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Abstract—The main purpose of this paper is to make the study
of spatially coupled turbo-like codes (SC-TCs) more complete by
investigating the impact of spatial coupling on the thresholds of
hybrid concatenated codes (HCCs). In our previous studies, we
introduced some classes of SC-TCs and considered their density
evolution (DE) analysis. The obtained results indicated that for a
fixed coupling memory, braided convolutional codes (BCCs) yield
the best belief propagation (BP) thresholds among the considered
classes. Besides having excellent BP thresholds, BCCs have good
distance properties and their minimum distance grows linearly
with the block length. Similarities between BCCs and HCCs
make HCCs good competitors for BCCs. This has motivated
us to investigate the impact of spatial coupling on HCCs. In
this paper, we introduce two spatially coupled ensembles of
HCCs, referred to as Type-I SC-HCCs and Type-II SC-HCCs.
Then, we derive the exact density evolution equations for the
uncoupled and the coupled ensembles for the binary erasure
channel. Finally, considering different component encoders, we
compute the thresholds of the SC-HCC ensembles and compare
them with the thresholds of BCCs for a range of different rates.

I. INTRODUCTION

In the last years, there has been a growing interest in low-
density parity-check (LDPC) convolutional codes [1], also
known as spatially coupled LDPC (SC-LDPC) codes [2].
These codes exhibit a remarkable behavior called threshold
saturation; for them, the belief propagation (BP) decoder can
achieve the threshold of the optimal maximum-a-posteriori
(MAP) decoder.

Spatial coupling is a general concept that is not limited
to LDPC codes. Spatially coupled turbo-like codes (SC-TCs)
were introduced in [3], [4]. In these articles, various ensem-
bles of spatially coupled parallel and serially concatenated
codes (SC-PCCs and SC-SCCs) were proposed. Moreover,
two extensions of braided convolutional codes (BCCs) for
higher coupling memory were introduced, referred to as Type-
I BCCs and Type-II BCCs. For the binary erasure channel
(BEC), the exact density evolution (DE) equations of the
considered SC-TCs were derived and the BP thresholds of
the coupled ensembles were obtained. The numerical results
in [4] indicate improvements in the BP thresholds of the
coupled ensembles and the occurrence of threshold saturation.
Threshold saturation was proved analytically for SC-TCs over
the BEC in [4], [5].

The DE analysis of SC-TCs shows that the Type-II BCC
ensemble has the best BP threshold among the considered
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SC-TC ensembles. On the other hand, the finite block length
analysis of BCCs in [6] indicates that the minimum distance
of BCCs grows linearly with the permutation size. It is also
shown that for BCCs very low error rates can be achieved by
avoiding a small fraction of bad permutations. Having close-
to-capacity thresholds and very low error floor, makes BCCs
a very promising class of codes.

Hybrid concatenated codes (HCCs) [7], [8] are a class of
turbo-like codes which are closely related to BCCs. Similar to
the BCC ensemble, the HCC ensemble is a mixture of parallel
and serially concatenated code ensembles. Also for HCCs, the
minimum distance grows linearly with the permutation size.
In addition, they can achieve very low error rates in the error
floor region [7], [8]. The remarkable properties of HCCs and
their similarities with BCCs, have motivated us to investigate
the impact of spatial coupling on HCCs.

As a first step, we briefly review SC-TCs. Then, we propose
two ensembles of spatially coupled HCCs (SC-HCCs), referred
to as Type-I SC-HCCs and Type-II SC-HCCs. We also derive
the exact DE equations for the proposed ensembles and com-
pute the thresholds of BP decoding for the BEC. Furthermore,
using the area theorem we compute the MAP threshold. We
also consider different component encoders to investigate the
impact of the component encoders on the decoding thresholds
of SC-HCCs. By considering random puncturing, we perform
a threshold analysis for a family of rate compatible SC-HCCs.
Finally, we compare the obtained numerical results with the
corresponding results for BCCs.
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Fig. 1. (a) Block diagram of PCCs. Compact graph representation of (b)
PCCs, (c) SCCs and (d) BCCs.
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Fig. 2. Compact graph representation (a) PCC (b) SC-PCC at time instant ¢ (c) SC-PCC.

