

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Region-specific cache structures for
Android mobile platforms

Master’s thesis in Embedded Electronics System Design

MAZDAK SANATI

Master’s thesis 2017

Region-specific cache structures for Android
mobile platforms

MAZDAK SANATI

Department of Computer Science and Engineering

Chalmers University of Technology

and

University of Gothenburg

Gothenburg, Sweden 2017

Region-specific cache structures for Android mobile platforms

MAZDAK SANATI

c© MAZDAK SANATI, 2017.

Supervisor: Sally A. McKee, Department of Computer Science and Engineering

Examiner: Per Larsson-Edefors, Department of Computer Science and Engineer-

ing

Master’s Thesis 2017

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

SE-412 96 Gothenburg

Telephone +46 31 772 1000

Department of Computer Science and Engineering

Gothenburg, Sweden 2017

ii

To my parents, my wife and my son

iii

Region-specific cache structures for Android mobile platforms

MAZDAK SANATI

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

The popularity of Android operating system in mobile platforms, as well as con-

stant development in Android systems as modern mini computers, increase the

complexity and the size of the virtual memory. Therefore, the need for studying

and categorizing Android memory system becomes essential for design and im-

provement of the memory organization. In this work, we purpose two modern

cache organizations, namely, region cache and drowsy cache to enhance the

Android memory performance. These cache designs are based on multiple simu-

lations on gem5 while running Agave Android benchmark suite. We profile the

Android virtual memory to examine which memory regions are accessed the most,

and which cache blocks are reused during the run time for different applications.

The simulations suggest that many memory regions’ hit-rate can be improved by

the proposed cache designs in this work.

v

Acknowledgements

I express my deepest gratitude to the following people:

My supervisor, Sally A. McKee, for your mentorship, valuable discussions and

your endless support. You are awesome!

My examiner, Per Larsson-Edefors, for your patience and your support.

My friend and mentor, Sakib Sistek, for encouraging me to continue my studies.

Lars Svensson, for your guidance during my masters.

Zachary Yannyes, for helping me with understanding gem5 and scripting.

Martin Brown, for guiding me through the gem5 architecture.

Jessica Hovey, for proof-reading this work.

My friends Mark, Katka, Enver, Kaisa, Amir, Nina, Robert, Elsa, Jes-

sica, Daniel, Sophia, Farhang, Marjan, Sam, Pegah, Hoda, and Tobias,

you are epic!

My parents, Kiandokht & Ali, for believing in me and your support of a lifetime.

My parents in-law, Homa & Jafar, for you love and encouragement.

The little HamHam, you are the energy in my life.

My love, my best friend and my light in the darkness, Mehrnaz. Without you

all of this was not achievable. Love you.

vi

Contents

Acknowledgements vi

List of Figures ix

Abbreviations xi

1 Introduction 1

1.1 Purpose and Goal . 2

1.2 Challenges . 3

1.3 Limitations . 3

2 Background 4

2.1 Related Work . 4

2.1.1 Android Benchmark Suites 4

2.1.2 Cache Studies . 9

2.1.2.1 Cache Optimization 9

2.1.2.2 Special Cache Structures 9

Region Cache: . 9

Drowsy Cache: . 11

2.2 Cache Memories . 12

2.2.1 Locality . 13

2.2.2 Cache Optimization Design Aspects 14

2.2.2.1 Cache Design . 15

2.2.2.2 Data/Instruction Caches 15

2.2.2.3 Cache Size . 15

2.2.2.4 Multilevel Cache 15

2.2.2.5 Replacement Policies 15

2.2.2.6 Cache Mapping . 16

Direct-mapped Caches: 17

Set-associative Caches: 19

Fully Associative Caches: 20

2.3 Android Software Stack . 21

2.4 gem5 Simulation Environment . 22

3 Method 24

vii

Contents viii

3.1 Experimental Setup . 24

3.1.1 Android Memory Management 24

3.1.2 Virtual Memory Regions Miss Rate: The Preliminary Ex-
periment . 26

3.2 Android Virtual Memory Region Accesses And Profiling Tools . . . 29

3.2.1 Conflict Matrix . 29

3.2.2 Reuse Distance . 29

3.2.3 Number of Consecutive Accesses to VM 30

3.3 Our Experiment And Data . 30

3.4 Building Android on gem5 . 31

3.4.1 Build . 31

3.4.2 Configuration . 31

3.4.3 Running gem5 . 33

3.4.4 Modified gem5 . 34

3.4.5 Building Android for gem5 36

i. Build Android: . 36

ii. Preparing a Filesystem for gem5: 36

iii. Building the Kernel: 36

3.4.6 Plotting the Results . 37

4 Findings 38

5 Discussion 44

A VMA Accesses for D and I Cache in four Benchmarks 45

A.1 VMA Data Access . 46

A.2 VMA Instruction Access . 47

B Scripts 50

B.1 gem5 Run Script . 51

B.2 Python Parsing and Plotting Scrpts 52

Bibliography 55

List of Figures

2.1 Region based level 1 data cache design with two small cache, namely
stack and global, and a large heap cache 11

2.2 The memory hierarchy . 13

2.3 Memory address and memory blocks 17

2.4 Memory address fields for direct-mapped access 18

2.5 Memory structure of the wide cache 19

2.6 Memory address and memory blocks in a direct-mapped cache . . . 20

2.7 Android Gingerbread Software Stack 21

3.1 Simplified illustration of Virtual Memory Layout for an Android
process in a 32-bit system. [1] . 25

3.2 Cache miss rate, Simulated for mspace (graphical library) in 19
benchmarks . 27

3.3 Cache miss rate, Simulated for libskia in 19 benchmarks 27

3.4 Cache miss rate, Simulated for Dalvik JIT in 19 benchmarks 28

3.5 Cache miss rate, Simulated for kernel in 19 benchmarks 28

3.6 gem5 system without the cache . 33

3.7 gem5 system with two cache levels 34

4.1 Normalized memory access graphs for all Agave benchmarks 38

4.2 Normalized memory access graphs for all Agave benchmarks(continued) 39

4.3 VMA data cache accesses during Frozen Bubble run time 40

4.4 VMA data cache conflict matrix . 41

4.5 VMA instruction cache accesses during Aard run time 42

4.6 VMA instruction cache conflict matrix 42

A.1 VMA data cache accesses during Aard run time 46

A.2 VMA data cache accesses during Coolreader run time 46

A.3 VMA data cache accesses during Countdown run time 47

A.4 VMA data cache accesses during Doom run time 47

A.5 VMA instruction cache accesses during FrozenBubble run time . . . 48

A.6 VMA instruction cache accesses during Coolreader run time 48

A.7 VMA instruction cache accesses during Countdown run time 49

A.8 VMA instruction cache accesses during Doom run time 49

B.1 gem5 automated script for running a benchmark and initializing
system parameters . 51

ix

List of Figures x

B.2 Python script for parsing the simulation result and generating the
.dict for building the matrix and graphing the VMA Accesses . . . 52

B.3 Python script for generating the conflict matrix 53

B.4 Python script for graphing the reuse distance 54

Abbreviations

Acronym What (it) Stands For

API Application Program Interface

DRAM Dynamic Random Access Memory

IO Input Output

L1D Level One Data

L1I Level One Instruction

OS Operating System

RAM Random Access Memory

SRAM Static Random Access Memory

LRU Least Recently Used

FIFO First In First Out

IPC Instructions Per Cycle

ISA Instruction Set Architecture

xi

Chapter 1

Introduction

A 2015 GlobalWebIndex survey [2] showed that 80% of internet users own a smart

phone and almost half own a tablet. The majority of these almost two trillion

mobile devices run on the Android Operating System. The Android execution en-

vironment has a unique and complex virtual memory layout. Our recent ISPASS

2016 submission (with M. Brown, Z. Yannes, M. Lustig, A. Sidelnikov, S. McKee,

G. Tyson, S. Reinhardt) shows that even the simplest Android applications use

dozens of code and data regions that are accessed by many threads. Improving

both performance and power consumption requires understanding of how these

regions are managed and used.

The Android memory layout differs from the usual Linux layout in that it allocates

many smaller virtual memory regions within the traditional heap segment. For

instance, native libraries, Java API code, compiled bytecode, and memory used by

the graphics card are each allocated and managed as separate memory regions [1].

This allows runtime to tailor memory management according to how the regions

are accessed. This, in turn, suggests that the memory hierarchy could also be

tailored for specific usage patterns.

Android applications generate of many threads that potentially access many vir-

tual memory regions simultaneously, and the resulting access streams are likely to

cause conflict in cache. On one hand, the multiple working sets are unlikely to

fit in cache. On the other hand, the interleaving of multiple access streams will

obscure or remove spatial locality of reference, which challenges the effectiveness

1

Chapter 1. Introduction 2

of traditional, unified cache hierarchies.

In this thesis, we will identify common usage patterns in how different virtual mem-

ory regions are accessed by the many application and runtime threads. Based on

our findings, we will propose cache structures designed to support the different

access behaviors. We will then analyse the performance, power, and area impact

of incorporating such structures in an Android platform.

1.1 Purpose and Goal

Cache hit rates can often be improved by increasing cache size, associativity, or

block size. Increasing these parameters is not guaranteed to deliver better perfor-

mance. Cost, complexity, access behavior, and access time constraints often limit

the values these parameters can take [3]. Furthermore, larger structures dissipate

more static power, and minimizing power is as important as delivering high per-

formance for the mobile embedded systems we target.

Improving performance and/or reducing power dissipation may thus require em-

ploying more innovative designs. For instance, skewed associative [4], hash-rehash

[3], and column-associative [5] caches all improve cache hit rate without chang-

ing the cache structure. Instead they use different mapping functions to mimic

associativity while maintaining the simpler structure of a direct-mapped cache.

Regardless of the structure of the main cache, adding a small, fully associative

buffer to hold recently evicted blocks (on the assumption that data removed by

conflicts are likely to be accessed again soon) can avoid ping pong effects caused

by multiple hot data mapping to the same cache location [6]. Such victim cache

is implemented as a separate structure, it adds no complexity to the main cache.

Lee and Tyson [7] carry this separation a step further, demonstrating that employ-

ing separate region caches for stack, global, and heap data can significantly reduce

power dissipation with little or no impact on performance. Other researchers show

that adding tunable drowsy cache management [8] or decay cache [9] can further

reduce power dissipation without hurting performance.

