

Inner Source – to Excel on Developer
Initiatives
Master’s thesis in Master Programme Software Engineering

QI WANG

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Master’s thesis 2016:10

Inner Source – to Excel on Developer Initiatives

QI WANG

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden 2016

Inner Source – to Excel on Developer Initiatives

© QI WANG, 2016.

Supervisor:
Regina Hebig, Department of Computer Science and Engineering
Dan Berg, PDU Packet Core of Ericsson

Examiner:
Eric Knauss, Department of Computer Science and Engineering

Master’s Thesis 2016:10
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Inner Source, Open source for the enterprise
(https://cloudramblings.me/2013/11/08/inner-source-open-source-for-the-enterprise/)

Gothenburg, Sweden 2016

iv

Abstract
This thesis improves and studies the Inner Source Development environment in Eric-
sson. Inner Source Development focuses on cooperation among developer, manager
and customer, and collaboration among developers. This thesis starts with 7 semi-
structured interviews with developers and managers from different teams in Ericsson.
The aim of semi-structured interviews is to know the requirements of stakeholders
and their opinions on existing tools used in Ericsson and on the market. The thesis
presents a comparison among 5 different tools: Eforge, OpenALM, Gerrit, Gitlab
and Github Enterprise from 4 aspects: searching, sharing, collaboration and other
quality issues. With the interview result and the comparison, the original plan to
improve the Inner Source Development environment was to import Github Enter-
prise or Gitlab EE. However, with some obstructions of funds and pilot plan, this
plan was rejected and turned into improving the existing tool: Gerrit. Gerrit is im-
proved on 2 aspects: searching function and complete information of project. Three
new function were developed and deliveried to Gerrit Open Source community. The
largest challenges in this thesis are understanding of large amounts of code, different
ways controlling of modified system, communication problems because of jet lag and
lack of time to test. The study provides a table of comparison among 5 tools.

Keywords: Inner Source Development, Requirement Specification, Open Source De-
velopment

v

Acknowledgements
This thesis work was cooperated with Ericsson and Chalmers University of Technol-
ogy and University of Gothenburg. The author would like to thank the supervisors:
Dr. Regina Hebig, Mentor Dan Berg and the examiner: Dr. Eric Knauss for his
valuable feedback and guidance. The author would like to express her thanks to
the technical guiders: SW Configuration Manager Stellan Bondesson in Ericsson in
Gothenburg, Gerrit Developer Hugo Ares in Ericsson in Montreal, the explaination
and support from Github: Hakan Axtelius, Bas Peters and Sten and Sven Stolk,
and environment configuration support: Magnus Mörtberg and his colleague (Vlad).
The author also would like to thank all the interview partners and participants in-
volved in discussions.

Qi Wang, Gothenburg, October 2016

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem . 1
1.2 Purpose . 2
1.3 Research Questions . 2
1.4 Research Approach . 3
1.5 Thesis summary . 3

2 Background 5
2.1 Inner Source Development . 5

2.1.1 Stakeholders . 6
2.1.2 Benefits . 8

2.2 Relative Work . 10
2.2.1 Challenges of adopting Inner Source and Open Source 10
2.2.2 Factor to adopt Inner Source 13
2.2.3 Common features of Inner Source Development 15

3 Iteration 1: Requirement Research 17
3.1 Methodology . 17

3.1.1 Semi-structured interview . 17
3.1.2 Comparison among existing platforms 18

3.2 Data Analysis . 19
3.3 Result . 20

3.3.1 Semi-structured interviews . 20
3.3.2 Literature Background . 21
3.3.3 Requirement . 22
3.3.4 Comparison . 25

3.4 Discussion . 29
3.5 Evaluation . 30

4 Iteration 2: Implementation 31
4.1 Methodology . 31

4.1.1 Group discussion . 31
4.1.2 Use Cases . 32

ix

Contents

4.1.3 Code analysis . 32
4.1.4 Validation . 32
4.1.5 Evaluation . 33

4.2 Result . 33
4.2.1 Group discussion . 33
4.2.2 Use cases . 34
4.2.3 Validation . 40
4.2.4 Development . 41

4.2.4.1 Feature 1 - Use Case 1 41
4.2.4.2 Feature2 - Use Case 2-3 44

4.3 Evaluation . 47

5 Discussion 49
5.1 Discussion for Research Question . 49

5.1.1 RQ 1-How does inner source development support team work? 49
5.1.2 RQ1.1-What are the needs of stakeholders on inner source

development? . 49
5.1.3 RQ2-How to improve the inner source development environ-

ment? . 50
5.2 Validity . 50
5.3 Challenges . 51

6 Conclusion 53
6.1 Limitation . 54
6.2 Future work . 54

Bibliography 55

A Appendix I
A.1 Get Config . I

A.1.1 Request . I
A.1.2 Response . I

A.2 Set Config . III
A.2.1 Request . III
A.2.2 Response . III

x

List of Figures

2.1 Comparison of integration scenarios (Taken from [6]) 6
2.2 The onion model representing the community structure of a typical

ISS project (taken from [28]) . 7

3.1 Experiment with Tiered Levels Of Developer Involvement (Taken
from [46]) . 22

4.1 Help button prototype. 35
4.2 Project search bar prototype. 36
4.3 New project creation button. 37
4.4 Project creation page prototype. 37
4.5 Project page (homepage blank prototype). 38
4.6 An example for homepage. 39
4.7 Filters of project searching prototype (The second category of lan-

guage dropdown list is taken from Github.com) 40
4.8 Original Search Bar. 41
4.9 Initial design of search operators. 42
4.10 Keyboard Shortcuts help popup panel. 42
4.11 Operator Help Button with search bar. 43
4.12 Operator popup panel. 44
4.13 An example of the operator description. 44
4.14 Original project main page. 45
4.15 Design of project homepage blank. 46
4.16 Operator list and description (old demo). 47

xi

List of Figures

xii

List of Tables

2.1 Challenges in integrating OSS in product development (Taken from
[38]). 11

2.2 Overview of relevance of challenges to OSS, infrastructure-based Inner
Source and project-based Inner Source (Taken from [38]) 13

3.1 Overall list of all the requirement . 23
3.2 Comparison among different platforms 28

xiii

List of Tables

xiv

1
Introduction

Inner Source development is defined as applying Open Source development within
a closed organization [2]. Inner Source concepts are similar to open source, except
Inner Source is bounded by an organization or a company. Inner Source platforms
are tools embodying Inner Source concepts to help users be involved in projects,
share projects, submit contributions, search, and join other projects.
Open Source Software development is now very common and has achieved great suc-
cess in both industry and academia. Several outstanding hackers (including Bruce
Perens and Eric Raymonf), initiated the Open Source concept in 1998 [1]. Open
Source software refers to software projects where the source code was publicly pub-
lished and available to be reviewed, contributed, and even used by other developers.
Huge amounts of open source projects were published on different platforms, and the
amount is still growing. In 2016, Nithya boldly stated that all companies were using
open source or would use open source in the future [3]. Stakeholders took many
benefits from Open Source development. However, organizations and companies are
continuously looking for more solutions to manage projects.

Open Source development is internet-wide for users, i.e., anyone who has access
to the Internet is free to open source projects. This has various risks for organiza-
tions and companies who build their products in Open Source. There is no secrets
in Open Source world, for some profit organizations, Open Source may risk leaking
their products, intellectual property, or customer information. To avoid these prob-
lems, a specific strategy for organizations based on Open Source development has
been proposed, called Inner Source. Inner Source Development applies Open Source
strategy of culture, tools and practices into an internal software development[50].

1.1 Problem
Ericsson has a structured way to handle production code and test environment or
portal development. However, they also have many side projects aiming to facilitate
their development, such as small tools and scripts, troubleshooting and analyze sup-
port. Those small projects are developed by developers. In the company, people are
not satisfied with their current platforms to share projects. There are many depart-
ments working on different floors. Furthermore, some departments have cooperation
in different countries. It is hard to hold regular meetings or discussions face-to-face.
Even two people working in the same department and developing the same scripts,
may not recognize each other. People work individually as islands during the devel-

1

1. Introduction

opment of the small tools and scripts. To organize them and to increase efficiency
and promote collaboration, a good tool is necessary. This tool would support de-
velopers in the development of all kinds of “side” projects supporting main stream
development.

1.2 Purpose

The motivations for Inner Source development include increasing project quality,
code reuse openness, and transparency within the organization [4]. A suitable Inner
Source development environment within a company, will help build higher quality
projects and reduce expense.

This thesis was developed in cooperation with Ericsson, with the aim to improve
their Inner Source development environment. The project must first understand the
state of the art of Inner Source platforms in the context of Ericsson’s requirements.
Then develop a prototype platform that combines advantageous features of existing
platforms and addresses the identified requirements not currently supported in ex-
isting platforms. This could be achieved by setting up an existing platform to meet
these requirements or improve a tool currently in use.

1.3 Research Questions

Two research questions [5] guide the strategy of this thesis:

RQ1: How does an Inner Source development support team work?

RQ1.1 - What are the stakeholder’s requirements for Inner Source develop-
ment?

This research question is the foundation of this thesis. We must first understand
what is Inner Source, why is it useful or desirable, and understand stakeholders’
basic model and functionality for Inner Source development applied to team work,
since almost all developers work as teams in Ericsson. This research question in-
cludes sub-question: RQ1.1.

RQ2: How could the Inner Source development environment be improved?

This represents the forward research aspect of the thesis, to improve the Inner
Source development environment according to the answers to RQ1.1 stakeholder
requirements. According to the requirements of stakeholders, comparing the existing
tools and then improving the environment in a reasonable way. This could be
achieved by importing a new platform (new to the company) or improving an already
used platform.

2

1. Introduction

1.4 Research Approach
To achieve the research purposes, detailed in Sections 1.2 and 1.3, three directions
were considered:

1. improve the most popular existing tool within the company,
2. import the most suitable tool available, or
3. develop a new prototype based on the identified requirements.

The choice of the most appropriate approach is the first part of the research. This
paper is separated into two iterations, the first iteration (section 3) researches stake-
holders’ requirements and identifies the best way to meet them. Based on these
outcomes, iteration 2 (Section 4) implements the identified best attempt.
Iteration 1: concentrates on the first research question, RQ1, including the sub-
question, RQ1-1. Stakeholder requirements are solicited and best direction to achieve
the project aims decided. The primary approaches of this iteration are interview
study and comparison of different tools. In this step, platforms were picked accord-
ing to the interview study of stakeholders. After that, summarize the final direction
decision according to the requirements and the features of compared platforms. Fi-
nally, evaluate the outcomes with relevant stakeholders, such as funding and server
support staff.
Iteration 2: answer second research question. According to the direction decided
in iteration 1, some improvements of the platform in use in the company would been
implemented during iteration 2. To achieve the goal of this iteration, discussions
with stakeholders were held to obtain targeted responses to particular problems, is-
sues, or solutions. Then formulate use cases according to the discussion results and
implement the improvement. Finally, evaluate the improvement with stakeholder
feedback and identify if further improvement is required.

1.5 Thesis summary
The main outcomes of this thesis include:

• understand Inner Source development benefits,
• mine stakeholder requirements, and
• identify and improve Inner Source development environment in Ericsson.

Section 2 provides the background of Inner Source development, the current prob-
lems faced by Ericsson, related work, and relevant studies. Section 3 mines stake-
holder requirements, focusing on research questions RQ1 and RQ1.1, using semi-
structured interviews and comparison among dierent potential Inner Source tools.
Building upon the outcomes of Section 3, Section 4 implements the chosen direction
to provide improved Inner Source environment at Ericsson, and validates the new
environment. Section 5 discusses the process, outcomes and specifically the benefits
as seen by Ericsson, and Section 6 provides our conclusions and intended future
works.

3

1. Introduction

4

2
Background

This section describes what the Inner Source development is with its description,
stakeholder and benefits. Stakeholder structure is introduced as an ‘onion’ model.
Description and benefits are discussed according to some paper learning. In section
2.2, relative works are two literatures of the challenges when adopting Inner Source
internal the organization, and the factors of Inner Source.

2.1 Inner Source Development
A software project developed by an external-organization community called Open
Source. While this community internal an organization called Inner Source [6]. Inner
Source is described as a controlled ‘Open Source’, because it only access for the users
internal the organization, which could protect the code and related information to
avoid the risk of business secrets leaking. In Riehle, Capraro, Kips and HornMany’s
research [10], it presents that many companies have tried Inner Source of cooperating
software development. The companies include: DTE Energy [11], Ericsson [12],
Hewlett-Packard [13] [14], IBM [15] [16], Kitware [17], Lucent [18] [19], Nokia [20]
[21] [22], Philips [23] [24] [25] [26], and SAP [27]. Inner Source is a good strategy to
support the development inter a company.