II. SPATIALLY COUPLED TURBO-LIKE CODES

A. Compact Graph Representation

In our previous studies [4], we considered three main classes
of TCs; including PCCs, SCCs, and BCCs. The compact
graph representation of these codes is shown in Fig. 1. This
new representation makes the illustration of TCs and SC-TCs
simpler, and makes the DE analysis of theses codes more
convenient. In this graph representation, the variable nodes,
corresponding to information and parity sequences, are shown
by black circles, and the factor nodes corresponding to the
component trellises are represented by squares. These factor
nodes are also labeled by the length of the corresponding
trellises.

As an example, the block diagram of the PCC encoder
and the compact graph of PCCs are shown in Fig. 1 (a)
and (b), respectively. In the compact graph representation, the
information sequence wu is connected to the upper trellis TV
to produce the upper parity sequence vY. Likewise, a reorded
copy of u is connected to the lower trellis T to produce the
lower parity sequence v". To illustrate that a reordered copy of
u is connected to T, the corresponding permutation is shown
by a cross line on the edge which connects u to TC.

Consider the PCC ensemble at time ¢ in Fig. 2 (a). In order
to obtain the coupled ensemble —as it is shown in Fig. 2 (b)—
the information sequence, wu;, is divided into two sequences
of equal size, u; o and u; 1, by a multiplexer (the multiplexer
is illustrated by a rectangle in the graph). Then, the sequence
Uy is used as a part of the input to the upper encoder at time
t and w;; is used as a part of the input to the upper encoder
at time t 4+ 1. Likewise, a reordered copy of the information
sequence, u;, is divided into two sequences ;o and .
These sequences are connected to the lower encoders at time
t and t + 1, respectively.

Consider a collection of L PCCs at time instants ¢t = 1, ..., L
(Fig. 2 (c)), where L is called the coupling length. Similarly to
Fig. 2 (b), divide the information sequence u;, t =1,..., L,
into two sequences u;o and u; ;. The input to the upper
encoder at ¢ is a reordered copy of (u,u:—1,1). Likewise,
the input to the lower encoder at time ¢ is a reordered copy
of (g0, Tp—1,1).

In the SC-PCC ensemble in Fig. 2 (c), the coupling memory
is equal to m = 1 as w, is used only at the time instants ¢ and
t 4+ 1. It is possible to obtain higher coupling memory m by
dividing each of the sequences u; and u; into m+1 sequences
of equal size and spread these sequences respectively to the
input of the upper and the lower encoder at time slots ¢ to
t+m [4].

Similarly to PCCs, it is possible to apply spatial coupling
on SCCs and increase the coupling memory for BCCs. The
SC-TC ensemble are described in detail and illustrated in [4].

B. Density Evolution Equations and Decoding Thresholds

Considering transmission over a BEC, we can analyze the
asymptotic behavior of TCs and SC-TCs by tracking the
evolution of the erasure probability in different iterations of
the decoding procedure. This evolution can be shown as a
set of equations called DE equations, and for the BEC, it is
possible to derive an exact expression for them. By use of the
DE equations, we compute the threshold of BP decoding. The
BP threshold is the largest channel erasure probability ¢ for
which the erasure probability at the output of the BP decoder
converges to zero as the block length and number of iterations
go to infinity. The BP thresholds, egp, of the considered TC
ensembles are computed and summarized in Table I for rate
R=1.