We will explore this rich cache design space to identify combinations of structures

that better support the Android execution environment. To do so, we will first

Chapter 1. Introduction 3

characterize how different virtual memory regions are used by both the application

and the Android runtime layers. In particular, we will track locality of reference

(e.g., stack distance for temporal reuse), access granularities, sizes of memory

footprints, numbers of reads and writes, and numbers of simultaneously access-

ing threads. Based on our analysis, we will then propose cache systems (different

organizations in isolation or combination) to better support the common access

behaviors among heavily used regions. We will use the gem5 simulator [10] to

evaluate system performance. However, the size of these regions and whether if

we can benefit from these designs in an actual system was not studied during this

project due to the large scope of such work.

1.2 Challenges

The cross product of potential cache organizations represents a large design space.

Evaluating every point in this space is infeasible, and thus we need a means of

navigating the space efficiently. We can identify promising candidate structures

via fast, trace-driven cache simulation before performing detailed modelling in a

full-system simulator.

We will identify organizations that meet different design criteria – e.g., maintaining

a given power budget, fitting within a specified area footprint, or meeting specific

performance goals. Our detailed models should also let us identify common inter-

action patterns among the different cache structures such that we can derive some

broad guidelines for achieving specific goals.

1.3 Limitations

The final product of this project is in the form of simulation data and simulation

models, therefore we will not deliver any actual hardware products.

Chapter 2

Background

In this chapter we will first explain some of the related work in Android bench-

marking, cache optimization methods, and special cache structures. These works

helped us understand and define our limitations and set goals for our project. Later

in section 2.2 we will give some theoretical background on memory hierarchies and

cache design.

2.1 Related Work

This project relies significantly on utilizing Android benchmarks as a method of

understanding Android memory organisation. Therefore, it is important to look

for the best benchmarking tools that would provide us with the information needed

in the process of studying Android mobile platforms’ architecture.

2.1.1 Android Benchmark Suites

There is rich prior work in benchmarking and workload characterization (entire

books have been written on the subject). We restrict our discussion to other An-

droid benchmark suites and workload characterization studies. We broadly cate-

gorize benchmark suites into four groups: General purpose computer architecture

benchmarks, plug-and-play “black box” Android applications, microbenchmark-

s/minibenchmarks (mini-programs with code that is representative of real applica-

tions but lacks full functionality), and Android benchmarks [1]. In this section we

4

Chapter 2. Background 5

will discuss some of the most popular benchmark suites from the general purpose

benchmark suites (commercial) , down to the Android benchmarks and highlight

their differences from Agave benchmark suite.

General purpose computer architecture benchmarks in the first category help ar-

chitects measure performance of the processor, memory, and compiler on different

systems. However because of Android applications’ reliance on shared libraries and

OS services, these benchmarks have compatibility issues with mobile devices and

therefore lack the ability to fully characterize the performance of mobile platforms.

General purpose computer architecture benchmarks include codes modeling parts

of the functionality of real applications. For instance, MiBench [11] is a free, open

source suite intended to represent the kinds of applications that run on embedded

systems. The suite contains 35 applications that span six categories: automotive

and industrial control, networking, security, consumer devices, office automation,

and telecommunications. MiBench has been used most for computer architecture

design space exploration. The applications are intended to be commercially rep-

resentative. they carry out some of the functionalities found in real embedded

systems in programs that are still small enough to run in (slow) architectural sim-

ulators.

SPEC
TM

CPU 2006 benchmark provides performance measurements to compare

compute-intensive workloads on different computer systems. The SPEC CPU
TM

2006 benchmark is SPEC’s CPU-intensive benchmark suite, with focus on the

system’s processor, memory subsystem and compiler. This benchmark suite in-

cludes the SPECint R© 2006 benchmark (containing 12 different benchmark tests)

and the SPEC R© 2006 benchmark (containing 19 different benchmark tests). The

SPEC CPU
TM

2006 benchmark has several different ways to measure computer

performance. One way is a single task computation; where speed measurement is

performed. Another way to measure computer performance in SPEC CPU
TM

2006

is through a capacity or rate measurement which is time constrained measurement

for the maximum amount of tasks, this is called a throughput. [12]

Princeton Application Repository for Shared-Memory Computers (PARSEC) is a

Chapter 2. Background 6

benchmark suite composed of multithreaded programs for Chip-Multiprocessors

(CMPs). PARSEC’s workload includes system applications which mimic large-

scale multithreaded commercial programs, mining and synthesis (intel RMS) ap-

plications, and applications in recognition. The PARSEC workload consists of 9

applications and 3 kernels all developed in Princeton University, Stanford Uni-

versity and intel (Microprocessor Technology Labs). Bienia et al. [13] show that

PARSEC covers a wide spectrum of working sets, locality, data sharing, synchro-

nization and off-chip traffic. PARSEC provides useful data on cache organization,

it focuses on the desktop and server application.

Black box benchmarks in the second category are intended to help consumers

evaluate and compare platforms, and they often compile and publish the results on

the Internet. Products like Quadrant [14] and AnTuTu [15] provide information

about screen, video, memory performance and battery lifetime. Others, like CPU

Benchmark [16] and GFXBench [17], give more detailed information about specific

components, such as CPU or GPU performance. These tools do not expose their

benchmarking methodologies or give the user detailed control over how the bench-

marks are run, and thus they cannot be used for the kinds of hardware/software

explorations we seek to enable. We therefore focus on open-source programs that

afford more flexibility in how they can be configured and in what information can

be tracked.

Microbenchmarks in the third category are useful for studying specific aspects

of system performance. For instance, Androbench [18] is a storage benchmarking

tool with five microbenchmarks — two applications to measure sequential read and

write performance, two applications to measure random I/O performance, and an

SQLite benchmark for assessing the performance of database inserts, updates, and

deletes. Users can set parameters like target partitions, file sizes, and number of

transactions. Kim et al. [18] use AndroBench to demonstrate that the I/O perfor-

mance of Android devices vary with file systems and storage mechanisms. While

Chapter 2. Background 7

useful, AndroBench cannot represent the complex storage patterns of actual ap-

plications running on the Android software stack. A more thorough evaluation

of the I/O performance requires that operations be executed with variable inputs

and time constraints. In the same spirit, Lin et al. [19] construct a suite of 12

small methods representing programming constructs like nested loops and recur-

sive calls. Since the majority of Android applications manipulate multimedia, Lee

et al. [20] construct AM-Bench, a benchmark suite, covering the essential mul-

timedia activities of play-back, compression, computation, and rendering. The

target applications include the native camera and gallery applications, plus a pop-

ular e-reader, barcode scanner, and 2D and 3D versions of a game development

framework. From these, the authors extract Java methods implementing the ap-

plications’ main activities to create a suite of 20 benchmarks. The benchmarks

are open source, but running those extracted from the native applications requires

replacing the full applications with the benchmarks, which, in turn, requires root

access.

Benchmark suites described in this category have all proved to help the community

evaluate the performance of different hardware. However none of them actually ex-

ercises Androids’ real application and therefore can not give accurate information

to help develop better hardware for mobile platforms.

Android benchmarks in the fourth category include BBench [21], the set of

smartphone applications from Sunwoo et al. [22], MobileBench [23], and Moby [24].

Gutierrez et al. [21] port an Android web browser to the gem5 [10] full-system

simulator to create the open-source BBench benchmark, which renders a set of

websites. Sunwoo et al. [22] build on BBench, adding five more applications

from traditional benchmarks, gaming applications, and productivity applications

(which we heretofore refer to as the ARM R© suite).

Pandiyan et al. [23] collect a set of four representative smart phone applications,

including general-purpose interactive web browsing, education-oriented web brows-

ing, photo browsing, and video playback. The result, MobileBench, is suitable for

studies on real smartphone platforms as well as on full-system simulators.

Huang et al. [24] select 10 popular Android applications — including a web

Chapter 2. Background 8

browser, media players, social networking, and a game — to create the Moby

suite. While source code is available for some of the applications, others like

BaiduMap and Adobe reader are proprietary. Other than BBench, the ARM R©

suite uses applications for which users must pay (e.g., EEMBC [25]’s AndEBench)

or that are only available in binary form.1 MobileBench is freely distributed as

binaries that (should) run on real platforms as well as simulators/emulators2, and

the authors provide ready-to-run gem5 images.

Gutierrez et. al [21] compare microarchitectural performance characteristics of

BBench with SPEC
TM

CPU 2006 workloads [26], finding that BBench exhibits

poorer instruction cache, instruction TLB, and branch predictor performances.

Their gem5 BBench port facilitates exploring detailed behavior of an important

class of Android applications.

Sunwoo et al. [22] combine the SimPoint [27, 28] partial simulation methodology,

Principal Component Analysis (PCA), and Fractional Factorial experimental de-

sign to greatly reduce gem5 simulation time for processor design space exploration

and workload characterization. They developed six benchmarks that include tradi-

tional benchmarks, gaming applications, and productivity applications (including

BBench). They confirm the findings of Gutierrez et al., that Android applica-

tions exhibit very different instruction-related characteristics from SPEC
TM

. To

further facilitate simulation-based design space exploration, they design a nonin-

vasive user-interface automation tool. Their SimPoint workloads have just a 2.5%

average CPI error compared to full workloads.

Pandiyan et al. [23] use gem5 to explore the energy and performance of their

MobileBench benchmark suite. They conduct a memory system study showing

that using larger TLBs improves IPC and L2 utilization and that using a stride

prefetcher reduces L2 miss rates.

Huang et al. [24] use Moby to analyse both micro architecture-independent and

micro architecture-dependent Android application characteristics. For instance,

their locality analysis finds that a highly associative instruction cache (64 or more

ways) can manage over 80% of the instructions, and a four-way associative data

1www.eembc.org
2The links to the downloads were broken when we tried them recently.

Chapter 2. Background 9

cache can reuse nearly 70% of the lines due to high temporal locality. They find

that their applications have working sets from 47-114 MB and they spawn 5-38

processes that access 16-31 libraries, but they nonetheless restrict their study to

analysing the main benchmark application process’ instruction references to the

various Android virtual memory code regions.

Android has a very complex virtual memory organisation in contrast to C pro-

grams running on Linux. This complex execution environment helps computer

architects to better support the execution characteristics, structures and resources

for Android software stack. To help the community to benefit from these oppor-

tunities we developed Agave, an open-source benchmark suite designed to expose

the complex interactions between components of the Android software stack [1].