5

2. Background

Figure 2.1: Comparison of integration scenarios (Taken from [6])

According to Figure 2.1, the left side shows the integration of Open Source Soft-
ware components and the right side is the integration of Inner Source Software
components. The contributors of Open Source Software are accessing the product
worldwide, and it is external of the organizations. Oppositely, Inner Source Software
is bounded by an organization. The Inner Source Software is a kind of ‘in-house
side’ Open Source Software.

2.1.1 Stakeholders
An Inner Source community has several stakeholder sorts. For example, individual
developers, teams, customers, etc. Thus, all the members of the entire organization
can contribute their experiences and resources remotely [7]. Different from normal
project development concept, stakeholders of Inner Source Development are available
participate in the projects and review the code whenever and wherever they want
in organization-wide. The following onion model shows the basic structure of Inner
Source project.

6

2. Background

Figure 2.2: The onion model representing the community structure of a typical
ISS project (taken from [28])

There are many ways to classify the members in an Inner Source community. More-
over, different organizations have their own names for different member types. In
this paper, members are named basically according to this onion model, but some
other additional sorts are also be listed.

Initiator
The initiator can be one person or a core team that initializes the project. The
initiator is the main direction leader of this project. They have the authority to
select the new features to the project.
Release coordinator
The release coordinators are responsibility for managing the version of the project.
They release the project with different version and control the features and improve-
ments to be published. They should have a clearly blueprint in their mind. In some
scenarios, initiator and release coordinator can be the same person or group. They
are named as Project Owner in some cases.
Core developers
Developers are the core part support the whole Inner Source community. Core
developers are the developers who contribute the code regularly and supervise de-
sign. They deliver new features of a repository with the highest authority to submit
the contributions. The core team should be small with a high level of interaction.
Otherwise, it is hard to maintain [28]. The core developers must have a deep un-
derstanding of the whole project and follow the working cycle and process.
Co-developers

7

2. Background

Around core developers are the co-developers. They can become individual con-
tributors, who occasionally modify code or fix bugs which detect by themselves or
reported by others. They don’t need to understand all the code of the whole project,
but the parts they work with. The co-developers may be larger than the core, be-
cause the level of interaction is much lower [28].
Active users
Surrounding co-developers is the active users, they are an important part in the
Inner Source community. They are the users who pay a lot attention to this project.
They use the latest versions of the projects, report bugs and arise some function
requests. Tester is one part of active users. They may not contribute the project,
but with their help, the project grows better and better. They are the people who
innovate the project. Readers can be active users as well, they use the project and
try to understand how the project works. They can be the manager of a department
or a learner who wants to learn to program.
Passive users
The grey part which seems like the skin of the ‘onion’ model is passive users. The
border of this circle in the model is indistinct, because of the population is hard to
account [28]. They are the users in this community, which shows the value of the
project.

Stakeholder model of Inner Source Development is very similar with Open Source
Development. However, Open Source Development may have more types of stake-
holders, such as peripheral developers. Peripheral developers are those who oc-
casionally contribute new functionality or features in the existing system. “Their
contribution is irregular, and the period of involvement is short and sporadic” [29].

Comparing to the model of traditional Product-Based Development, there might
be no difference between core developers and co-developers. Because all developers
are organized as a regular team and product is closed to others who are not in the
team. Thus, those contributors are all focusing on the product. They are both the
core contributors and active contributors.

2.1.2 Benefits

An Inner Source project can gain a lot benefits with its “transparency, egalitarianism,
collaboration, meritocracy and self-organization” [31]. Oram [30] and Dinkelacker
et al. [13] introduced some advantages and benefits from adopting an Inner Source
strategy.
Reduce cost
In Inner Source Development, projects and scripts are stored in an internal forge,
people who have authority to the forge are all available to review the projects and
use the APIs. They don’t need to w aste time for redeveloping the same things, but
focus on the innovation of the new feature releasing which increasing the reusing of
code and saving time. Furthermore, Inner Source Development implements technol-
ogy standardization early in developing process which avoids the cost to review the
code and re-standard it.

8

2. Background

Complete Documentation
An initial introduction documentation would be set up at the beginning and each
commit refers to a short description. The documentations provide the information
about the project, and record the behavior of communication, contribution and
discussion according to the project. Those documentations recall the memories of
members, and helps beginners understand the project and code in a short time,
which interests them to contribute to it [30].
Higher Quality
Multiple stakeholders keep eyes on the projects and scripts they are involved in.
When reviewing contributions, they can become testers to detect the problems with
the contributions and fix themselves or report to contributors to fix bugs. According
to Linus’s Law: “Given a large enough beta-tester and co-developer base, almost
every problem will be characterized quickly and the fix obvious to someone”. To
be concise as: “Given enough eyeballs, all bugs are shallow” [7]. Large numbers of
people motivate the contributors to make a good project. Only one team or one
developer may have no ability to fulfill all the requirements, but it is possible with
cooperation from all contributors to deliver high quality projects.
Increase Speed
The keys of Inner Source Development are cooperation and sharing. Inner Source
Development could get benefits from the large development community with in-
creased speed and faster time-to-market. “Since developers are familiar with a stan-
dard set of common tools and infrastructure used within an Inner Source setting,
as well as with the available software on the internal forge, developers can be more
easily transferred to other projects or products” [13].
Improve Innovation
Inner Source creates a large community for all stakeholders. Developers, users,
testers and other stakeholders are all allowed to participate in the project directly.
Feedback from organization-wide participant can collect more ideas of different types
of stakeholders, which as inspired by Linus’s Law as: “Given enough mindsets, all
ideas are obvious.” [7].
Protect Project
Inner Source Development is organization-wide development. The inner source
projects are protected against organization wide, which means they are not ac-
cessible outside the boundary.

Inner Source Development applies Open Source Development in a boundary. It has
all the benefits which open source has. However, with the respect to Open Source
Development, Inner Source protects the projects as ‘public’ projects in organization-
wide boundary and ‘private’ projects in public which protect the projects. Moreover,
in the same organization or company, people have the same knowledge and the same
understanding of an issue. It is easy for members to communicate and innovate.

9

2. Background

2.2 Relative Work
The findings from some related literatures of Inner Source development will be
summed up briefly in this section.

2.2.1 Challenges of adopting Inner Source and Open Source
Srol et al. [38] did a research to analyze the challenges of Inner Source by collecting
the data onto in-depth face-to-face interviews for SoftCom with eleven experienced
participants. They addressed common challenges of Open Source and Inner Source
which helped organizations to improve their development practices by adopting In-
ner Source and Open Source. They identified 21 challenges of Open Source in total
with 6 aspects: Product selection, Documentation, Community, support and main-
tenance, Integration and Architecture, Migration and usage and Legal and Business.
After that they compared the challenges among two types of Inner Source and Open
Source. The table 2.1 lists all the 21 challenges in their research. And Table 2.2 is
a comparison of relevant challenges among Open Source, infrastructure-based Inner
Source and project-based Inner Source.

10

2. Background

Table 2.1: Challenges in integrating OSS in product development (Taken from
[38]).

Category ID Challenge
Product selection C1 Identifying quality products among the large sup-

ply is difficult due to uncertainty about quality (e.g.
usability, stability, reliability)

C2 Lack of time to evaluate components
C3 Decide what “fork” of the project should be chosen

Documentation C4 Lack of, or low quality documentation
C5 Several descriptions of the same component

Community, support
and maintenance

C6 Dependency on the community for further support
and upgrades; possible need to hire additional talent
for maintenance; difficult to control the quality of
the support; lack of help-desk and technical support

C7 Custom changes need to be maintained, which is
time-consuming and may cause problems with fu-
ture versions/community may take a different, in-
compatible approach.

C8 Convincing OSS community to accept changes
(modifications may be too specific); contributions
can be difficult or costly. Difficult to control the
architecture if not a core member.

C9 Uncertainty about product future and consequences
for company product.

C10 Community members would like to have a bigger
say in features and integrating final product with
company.

C11 Contributing and investing in OSS project costs re-
sources.

Integration and Ar-
chitecture

C12 Modifications needed to implement missing func-
tionality or fit into architecture.

C13 Backward compatibility concerns.
C14 Incompatibility between components or existing sys-

tems.
C15 Horizontal integration.
C16 Vertical integration / Mismatch of platform/pro-

gramming language.
Migration and usage C17 Complexity of configuration.

C18 User training/learning costs.
Legal and Business C19 Complex licensing situation.

C20 Concerns about, or no clear strategy on Intellectual
Property and Rights issues.

C21 Lack of clear business models that are appealing to
industry.

11

2. Background

Documentation
This is a very common challenge of Inner Source or even in normal development
practice. Lacking of documentation will confuse the beginners and users of how
to use the project and how to read it, which will also exacerbate the challenge to
attracting the new member’s interest. The content of documentation can be the
knowledge of the architecture, how data flow works, how to set up the environ-
ment of running the project and some tips or standard during developing, etc. In
addition, because most of the members are self-organized, it happens that they re-
peatedly write documentation for the same components. It could happen not only
for documentation, but also for the code. However, an actively dashboard could
help a lot with these challenges.
Community, Support and Maintenance
An Inner Source community depends so much on the core team. There is no spe-
cialized helpdesk and any support for other members, the architecture is important
for both core team to review the code later and for new members familiar with the
project in a short time. The core team should balance its resources spent on provid-
ing implementation of new features on the one hand, and performing architectural
refactoring on the other hand [38]. For customer side, they may have some changes
in the project according to their own strategies, it may occur mismatch and conflicts
to the original release. However, in Inner Source community it is a challenge to get
a person to do the maintenance.
Integration and Architecture
In the Inner Source practice, the branches strategy works very well to support devel-
opment individually, but it produces some architecture conflicts or redevelopment
during horizontal integration between new contributions. It takes time to review
the code.
Migration and Usage
It is a challenge to have training for both developers and users in an Inner Source
practice. It may need a lot of time to learn it by themselves, and because the project
is developed by different people, so it’s another challenge to find the right person to
get proper knowledge for beginners.

12

2. Background

Table 2.2: Overview of relevance of challenges to OSS, infrastructure-based Inner
Source and project-based Inner Source (Taken from [38])

Category (num-
ber of chal-
lenges)

Relevant to OSS Relevant to
infrastructure-
based Inner
Source

Relevant to
project-based
Inner Source

Product selection
(3)

Yes Yes No

Documentation (2) Yes Yes Yes
Community, sup-
port and mainte-
nance (6)

Yes Yes Yes

Integration and ar-
chitecture (5)

Yes Yes Yes

Migration and us-
age (2)

Yes Yes Yes

Legal and business
(3)

Yes No No

Total number of
relevant challenges

21 18 15

Comparing to Open Source, Inner Source is internal of an organization and the
project is closed, thus, it has no trouble of legal and business. For project-based
Inner Source, members don’t need to worry about the product selection. Since
the members have only one planned project to develop, so they have no choice to
choose other project. In infrastructure-based Inner Source, departments or individ-
uals make freely available software on an internal repository, these challenges could
occur [38]. Challenges discussed followed are picked relevant to Inner Source.

According to these challenges, product selection would be a kind of precondition in
an Inner Source community. If users cannot find the project they are interested in
because of the weakness platform, the community is meaningless. Thus, the project
searching feature should be paid close attention on during the implementation. Doc-
umentation and information of projects are important as well. Without good docu-
mentation and information, other users will never know what is this project about,
the project will be closed and unsharable. This is also a good point can be improved
during implementation.

2.2.2 Factor to adopt Inner Source
Stol and Fitzgerald introduced nine factors of Inner Source and discussed what soft-
ware product would be suitable for inner source [39]. They divided nine factors into
three categories: Product Suitability, Practices and tools, and People and Manage-
ment.

13

2. Background

Product Suitability
The factors of product suitability are: seed product, stakeholders and modularity.
Seed product is an existing initial implementation of a software product or com-
ponent [39]. It attracts stakeholders to have a look at this project and evolve into it,
in order to make the seed product grows into a successful inner-source product. The
seed product should prove the effective of the aimed product of the organization. If
the seed product cannot prove its value to attract many stakeholders, it would be
meaningless to carry out this product.
The amount of stakeholders shows the value of the seed product. A successful
Inner Source project requires different types of stakeholders to gain benefits of it.
According to the principle of “wisdom of the crowd”, if the Inner Source community
only has a stakeholder, the project cannot gain the real benefit from it [39]. Different
stakeholders could have different requirement and focus, which makes the product
become suitable for more scenarios.
Modularity is a basic request for Inner Source project. Owing to its self-organization
property, each development only focuses on the own part of the project. Thus, the
project should be modularized into different modules for developers to work different
parts synchronously.

