspx
https://rgse.uni-koblenz.de/jj/umlsectool/index.html
http://staff.washington.edu/jon/pymodel/www/
https://www.t-vec.com/solutions/simulink.php
http://www.testautomationday.com/4test-model-based-testing-agile/
http://www.testautomationday.com/4test-model-based-testing-agile/

BIBLIOGRAPHY BIBLIOGRAPHY

[38] python-nmap : Python framwork for nmap. http://xael.org/pages/
python-nmap-en.html, 2017. [Online; accessed 2-May-2017].

[39] cve-search - a tool to perform local searches for known vulnerabilities. https:
//github.com/cve-search/cve-search, 2017. [Online; accessed 2-May-2017].

[40] Gordon Fyodor Lyon. Nmap network scanning: The official Nmap project guide
to network discovery and security scanning. Insecure, 2009.

[41] Common vulnerabilities and exposures (cve) - the standard for information se-
curity vulnerability names. https://cve.mitre.org/index.html, 2017. [On-
line; accessed 2-May-2017].

60

http://xael.org/pages/python-nmap-en.html
http://xael.org/pages/python-nmap-en.html
https://github.com/cve-search/cve-search
https://github.com/cve-search/cve-search
https://cve.mitre.org/index.html

	List of Figures
	List of Tables
	Terminology and Acronyms
	Introduction
	Aim
	Contribution

	Background
	Security Testing
	Approaches
	Security Testing in Firewalls

	Model-based Testing
	Model Specification
	Test Generation
	Test Execution
	Advantages

	Model-based Security Testing
	Filter Criteria
	Evidence Criteria

	Related Work

	Methodology
	Evaluation of Tools
	Approach
	Classification of our Approach
	Architecture

	Implementation
	Input Model
	AFT
	Incoming Traffic
	Outgoing Traffic

	Report generation
	An Illustration of AFT in Action

	Evaluation
	Results
	Input Model
	Generated Report

	Analysis
	Results
	Evidence Criteria

	Discussion
	MBST vs Penetration Testing
	MBT tools for a MBST approach
	AFT
	Requirements
	CVE database

	Conclusion
	Bibliography