2.1.2 Cache Studies

In this section we will briefly describe some of the work done by cache architects.

First we will explain an older work by A.J. Smith describing the cache memory

design that helped us understand the factors that can benefit the cache memories,

later in section 2.1.2.2 we will give the reader information about two specific cache

designs,namely region and drowsy cache that introduce new horizon to the cache

architecture.

2.1.2.1 Cache Optimization

2.1.2.2 Special Cache Structures

There are many new designs for specialized cache organisations and many of these

designs - based on their purpose and environmental set up - have proven to be

successful in lowering the miss rate and power dissipation. Here we will briefly

describe some of these designs chosen based on their relation to our project.

Region Cache: Although power consumption per instruction has been reduced

by using methods such as improvements in instruction compression algorithms

. [29] or compress instruction coding [30], data cache is still consuming a large

portion of the power budget. Several methods have been introduced to reduce

Chapter 2. Background 10

the power consumption by partitioning the data cache into smaller components,

unfortunately these components lower the performance by increasing the average

latency and prolonging the execution time. [7]

Lee et al. [7] introduce a first level cache organization to exploit the memory refer-

ences characteristics more efficiently. These semantically defined memory charac-

teristics suggest cache partitions dedicated to three memory regions: stack, heap

and global. The results show a 66% power consumption reduction on average while

running MediaBench benchmark on a model that resembles Intel StrongARM SA-

1101 with two small region-based data caches and a larger L1 data cache. The

region-based L1 data cache reduces the power consumption without increasing the

execution time by exploiting the spatial and temporal locality in stack and global

data references. Lee et al. profile the heap memory reference during run-time

as well as the stack function calls and global data references. They observed a

total of 40% stack calls, 30% of heap and 30% of global references. To under-

stand the locality of a cache line they calculate the number of cache hits for every

single cache line before it is evicted. On average the stack cache lines have the

highest lifespan followed by the global whereas heap cache lines have the shortest

lifespan. They also ran experiments on the locality of each region by allocating a

dedicated data cache to each region. The result shows that at a given cache size,

stack has the best locality. In second place comes the global data followed by the

heap. Based on this result Lee et al. suggest that an L1 D-cache structure with

two small stack, global region cache and a larger heap cache allows level one data

cache partitioning without having a noticeable effect on the access latency.

The region-based caching presented in Lee et al. is a horizontal partitioning

method presented in the figure 2.1. It has two horizontally partitioned recom-

bined caches (RC1 and RC2) along a larger regular cache. This design has some

advantages: First, there are no memory conflicts between regions which elimi-

nates the need for complex designs for each region (such as high associativity)

which leads to faster cache access logic. Second, a smaller dedicated cache can

store more data than a large combined cache. Finally, a smaller cache has less

power dissipation if the performance is not changed.

Chapter 2. Background 11

Figure 2.1: Region based level 1 data cache design with two small cache,
namely stack and global, and a large heap cache

Drowsy Cache: Due to the ever-growing size of cache in embedded systems

and the portion of the die they consume, it has become an important matter to

consider the leakage current caused by the decreasing transistor voltage thresh-

old. This leakage power can sometimes go up to 70% of total power in a 70nm

processor. One method to decrease the leakage current is to reduce the voltage

on the cache lines that remain idle most of the time. This technique is referred to

as drowsy caching [8]. One of the most used policies is the simple policy where

after several cycles all cache lines are put to sleep for a specific number of cycles.

However, this policy is architecture specific.

Another drowsy policy is the noaccess policy which will turn off cache lines that

are not accessed within a time window. Bhadauria et al. instead suggest another

policy where they exploit the temporal locality and deliver a better energy saving

system with almost no performance degradation in comparison to simple policy

or no drowsy cache. Here we refer to this policy as reuse distance policy. The ad-

vantage of reuse distance policy is that it is not architecture-specific and therefore

Chapter 2. Background 12

allows prediction of leakage saving for individual benchmarks.

This drowsy cache model, only keeps several of the most recently used cache lines

awake. Bhadauria et al. [8] show even better performance at simpler implemen-

tations while giving more control than simple policy with respect to enforcing a

strict power budget. The reuse distance policy is shown to use less than 44% of

the simple policy for L1 cache and 93% for L2 while maintaining 97.6% of the

IPC of the same none-drowsy model. These results were achieved while running

SPEC benchmark for a 32KB L1 D-cache with a 512KB L2 cache. The reuse

distance policy supports performance better at larger cache sizes and higher clock

rates while maintaining a strict power budget. The reuse distance is the technique

we based our L2 cache design on. Furthermore we investigate the possibility of

Android systems benefiting from this technique. However, due to the large scope

of the implementation and its complexity we will did not implement the drowsy

cache.

2.2 Cache Memories

The memory hierarchy is best explained by a pyramid chart where the CPU with

relatively smaller size stands at the top of the pyramid (level 0) and the disk with

the largest size lies at the bottom (Figure 2.2). Caches are memory buffers that

dynamically load memory blocks accessed by the processor. Typically L1 and L2

are made on chip while L3 and above are usually off chip. L1 and L2 are usually

built of SRAM cells and any cache in a lower level is usually built of DRAM cells.

There is a proportional relation between the cache speed, hit rate, and cache

size. Larger caches tend to store mode addresses and are more likely to contain

the accessed address but they are slower because access times to memories are

affected by wire delays. In addition, the larger memories require larger decoders

and multiplexers which bring more complexity to the system.

Chapter 2. Background 13

Figure 2.2: The memory hierarchy

2.2.1 Locality

When a process runs the main program it typically jumps quite often to many

procedures and codes which each have their own data. therefore the working set3

varies with time. When a process executes part of its code the miss rate in the

3Set of memory Addresses accessed by a process at any time

Chapter 2. Background 14

cache and memory are quite low; Furthermore, new area in the memory is accessed

and the miss rate tends to rise when there is a change to another code module.

Cache blocks and memory pages containing the previous working set must now be

replaced by a new working set.

This behavior of the memory-access explains the locality property of the program.

There are two types of locality: Temporal and Spatial. Temporal locality explains

the consecutive access to the same memory address, meaning if a memory address

has just been accessed, there is a high chance that it will be accessed again very

soon. This behavior is observed mostly in program loops where data and instruc-

tions are used several times. The spatial locality explains the memory addresses

that are close to the requested address. This means that if an address is accessed

the memory addresses close to its location have a high probability of being accessed

in upcoming cycles. This behavior is common among related data items (variables

and arrays) that are usually stored together. It is because of the locality property

of the memory accesses that caches are successful. If process would have accessed

memory randomly the miss rate in caches would have been unacceptable [31].

2.2.2 Cache Optimization Design Aspects

Considering a suitable cost, a cache design is supposed to accomplish four as-

pects [32]:

1. Hit rate: The probability of finding requested memory block in the cache.

2. Access time: The time to access the data that is in the cache.

3. Miss delay: The delay time in case of a cache miss.

4. Overhead: The overhead of updating main memory and maintaining multi-

cache consistency.

In an ideal scenario we want the cache system to maximize the hit rate while

minimizing other aspects mentioned above. However, there is a trade-off between

Hit rate and access time, since if a cache hits then it will take some time to access

the information inside the cache. In the remainder of this section we will discuss

Chapter 2. Background 15

some of the design parameters that can affect the aspects we mentioned here,

however we will mainly focus on the miss/hit rate and the access time.

2.2.2.1 Cache Design

2.2.2.2 Data/Instruction Caches

The L1 cache is usually a split instruction/data cache to avoid the overlap of

data accesses and instruction fetch. This has the advantage of increasing the

cache bandwidth (read to write rate of data in the cache) and minimizing the

access time. However, the hit rate may decrease and the two caches must be kept

consistent. [32]

2.2.2.3 Cache Size

Although larger cache size results in increased hit rate, there are limits to the cache

size. Cost is the first driving factor, physical size (fitting the cache on the chip),

and access time are some other aspects that must be take into consideration.

2.2.2.4 Multilevel Cache

By increasing the cache size there will come a point where it is better to split

the cache into two levels. The higher level is faster, smaller, and more expensive

whereas the second level is larger. Through multi-level caching problems with the

oversized cache can be eliminated.

2.2.2.5 Replacement Policies

Upon access to a memory block that does not reside in the cache, a cache miss

is triggered and the replacement policy will select the victim block. This victim

block must be in the cache line where the requested missing block is mapped. In a

direct-mapped cache it is straightforward since the missing block is only mapped

to a single cache line. However in a fully associative cache all cache blocks are

candidate for the replacement and in a set-associative cache any block in the set

is a candidate.

Random selection is the simplest replacement policy. However it does not help

Chapter 2. Background 16

the memory system to minimize the miss rate. Other replacement policies try to

select the victim cache in such a way as to lower the miss rate. The ideal scenario

would be if the replacement policy could predict the future and select the victim

block that is accessed the farthest. This policy is called OPT (optimal). In OPT

policy a block is kept only if there is a hope that it will be accessed next. In the

OPT policy it is very probable that a block is replaced if it must stay longer to

save the miss rate.

The LRU (least recently used)policy selects the victim blocks base on their resi-

dence time in the cache. Meaning the older block (without access) is more likely

to be evicted. The LRU policy relies on the locality property of accesses to each

block and checks all block for the last time they were accessed. The simplest way

of tracking the access history is by assigning priority bits (also known as history

bits) to each cache line. The higher priority lines are closer to eviction. The

priority change is possible by incrementing the history bits by 1 modulo 4. This

will make the history bit updating more complex and therefore the pseudo-LRU

is used instead.

In pseudo-LRU the LRU block is not tracked accurately, and therefore history bit

update is much simpler. One disadvantage of the LRU and pseudo-LRU policy is

that the history bits are updated every time there is a cache access. The FIFO

(first in first out) policy on the other hand will only update the history bit on a

miss. The problem with the FIFO policy is that the blocks are evicted even if they

are accessed often and therefore the miss rate might be higher than LRU. [31]

2.2.2.6 Cache Mapping

In a conventional processor the cache line and memory block are mapped based

on the block address. The memory address is divided into two parts: the block

address and the offset (Figure 2.3). Suppose we have a memory address of d-bits.