Practices and tools
Three factors of practices and tools are: development practices, quality assurance
and tools.
Development practices of Inner Source project are different from traditional plan-
driven project. Inner Source meets a much more flexible way to develop, collaborate
and release, because new ideas and new requests from users may come anytime and
needed to be reacted quickly. To keep stakeholders, new release shall be delivered
very often to keep their confidence in this project.
The quality assurance in Inner Source sets it differ from traditional development.
In Inner Source, a practice called “peer review” of the code is effectively to get feed-
back and some bug reports from users and testers, according to Linus’s Law [32].
There is another maxim: “release early, release often” [39], which means small re-
leases are more acceptable for users to use and test, and the early releases encourage
the feedback early and fix the problems early.
Development tools are important to the whole development process of an Inner
Source community. A seeming trivial will lead to break the capability of the set
of tools of the organization [39]. In some organizations, especially large-size or-
ganizations, different departments have high degree of autonomy, they build their
tools as themselves. That means different departments use their own tools, which
produces heterogeneous and incompatible to hinder the sharing and collaboration
between contributions or even influences the project running on some terminals [40].

People and Management
The factors of people and management are coordination and leadership, trans-
parency and management support and motivation.
Inner Source has a flexible coordination and leadership. Anyone who is inter-
ested in the project can become a stakeholder of the project, and any developer

14

2. Background

who has interest to contribute to the code can be a coordinator. The coordinators
are self-organized to assign their own schedule and pick their own tasks no matter
the development of new feature, bug fixing, documentation writing, testing or bug
reporting.
Inner Source inherits the nature of Open Source; transparency is a crucial property
of the community. The Inner Source development is a kind of community-based de-
velopment. Developers collaborate and communicate through the community. The
community is open to all the people, who has the permission to this community.
So transparency is very common to let others have a knowledge of the project, but
maybe not all the teams want to be transparency. Although it is contrary to the
original intention of Inner Source, it still happens in normal work. To be transpar-
ent, stakeholders can get knowledge from wiki documentations, discuss by creating
issues and control their code by different brunches.
Management support and motivation is significant to start an Inner Source
project, but it is not easy to achieve. An Inner Source project normally initiated by
an initiator or an initiate team (it can be the core group of the project), who has
huge confidence to be successful in the project and get perfect repercussions from
stakeholders in the future. However, it not always becomes what people expect. It
is hard for the manager to judge if the project is meaningful or not.

2.2.3 Common features of Inner Source Development
In this section, some relative work about common features of Inner Source will be
discussed. The primary features of Inner Source Development are project hosting
[47], project repository clones [47], project planning [2], completely documentation,
ownership and merging code.
Project hosting is a basic feature of Inner Source Development. Users are allowed
to view code, contribute code, review contributions and maintain the project.
Project repository clones can be a part of project hosting. It means the users
who have the authorities are all allowed to clone the repository into their own ter-
minals.
Project planning is very popular in Inner Source Development. Although mem-
bers of Inner Source Development are self-organization and work individually, they
should pick their tasks in advance. There are many tools to do project planning
in Inner Source Development. For example, issues from Github and Kanban, etc.
The aim is to let members have a clear goal, and avoid doing repetitive work for the
same task. Moreover, it guides the direction of the whole project.
Completely documentation sometimes is called project wiki in some organiza-
tions. It could provide the introduction, guide to set up the environment of the
project, suggestion of reviewing the code and code standard, etc. It helps the be-
ginner to understand the code, and the senior to review the code.
Ownership and merging code are very typical of Inner Source. It uses the branch
model to control the ownerships. Each member can have his/her own branch to de-
liver code. After code reviewing, they can push the code into “master” branch to
release. The value of the feature is avoiding conflict among different contributors
and some mistakes to destroy the whole project.

15

2. Background

16

3
Iteration 1: Requirement Research

This section is aimed to answer RQ1, including RQ1-1 through semi-structured in-
terviews and some literature background. Comparison of different platforms helps
to answer RQ2. The semi-structured interview is aimed to get knowledge of stake-
holders’ requirements. The purpose of this iteration is to find a suitable tool to
import from market or improve an existing tool in organization according to stake-
holders’ requirements and the result of comparison. Also make the direction decision
to support iteration 2.

3.1 Methodology
In this section, the research design and research steps are described. The brief steps
are:

• understand the background of Inner Source Development,
• understand the problem and requirements by semi-structured interviews,
• review related literature to have knowledge of the common features of Inner

Source Development, and
• compare platforms according to the interviews and platforms in use, and

choose a suitable one to work with.
To solve the problem of Ericsson, some semi-structured interviews and group discus-
sions with stakeholders are planned to get their opinions about current Inner Source
Development and the Inner Source environment in Ericsson. Then decide to import
a suitable in-market tool or improve the one of existing tools in use in the company.

3.1.1 Semi-structured interview
This research collected data by semi-structured interviews with some stakeholders.
The semi-structured interview [43] is an interesting method of qualitative research
which is collecting data by going side and talk to people. During interview, in-
terviewees are guided to talk about their experiences and opinions about the topic
that interviewer is interested in [41]. In semi-structured interview, interviewer and
interviewee work as two equal partners which makes both of participants are relax
and free to talk. This is a two-way communication; both interviewer and interviewee
give and receive information.

In this research, candidates were picked in different departments which covered both
employees and consultants, developers and managers. All the candidates knew more

17

3. Iteration 1: Requirement Research

or less about Inner Source Development or had related problems. Seven stakeholders
from different departments and positions participated in the semi-structured inter-
views. Four people rejected to attend the interview by some reasons. To reduce
nonresponse bias [42], an advanced mail had been sent to interviewees to introduce
the agenda of interview. In addition, a short introduction about definition and gen-
eral benefits of Inner Source Development was presented at the beginning of each
semi-structured interview. Several questions were prepared before interviews:

• How you share ‘side’ projects to others?
• What is your opinion of the existing collaboration platforms in Ericsson?
• What kind of features are you supposed to have in the platform?
• Which roles would you like to play in an inner source project?
• What is your benefit of Inner Source Development?

The average interview time was supposed be one hour. First ten minutes were used
to introduce the project and Inner Source Development. Next forty-five minutes
were used to discuss the prepared questions. The rest of time, interviewer and inter-
viewee share experience of Inner Source Development and discussed the problems of
interviewees. Interview contents (expected features, experience of inner source and
their problems) were recorded by notes. The aim of the interview is to get users’
experiences of existing platforms, users’ expectation of the platform, how users’
opinions about Inner Source and what is their problem during sharing projects.

3.1.2 Comparison among existing platforms
To work with the Inner Source tool, it is very necessary to have some knowledge
about the existing tools. The aim of comparison among existing platforms is to find
a best solution to set up an Inner Source Development environment. The processes
of comparisons are:

1. point out the existing platforms are used in Ericsson or people interested in,
2. get interviewees’ experiences of the platforms,
3. get familiar with the platforms by using it and reading documentations,
4. summarize the benefits and drawbacks of each platform, and
5. match up the requirements with each platform.

Comparisons were made with the help of all the interviewees with their experiences
of existing platforms during interviews. In interviews, the first two prepared ques-
tions described in section 3.1.1 are related. Interviewees were free to share their
opinions of platforms they used internal and external of Ericsson. Moreover, they
were welcome to talk about the platforms they have used for Open Source Develop-
ment. Some of the interviewees recommended some platforms they heard about or
the platforms they were interested in which could be imported into the company.

Since the key points of Inner Source Development are sharing code and collaboration
during development, and all the platforms are based on web-based code collabora-
tion. Thus, in section 3.3.4 (the result of comparison among existing platforms),
searching function will be paid the most attention. In addition, Table 3.2 com-
pared different main features with four aspects: searching, sharing, collaboration

18

3. Iteration 1: Requirement Research

and other quality issues in a table which helps with matching up the platforms with
the requirements from stakeholders.

3.2 Data Analysis
The data collected from semi-structured interviews were recorded briefly during in-
terviews. After that all the data were analyzed to answer each interview question.
The most important mission was to mine stakeholders’ requirements, and get their
experiences on different platforms of Inner Source. Thus, according to the inter-
view data, the requirements were summed up as requirement specification in section
3.3.3. Moreover, the mentioned platforms which were collected from the interview
data were compared in section 3.3.4 with the tool descriptions and interviewees’
experiences.

The data analysis in 4 phases:
Phase 1: Note down the key concerns during all the meetings, including semi-
structured interviews, evaluation meetings, group discussion and validation meet-
ings. This phase was important to record the initial ideas and familiarize yourself
with it. An example of this phase below, which was taken from semi-structured
interviews was to know the stakeholders’ requirements:
“I will be retired in few months. I want to hand over the project to someone else in
the company, so that the project can be maintained and kept running. This tool is
very useful. There are over 1150 users currently. Not only inside the company, but
outside as well. I submit it on an open source community, but still some features
are for Ericsson only. I have tried to ask someone if they are interested in, or if
they know anyone is interested in. However, it is hard and not that efficient. Yes,
I found 5 persons who want to learn this tool, but they gave up with some reasons.
So I must find someone else.”

Phase 2: Generate the initial ideas and take the key themes. Because the initial
ideas were very long with some unnecessary information. The theme taken from the
example above:
Theme: To keep the tool running, a person was needed to keep maintain it.
Why: The tool owner will be retired.

Phase 3: Mine the requirement from themes. The aim of semi-structured inter-
views was to know the requirements from stakeholders. According to the example
above, two functional requirement were raised up because the project owner need
the sharing feature to share the project and other users need the searching feature
to find the project.
The requirements mined from the example were:
FR1: Project search
DESC: The tool is able to show the result of related projects when users input key
words.

FR6: Project sharing

19

3. Iteration 1: Requirement Research

DESC: The tool should let project owners to submit the projects.

Phase 4: Add dependencies. A requirement can have dependencies on other re-
quirements. The dependence can be ‘None’, if the requirement is not dependent on
any requirement. This phase was aimed to find the relationship between require-
ments. For example:
: Since project can only be searched if it is published. Otherwise, there is nothing
can be searched, so FR1 is dependent on FR6. Then the dependence is added as:
FR1: Project search
DESC: The tool is able to show the result of related projects when users input key
words.
DEP: FR6.

3.3 Result
This section places the result of semi-structured interviews and the comparison
among Eforge, OpenALM, Gerrit, Gitlab and Github Enterprise. The requirement
specification is formulated according to the requirements taken from semi-structured
interviews. In this section, a subsection of literature background to introduce some
practices which apply agile development with Inner Source Development. Those
views provide some inspirations of features which are good to have in the Inner
Source platform.

3.3.1 Semi-structured interviews
The semi-structured interview [43] is a very important beginning to preliminarily
understand stakeholders’ needs.

In the semi-structured interviews, three existing tools of Ericsson were mentioned:
Eforge, OpenALM and Gerrit. For the first one, almost all the interviewees avoided
using it, since it is hard to start and with unfriendly performance. For OpenALM,
someone used it as a backup for projects, but not used it as a collaboration tool.
For Gerrit, it is common to developers, but it is not a completely collaboration tool.
Although some team use it to collaboration and control the version, it is aimed to
be a code review platform. In addition, some of interviewees were using Github to
organize projects, but it still produced problem, because it is open-sourced. They
are not allowed to submit some product-related project to Github.
For most stakeholders, they want to have a forge (“an extensible Web-based platform
that integrates bestof-breed software tools for collaborative software development”
[8].) to manage the collaboration among developers and share projects which im-
prove quality and reuse code. The forge shall be searchable, completely information,
testability, maintainability and friendly performance (presented by interviewers).
For developers, the requirements are more specific. Owing to the firewalls against
different servers, it is hard to communicate between product server and normal work
environment. Thus, the forge is hoped to work as a cloud to communicate in be-
tween, that they can avoid copying and pasting side projects manually. Secondly,

20

3. Iteration 1: Requirement Research

the projects on a forge shall be enabling to rollback if some contributors destroy
the projects. Additionally, they would be glad if the forge can support a plugin in
development environment, such as a plugin in Eclipse. One of interviewees described
that he preferred a place which he can store the tools he developed. He stored all
the tools offline in his own computer. It is not convenient and need to be sorted
out. He would like the forge store the tools in a good way and easy to search.