We also computed the MAP thresholds of the ensembles,
emap, by use of the area theorem [9]. According to the



TABLE I
THRESHOLDS OF PCCs, SCCs AND BCCs WITH R = % m = 1.
Ensemble EBP EMAP €sc
PCC 0.6428 | 0.6553 | 0.6553
SCC 0.5405 | 0.6654 | 0.6437
Type-I BCC 0.5541 | 0.6653 | 0.6609
Type-Il BCC | 0.5541 | 0.6653 | 0.6651

area theorem, the MAP threshold' can be obtained from the
following equation

1
/ ]56)(tr(<€)dE =R,
EMAP

where R is the rate of the code and Pex(g) is the average
extrinsic erasure probability for all transmitted bits.

According to the values shown for egp and epap, While the
uncoupled BCC ensembles have the worst BP thresholds, they
have very good MAP thresholds. The last column of the table
shows the BP thresholds of coupled ensembles with coupling
memory m = 1. The BP threshold of the Type-II BCC
ensemble improves significantly and this coupled ensemble
has the best BP threshold for m = 1.

III. HYBRID CONCATENATED CODES

In this paper, we consider a rate R = % HCC ensemble
consisting of a PCC encoder as an outer encoder which is
serially concatenated with an inner encoder. The block diagram
representation of the HCC encoder is shown in Fig. 3. The
outer encoder is built of two rate-1 recursive systematic con-
volutional (RSC) encoders with N trellis sections, referred to
as upper and lower encoders, respectively. The inner encoder
is an RSC encoder with 2N trellis sections.

The information sequence u is connected to CV to produce
the upper parity sequence vV. Likewise, a reordered copy of
w is connected to C" to produce the lower parity sequence v".
Then, the sequences vV and v are multiplexed and properly
reordered by permutation IT/. The resulting sequence is used
as the input sequence for the inner encoder C' to produce
the parity sequence v'. Finally, the encoded sequence is v =
(u, vV, vt vh).

Fig. 3. Block diagram representation of an HCC encoder.

IThe obtained threshold from the area theorem is an upper bound on the
MAP threshold. However, the numerical results show that the threshold of
the coupled ensemble converges to this upper bound. This indicates that the
upper bound on the MAP threshold is a tight bound.

A family of rate-compatible SC-HCCs can be obtained by
applying puncturing. We denote by p € [0,1] the fraction
of surviving bits in a sequence after puncturing, referred
to as permeability rate. Consider random puncturing with
permeability rates pY, p* and p' for the sequences vV, vk,
and v}, respectively. The overall code rate is

R= 1 .
1 + pU + pL + 2 pI

Fig. 4(a) shows the compact graph representation of the
considered HCC ensemble. The factor nodes corresponding to
the upper, lower, and inner trellises are represented by squares
and denoted by TU, T- and T', respectively.

The information sequence w is connected to TV to produce
the upper parity sequence vV. Likewise, a reordered copy of
u is connected to T" to produce v". Note that in the graph,
the permutation II" is illustrated by the line which crosses
the edge between w and T". The sequences vV and v" are
multiplexed and properly reordered. The resulting sequence is
connected to T' to produce v'.

IV. SPATIALLY COUPLED HYBRID CONCATENATED CODES
A. Type-I Spatially Coupled Hybrid Concatenated Codes

The compact graph representation of the Type-I SC-HCC
ensemble with coupling memory m is shown in Fig. 4(b) for
time instant ¢. Consider a collection of L blocks of HCCs at
time instants t = 1,..., L. The information sequence at time
t is denoted by u;. Similarly to uncoupled HCCs, u; and a
reordered copy of u; are connected to TY and T+ to produce
the current parity sequences vy and vr, respectively. Then, v}
and v} are multiplexed and reordered. The resulting sequence
is denoted by ©°. In order to obtain a coupled ensemble with
memory m, ©9 is divided into m + 1 equal-sized sequences,
denoted by f;g > 7 =0,...,m. At time ¢, the input of the inner
encoder is a reordered version of (09,0 1 1,..., 00, )-
The corresponding parity sequence is denoted by ;. Finally,
the unpunctured code sequence is v; = (u, vy, vy, v}).