Also let us assume that the main memory has addresses from 0 to 2d − 1. By

dividing the memory into same size blocks (containing several addresses) we will

have 2d

MemoryBlockSize
- 1 blocks. Now if we want to locate the memory block address

requested by the processor, we have to divide the address by the block size. The

Chapter 2. Background 17

quotient is the block number. Keep in mind that this division is quite simple since

block size is a power of 2. Let us assume the block size is 2b bytes. This way, in a

d-bit memory address the first b-bits are the offset and d− b is the memory block

address while the number of memory blocks is 2(d−b) − 1 (Figure 2.4). Next, let

us assume that there is a cache memory in between the processor and the main

memory with a total number of 2(c−b) − 1 lines where c is much smaller than d.

Since the cache is much smaller than main memory, each cache line is going to

have a subset of certain blocks from the main memory. A cache has two main

parts: a directory memory and a data memory. The directory memory contains

the tags (IDs) of the current memory block in a cache line plus the validation bit

while the data memory contains a copy of the memory block.

Figure 2.3: Memory address and memory blocks

Direct-mapped Caches: In a Direct-mapped cache, a given memory block

and cache line are always mapped together. The location of the cache line is

achieved by hashing the memory block. The simplest hashing method is bit-

hashing where a field of the block address (usually the least significant bits in

memory block address) selects the cache line (Figure 2.4). The rest of the bits

(most significant bits of the block address) from the ID go to the cache’s directory

memory. Data memory has a width of 1 word and the cache line size can be

anything from two words and above. The number of words per cache line defines

the cache block size. Let us assume a cache line size of two words for the data

memory. This way the height of the data memory is twice the directory memory

(in a narrow cache)4. The ratio between the height of data and the directory is

W = 2w , where W is the number of words per cache line. With a block size

of B = 2b, S being the number of lines (S = 2s) and a memory address size of

D = 2d, the number of tag bits that define the block in cache line is d - s - b.

4In a wide cache the data and directory memory have the same height

Chapter 2. Background 18

Figure 2.4: Memory address fields for direct-mapped access

When there is a read access, it proceeds in two steps: First the Cache indexing,

where the directory memory of the cache is fetched with the s least significant bits

of the block address and data memory is fetched with the s least significant bits

of block address plus w most significant bits of the block offset. Second is the tag

checking, the tag in the directory map is checked and compared with the most

significant bits of the block address. Furthermore, the valid bit is checked. If both

tag and state (valid) bit check, the cache hits; otherwise a cache miss is triggered.

Figure 2.5 shows the structure of a wide cache. In the event of a cache miss, the

system can significantly benefit from a wide cache since the time it takes to reload

a block is one cycle of a data memory whereas in a narrow cache it takes W cycle

to reload a block.

In a direct-mapped cache as we mentioned earlier, a given memory block (memory

block m) is always stored in a cache line (cache line n) and the consecutive blocks

(m + 1) are stored in cache line n + 1. Since the cache size is much smaller than

the main memory size the memory block m is stored in the cache line n and this

process is repeated until the entire memory is mapped to the cache (Figure 2.6).

Direct-mapped cache has one major advantage and that is fast access time on a

hit. However, since in a direct-mapped cache a large number of memory blocks

Chapter 2. Background 19

Figure 2.5: Memory structure of the wide cache

are restricted to map to the same cache line, the miss rate could significantly rise

when several blocks map the same line simultaneously.

Set-associative Caches: To eliminate the problem with blocks competing for

the same cache line while maintaining the fast access time, set-associative caches

are introduced. A set-associative cache is separated into sets of lines and each set

is direct-mapped but the main difference is that blocks can be stored in any line

within the set.

A set-associative cache is usually followed by the name N-way, where N is the

number of lines within each set. Notice that for every set the mapping is exactly

the same as in the direct-mapped. Each set has its own directory and data memory

and therefore, sets have independent miss or hit. In other words a direct-mapped

Chapter 2. Background 20

Figure 2.6: Memory address and memory blocks in a direct-mapped cache

cache is a 1-way set-associative cache. In a set-associative cache the width size of

data memory is calculated as following:

number of sets × number of blocks per set × block size (2.1)

Typically the size of a set-associative cache is between two and eight lines. Beyond

eight lines , the cache will become slow with insignificant hit rate.

Fully Associative Caches: In a fully associative cache a memory block can

be mapped to any cache line. The cache tag in the directory memory of a fully

associative cache contains the entire block address. In this way, all the directory

lines must be checked in parallel to locate a block address. A read or write proceeds

in the following order: The block tag is matched against all previous tags. A tag

bus line looks through all directory entries and the bus value is compared with

all tags stored in the directory. In case of a match the data is returned. The

directory memory of a fully associative cache is made of CAM (content-addressable

Chapter 2. Background 21

memory) for the purpose of parallel tag matching. Therefore, access time in a fully

associative cache is slower than a set-associative cache made out of RAMs but the

hit rate should be better since the mapping is more flexible in fully associative

cache. Thus, fully associative caches are preferred in designing small caches. [31]

2.3 Android Software Stack

The Android software stack consists of five layers (Figure 2.7). On top of the An-

droid software stack lies the application layer that contains end-user applications

(often referred to as ”apps”). These apps are either delivered with the Android

device or downloaded from digital sources such as Google play. Beneath the appli-

cation layer there is the Android application framework which is a set of Android

APIs that help developers write apps. The application framework contains design

tools for developing user interface and system tools.

Applications
Android Framework
Native
Libraries

Android
Runtime

Hardware
Abstraction Layer

Linux Kernel

Figure 2.7: Android Gingerbread Software Stack

Android Native Libraries (common C libraries) and Android Runtime, which con-

tains common Java libraries and Dalvik Virtual Machine (DVM), are the third

layer in the Android software stack. The Hardware Abstraction Layer (HAL)

helps developers to add functionalities without having to change the higher level

system. The HAL implementations are usually built into shared object modules

(.so). The Linux kernel at the bottom delivers low-level services such as process

management, memory management, and device drivers. Some of these features

are tailored specifically for mobile embedded platforms.

Chapter 2. Background 22

2.4 gem5 Simulation Environment

As our main open source tool in both understanding and simulating the Android

devices, gem5 helped us in developing Agave benchmark suite and continues to be

one of the major utilities for understanding the cache system in Android devices.

The ability to build different architectures as well as the possibility of modifying

different architectures in detail (sim-objects) allows us to improve the cache sys-

tem in memory and study the overall performance of the system. We will discuss

these sim-objects in detail and the changes we have made in the gem5 to study

the Android memory behavior in the section 3.1.1.

gem5 is a combination of M5 and GEMS simulators. Inheriting the M5 properties

allows the gem5 to have a configurable simulation environment where users can

configure multiple ISAs and CPUs. The GEMS aspect of gem5 delivers a flexible

memory system that supports cache coherence protocols. The gem5 simulator

supports many architectures such as : ARM, ALPHA, MIPS, Power, SPARC,

and x86. gem5 has two important features, first it is open source which allows

researchers to collaborate in both industry and academia. The second benefit of

gem5 is that it allows deeper exploration of multicore systems and complicated

cache hierarchies while providing OS facilities such as IO and networking. The

gem5 simulator offers a variety of CPU models, execution modes, and memory

models and allows us to focus on the one aspect that is important to this project,

namely the cache organisation. [10]

The CPU models available in gem5 are Atomic-simple, Timing-simple, In-order

and O3. The atomic model is a minimal IPC model that we used in this project.

The timing model is similar to the latter but it does simulate the memory reference

of the memory as well which is not a subject of study in this project. The in-order

and O3 are useful in pipeline models.

The system execution mode in gem5 is scripted in the configuration in gem5 and

offers two modes, the system call emulation (SE) and full system (FS). The SE

mode does not model the devices or OS and only simulates the system services

while the FS mode emulates both user and kernel instruction and models a com-

plete system which was favourable in this work. It goes without saying that the

Chapter 2. Background 23

full system simulation has the time trade-off.

gem5 offers two memory systems, classic and RUBY. The classic memory offers a

fast and easy configurable system while the RUBY model provides a more com-

plicated structure that allows simulation accuracy for plenty of cache coherent

memory systems, as cache coherence was not a subject to be studied in this work,

we chose the classic memory model.

In addition to the options mentioned above, gem5 offers execution in both ARM

and X86 ISAs, since we are modelling ARM cortex A9 and A15 in this work we

chose the ARM ISA model for our simulations. [10]

Chapter 3

Method

We divide this chapter into four sections. First we will explain our experimental

set up where we discuss the Android memory management and the preliminary

experiment which is the foundation of our research. In the second part, we are

going to describe our approach for understanding Android memory regions and

Android memory behavior. Third, we explain our simulation on gem5 for cat-

egorizing Andriod applications’ memory management. Finally, we are going to

describe steps we took to mount Android on gem5 as well as our approach to

gathering and in-depth analysis of data.

3.1 Experimental Setup

3.1.1 Android Memory Management

Unlike the typical C/Linux program’s virtual memory with only four core regions,

the simplest Android apps use dozens of instruction and data regions because of

the Androids unique software stack. Therefore, it is important to understand how

these regions are managed and accessed. Understanding the virtual memory layout

and the memory management is the first step in this project to find out more about

memory regions that are accessed during app execution. For instance, Zygote is

a daemon (computer program that runs as a background process) responsible for

launching the Android applications. Zygote starts up after the service manager

24

Chapter 3. Method 25

(an information director for all available services) but it is actually triggered by

app process.

0xf ... f
Kernel Space Privileged code

Stack (grows down) Automatic variables

Application APK User code

Framework JAR Android APIs

Core Library 0 JAR

Java APIs
Core Library 1 JAR

...
Core Library N JAR

Shared Library 0 Text

Native libraries

Shared Library 0 Data
Shared Library 1 Text
Shared Library 1 Data

...
Shared Library N Text
Shared Library N Data

Anonymous 0

Large heap allocations
Anonymous 1

...
Anonymous N

Gralloc Ashmem Graphics allocations

JIT Code Cache Ashmem For compiled bytecode

Mspace Code Cache Ashmem For pixel operations

LinearAlloc Ashmem
(grows down)

Java method allocations

Dalvik Heap Ashmem
(grows down)

Java dynamic allocations

Heap
(grows up)

C dynamic allocations

BSS Uninitialized data of app process
Data Initialized data of app process
Text Code region of app process

Reserved
0x0 ... 0

Figure 3.1: Simplified illustration of Virtual Memory Layout for an Android
process in a 32-bit system. [1]

Figure 3.1 shows a simplified version of the app process virtual memory layout.