There were two special cases of interviewees. One of them is a consultant who had
worked with Open Source for many years, he was in trouble with the authorities of
some projects. As a consultant, he has limited authority to reach the server which
stores product projects. In fact, the authority on projects he wants is not related to
products, but stored in the same server. Therefore, he wants another inner-sourced
place to hold their projects. Another case was from a developer who would retire in
few months, he worked with a very good tool to view testing log. This tool had 1150
users in Ericsson and out of Ericsson. He would like to pass the tool to someone
else in Ericsson that the tool can keep running after he leaves. The problem is it
is hard to find such a person only by recommending from limited people. He needs
a platform that he can show his tool and find some people interested in it and join
him.

3.3.2 Literature Background

Since many interviewees mentioned they worked in an Agile Development way. They
would like to apply Agile Development with Inner Source Development to make
their work more efficient. Thus, some literature were picked in google scholar and
Chalmers Biblioteket to learn the relationship between Inner Source Development
and Agile Development.
Gandomani et al [45] did a systematic research on the relationship between agile
methods and Open Source Software Development methodologies. They selected 23
researches to study to answer their 3 research questions. 17 of the studies proved
that Agile Development and Open Source Development can share some similar prac-
tices. Agile Development is widely used in companies and software organizations.
Agile Development and Inner Source Development have some similar concepts, ben-
efits and practices [37]. They can support each other with their common principles
and sharing practices.
On-site Customers
In Inner Source practice, the customers are available to join in the project through
the Inner Source platform that customers can discuss directly with developers and
download the latest version of the project which match properly with the practice
of on-site customers of XP (Extreme Programming, one method of Agile Devel-
opment). Normally, to achieve on-site customers is hard, but with Inner Source,
customers can get quick responses with their requirements and questions from con-
tributors.
Code Standard
The practice of coding standard of XP, which matches the Inner Source provision as
well. Avoiding the mismatch during merging, the Inner Source stipulates that the

21

3. Iteration 1: Requirement Research

constraint on code standard should be set up before starting up the project.
Small Releases
Both of the Inner Source Development and Agile Development impress small and
often releases practice [46]. The value of this strategy is that customers can keep
themselves in the development iterations. Customers can show their opinions and
feedback in early time, they do not need to wait until the complete project delivered.
The misunderstanding and requirements changing can be fixed in early stage. This
strategy also gives customers and developers confidence.

Figure 3.1: Experiment with Tiered Levels Of Developer Involvement (Taken from
[46])

According to Barnett’s research [46], she raised a strategy of cross-team communica-
tion and collaboration to adopt Agile Development and Inner Source Development.
As the Figure 3.1(1) shows, a project produced by core developers, non-core de-
velopers and users. For cross-team collaboration aspect (Figure 3.1(2)), the core
developer on team A also works as a non-core developer on Team B, vice versa.
Mostly, the practice happens to one project with two different assignments, but it
can still happen to two different projects with two related assignments. The value
of this strategy is to push the developers do the assignment instead of do the things
they should do [46].

3.3.3 Requirement
The requirements are specified according to the needs from stakeholders. There are
6 functional requirements and 1 non-functional requirements. The section starts
with an overall list.

22

3. Iteration 1: Requirement Research

Table 3.1: Overall list of all the requirement

Requirement type) ID Requirement
Functional Requirement FR1 Project search.

FR2 Project information
FR3 Roll back.
FR4 Auto-test.
FR5 Authority controlling.
FR6 Project sharing.

Non-functional Requirement QR1 Usability.

Functional Requirements
FR1: Project search
GIST: The platform is able to search related projects when users input key words.
STAKEHOLDER: Users who want to find a project on the platform.
SCALE: Relevance of search results to user expectations.
METER: Measurements obtained on view the first 50 results with 50 different key
word searching.
MUST: 60 percent of results are relative.
PLAN: 80 percent of results are relative.
WISH: 90 percent of results are relative.
STRETCH: The tool shows 99 percent relevance of the search results to user expec-
tations.
AUTHORITY: None.
DEP: FR2, FR6
Users need this function to find a project they are interested in with some simple
words, that they can review projects, use projects or join in projects.

FR2: Project information
DESC: The platform is able to show the primary information of program language,
project owner, description, active or not, etc of project.
STAKEHOLDER: Users who want to find a project on the platform.
SCALE: Stakeholders’ understanding of a project with project.
METER: Measurements obtained on the understanding level of a well formulated
project information on its main page with 50 stakeholders.
MUST: 80 percent of stakeholders can have a basic understand of project.
PLAN: 85 percent of stakeholders can have a basic understand of project.
WISH: 95 percent of stakeholders can have a basic understand of project.
STRETCH: 99 percent stakeholders can understand the project very well.
AUTHORITY: None.
DEP: FR6
Users need this function to review the information of the project and have a basic
knowledge the project weather it is the one they are interested in.

FR3: Roll back
DESC: Project should be able to roll back into previous versions.
STAKEHOLDER: Developers and project owners who want to roll back projects.

23

3. Iteration 1: Requirement Research

SCALE: Completion of a project roll back.
METER: Measurements obtained on the completion on rolling back a project to any
previous version with 50 project members.
MUST: 70 percent of stakeholders roll back the project to any previous version suc-
cessfully.
PLAN: 80 percent of stakeholders roll back the project to any previous version suc-
cessfully.
WISH: 90 percent of stakeholders roll back the project to any previous version suc-
cessfully.
STRETCH: 95 percent of stakeholders roll back the project to any previous version
successfully.
AUTHORITY: Project members who access to change the code.
DEP: FR5
Users need this function to roll back the project into previous version to protect the
project if some users destroy the current release.

FR4: Auto-test
DESC: Each contribution shall be testing automatically after submitting.
STAKEHOLDER: Developers who want to have a automatically test after they sub-
mit.
SCALE: Success of testing a project automatically.
METER: Measurements obtained on the success times of testing 50 submitted con-
tributions automatically.
MUST: 80 percent of contributions are auto-testing successfully.
PLAN: 85 percent of contributions are auto-testing successfully.
WISH: 90 percent of contributions are auto-testing successfully.
STRETCH: 95 percent of percent of contributiosn are auto-testing successfully.
AUTHORITY: Project members who access to change the code.
DEP: FR5
Users need this function to verified the contributions automatically to reduce the
human testing work.

FR5: Authority controlling
DESC: The tool should have authority controlling.
STAKEHOLDER: All the users.
SCALE: Ability of users to get the right authority to use the features of the plat-
form.
METER: Measurements obtained on the ability of users to get the authority of a
project as their expectations.
MUST: 80 percent of stakeholders can get the authority of a project as their expec-
tations.
PLAN: 90 percent of stakeholders can get the authority of a project as their expec-
tations.
WISH: 95 percent of stakeholders can get the authority of a project as their expec-
tations.
STRETCH: 99 percent of stakeholders can get the authority of a project as their

24

3. Iteration 1: Requirement Research

expectations.
AUTHORITY: None.
DEP: None
The platform need this function to detect different types of users (e.g. administra-
tors and normal users), and different types of users should have different authorities.

FR6: Project knowladge sharing
DESC: The tool should let project owners to submit the projects with full of infor-
mation they want to publish.
STAKEHOLDER: All the users.
SCALE: Information of a project can be published as users’ expectations.
METER: Measurements obtained on the ability of users to publish all the informa-
tion of a project as their expectations.
MUST: 80 percent of information can be published as stakeholders’ expectations.
PLAN: 85 percent of information can be published as stakeholders’ expectations.
WISH: 90 percent of information can be published as stakeholders’ expectations.
STRETCH: 95 percent of information can be published as stakeholders’ expecta-
tions.
AUTHORITY: None
DEP: None
Project owners need this function to publish their projects through the tool that
other users can find project, understand it and join into it.

Non-functional Requirements
QR1: Usability
DESC: The tool should be easy to use.
STAKEHOLDER: All the users.
SCALE:Time required to finish a specified task without human training. METER:
Measurements obtained on the time cost of finishing a common task with 50 stake-
holders during interface test.
MUST: Up to 8 minutes are used to finish the task.
PLAN: Up to 6 minutes are used to finish the task
WISH: Up to 5 minutes are used to finish the task.
STRETCH: Up to 3 minutes are used to finish the task
AUTHORITY: None
DEP: None.
This requirement is needed to make sure the interface is friendly usable, understand-
able and learnable for users.

3.3.4 Comparison
To identify the suitable forge, comparisons be made among five alternates - Eforge,
OpenALM, Gerrit, Gitlab and Github Enterprise. First three have been used in
Ericsson. Gitlab has been used in some departments. And Github Enterprise is
which developers are extremely interested in to import into Ericsson.

25

3. Iteration 1: Requirement Research

Eforge1

Eforge is an Inner Source platform which supporting agile way to work and collab-
oration on programming which provides source code revision control, such as Git
and Subversion. It is a forge for product development in Ericsson. Eforge costs
approximately 1000SEK per user per year. The cost is applied once the account is
created, regardless of usage.
Benefits:

• It has a high authority system to protect the projects. Since Eforge is faced
to the product development. To protect the product security, users are asked
to send request to join projects and access to the source code.

• Eforge shows project statistics graphically. It helps users to judge how active
the project is.

• Eforge provides forums that all the participants are available to create topics
and discuss.

• There are six priorities to trackers - the highest, high, medium, low, lowest
and none. Project members can set the priority to all trackers.

Drawback:
• Eforge pays more attention of regular team and product development. Unless

the person has the authority on the project and knows how to find the project,
otherwise it is hard for another person who is not in the team to find the
project.

• Eforge supplies very limited information during searching and on project home-
page.

• Eforge provides very low performance. It is hard for new talent to start.

OpenALM2

OpenALM is an Open Source Suite for Application Lifecycle Management in Eric-
sson which powered by Tuleap. It is a free tool for users. Project owner, project
managers and team members are all able to join to the project to plan and monitor
releases. Some departments use OpenALM to back up their projects.
Benefits:

• All the projects are classified into different categories in “Software Map”. Users
are easy to find how many projects are available in different categories.

• There are four models provided in OpenALM - Tuleap model, Scrum model,
Waterfall model and Kanban model. Users can choose different project model
depend on their workflow.

• OpenALM provides the information of development status (planning, pre-
alpha, alpha, beta and production/stable).

Drawback:
• Projects are asked to be validated by system administrator. It takes time to

wait until the project passes the validation.
• OpenALM tries to handle too much features which make users confuse to use.
• Many features need to be activated by administrator manually.

1https://eforge.ericsson.se/sf/sfmain/do/home
2https://openalm.lmera.ericsson.se/

26

3. Iteration 1: Requirement Research

• The performance is not good enough which makes users feel tired to read.

Gerrit3

Gerrit is a web-based tool integrates with Git which helps team with their code re-
viewing. Comparing to rest tool in this section, Gerrit has very limitation available
on team collaboration. Gerrit is developed by Google and it is free for users. Devel-
opers are allowed to review each change and score it. Large amount of developers
in regular teams used Gerrit in Ericsson. This is why even if it is not a completely
Inner Source tool, it is still listed in the comparison table.
Benefits:

• Search results are organized into a table with shows the status, owners, branch,
project name, updated time, code reviewed and verified or not.

• Gerrit supports the automatically verification.
• Gerrit provides the history of the contribution.

Drawback:
• Hard to find a project by fuzzy query, only if the developer has knowledge of

the project.
• There is limited documentation for the user who has not joined in the project.
• There is no good GUI performance.

Gitlab EE4

Gitlab is a web-based version controlling platform which provides similar services
to Github. It is open-sourced. It supports Gitlab CE for community editions and
Gitlab EE for enterprise edition. Gitlab EE has more features and commercial
support.
Benefits:

• Maintainers are allowed to build their own Gitlab platform flexibly.
• It cost lower than Github Enterprise: 39 or 99+39 dollars/user/year.
• Developers are allowed to import their projects on other platform into Gitlab

account.
Drawback:

• There is not so much information shows in search results.
• Customers have to maintain the platform by themselves.

Github Enterprise5

Github is a very famous open source development platform among developers. It
works based on a Git repository hosting service. The enterprise version is available
for organizations or companies to organize their own Github Inner Source develop-
ment platform on cloud server or on in-house server.
Benefits:

• It provides a good GUI which helps developers program and contributes in an
easy way.