B. Type-1I Spatially Coupled Hybrid Concatenated Codes

Fig. 4(c) depicts the compact graph representation of the
Type-II SC-HCC ensemble. This ensemble is equivalent to the
Type-I SC-HCC ensemble in most of the parts. For Type-II
SC-HCCs, in addition to the coupling of the parity sequences
vy and v}, we consider the coupling of the information

sequence u;. At time ¢, u; is divided into m + 1 equal-

sized sequences wu;j, 7 = 0,...,m. Likewise, a reordered
copy of the information sequence, u;, is divided into m + 1
equal-sized sequences wu;;, 57 = 0,...,m. At time ¢, the

sequence (;—0,0, Ut—1,1,- - - > Ut—m,m) and a reordered copy
of the sequence (t;—0,0,%t—11,---,Ut—m,m) are the input
sequences for the upper and the lower encoder, respectively.

V. DENSITY EVOLUTION ANALYSIS ON THE BEC

In this section, we assume transmission over the BEC with
erasure probability €. We derive the exact DE equations for
the SC-HCC ensembles with coupling memory m. Note that



Fig. 4. (a) Compact graph representation of (a) HCC (b) Type-I SC-HCC (c)
Type-1I SC-HCC.

the DE equations for the uncoupled HCC ensemble can be
obtained by considering m = 0 and removing the time index
in the DE equations of the SC-HCC ensembles. Using the
obtained DE equations, we analyze the asymptotic behavior
of the ensembles in the next section.

A. Type-I Spatially Coupled Hybrid Concatenated Codes

Consider the Type-I SC-HCC ensemble with coupling mem-
ory m in Fig. 4(b). The factor node TV is connected to the
variable nodes u; and wvy. In the ith iteration, the average
extrinsic erasure probabilities from TV to w; and vy are

denoted by p[(} st) and p( t , respectively. Likewise, pl(ﬂ) and

pspt) denote the average extrinsic erasure probabilities from

T" to u; and vk, respectively. Then, the DE updates for 7V
are

P = fos (a0 ). M
Py = fuo(al ™), 2)
where
g =c-p), 3)
00— o o™ @
m+1

and fu, and fy, are the transfer functions of TY for the
systematic and parity bits, respectively. Note that plst in (4)
denotes the average extrinsic erasure probabilities from 7" to
the set of vg and 'ut,, t=t— ., t, which are connected
to it. The method proposed in [10] is used to obtain the exact
transfer functions of the component decoders.

The DE updates of the lower decoder are identical to
those of the upper decoder with the indexes U and L are
interchanged.

Similarly, the DE updates of 7' can be written as

(i,t) _
pIs

,t

= fis(als ), 5)
= fip(ali"se). ©)

where

i,t—k i,t—k
Zko Us )+ ( )
2(m+1) ’

2,
qI(JL):

(7

and fi, and fi, are the transfer functions of T! for the
systematic and parity bits, respectively.

Finally, the a-posteriori erasure probability on u; at time ¢
and iteration ¢ is

e-pgd D ®)

B. Type-II Spatially Coupled Hybrid Concatenated Codes

Pl —

Consider the Type-II SC-HCC ensemble with coupling
memory m in Fig. 4(c). As we discussed in the previous
section, this ensemble is identical to the Type-I SC-HCC
ensemble except that in the Type-II SC-HCC ensemble the
information bits are also coupled. Therefore, the DE updates of
the Type-II SC-HCC ensemble are identical to the DE updates
of the Type-I SC-HCC ensemble except for (3). According to
the compact graph representation in Fig. 4(c), the information
variable node wu; is connected to the set of T .S at time instants
t” =t,...,t+m. The reordered copy of u; is also connected
to the set of T}s, t” =t,...,t+m. Thus, (3) is rewritten as

| mmZZ PO

k=0 5=0

q](j,t)

Finally, the a-posteriori erasure probability on u; at time ¢

and iteration 1% is
t i\t
(’L ) g(l )

(7, t) _ L (10)

C. Random Puncturing

Assume transmission over a BEC with erasure probability ¢.
Puncturing a sequence with permeability rate p is equivalent to
transmitting the sequence over a BEC with erasure probability
€, =1— (1 —¢€)p. Thus, we can modify the DE equations of
SC-HCCs to account for the random puncturing by considering
the corresponding ¢,s for the transmitted sequences.