The app process uses the standard C regions (code, stack, heap, and global) as

well as Linux MMAP (responsible for mapping files and devices to memory). JIT

compiler (Just-In-Time compiler improves the performance of Java applications

at run time) reads User code (APK files), Android framework, and core libraries

Chapter 3. Method 26

(JAR files) as data before converting them into the Dalvik executable files (.dex).

Android places dynamic allocations on the MMAP segment to handle the resource

constraints. This is achieved using Android’s shared memory (ashmem). For

instance, graphics buffer allocations are created for driving graphical data to the

framebuffer by image producers. In C programs, the user has a large heap region to

utilize when needed; In Android however, there are more regions that are designed

as heap and the user has less or no influence on which heap region needs to be

used. [1]

3.1.2 Virtual Memory Regions Miss Rate: The Prelimi-

nary Experiment

Brown et al. have modified an older version of gem5 cache objects to count the

level one cache miss rate and logged them at the end of the simulation. Further-

more, we have added a way to log cache accesses in real time in the cache imp.cc

(responsible for implementing the cache). The purpose of such cache-logger is to

document all accessed memory regions and check if it is a hit or a miss in the

cache. We looked at two scenarios: The first scenario is when each region has its

own dedicated (virtual) cache with sizes varying from 64B upto 32KB and the sec-

ond scenario is when a unified 32KB cache is shared among all memory regions.

Please note that these scenarios are different than the final goal of this project

which suggests a design for a region based cache. This project was designed to

understand the basic behavior of the system during the run-time and does not

present actual results of a region cached system.

We observed that there is a miss rate in smaller dedicated cache sizes. It suggests

that some regions might require larger dedicated cache size to avoid memory con-

flicts with themselves (these are referred to as a ’self-miss’). The unified cache miss

rate suggests that memory regions will have more conflict with each other even if

the cache size is relatively large, and some regions would benefit from dedicated

cache. Figures 3.2 to 3.5 show graphed miss rate during the run-time for some

Chapter 3. Method 27

memory regions in a direct mapped level one instruction cache simulated in gem5

while running 19 different benchmarks. [1]

64B 128B 256B 512B 1K 2K 4K 8K 16K 32K 32K/U

icache size

0.0

0.05

0.1

m
is

s
 r

a
te

dev/ashmem/mspace

Aard.Search

CoolReader

Countdown

Doom.Run

FrozenBubble.Run

Gb.Music.Play

Gb.Music.Service.Play

Gb.Pm.Install

Gb.Video.Play

JetBoy.Run

Odr.Presentation.Read

Odr.Spreadsheet.Read

Odr.Text.Read

OsmAnd.Map

OsmAnd.Navigate

Vlc.Music.Play

Vlc.Music.Service.Play

Vlc.Video.Play

Figure 3.2: Cache miss rate, Simulated for mspace (graphical library) in 19
benchmarks

64B 128B 256B 512B 1K 2K 4K 8K 16K 32K 32K/U

icache size

0.0

0.05

0.1

0.15

m
is

s
 r

a
te

libskia.so

Aard.Search

CoolReader

Countdown

Doom.Run

FrozenBubble.Run

Gb.Music.Play

Gb.Music.Service.Play

Gb.Pm.Cli.Install

Gb.Pm.Install

Gb.Video.Play

JetBoy.Run

Odr.Presentation.Read

Odr.Spreadsheet.Read

Odr.Text.Read

OsmAnd.Map

OsmAnd.Navigate

Vlc.Music.Play

Vlc.Music.Service.Play

Vlc.Video.Play

Figure 3.3: Cache miss rate, Simulated for libskia in 19 benchmarks

As we can can see in the figures 3.2 to 3.5, the miss rates increase with the unified

cache even if it is a relatively large i-cache (32KB). This is because as number of

regions grow, memory regions will compete for cache resources and it is possible

that a cache line that is requested in a couple of accesses ahead has already been

replaced by the current request and therefore the memory conflict increases. The

miss rate is lower if some regions have a dedicated cache, even in a smaller sized

cache. To study memory access within each region, we conducted an experiment

Chapter 3. Method 28

64B 128B 256B 512B 1K 2K 4K 8K 16K 32K 32K/U

icache size

0.0

0.05

0.1

m
is

s
 r

a
te

dev/ashmem/dalvik-jit-code-cache

Aard.Search

CoolReader

Countdown

Doom.Run

FrozenBubble.Run

Gb.Music.Play

Gb.Music.Service.Play

Gb.Pm.Cli.Install

Gb.Pm.Install

Gb.Video.Play

JetBoy.Run

Odr.Presentation.Read

Odr.Spreadsheet.Read

Odr.Text.Read

OsmAnd.Map

OsmAnd.Navigate

Vlc.Music.Play

Vlc.Music.Service.Play

Vlc.Video.Play

Figure 3.4: Cache miss rate, Simulated for Dalvik JIT in 19 benchmarks

64B 128B 256B 512B 1K 2K 4K 8K 16K 32K 32K/U

icache size

0.0

0.05

0.1

0.15

m
is

s
 r

a
te

kernel

Aard.Search

CoolReader

Countdown

Doom.Run

FrozenBubble.Run

Gb.Music.Play

Gb.Music.Service.Play

Gb.Pm.Cli.Install

Gb.Pm.Install

Gb.Video.Play

JetBoy.Run

Odr.Presentation.Read

Odr.Spreadsheet.Read

Odr.Text.Read

OsmAnd.Map

OsmAnd.Navigate

Vlc.Music.Play

Vlc.Music.Service.Play

Vlc.Video.Play

Figure 3.5: Cache miss rate, Simulated for kernel in 19 benchmarks

to look in depth into the cache and log these accesses to show us which regions are

more likely to be accessed during the run-time. We will describe these methods in

the next section.

Chapter 3. Method 29

3.2 Android Virtual Memory Region Accesses

And Profiling Tools

In this section we will discuss our plan for studying and understanding the memory

conflicts in the Android virtual memory. We will base our suggestions for region-

specific cache memory on what we have achieved from the data presented in the

previous section. Here we will introduce these methods and explain why we have

picked them for analysing and planning the design of the cache system. In our

work we first gathered cache hits and misses, then by parsing the data we created

a data base that we use to create two tools for categorising these accesses, namely

conflict matrix and reuse distance plot.

3.2.1 Conflict Matrix

In the cache-logger we can track each cache access and the memory region tagged

to that access by looking at the accesstype() object in gem5 source code. In this

way we will build a matrix to show us how many times each region has has been

in conflict with itself or other memory regions. The idea is simple, whenever there

is a new access to the cache we check which region is requested. If the requested

access is the same region as before, that could potentially be a sell miss, else it

is in conflict with another memory region. The only problem here is that we are

not tracking the actual cache address that is being called and therefore we don’t

know which cache line is requested and/or replaced.

3.2.2 Reuse Distance

Once we have access to the accesstype(), we can look up the reuse distance between

VM accesses. This makes it possible to find the mean reuse distance and this will

open many options for adding better cache designs like drowsy cache management

or victim cache buffers. Again as previously stated, we can only see which VM is

requested and no specific cache line is tracked here which contradicts the actual

definition of reuse distance.

Chapter 3. Method 30

3.2.3 Number of Consecutive Accesses to VM

Knowing the number of consecutive accesses within each region will help us to

understand the average number of access to each memory region. They help us

discover the most accessed regions in different phases during Android applications

run time. This can be a key measurement in deciding which regions will most

likely benefit from region cache.

3.3 Our Experiment And Data

The latest version of gem5 has a similar structure to the older version. However,

the cache is implemented in a slightly different manner from our previous expla-

nation. The CPU port and memory port are implemented within the same part

(cache.cc) and it is easier to document the cache accesses. The fact that we ex-

ported the cache access in the older version by using ofstream among other changes

in gem5 might have affected the behavior of the simulator (too many changes to

the source code could change the accuracy of the simulation). To avoid such error

causing method we recommend using the latest version of gem5 with the build-in

function DPRINTF() that will create a tag for any output information the user is

willing to collect. Keep in mind that this function is built-in and therefore might

be more reliable in comparison with the method we developed for gathering data.

Another difference in the latest version of gem5 is the absence of hard-coded VMA

names that Brown et al. had implemented in order to categorize Android memory

regions. For instance, almost any memory region without any mapped memory

name was tagged anonymous in a previous version which created some difficulties

later in our work, specially in the conflict matrix. We do not recommend includ-

ing anonymous regions in the simulation unless a specific cache block from any of

these anonymous regions has a high access rate.

Chapter 3. Method 31

3.4 Building Android on gem5

In this section, we will explain in details how to build an architecture on gem5,

boot the Android image on gem5, modify the CPU and memory mapping and

finally what we did to generate data and graphs. Please notice that this is a brief

explanation of how to build Android on gem5 and we encourage the reader to follow

the instructions mentioned in the references for this section to fully understand

these steps and pre-requirements.

3.4.1 Build

To build a system such as ARM or X86, one must first compile the desired ISA.

Scons is used to set up the SConscript() in each sub directory and compile the

gem5 source. Scons will automatically generate gem5/build directory and place

all files generated by Scons and compiler in that path, it will also determine which

component pieces needs rebuilding and rebuild them. Some flags such as opt or

fast can be set to set compilation options, for instance gem5.opt is an optimized

binary. The next important option while building gem5 is “-j” flag which is the

number of cores on the machine to execute the build (usually number of cores

+ 1). This will speed up the build time but should be carefully set in order to

prevent a crash during the build. The success of the build is normally confirmed

by “scons: done building targets.” Message at the end of the build. Here is an

example of what we build in this project: scons build/ARM/gem5.fast

-j8

As shown above, we are building a fast ARM system using 7 cores of the Linux

machine.

3.4.2 Configuration

The configuration script will allow the user to setup a simple simulation to run

on gem5. This script models a system and its parameters such as the number

of CPU cores, memory bus connections and memory channel configuration. The

script is written in python and defines all system components and parameters for

Chapter 3. Method 32

these components. This config script is later used during the simulation.

gem5 is designed around theSimObjects meaning that most system components

(CPUs, caches, memory controllers and bus) are sim objects. gem5 implements

these objects from C++ classes and implements objects in python. Later, we ex-

plain how we modified the C++ class to generate cache data. These objects are

all imported from the m5 library in python.