• It supports much integration which helps developer works more conveniently.
3https://gerrit.ericsson.se/
4https://about.gitlab.com/
5https://github.com/business

27

3. Iteration 1: Requirement Research

• It supports full documentations of wiki, discussion history.
• It supports plugins in many development environment such as eclipse.

Drawbacks:
• There is no special license for readers who will not contribute (e.g. managers).
• It costs 225 dollars/user/year, which is very expensive.

The table 3.2 below shows the main features comparison among those five platforms
from all the requirements listed in section 3.3.3, and a cost section added in the
table additionally. A point between 0 to 5 in each field of the table shows the level
of how platforms support the requirements. The larger the point is, the better the
platforms support. If the point is 0, it means the platform can not support this
requirement. The point is put according to the information of the platforms and
interviews with stakeholders.

Table 3.2: Comparison among different platforms

Requirement Eforge Open
ALM

Gerrit Gitlab
EE

Github
Enter-
prise

Searching Search by key words 2 2 1 5 5
Fully information of
searching result

1 3 1 4 5

Advanced search by
filters

0 3 1 5 5

Sharing Projects can be forked 0 5 0 5 5
Information Completely documen-

tation
2 3 1 4 5

Roll back Contributions are able
to roll back

5 5 5 5 5

Auto-test Verify contributions 4 4 4 4 5
Authority Different authority for

members
4 3 2 5 4

Usability Learnability 1 3 3 4 5
Cost Cost for license 3 5 5 2 1
Total
points

22 36 23 41 45

According to the total points of all the five platforms, Github Enterprise get the
highest points, which is considered to be the platform to work with. However,
according to its highest cost, we make the second choice for Gitlab EE for backup.
Those two options are made for the importation direction (the second direction
in section 1.4). For the improvement direction (the first direction in section 1.4),
improve Gerrit is a good option, since Gerrit has the largest amount of users in the
company and it is an Open Source project with a lot of room to improve.

28

3. Iteration 1: Requirement Research

3.4 Discussion
Eforge
Based on Table 3.2 and interview data, Eforge contains many projects, but according
to interviewees’ discussions, they had not used it very often as an Inner Source tool
to cooperate and share code. The voice was heard during semi-structured interviews:

• “Normally we don’t use Eforge to share code. It’s hard to use it, and it charges
cost when it gets a register user. You need to login to access the share asset,
you can do nothing if you are a guest.”

• “We use it to back up our products, because it can hold large project.”
• “It seems the tool is maintained by another organization (Tuleap).”

Eforge is used as a backup tool for their product, because of its low usability and
cost. Thus, it is not very common to developers.

Open ALM
OpenALM is a free Inner Source tool in Ericsson. It contains many features to
support Inner Source practices.

• “OpenALM tries to integrate all the features on it, which makes it look a mess.”
Interviewees were not like OpenALM, although it shows the tool has many users. It
has too many features which make it too complicated for users to adopt it.

Gerrit
Gerrit is quite popular with developers in Ericsson, people used it as their team
cooperating tool in regular work.

• “Gerrit can work well with the changes controlling, we use it very often.”
• “Gerrit only takes care of changes(commits), but it doesn’t care about projects.

It hasn’t a common project search as Github does.”
• “I do not think Gerrit can work as an Open Source tool in the company. You

cannot find a project which you want to contribute as an individual. You can
reach the projects or changes only if you know it.”

Most interviewees used Gerrit more or less in their work. However, it’s hard for users
to find a project if they have no clear knowledge of it. For example, the project ID,
owner name, etc. For a good Inner Source tool, users should be able to search a
project they want with some key words. Gerrit is far to become an Inner Source
platform, but many interviewees were happy to see if Gerrit become more Inner
Source.

Gitlab EE
Gitlab is used in many com
panies and organizations, it is an open source tool, but for enterprise version, it is
charged. Moreover, as an open source tool, it is customizable for organization to
build their own tool and maintain it.

• “I think Gitlab can work well as an Inner Source tool.”
• “If we choose Gitlab, maybe we need one more team to build it in our company

and maintain it.”

29

3. Iteration 1: Requirement Research

Github
In semi-structured interviews, Github was raised many times. Many interviewees
had used Github to contribute projects or find useful projects to use. It has a high
performance and friendly GUI, but it cost a lot comparing to other tools.

• “Yes, Github is a very good tool. I contribute so much during my free time.
And some job interview is required to show your Github account.”

• “If we adopt Github, we need a really large fund to support.”
Consider about the comparison, semi-structured interviews the introduction meeting
with Github, Github Enterprise is the first choice to be imported.

3.5 Evaluation
An evaluation meeting with some managers was held after the decision was made.
On this evaluation meeting, the options were shown and the decision of which plat-
form to work with would be given.
Because the biggest challenge to adopt Github Enterprise was the fund problem,
and from the semi-structured interviews, almost all the developers were happy to
adopt Github Enterprise. So this evaluation was held among managers to negotiate
the fund problem. The evaluation meeting was held by author and her mentor (Dan
Berg). The author introduced the background and the comparison, and Dan ex-
plained about the cost and the expected user amount. The expected users number
was 600, it costs 225 dollars per user per year. Thus, for the company it could raise
over one million cost per year in total. It seems a large fund, but with the hourly
rate of 750kr per employee, it only cost 3 hours per user. It is worth the investment,
if they can gain an efficiency work way and save more than 3 hours per user per
year.
After that, attendees still hesitated to accept Github Enterprise. They would like to
see users would gain more benefits of Github Enterprise and a more detail compar-
ison between Github Enterprise and Gitlab. With their feedback, a pilot plan was
planned to implement both prototypes of Github and Gitlab on the in-house server
synchronously to have an evaluation among developers. However, the ITTE (who
would create the sandbox for Github and take care of server) said that there is no
problem creating a sandbox for Github as such for an evaluation, but they raised
concerns about hosting and supporting two software development environments in
parallel. It has a price to handle the support, and they had already run Gerrit which
could be improved into an similar tool of our purpose. To reduce expenses, to make
Gerrit more powerful is an affordable way. Moreover, some teams in Montreal were
working with improving Gerrit which could help us. Therefore, according to their
feedback, the iteration 2 of the research is to find the way to improve Gerrit and
implement it. In next section, the use cases of how to improve Gerrit and how to
implement use cases would be presented.

30

4
Iteration 2: Implementation

This section introduces the second iteration of this research. Iteration 2 describes
the use cases to improve Gerrit and implementation of improving Gerrit. Section 4.1
discusses the methodologies are used in this iteration, including the group discussion,
use cases, code analysis, evaluation and validation. Section 4.2 presents the results of
group discussions. According to the results of group discussions, use cases are listed
with their evaluations. Section 4.2.4 is about the implementation of two features.
This section ends with the validation of the implementation.

4.1 Methodology
This section describes the research design and the methodologies are used in iteration
2. The brief steps are:

• Review the code, understand the structure of the tool and the features deeply.
• Discuss with stakeholders to understand their experiences of Gerrit and how

their expectation of Gerrit is.
• Set up the use cases.
• Validate the use cased.
• Implement the improvement.

To improve Gerrit, firstly understand how dose the tool work, how is the structure
of the code and what are the opinions from stakeholders are necessary.

4.1.1 Group discussion
Group discussion is a face-to-face communication, which is understand as a group
of people sit together to share experiences and talk about a topic. There are two
group discussions of this iteration, which were aimed to generate participants’ ideas
to improve Gerrit. To reduce misunderstandings, the first one was held after a
presentation, the participants were picked widely from the Gerrit users who were
interested in improving Gerrit. This discussion lasted half hour. Participants talked
freely to express their views. Results of this discussion became the reference to the
next group discussion.
The second group discussion is aimed to understand further about how Gerrit could
be improved. Before discussion, two features were prepared to discuss and some
sub-topics were prepared to guide the discussion as well.
The features could be improved are (refers section 4.2.2):

• Search operators help list.

31

4. Iteration 2: Implementation

• Search function.
The sub-topics are:

• What are the shortcomings of Gerrit according to your experience?
• What can be improved with Gerrit?
• What is your opinion about those two features given?

This discussion lasted 45 minutes.

4.1.2 Use Cases
Use case helps to describe the final purpose of a project feature design, which also
guides developers to find the solution and achieve the goal. The use case let both
designers and developers understand the requirements clearly.
Use cases contains why it is needed, the user stories and how it can be implemented.
User stories are also called scenarios which describe requirements of user. Sometimes
the requirements are formulated with some ambiguous words which could lead a
misunderstand between users and developers. User stories describe the scenarios
very detailed to avoiding misunderstanding before the feature starts to be developed.
The aim at use case of this research is to make sure both designer and developer
understand the requirement correctly. Furthermore, the comprehension of use cases
would make the validation more efficient with saving time to explain the features.

4.1.3 Code analysis
The purpose of iteration 2 of this research is to allow Gerrit become more Inner
Source to support the users works more efficient. The main emphasis was placed
on finding improvement on its usability and functionality. There are two released
versions could be involved: version 2.11 and 2.12.2. In Ericsson, the 2.11.x was
in used, but the latest version of Gerrit released was 2.12.2. With talked with an
expect engineer, the 2.12.2 was planned to be the version which is involved in this
research. In addition, Ericsson has its own server and some particular repositories
based on the public version.
To analysis the code, reviewed the documentations published on the homepage was
the first step to learn its features. Then with some guides from a developer who
works with Gerrit, the preliminary knowledge of the code architecture was grasp.
Gerrit is written in Java and some CSS files to deploy the interface. It uses a
development toolkit called GWT to build browser-based applications.

4.1.4 Validation
Validation meeting was held to validate the use cases if they were available and
reasonable. The Validation meetings were held twice. The first time was held with
an administrator of Gerrit and the second time, two more experienced persons were
invited to discuss more detail with the use cases. The materials of use cases were
sent before meetings to give them some impressions of the meeting if they had some
questions, that they could prepare before the meetings. Also, we were welcome
to receive their mails if they had some ideas and questions after meetings. Both

32

4. Iteration 2: Implementation

validation meetings were held around one hour. The meetings went through all
the use cases one by one, and the discussion of each use case was held after each
explanation. Some helpful and useful advices were collected on the meetings.

4.1.5 Evaluation
The evaluation held in two ways: face-to-face meeting and e-mail evaluation. To
get early feedback to continue the implementations, early evaluations held once
the features were developed with the mentor by mail. He gave a great feedback
on the first feature. The mentor was familiar with the use cases, so he clearly
understood what was the purpose of this feature. However, he did not involve in
the implementation, so his evaluation was valuable and targeted.
The final evaluation placed after both features were developed. Evaluation mails
sent to the Gerrit Developer and the Gerrit project owner in Montreal. In addition,
four stakeholders were invited to the evaluation meetings face-by-face. This started
with a brief introduction of purpose and background. Then they were given a demo
show about the features. After that, they were asked to give the feedback on the
strengths and weaknesses for the features.

4.2 Result

This section describes the result of iteration 2 with group discussion (section 4.2.1),
use cases (section 4.2.2), evaluation (section 4.2.3) and feature development (section
4.2.4). Use cases are set up according to the result of group discussions. Then the
use cases are evaluated with experienced persons. Based on their feedback, two
features are developed.

4.2.1 Group discussion
There were two group discussions held to discuss how participants’ thought about
Gerrit. The first group discussion was taken after a presentation. Over 20 invita-
tions were sent by mail if they were interested in this topic. There were six people
attended in total. In the discussion, some ideas were proposed:
“As a user, I cannot create the project as my wish. It needed to be censored by
someone else. If I want to create very urgent, I can do nothing except waiting.”
“Once we want to organize a public activity, such as Hackathon. We need the ad-
ministrator to prepare the Git environment in advance to support the activity.”
According to this discussion, the strong willing about the project creation was ac-
cepted as one of the use cases that can be improved. People also mentioned some
about the searching function of Gerrit.
“It is too hard to find a project. I do not think the Gerrit is Inner Source enough to
support the collaboration with strangers.”
Gerrit has a searching function of some operators to support it, but it still very hard
to find a project or a commit by a key word searching. That is a point could be
improved as well. However, in this discussion, the search function was talked very

33

4. Iteration 2: Implementation

briefly. Thus, the second discussion was brought out.