As we discussed in the previous section, we denote the
permeability rates for the upper, lower, and inner sequence by
pY, p* and p', respectively. The DE updates for the punctured
Type-I SC-HCCs are obtained by substituting €U € in (4)
(spL <— ¢ in the corresponding equation for the lower decoder)
and €€ in (5) and (6). Moreover, the (7) is modified to

(it) 2ok E,U " Pt(}: o E,L
T = 2(m + 1)

The DE updates for the punctured Type-II SC-HCC ensem-
ble are identical to those of the punctured Type-I SC-HCC
ensemble, except of the modified versions of the equation (3)
and its corresponding equation for the lower decoder. For the

(i,t—Fk)
pLZs

(1)



TABLE II
GENERATOR MATRICES OF THE COMPONENT ENCODERS

Ensemble GU =Gt GT

SC-HCC-1 (1,1/3) (1,5/7)

SC-HCC-1I (1,5/7) (1,5/7)

SC-HCC-III (1,5/7) (1,1/3)
TABLE III

THRESHOLDS FOR PCCs, SCCs, BCCs AND HCCS WITH R = %

T

Ensemble EMAP €

Type EBP sC
PCC - 0.6428 | 0.6553 | 0.6553
SCC - 0.5405 | 0.6654 | 0.6437
BCC Type-1 0.5541 | 0.6653 | 0.6609
BCC Type-II | 0.5541 | 0.6653 | 0.6651
HCC-I Type-I 0.4961 | 0.6666 | 0.6398
HCC-1 Type-1I | 0.4961 | 0.6666 | 0.6611
HCC-1II Type-1 0.3480 | 0.6666 | 0.5667
HCC-1I Type-1I | 0.3480 | 0.6666 | 0.6181
HCC-11I Type-1 0.5456 | 0.6665 | 0.5943
HCC-11I Type-II | 0.5456 | 0.6665 | 0.6382

punctured Type-II SC-HCCs, q](_i’t) is obtained by substituting
€U € in equation (9). Likewise, ql(}’t) is obtained by
substituting & Lo € in the corresponding for the lower

decoder.

VI. RESULTS AND DISCUSSION

In this section, we compute the BP thresholds of HCCs and
SC-HCCs by use of the DE equations derived in Section IV.
In order to investigate the impact of the component encoders
on the thresholds of HCCs, we consider three different cases,
referred to as HCC-I, HCC-II and HCC-III. In all cases, we
assume identical upper and lower component encoders. The
generator matrices of the component encoders are shown in
Table II, in octal notation. In this table, the generator matrix
of the upper, lower, and inner encoder are denoted by GY, G-
and G, respectively.

The upper and lower component encoders of HCC-I are
considered to be a simple 2-state RSC encoder with generator
matrix G = (1,1/3). The inner component encoder is a 4-
state RSC encoders with generator matrix G = (1,5/7).
For HCC-II, we consider three identical RSC encoders for
the upper, lower and inner components. These encoders have
generator matrix G = (1,5/7). Finally, for HCC-III, we
considered similar component encoders as for HCC-I but with
a different order. The upper and lower components are the
2-state RSC encoders, while the inner component is the 4-
state RSC encoder. The decoding thresholds are computed for
HCC-I, HCC-II and HCC-III and results are summarized in
Table III. In order to obtain a code with rate R = 1/3, random
puncturing is considered with p¥ = 0, p* =0, and p! = 1.