The first sim object is the system. It is the parent for all components and contains

much functional information such as CPU, cache, memory size, clock, voltage and

the kernel. Later clock and voltage domain is instantiated and the parameters

on the clock are set. The memory is normally set to timing mode (as we did in

this project), except in some specific cases such as fast-forwarding or checkpoint

restore mode, and the memory size is defined. Next, CPU is later created and the

CPU model is set. The simplest CPU model is TimingSimpleCPU and, as the

name suggests, this model executes each instruction in a clock cycle, we used a

similar CPU mode in this project since we are not investigating the processor’s

effect here. Both D and I cache port require a memory bus to connect to the

CPU. One important step in the config is connecting the memory components.

Each memory object has a master and a slave port. These ports must connect

otherwise the request from the master to slave and the response from the slave

would not propagate. The final step is to create IO controller on the CPU and

memory controller and connect them to the memory bus. (Figure 3.6)

To add the cache to the system, we first create the Base Cache. This component

is earlier implemented in C++ under mem/cache/base.hh, it is later imported

as cxxheader to the python as a sim object. One advantage of the sim object

model is that python can set parameters and create the components from the C

class. Here we can set the associativity, hit latency, maximum miss count, mshrs,

size, cache level, data vs instruction, LRU tags and many more cache parameters

directly in the python object.

In this project, we have instantiated many caches with different sizes and associa-

tivity in different cache levels. Once the caches are instantiated, we connect L1

Chapter 3. Method 33

Figure 3.6: gem5 system without the cache

caches to the CPU and an L2 bus (this must be separate for the D and I cache).

The final step is to connect the L2 cache to the L2 bus and the memory bus we

explained in previous paragraph (Figure 3.7). We added some changes to the C++

class in gem5 to give us the initial data we described in the section 3.1.2. We will

discuss these changes later in the section 3.4.

3.4.3 Running gem5

Once the configuration is done we can run gem5 simulation by running the build

and the configuration. In the example, above: we would run:

build/ARM/gem5.fast configs/myConfig.py.

However, in this project we automated most steps by making multiple bash scripts

to run the benchmarks for the Android e.g.:

./start new checkpoint.sh init

In addition to these changes, we have added a mechanism in the script to run the

simulation with different cache sizes which we will explain later. 1

1http://pages.cs.wisc.edu

Chapter 3. Method 34

Figure 3.7: gem5 system with two cache levels

3.4.4 Modified gem5

In gem5 source code (structured in C++), every memory request is propagated

from the CPU side towards the cache, as explained previously. These requests

come from the master port and are responded to by the slave port. In our project,

Chapter 3. Method 35

we modified both CPU requests and cache responses so that the simulation would

run two modes: First, the traditional mode which would discard our change to the

system and work as explained in the sections above. Second, the VM2 mode which

would iterate through the simulation and recreate the same request while dynam-

ically changing the L1 cache size with each request. This will create a simulation

where the cache size would have an impact on the hit rate. The effects of the VM

mode are already discussed the section 3.1.2. In addition to the changes to the

master port, we added logging functionality to the slave port (cache side) to trace

these requests and hits for further investigation. Here we refer to such tool as the

cache logger. The results from these traces are discussed in the conclusion chapter.

Notice that the VM mode and cache logger are not affecting the actual system nor

the simulation performance. The one exception is the tick number which is the

internal simulation clock; as we are not investigating the memory request delays

in this project, this impact is negligible.

In addition to the system changes and gem5 structure, we are not running the

benchmarks immediately from the simulation start up unlike most simulations in

gem5. Instead, we first boot the Android on the ARM architecture and when

the boot time is over we create a checkpoint. from the checkpoint we run the

benchmark in the m5 terminal connected to the simulated console interface (see

previous section for more information about the benchmarks and their contents).

The boot time simulation is therefore not logged. The checkpoint is created in the

m5 terminal and is based on the system’s internal clock (tick number). The benefit

of the checkpoint system is that we can terminate the simulation at any point and

continue later from that point without any impact on the system behaviour. See

the gem5 manual and gem5 official web page for more information.3

2Virtual Memory
3www.gem5.org

Chapter 3. Method 36

3.4.5 Building Android for gem5

The most common way to build Android for gem5 is to base the build on the

emulated Goldfish4 with some differences in the gem5-specific configuration files.

These files include block device naming and some scripts to start gem5. To build

Android on gem5 we follow 3 steps.

i. Build Android: The official Android binary can be downloaded from

Google’s driver page. These binaries contain hardware capabilities. After ex-

tracting the files, we set up the environment and choose a target to build using

lunch for the Android. Here we used ARM as a target, this will refer to a build

for the emulator. Next we built the code using “make” and GNU’s parallel task

handler with the “-j” flag to speed up the build process.

ii. Preparing a Filesystem for gem5: We create a 2GB empty disk image.

Later, we partition the disk into 3 partitions root for containing Android system

files, data for the applications to be installed later and cache. Keep in mind that

the partitioning can be different depending on the Android version. Up to this

point we have created a disk image like the emulator image. To make the image

suitable for the gem5 we add the gem5 specific file system and m5 binaries. Some

extra scripts are available from the gem5 official web page to unlock the Android

lock screen. The disk image is then added to the machines mnt/path and the

M5PATH is added to the bashrc in the Linux machine.

iii. Building the Kernel: ARM cross compiler is used to build the kernel. For

this project, we used a kernel developed by Florida State University specifically

tailored for the Agave benchmark suite. Here we will not explain the process and

instead encourage the reader to see the gem5 official guides for building Android

marshmallow and KitKat. After this step, we can run the Android on gem5 as

explained in section 3.4.3. 5

4Goldfish is an QEMU based Android emulator.
5http://www.gem5.org/AndroidKitKatResources

Chapter 3. Method 37

3.4.6 Plotting the Results

When gem5 finishes the simulation three files are generated automatically, namely

the config.ini, config.json and stats.txt. These files can be directed to any preferred

path to reside. The output path is also defined in the simulation start up with

the -d flag (–outdir). The ini file consists of all parameters and simobject, the

json file is like the ini file and the txt file has the statistics. Each gem5 object

has its own statistic and at the end of simulation a statistic-dumping command

will log all statistics for all objects. However, this statistic is not everything that

we required in this work. For instance, the statistics for the L1 cache shows the

total number of references as well as hit rate but there is no information on which

memory references were accessed nor which clock cycle they may have missed. To

solve this problem, we added our own technique to log these details along with

the stats gathered by gem5 6.7

Once the memory accesses were logged we parsed them using parsing scripts we

developed and created two sources for analysing the logs: The dict files and the

pts. The dict files are simply dictionaries created by python parsing the stat logs

(using ParseVMAStats.py) and contain name of the top 9 used memory regions,

their race to memory resources with other memory regions and their hit rate. The

dict files are later used in another script, MatrixBuiler.py, to generate the mat

file which is our final conflict matrix.

The pts file consists of logged information on when each region was recalled. This

information is essential for plotting the reuse distance as a method of analysing

the cache behavior and designing a drowsy cache 8. Finally, we plotted the graphs

for reuse distance using GraphStats.py developed in python. All the scripts

mentioned above are available in Appendix B.

6In the latest version, this is not needed since the DPRINTF tracing tool allows us to do as
such without requiring these modifications, but at the time of this project this option was not
available.

7http://pages.cs.wisc.edu
8As mentioned earlier here we looked only at which memory region was recalled and not the

exact cache line that was requested.

Chapter 4

Findings

The normalized memory access graphs for all simulated benchmarks show that

data reads are always higher than data writes and there are no instruction writes,

this suggests that basing the memory structure design and our analysis on the

data and instruction reads can benefit the system more and will give us a memory

structure that is more likely to have increased hit rate in comparison with a design

that includes the data writes. Therefore, in the next part of this section we are

going to analyse and suggest a cache design on the data and instruction reads.

(Figures 4.1 and 4.2)

Figure 4.1: Normalized memory access graphs for all Agave benchmarks

considering the normalized data reads while running 18 different benchmarks

we see that heap and dalvik heap accesses are among the highest (Figure 4.3),

this suggests that having a heterogeneous memory structures such as region-based

caching to replace the single unified data cache with multiple smaller sized cache

and allocating one of these regions solely to heap and dalvik-heap can benefit the

38

Chapter 4. Findings 39

Figure 4.2: Normalized memory access graphs for all Agave bench-
marks(continued)

memory structure in terms of memory access and will speed up the memory in An-

droid. Please notice that second to heap (or even in some benchmarks above the

heap access) lies the anonymous which refers to the memory regions that were not

mapped to the Android libraries and therefore allocating one region to all anony-

mous regions does not have any research value for us. This problem was caused

by the gem5 version that we based our research, since the mentioned version did

not have any mapping to the memory access we had to map some memory regions

to known libraries and the rest were mapped to anonymous.

In some of the benchmarks (mostly game applications) gralloc-buffer is accessed

third most accessed after heap and anonymous. gralloc is the Android graphic

memory allocator. It is used to allocate memory requested by image processor.

The buffer queue is the link between the graphic blocks. The high access rate to

gralloc suggests a cache region to be allocated to this memory region, however con-

sidering the rest of the (none graphical benchmarks) this idea seems unnecessary

and since the total amount of access to the rest of the memory regions is higher

than gralloc (including anonymous) we would not recommend a specific region for

gralloc.

In conclusion considering the data memory access we suggest dividing the single

L1 data cache into region-based cache with two regions: heap and common. Fig-

ure 4.3 Shows the data accesses to the data cache during the runtime for a game

benchmark called Frozen Bubble. This is only an example and the rest of the data

access graphs are available in Appendix A.

The conflict Matrix shown in table 4.4 is the sum of conflicted accesses table after

Chapter 4. Findings 40

Figure 4.3: VMA data cache accesses during Frozen Bubble run time

running 4 different benchmarks on a direct mapped cache system 1. This table

supports the idea of having a separate cache for the heap and dalvik heap since

heap (marked as index 0) and dalivk heap (marked as 2), have the most cache

conflicts among the regions. The idea of having a two region L1 data cache seems

to be a good design. Notice that here we don’t include the other since other

is a combination of least accessed regions as well as uncharted VM regions that

have no accurate information at this point, however, in the latest gem5 version the

ability to trace these regions are added but that information is not a part of this

project. Also, gralloc is not among the top ten since we did not include graphic

heavy benchmarks (such as games) in our conflict matrix and the only graphical

benchmark is a video player. and therefore, gralloc was not among the highest.