In the second group discussion, two experienced participants were invited. The
discussion started with a short introduction to the topic and an opinion of a search
operator helping button.
“I can say the operators are good to help people search the things they want, but they
are not good enough. If you cannot keep them all in your mind, it is hard to use
them. And if you want to check them all, you need to go to another page. It is not
friendly to a user, typically a beginner who even knows nothing about the operators.”
“In Gerrit, it pays attention on the changes, not the projects.”
“It is hard to search a project you are interested in as some Open Source tools do.
You can find the projects or the changes only if you know the basic information. For
example, the project number.”

4.2.2 Use cases
Gerrit is a good code review tool and Git version controlling for the repository man-
agement. It seems is far from an Inner Source platform, but it can be improve to
make users gain more benefits from it after improving. For innovative and start-up
projects when resources are more loosely coupled or when people just want to find if
there are projects others worked on that could support them in their daily work or
they could build on or contribute to outside their normal main project, Gerrit does
not give so much support. The purpose is to improve Gerrit capabilities to work
as an inner source platform, where users can not only work with the projects they
know about, but also browse all projects to explore if there is anything that interests
them. There are tools today supporting this, like Github. This would facilitate a
more innovative and collaborative way of working with smaller projects where the
contributors are not pre-defined.
This section is aimed to list the use cases could be improved on Gerrit. Use cases
are raised according to the requirements in section 3.3..3

Use case 1: Help button for search operators
This use case is according to QR1 to improve the usability of search function of
Gerrit.
Why: Today it is possible to get information about the operators by reading the
documentation. However, as a user, I would like to h not understand how to use
the search engine in the most powerful way. With a help button, more users would
understand and use the operators to filter the information appropriately.
User Story: As a Gerrit user, I would like to find what operators I can use to refine
my search for the existing search functionality by pressing a help button. So that it
will be easier to make use of the search functionality.
How: Briefly describe: The button, appearance and placement.

34

4. Iteration 2: Implementation

Figure 4.1: Help button prototype.

What happen when you press the button:
• A pop-up window with text.
• Does it contain a search field?
• What information will be displayed?

– Brief description of what can be searched
– Search syntax
– Operators – explanation, examples
– How to stack multiple operators?

Use case 2: Improved inner source Capabilities of searching and infor-
mation sharing parts in Gerrit
The following sub user cases are included:

• Search function for project names and descriptions.
• Create new projects.
• Add field for homepage (or url) for each project.
• Add full project description.
• Update the project filter to new format.

Use case 2-1: Search function for project names and descriptions
This use case is according to FR1 to improve search function of Gerrit.
Why: To collaborate in a inner source community, as a user it is important to be
able to explore the existing projects to evaluate if:

1. the user could contribute to an existing project,

35

4. Iteration 2: Implementation

2. base their development on an existing baseline,
3. the user need to start a new project.

Searching from project descriptions and comments will help users to understand
more about the related projects, since the title of a project only contains limited
information.
User Story: As a Gerrit user, I would like to be able to search for project descrip-
tions, comments and any related information. So that I can understand if this is a
program/project/function I would like to use or contribute to developing further.
How: Briefly describe:

• Click the search button in ’project’ tab, a dropdown search field will appear
for project searching.

• Enter one or several key words, press “search” button, the result list will show
with available projects containing the words.

• What kind of information can be considered as the key words: Project de-
scription, Comments, Members, etc.

Figure 4.2: Project search bar prototype.

Use case 2-2: Create new projects
This use case is according to FR6, which is going to improve the sharing capability
of Gerrit.
Why: In Gerrit, users are not allowed to create a new project without permission
from the administrator. The reason is to keep good control of the projects so con-
tributors do not destroy others’ work. To work in a faster collaborative way, we want
users to be able to create new projects themselves in special sandboxes or tools re-
pro. This might need a change in the administration of user permission levels. In
Ericsson PC it is solved by using a functional user with rights to some special repros.
User Story: As a Gerrit user, I would like to create the projects by myself, instead
of getting permission from administrator. So that it is easier and more efficient to

36

4. Iteration 2: Implementation

create new projects.
How: Briefly describe:

• Make users create project directly.
• Users can be identified with different authorities if it needs a high authority

to create new projects.
• Administrator can check the new projects after created if needed.
• After pressing the button, users should fill the information on project and a

new project created.

Figure 4.3: New project creation button.

Figure 4.4: Project creation page prototype.

Use case 2-3: Homepage (or URL) for each project
This use case is based on FR2 and FR6 to improve the sharing feature and make

37

4. Iteration 2: Implementation

the project information more complete.
Why: A good way to get more information about a project is to visit their (main)
homepage. To support better utilization of homepages connected to projects in
Gerrit, it would be beneficial if the user could add a link to a homepage, in a
separate field, at creation of a project instead of entering it in the comments field. If
there is a separate field for homepages, it would be easy to present this information
when a user searches for information about specific projects.
User story: As a Gerrit user, I would like to have a field linking to a homepage
for my project. So that it is possible for interested users to get a more extensive
understanding of what my project is doing and how to use and contribute to it.
How: Briefly describe:

• Homepage can be created on for example Ericsson Open Wiki.
• Create a project homepage after a new project was created or input an url

that refers to an existing homepage.
• On the project page, users can press the link to go to the homepage and review

project information.
• Homepage information should contain: description, project owner, members,

language been used in the project and environment, etc.

Figure 4.5: Project page (homepage blank prototype).

38

4. Iteration 2: Implementation

Figure 4.6: An example for homepage.

Use case 2-4: Add full description of project
This use case is based on FR2 to make the information of project more complete.
Why: There is a brief description on project page currently. However, many projects
are empty of their description. As a project in Inner Source community, it needs
description to attract other persons to review the project. If there is no description,
others have no idea of what is the project about and how the project works. With
complete description, other users can understand the projects and use or contribute
the projects.
User Story: As a Gerrit user, I would like to be able to have a project description
in a “readme.md” file for wiki files about fully information on the projects. So that
it is possible for other persons to read about my projects and understand if they
would like to contribute or use my projects.
How: Briefly describe:

• Change the description as a mandatory element when start a project, which
force the owner gives some text about that new project.

• Add some wiki files on homepage to guide others to involve into the project.

Use case 2-5: Update the project filter to new format
This use case is based on FR1 to improve the search feature of Gerrit.
Why: There is a text free filter in project list. However, it is more like a key word
search of project names. If users have no idea about what the exact name, it is
impossible to find the project. With visible and understandable described filters,
users can pick the filters to do advanced search.
User Story: As a Gerrit user, I would like to see some choices to filter the projects
after I get a long list of searching results. So that I can find more related projects
what I interested in more easily.
How: Briefly describe:

• Some preset filters are given to filter the search result instead of a free type
box.

• There are two level categories of filters:
– When click the first level category, the second level category, the second

level category will dropdown.

39

4. Iteration 2: Implementation

– After pressing different filters of second level category, some results are
thrown out from the result list.

Figure 4.7: Filters of project searching prototype (The second category of language
dropdown list is taken from Github.com)

4.2.3 Validation

The evaluation meetings were set up twice. The first time was held with the admin-
istrator of Gerrit in Lindholmen. On the first evaluation meeting, the two use cases
with their sub use cases were sent in advance. But all the use cases introduced on
the meeting as well. He was opposed to the use case 2-4 (Add full description of
project) so much.
“You cannot force the users to write something about description. They can choose
they leave something to attract people or they do not want to share.”
His feedback was reasonable and acceptable. So the use case 2-4 was planned to be
removed from the use cases list. To discuss more further, he invited his two another
colleague who had contributed Gerrit before.
On the second evaluation meeting, they showed the disagreement with 2-4 as well
which strengthened the determination to remove the use case 2-4 of forcing the users
to add full description when initial the project. Instead, a warning panel will emerge
to point the importance of the description if the users save the project configuration
changes without any description. For other use cases, they were happy with them
and shared some experiences to contribute the Gerrit.

40

4. Iteration 2: Implementation

4.2.4 Development

Two features according to use cases were implemented. There are the help button
of search operators and adding homepage url on the main page of a project. The
implement result will be introduced into this section.

To develop the feature, clone project from Gerrit Code Review and build the envi-
ronment was the first step. To build Gerrit, a Linux system is needed. In Ericsson,
NX is used as a remote terminal server with Linux system. With the help from
Stellan Bondesson, a sandbox was created and the NX environment was built. The
brief steps of development are:

• Set up Linux environment (NX).

• Clone Gerrit projects

• Install the build tool of Gerrit (Buck).

• Build Gerrit.

• Review code.

• Develop the features.

4.2.4.1 Feature 1 - Use Case 1

This feature implemented according to use case 1 (help button for search operators).
The aim of this feature is to show the search operator list and their descriptions,
which helps users finding the operator they want to use during searching. The
original search bar is:

Figure 4.8: Original Search Bar.

The feature can be separated into three parts: help button, operator list and de-
scription of each operator. The initial idea of this feature was to list all the operators
with their description of a popup table to help users to know the meaning of each
operator. The primary design was:

41

4. Iteration 2: Implementation

Figure 4.9: Initial design of search operators.

Considering of the amount of operators is a lot, which will cause the table become
very large and users need to scroll the panel to get more information. It is not easy
for users to find a specific operator and there are too many words on the panel which
will make users feel tired to read it. So the design has been changed into the list
of operators, and each operator is an anchor. After pressing the operator anchor,
the detail description of normal description, format and constrains will popup. The
motivations of operator popup design are:

• The operators are meaningful and readable. Users can guess little bit from
the words of operators, then read the detail of the operator to check if the
operator is the one they want.

• Simple list of all the operators makes the panel clearer, which reduce the
reading quantity when looking for an operator.

• All the operators are classified into different categories, which makes users find
the operator more easily.

• Gerrit has a help popup panel of keyboard shortcuts shows as Figure 4.10. To
follow the simple design and harmonize design, the same appearance and the
same colors will be used in the operator help popup panel.

Figure 4.10: Keyboard Shortcuts help popup panel.

The help button is used as a single question mark before search bar. The initial idea
is to use the same button as the search button looks like. However, it will contain

42

4. Iteration 2: Implementation

too many letters which makes the button too long. Then the button is designed as
a grey, simple question mark as the Figure 4.11 shows. The color grey is chosen to
distinguish from search button, and this color is not abrupt to destroy the interface.

Figure 4.11: Operator Help Button with search bar.

The implementation of operator helps button shows as Figure 4.12 and Figure 4.13.
Figure 4.12 is the Operator popup panel and Figure 4.13 describes an example of
the operator description.

43

4. Iteration 2: Implementation

Figure 4.12: Operator popup panel.

Figure 4.13: An example of the operator description.

4.2.4.2 Feature2 - Use Case 2-3

This feature is implemented according to use case 2-3. This is a feature of adding a
homepage blank on the project main page that users can refer the projects to their
own homepage outside the Gerrit. Since the project homepage on Gerrit contains
very few information on project itself. Thus, if a project has its own homepage
to keep more information, this feature gives them a place to refer the link. As the
original project main page shows in Figure 4.14, it pays attention to configuration so
much. Howeve, to improve the Inner Source capability of Gerrit, more information
of project is needed.

44

4. Iteration 2: Implementation

Figure 4.14: Original project main page.

This feature has less challenge of design than the first feature, but it has more
operations need to be fixed behind. The interface design as Figure 4.15 shows. The
motivation of placing the homepage blank between description and project options is
that description and homepage can be classified into one type (information), others
are more like configurations of the project. After entering the link, pressing the
‘Save Changes’ button, the homepage link can be saved in store.

45

4. Iteration 2: Implementation

Figure 4.15: Design of project homepage blank.

Gerrit transports data by REST API with Java. For REST API, two project end-
points and two Json Entities were modified. The two project endpoints are ‘Set
Config’ and ‘Get Config’. The ConfigInput entity also describes a configuration for
a new project. A ConfigInfo entity supplies the configuration to the effective project.
This entity is also used to return the configuration called by Get Config, which the
request is sent to get a particular configuration of a project. Some fields of Config-
Info are not available for the users who have no access (refers to refs/meta/config),
but for this feature, the access dose not need to be considered. Set Config sets the
configuration of a project. A ConfigInput entity is needed in the request body to pro-
vide the new modified configuration, and a ConfigInfo entity is returned to response
the new configuration. An example of the request and response to both endpoints
refers to the Appendix A. To achieve this feature following steps are needed:

• Add a blank on the UI.
• Add a new field in both ConfigInfo entity and ConfigInput entity.
• Set the transport ports of Get Config and Set Config.

46

4. Iteration 2: Implementation

4.3 Evaluation
From the early evaluation communication with the mentor, he gave a good feedback
to organize the operators and the information. Before that, the operator list and
description was shown as Figure 4.16. As the figure shows, the operators were all
in yellow, and had not been classified into different categories. The description was
not in classifying and copied from operator documentation without formatting.