According to our numerical results, in general all three
considered HCC ensembles suffer from relatively bad BP
thresholds and the HCC-II ensemble has the weakest BP
threshold. The MAP thresholds, emap, are almost identical, but
that of the HCC-III ensemble is slightly worse. However, the
MAP thresholds of all three HCCs are excellent, even better
than the MAP thresholds of BCCs and SCCs. In other words,

for the HCC ensembles, the gap to the Shannon limit is smaller
than that of BCC and SCC ensembles. Applying the coupling
results in improved BP thresholds. Similarly to BCCs, Type-
IT SC-HCC ensembles have better BP thresholds than Type-I
SC-HCC ensembles.

As the HCC-II ensemble has the worst BP threshold, the
gap between the BP and the MAP thresholds is big for this
ensemble. Although its BP threshold improves significantly
after applying spatial coupling with m = 1, the coupled
threshold el is still much worse than those of the other
cases. The SC-HCC-I ensemble has the best el between the
considered SC-HCCs ensembles. Overall, however, the Type-
II BCC ensemble still has the best e according to the results
in Table III.

To make the comparison more complete, we consider SC-
HCC ensembles of higher rates and higher coupling memories.
In order to obtain higher rate R, we consider random punctur-
ing with pY = 0, p* = 0 and py = p' = 1-E.2 The obtained
BP and MAP thresholds are summarized in Table IV. The
corresponding BP thresholds for Type-II BCCs in [4] are also
given in this table. As we discussed, Type-II BCCs yield better
thresholds than Type-I BCCs. Therefore, only the thresholds
of Type-II BCCs are reported in Table IV.

According to the results in the table, for all rates the HCC
ensembles suffer from poor BP thresholds and among them,
the HCC-II ensemble has the poorest BP threshold. The MAP
thresholds of the HCC ensembles are almost identical and
very close to the Shannon limit for all rates. However, for
some rates, the HCC-III ensemble has worse MAP threshold
than those of the two other HCC ensembles. However, this
threshold is still slightly better than the MAP threshold of the
BCC ensemble.

The BP thresholds of the spatially coupled ensembles with
coupling memory m = 1,3,5 are presented in the columns
corresponding to e, €5 and 3, respectively. In all con-
sidered cases of SC-HCCs, the BP thresholds improve by
increasing the coupling memory. For a large enough coupling
memory, the BP thresholds achieve the threshold of the MAP
decoder. It can be seen that, for a fixed coupling memory, the
Type-II SC-HCC ensembles yield better BP thresholds than
the corresponding Type-I SC-HCC ensembles and for them
saturation occurs for smaller m. Although the Type-1I BCC
ensemble has the best BP threshold for m = 1 for all rates,
by increasing m the BP thresholds of the SC-HCC ensembles
get better than those of BCCs.

VII. CONCLUSIONS

In this paper, we have investigated the impact of spatial
coupling on the BP thresholds of HCCs. Similarly to BCCs,
these codes are a powerful class of turbo-like codes and their
MAP thresholds are even better than those of BCCs. We have
shown that the BP thresholds of the HCC ensembles improve
significantly by applying spatial coupling and threshold satu-
ration occurs. By selecting the component encoders properly,

2To have consistent notation with [4], we replace p! with p, in the table.