The instruction access charts show a different variety of memory access than

the data accesses. Here the libdvm.so and dev/ashemem/mspace win the two

most memory regions accessed during the runtime of many benchmarks. libdvm

is a part of Dalvik runtime dalvik is the process VM responsible for executing the

1Please keep in mind that some of these regions are not used by all benchmarks but since
their total access count was the highest among all 4 benchmarks, we have included them in our
study

Chapter 4. Findings 41

Figure 4.4: VMA data cache conflict matrix

applications. mspace is a part of ashmem which is the 2 Android shared memory

and is similar to POSIX 3 shared memory with some differences in behavior. It has

better performance in low memory devices, since it can discard shared memory

if there is a memory pressure. These two memory regions and their reference

popularity suggests that a region based L1 instruction cache with three regions:

one for libdvm, one for ashmem and one common for the rest of the instruction

regions. Figure 4.5 shows the VMA access for Aard benchmark please see the

Appendix A for the rest of the graphs made for Instruction memory accesses.

The Android runtime(a part of the libdvm.so), as shown in the conflict matrix

table 4.6, is the third highest conflicted region after other and anonymous. Since

anonymous is the uncharted regions and other represents a combination of least

accessed regions. it seems that allocating a region to Android runtime can improve

the hit rate, thus supporting the idea of a region L1 instruction cache. As illus-

trated in table 4.6, ashmem/mspace is not in the top ten conflicts. This can be a

good argument that mspace might not require a separate region cache since the

miss rate is already low. However as mentioned earlier this could not be confirmed

in this project and requires more experiment.

2A shared memory allows multiple programs to simultaneously access the memory to avoid
unnecessary copies.

3Portable Operating System Interface (for Unix).

Chapter 4. Findings 42

Figure 4.5: VMA instruction cache accesses during Aard run time

Figure 4.6: VMA instruction cache conflict matrix

Both design suggestions for I and D cache mentioned in this chapter are based

on our observations from 18 benchmarks running on gem5 simulator with ARM

processor model and Android gingerbread image booted. However, the size of these

regions and whether if we can benefit from these designs in an actual system was

not studied during this project due to the large scope of such work. A more detailed

research could be to separate a single L1 Instruction cache into two regions: one

Chapter 4. Findings 43

common region and one region with libdvm and ashmem combined. This way it

is possible to see the memory hit rate improvement.

At the moment, a research lead by Zachary Yannes is performed in Florida State

University Android Lab to evaluate this design on a more reliable and robust

version of gem5 with Android marshmallow booted on.

Chapter 5

Discussion

In this project we were able to understand the behavior of the gem5 simulator

while running Agave benchmark suite. We obtained data on virtual memory ac-

cesses. As planned we were able to simulate many traditional cache systems with

different cache size and associativity. We have looked at different innovative mem-

ory organisations and for understanding the Android virtual memory conflict we

studied the memory references even more in details.

Unfortunately due to the big scope of the project we did not use CACTI to sim-

ulate and understand the power consumption in Android platforms. Other works

such as Lee et al. [7] have shown that leakage power can significantly be reduced

by using the specific memory architectures.

Later in this project we were able to upgrade the operating system from Ginger-

bread to Kit-Kat, because Gingerbread is out of dated and it lacks many libraries

we use in modern Android Smart phones. This showed us many more VMAs that

we did not study before and opened opportunities for understanding the GPU

behavior in Android mobile platforms. However, due to the complexity of the new

gem5 version we were not able to generate cache data and therefore the results

from Android kit-kat is not presented here.

44

Appendix A

VMA Accesses for D and I Cache

in four Benchmarks

45

Appendix A. Appendix Title Here 46

A.1 VMA Data Access

Figure A.1: VMA data cache accesses during Aard run time

Figure A.2: VMA data cache accesses during Coolreader run time

Appendix A. Appendix Title Here 47

Figure A.3: VMA data cache accesses during Countdown run time

Figure A.4: VMA data cache accesses during Doom run time

A.2 VMA Instruction Access

Appendix A. Appendix Title Here 48

Figure A.5: VMA instruction cache accesses during FrozenBubble run time

Figure A.6: VMA instruction cache accesses during Coolreader run time

Appendix A. Appendix Title Here 49

Figure A.7: VMA instruction cache accesses during Countdown run time

Figure A.8: VMA instruction cache accesses during Doom run time

Appendix B

Scripts

50

Appendix B. Appendix Title Here 51

B.1 gem5 Run Script

1 #!/bin/bash
2
3 # var="booting"
4 # if [[-z "$var"]]; then
5 if ["$#" -lt 1]; then
6 echo "Usage: $0 <benchmark>"
7 exit 0
8 fi
9 var="$1"

10 checkpoint=""
11 dtb="vexpress-v2p-ca15-tc1-gem5.dtb"
12 # dtb="vexpress-v2p-ca15-tc1-gem5-gpu.dtb"
13 kernel="vmlinux" # .unaligned"
14 # kernel="vmlinux.gpu" # .unaligned"
15 if ["$#" -eq 2]; then
16 checkpoint="-r $2"
17 fi
18 export M5_HOME=/home/$USER/gem5_kitkat/gem5_github/gem5_backup
19 export M5_PATH=/home/$USER/gem5_kitkat/gem5_github/gem5_backup/system
20
21 simple_opts="--outdir=benchmarks/$var \
22 --stats-file=${var}_stats_region_not_needed.txt \
23 configs/example/fs.py \
24 --kernel=${kernel} \
25 --disk=kk.dalvik.4g.img --cpu-type=atomic \
26 --dtb-file=${dtb} \
27 --os-type=android-kitkat --num-cpus=1 --mem-size=2GB"
28
29 opts="${simple_opts} \
30 --caches \
31 --l1d_size=32kB \
32 --l1i_size=32kB \
33 --l1d_assoc=2 \
34 --l1i_assoc=2 \
35 --l2cache --l2_size=1024kB --l2_assoc=16 \
36 --cacheline_size=64 \
37 ${checkpoint}"
38
39 # opts_debug="--debug-flags=CacheAll --debug-file=${var}_trace.txt"
40 # opts_debug="--debug-flags=CacheAccess --debug-file=${var}_trace.txt.gz"
41
42 cmd="build/ARM/gem5.fast ${opts_debug} ${opts}"
43 flags="LD_LIBRARY_PATH=/home/$USER/gem5_kitkat/gem5_github/dev/toolchain/x86_64-unknown-linux-gnu/

sysroot/lib /home/$USER/gem5_kitkat/gem5_github/dev/toolchain/x86_64-unknown-linux-gnu/lib/ld-
linux-x86-64.so.2"

44
45 benchFile="${M5_HOME}/benchmarks/${var}/system.framebuffer.bmp"
46 monitor_cmd="/home/$USER/gem5_kitkat/gem5_github/monitor-gem5/monitor-gem5.sh ${benchFile}"
47 # touch ${benchFile}
48 # ${monitor_cmd} &
49
50 echo -e "Running ${flags} ${cmd}\n"
51
52 time LD_LIBRARY_PATH=/home/$USER/gem5_kitkat/gem5_github/dev/toolchain/x86_64-unknown-linux-gnu/

lib /home/$USER/gem5_kitkat/gem5_github/dev/toolchain/x86_64-unknown-linux-gnu/lib/ld-linux-
x86-64.so.2 ${cmd}

Figure B.1: gem5 automated script for running a benchmark and initializing
system parameters

Appendix B. Appendix Title Here 52

B.2 Python Parsing and Plotting Scrpts

1 #!/usr/bin/python2.7
2 import os, sys, urllib
3 import re
4 import pickle
5 # import matplotlib.pyplot as plt
6 import numpy as np
7 #from numpy.random import *
8
9 ACCESS_FORMAT_V2 = re.compile('Tick: (?P<tick>(\d+)),Configuration: ,\s*(?P<cachesize>(\d+)[KB])

\s*,\s*(?P<association>(\d+)-way)\s*,\s*(?P<cachetype>[\w\.]+)\s*,\s*(?P<cachename>\w+),\s*VMA
Accessed: (?P<vma_name>[^,]+),\s*VMA Stats: (?P<access_result>\w+)(,\s*Evicting: (?P<evicted_vma>
[\S\.]+))?')

10
11 CACHETYPE_DATA = 1
12 CACHETYPE_INSTR = 2
13 cacheType = 0
14
15 statsKeys = ['index', 'tick', 'prevLib', 'hit', 'othermiss', 'selfmiss']
16
17 def parseAccess(line):
18 m = re.match(ACCESS_FORMAT_V2, line)
19 if not m:
20 print 'Error: cannot parse line "%s"' % (line)
21 return None
22 access = m.groupdict()
23
24 if cacheType != CACHETYPE_DATA or cacheType != CACHETYPE_INSTR:
25 setCacheType(access)
26
27 return access
28
29 def setCacheType(access):
30 global cacheType
31 if 'dcache' in access['cachetype']:
32 cacheType = CACHETYPE_DATA
33 elif 'icache' in access['cachetype']:
34 cacheType = CACHETYPE_INSTR
35
36 def printStats(stats, currentLib):
37 print 'Library %s: hits %d, othermiss %d, selfmiss %d' % (currentLib,
38 stats[currentLib]['hit'],
39 stats[currentLib]['othermiss'],
40 stats[currentLib]['selfmiss'])
41
42 def updateStats(stats, access, currentLib, evictedLib):
43 try:
44 if 'Miss' in access['access_result']:
45 if currentLib == evictedLib:
46 stats[currentLib]['selfmiss'] += 1
47 else:
48 stats[evictedLib]['othermiss'] += 1
49 elif 'Hit' in access['access_result']:
50 stats[currentLib]['hit'] += 1
51 else:
52 print 'Error: invalid access result %s' % (access['access_result'])
53 except KeyError as e:
54 print 'Error: invalid libname %s' % (evictedLib)
55 return (stats)
56
57 def updateList(vmaList, libName):
58 if libName in vmaList:
59 vmaList[libName] += 1
60 else:
61 vmaList[libName] = 1
62
63 return vmaList
64
65 def accessListBuilder(statsDict):
66 vmaStats = {}
67
68 ticks = sorted([tick for tick in statsDict])
69 for i, tick in enumerate(ticks):
70 prevLib, currLib, hits, othermiss, selfmiss, runIndex = statsDict[tick]
71 accessCount = hits + othermiss + selfmiss

Figure B.2: Python script for parsing the simulation result and generating
the .dict for building the matrix and graphing the VMA Accesses

Appendix B. Appendix Title Here 53

1 #!/usr/bin/python2.7
2 import os, sys, urllib
3 import re
4 import pickle
5 import matplotlib.pyplot as plt
6 import numpy as np
7 from numpy.random import *
8
9 ACCESS_FORMAT_V2 = re.compile('Tick: (?P<tick>(\d+)),Configuration: ,\s*(?P<cachesize>(\d+)[KB])

\s*,\s*(?P<association>(\d+)-way)\s*,\s*(?P<cachetype>[\w\.]+)\s*,\s*(?P<cachename>\w+),\s*VMA
Accessed: (?P<vma_name>[^,]+),\s*VMA Stats: (?P<access_result>\w+)(,\s*Evicting: (?P<evicted_vma>
[\S\.]+))?')