Figure 4.16: Operator list and description (old demo).

His suggestion was to format the description by "Format" and then "Constraints",
group operators and reduce the words of description. With his suggestion, operators
were all in group and the descriptions were format into a good way (as Figure 4.12
and Figure 4.13 show in Section 4.2.4).
In the final evaluation, unfortunately, the evaluation mails which were sent to the
Gerrit Developer and the Gerrit project owner in Montreal did not get response.
Otherwise, there are evaluation would be valuable. For the evaluation meetings,
the aim was to collect their opinions of the new features if they were friendly per-
formance, understandability and functionality. Since the new features evaluations
were not complex tasks, so the evaluation did not take a long time. Not only one
participant asked a question that
“What is the added value of having a separate field for the project home page rather
that just putting it in the description? ”
The aim of the homepage field was to give users a place to put their homepage link.
In addition, because Gerrit only provides a description field for project to intro-
duce itself, and normally when people see a description field, they only think about
the description. The homepage field reminds users to create a homepage for their
projects to provide more information.
The strengths and weaknesses for both features collected in the meeting were:
Help button for search operators
Strengths:

• Increase the understandability of the search function.
• Convenient to find an operator.
• Friendly Performance with tags.

Weakness:
• Cannot enter the operator into search bar by pressing it.
• No explanation about what the operator means.

Homepage (or URL) for each project
Strengths:

• Increase the functionality of the project controlling.

47

4. Iteration 2: Implementation

• Increase the capability for an Inner Source community.
Weakness:

• Cannot press the link to jump to the homepage.

48

5
Discussion

This section discusses the discussion for each research question, validity and the
challenges to this thesis work. The validity section discusses with internal validity,
construct validity and external validity.

5.1 Discussion for Research Question
This section discusses the results of the finding of each research question. RQ1.1 is
described firstly, and the summary finding of RQ 1 will be presented later. Then
the discussion of RQ 2 will be followed.

5.1.1 RQ 1-How does inner source development support
team work?

This question is aimed to find a solution to improve the Inner Source environment.
To find the solution, understand how Inner Source Development could support peo-
ple working and how people organized their team work. Thus, this question has a
sub-question to get those knowledge. In the semi-structured interviews, interviewees
showed their high innovation of how the future tool could support their work, and
their opinions of the tools they used. This question is answered in section 3 as the
first iteration of this research, to make a decision to lead a precondition of iteration
2. In the sub-question, stakeholders’ requirements are specified according to the
interviews results. Mining the requirements of stakeholders is a cornerstone of this
research. All the improvements were formulated according to those requirements.
There are 6 functionality requirements and 1 non-functionality requirements are set
up from stakeholders to help improve the Inner Source environment. During the
semi-structured interviews, many stakeholders showed their enthusiasm for Github,
which caused a big impact on the final decision to import Github Enterprise into
the company. However, with the fund problem and ITTE’s suggestion, the final
decision to achieve the goal was to improve Gerrit, which is in use.

5.1.2 RQ1.1-What are the needs of stakeholders on inner
source development?

This question is the main part to answer RQ 1, and it is also important for the whole
research. This question is answered in section 3.3.1 and 3.3.3 by the semi-structured
interviews and requirement specifications. The

49

5. Discussion

5.1.3 RQ2-How to improve the inner source development
environment?

This question is for implementing the improvement based on the answer of RQ
1. This question is answered in section 4, as the second iteration of this research.
To implement the improvement, the use cases are formulated with some experts
of Gerrit. Simultaneously, those use cases are evaluated by some stakeholders who
have experiences of contributing Gerrit. After evaluation, two features of use cases
are implemented and evaluated. One of the features would be submitted into Open
Source community of Gerrit and another would be submitted into Inner Source
community of Gerrit in Ericsson. The rest of features will be implement in the
future, which would be discussed in section 6.

5.2 Validity
All the study has its validity. In this study, four validities are discussed in this
section. Most validities were described in Wohlin et. al [49].
Nonresponse bias[42] occurs when the meeting invitation was sent or a mail sur-
vey was sent without response. This happened many times during this research.
Since there were many meetings (semi-structured interviews, group discussions and
evaluation meetings) need many participants to attend in this research. All the invi-
tations and some surveys were sent by mail, some positive responses were received,
but still many negative responses or even nonresponse happened. Typically, the
evaluation mails to Montreal were sent without any response which disappointed us
so much. However, in some unofficial communication, those features were discussed.
So it will not affect the result so much. And with the negative response from other
meetings, there were other participants involved. Nonresponse bias may also happen
if the participants don not give any answer during meetings or discussions because
they have no knowledge of that topic. To reduce the nonresponse bias, the agendas
and topics of the meetings were sent before the meetings, that the participants can
prepare a little bit for that. Furthermore, brief introduction was presented at be-
ginning of each meeting and some questions were asked to check if the participants
understood or not.

Insight shortage happens if the participants are in a small group, which will lead
the others’ insights are ignored. In this research, invitations were only sent to the
person who gave response. And the invited people were limited by recommending.
There is a huge number of employees in Ericsson. It is impossible to do a research
which covered all the people, and receive all the responses. We tried our best to
collect as many participants as we could. The insight shortage still affected the re-
sult, more requirements could be mined if more participants involved in. However,
we got a good result as we expected.

Selection validity [49] can happen if the wrong volunteers were chosen to enroll
in the research. This validity can occur in many researches. Since we have no idea
if the people we choose are the suitable or not before the meetings. In contrast,

50

5. Discussion

the right person we invited may cannot attend to the research. In this research, we
cannot promise that all the participants were the “correct” people, but at least, all
the participants were related stakeholders. All of them had some knowledge and
opinions of this topic. Those who had no idea of this topic or no experience of the
topic were not involved in this research.
Specific requirements are one more external validity of this research. Since the
research was in the range of Ericsson, all the participants were selected in Ericsson.
The stakeholders in the Open Source community were not involved, which led the
requirements collected were specific for Ericsson. This validity has related to last
validity (Insight shortage). Because the effect of both validities lack wide insights
to provide more requirements.

5.3 Challenges
There are some challenges in this research. During semi-structured interviews, some
of the interviewees hesitated to accept new tool. In the interviews, a question asked
that if they had some recommend for new tool to be imported into the company.
Some of the interviewees who had some experiences on Open Source community,
gave some recommends, for example, Github, Gitlab, etc. However, some of the
other interviewees hesitated to try a new tool.
“Gerrit is fine for me. If there’s a new tool coming, I must take a part of time from
my normal work to learn it. It can lead many problems because of the users are
fresh. We need to fix the problems, and it wastes time.”
The main argument was that the new project would change their work style, and
they need a training for the new tool. As they have a similar tool, the new tool
importation was meaningless. Howeve, they could accept that some more new fea-
tures to be contributed to the existing tool which makes it become better. The plan
for iteration 2 was to contribute Gerrit. The challenges to iteration 2 were hard
to get help from others. Since in Ericsson in Lindholmen, I worked alone without
anyone else contribute the same features of the tool. The only one that I can get
help from was in Montreal. Because of the different time zones, normally I got his
response after 5 p.m.(working hour), and it is hard to solve some problem by mail.
Thus, a problem always took several days to be solved, or even I lost contact with
him. Especially, the final evaluation mail was sent to him without any response in
one month. He was supposed to give a good feedback by his experience, and his
evaluation should be meaningful. If we start a new similar research in the future, I
would find some contributors else in Open Source community, for example, in other
companies nearby or in the online group of Gerrit development.

51

5. Discussion

52

6
Conclusion

The Inner Source Development is used widely in software-related companies with
its collaboration, code sharing, version controlling and member management. This
thesis was aimed to ameliorate the tool to support the Inner Source community as
a target company of Ericsson.
In Ericsson, they have their own way to control product projects, but with some
small or medium projects, the project controlling tool cannot support them very
well. To learn the requirements of stakeholders, some semi-structured interviews
were held after a basic learning of Inner Source by reviewing some literatures and
other related research. With the results of interviews, we got the requirements from
stakeholders, and some recommended tools they used which could be imported into
the company. Three attempts were raised to achieve the research goal:

• contribute the most popular existing tool in company,
• import the most suitable tool in the market, and
• set up a prototype of a new tool based on requirements.

With the company expectation and the results of the interviews, they preferred to
have a tool could be used directly, than a prototype full of concepts. Thus, the last
attempt was abandoned. Since Github was discussed many times during interviews,
we did some researches to compare different tools and tried to import Github. How-
ever, with hesitation to the fund problem on the evaluation meeting and feedback
from IITE, the second attempt was rejected as well. The only way left was to con-
tribute Gerrit, which was widely used in the company. After got decision to improve
Gerrit, several use cases were set up to be implemented. Two of the features were
implementing in the end to make Gerrit more ‘Inner Source’.
This research is divided into two iterations: the first one was to find out a best way
to achieve the purpose which was presented in section 3, the second iteration was
to implement the improvement which was described in section 4.
The main contributions of this thesis is to compare 5 platforms with Inner Source
requirements and find the suitable one to improve according to the needs of Eric-
sson situtaion. We have verified that semi-structured interview is a good way to
get the knowledge of stakeholders’ requirements and get stakeholders’ experiences.
This thesis gives an example to make a good choice to find a good tool to solve the
problem of an company, which matched the requirements with the platform compar-
ison and picked the suitable platform to meet the most stakeholders’ requirement
through discussion and negotiation. We practical improve the platform we picked
with formulating use cases according to the requirements first. As company aspect,
we alternative platforms have been compaired and a most suitable tool has been
summed up to work with to improve the environment in the company.

53

6. Conclusion

6.1 Limitation
The limitation of this research was that all the activities and researches were Ericsson
oriented, which lead the voice outside Ericsson was ignored. All the participants
were picked from Ericsson, and all the requirements were set for Ericsson. This
research result may not suitable for other organizations with different situations
and background.

6.2 Future work
Two of use cases were implemented, the rest of the use cases could be developed
in the future. Especially, the key words searching function of the projects which is
a good point for Gerrit. Since Gerrit has a poor performance of project searching
function. As this paper discussed before, Gerrit pays a great emphasis on changes
more than the projects. The documentation controlling and project searching is
weak in Gerrit. We hope Gerrit could become a good Inner Source tool for Ericsson
with fixing the project aspects.
The evaluation in this research was held in the company, but for the feature which
will be submitted into Open Source community. To judge it whether it is worth or
not, the evaluation for those improvements could be expanded upon an Open Source
community. To let more people involve in this project.
In the future, Gerrit capability improvement could be a topic on Hackathon which
held among all the employees in Ericsson. A short introduction to the topic could
be presented to attract more people in this company to involve in it. Then, they can
have the Hackathon days to do some tasks to improve Gerrit to help them working
more effective and in a more collaboration way.

54

Bibliography

[1] Eric von Hippel (2001). Innovation by User Communities: Learning from Open-
Source Software. MIT SLOAN MANAGEMENT REVIEW

[2] Martin Höst, Klass-Jan Stol and Alma Oručević-Alagić(2014). Inner Source
Project Management. Software Project Management in a Changing World.
Chapter 14, Page 343-369. ISBN 978-3-642-55034-8

[3] Nithya A. Ruff (2016). Trends in Corporate Open Source Engagement. Article
on Opensource.com

[4] Gaughan G, Fitzgerald B, Shaikh M (2009) An examination of the use of Open
Source software 832 processes as a global software development solution for
commercial software engineering. In: 833 35th Euromicro conference on soft-
ware engineering advanced applications (SEAA), pp 20–27

[5] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, Daniela Damian
(2008). “Selecting Empirical Methods for Software Engineering Research” in
Guide to Advanced Empirical Software Engineering, pp 285-311. ISBN 978-1-
84800-044-5

[6] Klaas-Jan Stol. Supporting Product Development with Software from the
Bazaar. PhD thesis, University of Limerick, 2011.

[7] Klaas-Jan Stol, Paris Avgeriou, Muhammad Ali Babar, Yan Lucas, and
Brian Fitzgerald. 2014. Key factors for adopting inner source. ACM Trans.
Softw. Eng. Methodol. 23, 2, Article 18 (March 2014), 35 pages. DOI:
http://dx.doi.org/10.1145/2533685

[8] Dirk Riehle, John Ellenberger, Tamir Menahem, Boris Mikhailovski, Yuri
Natchetoi, Barak Naveh, and Thomas Odenwald (2009). Open collaboration
within corporations using software forges. IEEE Softw. 26, 2, 52–58.