TABLE IV
THRESHOLDS FOR PUNCTURED BCCs AND HCCs

Ensemble  Type Rate P2 EBP EMAP z—:éc Eg’c z-:gc

BCC Type-11 1/3 1.0 0.5541  0.6653 0.6651 0.6653  0.6653
HCC-1 Type-1 1/3 1.0 0.4961 0.6666 0.6398  0.6621 0.6651
HCC-I Type-IL 1/3 1.0 0.4961 0.6666 0.6611 0.6666  0.6666
HCC-1II Type-1 1/3 1.0 0.3480 0.6666 0.5667 0.6166  0.6312
HCC-1I Type-11 1/3 1.0 0.3480 0.6666 0.6181 0.6652  0.6666
HCC-III Type-1 1/3 1.0 0.5456  0.6665 0.5943  0.6243  0.6352
HCC-III Type-11 1/3 1.0 0.5456  0.6665 0.6382 0.6655  0.6663
BCC Type-11 1/2 0.5 0.3013  0.4993 0.4988 0.4993  0.4993
HCC-1 Type-1 1/2 0.5 0.2486  0.4999 0.4601 0.4947  0.4982
HCC-I Type-II 1/2 0.5 0.2486  0.4999 0.4846 0.4999  0.4999
HCC-II Type-1 1/2 0.5 0.1502  0.4999 0.3766 0.4472  0.4659
HCC-II Type-11 1/2 0.5 0.1502  0.4999 04272 04970  0.4999
HCC-III Type-1 1/2 0.5 0.3501  0.4999 04135 04540 0.4685
HCC-1II Type-11 1/2 0.5 0.3501  0.4999 0.4597 04979  0.4994
BCC Type-11 2/3 0.25 - 0.3331  0.3323  0.3331 0.3331
HCC-I Type-1 2/3 0.25 0.0622  0.3333 0.2671 03274 0.3314
HCC-1I Type-11 2/3 0.25 0.0622 03333 0.2952 0.3327 0.3333
HCC-II Type-I 2/3 0.25 0.0331 03333 0.1972 02787  0.3024
HCC-II Type-IL 2/3 0.25 0.0331 03333 0.2355 0.3252  0.3328
HCC-III Type-1 2/3 0.25 0.1820 0.3332 0.2434 0.2876  0.3044
HCC-III Type-II 2/3 0.25 0.1820 0.3332  0.2821 0.3295  0.3327
BCC Type-II 3/4 0.166 - 0.2491 0.2481 0.2491 0.2491
HCC-I Type-1 3/4 0.166  0.0199 0.2499 0.1662 0.2398  0.2481
HCC-1 Type-11 3/4 0.166  0.0199 0.2499 0.1930 0.2479  0.2499
HCC-I Type-1 3/4 0.166 0.0102 0.2492 0.1161 0.1919 0.2184
HCC-II Type-11 3/4 0.166  0.0102 0.2492 0.1431 0.2348  0.2477
HCC-1II Type-1 3/4 0.166  0.1106 0.2491 0.1624 0.2043  0.2215
HCC-III Type-II 3/4 0.166 0.1106 0.2491 0.1933  0.2433  0.2485
BCC Type-IL 4/5 0.125 - 0.1999  0.1986  0.1999  0.1999
HCC-1 Type-1 4/5 0.125 0.0085 0.1999 0.1091 0.1821 0.1982
HCC-1 Type-11 4/5 0.125 0.0085 0.1999 0.1315 0.1956  0.1997
HCC-II Type-I 4/5 0.125 0.0043 0.1999 0.0747 0.1406  0.1677
HCC-II Type-II 4/5 0.125 0.0043  0.1999 0.0940 0.1795 0.1970
HCC-III Type-1 4/5 0.125 0.0743  0.1999 0.1173  0.1557 0.1726
HCC-1II Type-11 4/5 0.125 0.0743  0.1999 0.1422 0.1917  0.1990
BCC Type-I  9/10 0.055 0.0990 0.0954 0.0990  0.0990
HCC-I Type-1 9/10  0.055 0.0006 0.0999 0.0245 0.0603  0.0822
HCC-I Type-Il  9/10 0.055 0.0006 0.0999 0.0317 0.0798  0.0960
HCC-II Type-1 9/10 0.055 0.0003 0.0990 0.0159 0.0427 0.0610
HCC-II Type-I  9/10 0.055 0.0003 0.0990 0.0208 0.0617  0.0850
HCC-III Type-1 9/10  0.055 0.0190 0.0990 0.0367 0.0587 0.0714
HCC-III Type-ll  9/10 0.055 0.0190 0.0990 0.0463 0.0805  0.0941

we can optimize the HCC ensemble for higher BP or MAP
thresholds. However, optimizing the HCC ensemble for higher
BP or MAP threshold does not guarantee a high BP threshold
for SC-HCC for a fixed coupling memory.
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