[9] Klaas-Jan Stol, Brian Fitzgerald (2014). Inner Source—Adopting Open
Source Development Practices in Organizations. In IEEE Software 32(4), doi:
10.1109/MS.2014.77

[10] Dirk Riehle, Maximilian Capraro, Detlef Kips, Lars Horn (2016). "Inner Source
in Platform-Based Product Engineering", IEEE Transactions on Software En-
gineering, no. 1, pp. 1, PrePrints PrePrints, doi:10.1109/TSE.2016.2554553

[11] Smith, P., Garber-Brown, C. (2007, August). Traveling the open road: Us-
ing open source practices to transform our organization. In Agile Conference
(AGILE), 2007 (pp. 156-161). IEEE.

[12] Torkar, R., Minoves, P., Garrigós, J. (2011). Adopting free, libre, open source
software practices, techniques and methods for industrial use. Journal of the
Association for Information Systems, 12(1), 88- 122.

55

Bibliography

[13] Dinkelacker, J., Garg, P. K., Miller, R., Nelson, D. (2002, May). Progressive
open source. In Proceedings of the 24th International Conference on Software
Engineering (pp. 177-184). ACM.

[14] Melian, C., Ammirati, C. B., Garg, P., Sevon, G. (2002). Building Networks
of Software Communities in a Large Corporation. Technical Report. Hewlett
Packard.

[15] Neus, A., Scherf, P. (2005). Opening minds: Cultural change with the intro-
duction of open-source collaboration methods. IBM Systems Journal, 44(2),
215-225.

[16] Vitharana, P., King, J., Chapman, H. S. (2010). Impact of internal open source
development on reuse: participatory reuse in action. Journal of Management
Information Systems, 27(2), 277-304.

[17] Martin, K., Hoffman, B. (2007). An open source approach to developing soft-
ware in a small organization. Ieee Software, (1), 46-53.

[18] Gurbani, V. K., Garvert, A., Herbsleb, J. D. (2006). A case study of a corpo-
rate open source development model. In Proceedings of the 28th international
conference on Software engineering (pp. 472- 481). ACM.

[19] Gurbani, V. K., Garvert, A., Herbsleb, J. D. (2010). Managing a corporate
open source software asset. Communications of the ACM, 53(2), 155-159.

[20] Lindman, J., Rossi, M., Marttiin, P. (2008). Applying open source development
practices inside a company. In Open Source Dev

[21] Lindman, J., Rossi, M., Marttiin, P. (2010). Open Source Technology Changes
Intra-Organizational Systems Development-A Tale of Two Companies. In ECIS.

[22] Lindman, J., Riepula, M., Rossi, M., Marttiin, P. (2013). Open Source Technol-
ogy in Intra-Organisational Software Development— Private Markets or Local
Libraries. In Managing Open Innovation Technologies (pp. 107-121). Springer
Berlin Heidelberg.

[23] Wesselius, J. (2008). The bazaar inside the cathedral: business models for in-
ternal markets. Software, IEEE, 25(3), 60-66.

[24] van der Linden, F. (2009). Inner source product line development. In Proceed-
ings of the 13th International Software Product Line Conference (p. 317). ACM.

[25] van der Linden, F., Lundell, B., Marttiin, P. (2009). Commodification of in-
dustrial software: A case for open source. Software, IEEE, 26(4), 77-83.

[26] van der Linden, F. (2013). Open source practices in software product line en-
gineering. In Software Engineering (pp. 216-235). Springer.

[27] Riehle, D., Ellenberger, J., Menahem, T., Mikhailovski, B., Natchetoi, Y.,
Naveh, B., Odenwald, T. (2009). Open collaboration within corporations using
software forges. Software, IEEE, 26(2), 52-58.

[28] Crowston, K., Annabi, H., Howison, J. Masango, C. (2004) Effective Work
Practices for Software Engineering: Free/Libre Open Source Software Devel-
opment, Proceedings of the 2004 ACM workshop on Interdisciplinary software
engineering research (WISER), pp. 18-26, Newport Beach, California, USA,
doi:10.1145/1029997.1030003.

[29] Yunwen Ye, Kouichi Kishida (2003). Toward an Understanding of the Moti-
vation of Open Source Software Developer, ICSE ’03 Proceedings of the 25th

56

Bibliography

International Conference on Software EngineeringPages 419-429, ISBN:0-7695-
1877-X

[30] Getting Started with InnerSource. O’Reilly Media, LSI: 978-1-491-93758-7
[31] Guy Martin, Andrew Aitken (2013). Inner Source Webinar Series: Open Source

Community Development Methods.
[32] Eric S. Raymond. 2001. The Cathedral the Bazaar: Musings on Linux and

Open Source by an Accidental Revolutionary. O’Reilly Media.
[33] Beck K., Cockburn A., Jeffries R., Highsmith J. (2001). “Agile manifesto”,

http://www. agilemanifesto.org, 12-4-2002.
[34] Highsmith J., Orr K., Cockburn A.(2000). “Extreme program-

ming”, in: E-Business Application Delivery, pp. 4–17. Available:
http://www.cutter.com/freestuff/ead0002.pdf.

[35] Conny Johansson, Christian Bucanac (1999). The V-Model.
[36] Ken Schwaber (2004). Agile Project Management with Scrum (Developer Best

Practices) ISBN-10: 073561993X
[37] Stefan Koch (2004). Agile Principles and Open Source Software Development:

A Theoretival and Empirical Discussion. Extreme Programming and Agile Pro-
cesses in Software Engineering Volume 3092 of the series Lecture Notes in Com-
puter Science pp 85-93.

[38] Klaas-Jan Stola, Muhammad Ali Babarb , Paris Avgeriouc , Brian Fitzger-
ald(2011). A comparative study of challenges in integrating Open Source Soft-
ware and Inner Source Software. Information and Software Technology, 2011,
volume 53, issue 12, pages 1319-1336, doi:10.1016/j.infsof.2011.06.007

[39] Klaas-Jan Stola, Brian Fitzgerald (2014). Inner Source–Adopting Open Source
Development Practices in Organizations: A Tutorial, in IEEE Software 32(4).
DOI: 10.1109/MS.2014.77

[40] J. Dinkelacker et al., “Progressive Open Source,” Proc. 24th Int’l Conf. Software
Eng. (ICSE 02), 2002, pp. 177–184; doi: 10.1145/581339.581363.

[41] Fiona Fylan (2005). Semi structured interviewing. A Handbook of Research
Methods for Clinical Health Psychology. Chapter 6, Page 65-78, ISBN: 97-0-
19-85275-5

[42] Thomas Krenzke, Wendy Van de Kerckhove, and Leyla Mohadjer Westat
(2005). Identifying and Reducing Nonresponse Bias throughout the Survey Pro-
cess. ASA Proceedings of the Joint Statistical Meetings.

[43] Nicholas Clifford, Shaun French, Gill Valentine (2010). Semi-structured In-
terviews and Focus Groups. Key Methods in Geography page 103-113,
ISBN9780857025364

[44] Dave Gruber (2014). Five ways to bring a more social, open development envi-
ronment to your company.

[45] Taghi Javdani Gandomani, Hazura Zulzalil, Abul Azim Abd Ghani and Abu
Bakar MD Sultan (2013). A Systematic Literature Review on relationship be-
tween agile methods and Open Source Software Development methodology,
arXiv:1302.2748 [cs.SE].

[46] Liz Barnett (2004). Applying Open Source Processes In Corporate Development
Organizations. Forrester Research.

[47] About Inner Source. Access: https://innersource.accenture.com/about

57

Bibliography

[48] Andrew Stellman (2009). Requirements 101: User Stories vs. Use Cases.
[49] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Regnell

Anders Wesslén (2000). Experimentation in Software Engineering, pp. 66 - 73,
ISBN:0-7923-8682-5.

[50] Inner Source Strategy Adopting Open Source Methods in the Enterprise.
https://mc-3004-1805356660.us-east-1.elb.amazonaws.com/consulting/inner-
source

58

A
Appendix

A.1 Get Config

A.1.1 Request
GET /projects/myproject/config

A.1.2 Response
HTTP/1.1 200 OK
Content-Disposition: attachment
Content-Type: application/json; charset=UTF-8
)]}’

{
"description": "demo project",
"use_contributor_agreements": {
"value": true,
"configured_value": "TRUE",
"inherited_value": false
},
"use_content_merge": {
"value": true,
"configured_value": "INHERIT",
"inherited_value": true
},
"use_signed_off_by": {
"value": false,
"configured_value": "INHERIT",
"inherited_value": false
},
"create_new_change_for_all_not_in_target": {
"value": false,
"configured_value": "INHERIT",
"inherited_value": false
},
"require_change_id": {
"value": false,

I

A. Appendix

"configured_value": "FALSE",
"inherited_value": true
},
"max_object_size_limit": {
"value": "15m",
"configured_value": "15m",
"inherited_value": "20m"
},
"submit_type": "MERGE_IF_NECESSARY",
"state": "ACTIVE",
"commentlinks": {},
"plugin_config": {
"helloworld": {
"language": {
"display_name": "Preferred Language",
"type": "STRING",
"value": "en"
}
}
},
"actions": {
"cookbook hello-project": {
"method": "POST",
"label": "Say hello",
"title": "Say hello in different languages",
"enabled": true
}
}
}

II

A. Appendix

A.2 Set Config

A.2.1 Request
PUT HTTP/1.0
Content-Type: application; charset=UTF-8

{
"description": "demo project",
"use_contributor_agreements": "FALSE",
"use_content_merge": "INHERIT",
"use_signed_off_by": "INHERIT",
"create_new_change_for_all_not_in_target": "INHERIT",
"enable_signed_push": "INHERIT",
"require_signed_push": "INHERIT",
"reject_implicit_merges": "INHERIT",
"require_change_id": "TRUE",
"max_object_size_limit": "10m",
"submit_type": "REBASE_IF_NECESSARY",
"state": "ACTIVE"
}

A.2.2 Response
HTTP/1.1 200 OK
Content-Disposition: attachment
Content-Type: application; charset=UTF-8

)]}’
{
"use_contributor_agreements": {
"value": false,
"configured_value": "FALSE",
"inherited_value": false
},
"use_content_merge": {
"value": true,
"configured_value": "INHERIT",
"inherited_value": true
},
"use_signed_off_by": {
"value": false,
"configured_value": "INHERIT",
"inherited_value": false
},
"create_new_change_for_all_not_in_target": {

III

A. Appendix

"value": true,
"configured_value": "INHERIT",
"inherited_value": false
},
"require_change_id": {
"value": true,
"configured_value": "TRUE",
"inherited_value": true
},
"enable_signed_push": {
"value": true,
"configured_value": "INHERIT",
"inherited_value": false
},
"require_signed_push": {
"value": false,
"configured_value": "INHERIT",
"inherited_value": false
},
"reject_implicit_merges": {
"value": false,
"configured_value": "INHERIT",
"inherited_value": false
},
"max_object_size_limit": {
"value": "10m",
"configured_value": "10m",
"inherited_value": "20m"
},
"submit_type": "REBASE_IF_NECESSARY",
"state": "ACTIVE",
"commentlinks": {}
}

IV

	List of Figures
	List of Tables
	Introduction
	Problem
	Purpose
	Research Questions
	Research Approach
	Thesis summary

	Background
	Inner Source Development
	Stakeholders
	Benefits

	Relative Work
	Challenges of adopting Inner Source and Open Source
	Factor to adopt Inner Source
	Common features of Inner Source Development

	Iteration 1: Requirement Research
	Methodology
	Semi-structured interview
	Comparison among existing platforms

	Data Analysis
	Result
	Semi-structured interviews
	Literature Background
	Requirement
	Comparison

	Discussion
	Evaluation

	Iteration 2: Implementation
	Methodology
	Group discussion
	Use Cases
	Code analysis
	Validation
	Evaluation

	Result
	Group discussion
	Use cases
	Validation
	Development
	Feature 1 - Use Case 1
	Feature2 - Use Case 2-3

	Evaluation

	Discussion
	Discussion for Research Question
	RQ 1-How does inner source development support team work?
	RQ1.1-What are the needs of stakeholders on inner source development?
	RQ2-How to improve the inner source development environment?

	Validity
	Challenges

	Conclusion
	Limitation
	Future work

	Bibliography
	Appendix
	Get Config
	Request
	Response

	Set Config
	Request
	Response