10
11
12 CACHETYPE_DATA = 1
13 CACHETYPE_INSTR = 2
14 cacheType = 0
15 vmaList = {}
16
17 def readVMADict(filename):
18 global vmaList
19 with open(filename, 'r') as f:
20 s = f.read()
21
22 vmaList = eval(s)
23 print vmaList
24
25 def readStatsDict(filename):
26 with open(filename, 'r') as f:
27 s = f.read()
28
29 statsDict = eval(s)
30 return statsDict
31
32 def accessFinder(myString):
33 matrixIndex = 9
34 for key in vmaList.keys():
35 if myString and (key.lower() in myString.lower()):
36 matrixIndex = vmaList[key]
37 break
38 return matrixIndex
39
40 def getSimpleLibName(libName):
41 simpleLibName = 'other'
42 for i, lib in enumerate(vmaList):
43 if (libName in lib) or (lib in libName):
44 simpleLibName = lib
45 break
46
47 return(simpleLibName)
48
49 def printMatrix(mat, outfile):
50 vmas = [(vmaList[key], key) for key in vmaList]
51 vmas = sorted(vmas, key = lambda x: x[0])
52
53 print vmas
54 print mat
55
56 with open(outfile, 'w') as f:
57 vmaStr = ', '.join(['%d: %s' % (index, vma) for index, vma in vmas])
58 f.write(vmaStr + '\n')
59 f.write(str(mat))
60
61 def printStats(stats, currentLib):
62 print 'Library %s: hits %d, othermiss %d, selfmiss %d' % (currentLib,
63 stats[currentLib]['hit'],
64 stats[currentLib]['othermiss'],
65 stats[currentLib]['selfmiss'])
66
67 def matrixBuilder(filename):
68 Matrix = [[0]*10 for i in range(10)]
69
70 stats = {} # dict.fromkeys(['hit', 'othermiss', 'selfmiss'])
71 statsDict = {}

Figure B.3: Python script for generating the conflict matrix

Appendix B. Appendix Title Here 54

1 #!/usr/bin/python2.7
2 import os, sys, urllib
3 import re
4 import pickle
5 import matplotlib.pyplot as plt
6 import numpy as np
7 from numpy.random import *
8
9 ACCESS_FORMAT_V2 = re.compile('Tick: (?P<tick>(\d+)),Configuration: ,\s*(?P<cachesize>(\d+)[KB])

\s*,\s*(?P<association>(\d+)-way)\s*,\s*(?P<cachetype>[\w\.]+)\s*,\s*(?P<cachename>\w+),\s*VMA
Accessed: (?P<vma_name>[^,]+),\s*VMA Stats: (?P<access_result>\w+)(,\s*Evicting: (?P<evicted_vma>
[\S\.]+))?')

10
11 # dvmaList={"anonymous":0,"heap":1,"stack":2,"kernel":3,"gralloc-buffer":4,"dalvik-

heap":5,"fb0":6,"libdvm.so":7,"dalvik-LinearAlloc":8}
12 # ivmaList={"mspace":0,"libdvm.so":1,"libskia.so":2,"kernel":3,"app

binary":4,"libstagefright.so":5,"dalvik-jit-code-cache":6,"libc.so":7,"libcr3engine-3-1-1.so":8}
13
14 CACHETYPE_DATA = 1
15 CACHETYPE_INSTR = 2
16 cacheType = 0
17 vmaList = {}
18
19 def readVMADict(filename):
20 global vmaList
21 with open(filename, 'r') as f:
22 s = f.read()
23
24 vmaList = eval(s)
25 print vmaList
26
27 def readStatsDict(filename):
28 with open(filename, 'r') as f:
29 s = f.read()
30
31 return eval(s)
32
33 def accessFinder(myString):
34 matrixIndex = 9
35 for key in vmaList.keys():
36 if myString and (key.lower() in myString.lower()):
37 matrixIndex = vmaList[key]
38 break
39 return matrixIndex
40
41 def getSimpleLibName(libName):
42 simpleLibName = 'other'
43 for i, lib in enumerate(vmaList):
44 if (libName in lib) or (lib in libName):
45 simpleLibName = lib
46 break
47
48 return(simpleLibName)
49
50 def printStats(stats, currentLib):
51 print 'Library %s: hits %d, othermiss %d, selfmiss %d' % (currentLib,
52 stats[currentLib]['hit'],
53 stats[currentLib]['othermiss'],
54 stats[currentLib]['selfmiss'])
55
56 def updateStats(stats, access, currentLib, evictedLib):
57 # hits + othermisses + selfmisses = total_accesses
58 # print 'Updating stats for access: ', access
59 try:
60 if 'Miss' in access['access_result']:
61 if currentLib == evictedLib:
62 # print 'Self-evict: %s selfmiss++' % (currentLib)
63 stats[currentLib]['selfmiss'] += 1
64 else:
65 # print 'Other-evict: %s othermiss++' % (evictedLib)
66 stats[evictedLib]['othermiss'] += 1
67 elif 'Hit' in access['access_result']:
68 # print '%s hit++' % (currentLib)
69 stats[currentLib]['hit'] += 1

Figure B.4: Python script for graphing the reuse distance

Bibliography

[1] M. Brown, Z. Yannes, M. Sanati, M. Lustig, A. Sidelnikov, S. McKee,

G. Tyson, and S. Reinhardt, “Agave: a Benchmark Suite Addressing An-

droid System Complexity,” in Proc. IEEE International Symposium on Per-

formance Analysis of Systems and Software, Apr. 2016. Accepted as poster.

[2] J. Mander, “80% of Internet users own a smartphone.”

http://www.globalwebindex.net. Online; accessed 15-January-2016.

[3] A. Agarwal, J. Hennessy, and M. Horowitz, “Cache performance of operating

system and multiprogramming workloads,” ACM Transactions on Computer

Systems (TOCS), vol. 6, pp. 393–431, Nov. 1988.

[4] F.Bodin and A. Seznec, “Skewed associativity enhances performance pre-

dictability,” in Proc. 22nd ACM International Symposium on Computer Ar-

chitecture, pp. 265–274, June 1995.

[5] A. Agarwal and S. Pudar, “Column-associative Caches: A Technique for Re-

ducing the Miss Rate of Direct-mapped Caches,” in Proc. 20th ACM Inter-

national Symposium on Computer Architecture, pp. 179–190, May 1993.

[6] N. Jouppi, “Improving direct-mapped cache performance by the addition of

a small fully-associative cache and prefetch buffers,” in Proc. 17th ACM In-

ternational Symposium on Computer Architecture, pp. 364–373, 1990.

[7] H. Lee and G. Tyson, “Region-based caching: An energy-delay efficient mem-

ory architecture for embedded processors,” in Proc. 4th ACM International

Conference on Compilers, Architectures and Synthesis for Embedded Systems,

pp. 120–127, Nov. 2000.

55

Appendix B. Appendix Title Here 56

[8] M. Bhadauria, S. McKee, K. Singh, and G. Tyson, “A precisely tunable

drowsy cache management mechanism,” in Proc. IBM T.J. Watson Confer-

ence on Interaction between Power/Performance, Architecture, Circuits, and

Compilers (P=ac2), Oct. 2006.

[9] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting generational

behavior to reduce cache leakage power,” in Proc. 28th ACM International

Symposium on Computer Architecture, pp. 240–251, June 2001.

[10] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu, J. Hes-

tness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,

N. Vaish, M. Hill, and D. Wood, “The gem5 simulator,” ACM SIGARCH

Computer Architecture News, vol. 39, pp. 1–7, Aug. 2011.

[11] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,

“MiBench: A free, commercially representative embedded benchmark suite,”

in Proc. IEEE 4th Workshop on Workload Characterization, pp. 3–14, Dec.

2001.

[12] S. P. E. Corporation, “SPEC CPU 2006.” https://www.spec.org/cpu2006/. Online;

accessed 15-January-2016.

[13] C. Bienia, S. Kumar, J. Singh, and K. Li, “The parsec benchmark suite:

Characterization and architectural implications,” in Proc. 17th ACM Inter-

national Conference on Parallel Architectures and Compilation Techniques,

pp. 72–81, Oct. 2008.

[14] Aurora Softworks, “Quadrant Benchmark.” https://play.google.com/store. [Avail-

able at Google Play; accessed 28-September-2015].

[15] “AnTuTu Benchmark.” http://www.antutu.com/en/Ranking.shtml. [Available at Google

Play; accessed 15-August-2015].

[16] Unstable Apps, “CPUBenchmark.” https://play.google.com/store. [Available at

Google Play; accessed 28-September-2015].

http://www.antutu.com/en/Ranking.shtml

Appendix B. Appendix Title Here 57

[17] Kishonti Informatics, “GFXBench GLBenchmark.”

https://gfxbench.com/result.jsp. [Available at Google Play; accessed 28-September-

2015].

[18] J. Kim and J. Kim, “Androbench: Benchmarking the storage performance of

Android-based mobile devices,” Springer Frontiers in Computer Education,

vol. 133, pp. 667–674, 2012.

[19] C. Lin, J. Lin, C. Dow, and C. Wen, “Benchmark Dalvik and native code for

Android system,” in Proc. IEEE International Conference on Innovations in

Bio-Inspired Computing and Applications, pp. 320–323, Dec. 2011.

[20] C. Lee, E. Kim, and H. Kim, “The AM-Bench: An Android multimedia

benchmark suite,” Tech. Rep. GIT-CERCS-12-04, Georgia Institute of Tech-

nology, Center for Experimental Research in Computer Systems, 2012.

[21] A. Gutierrez, R. Dreslinski, T. Wenisch, T. Mudge, A. Saidi, C. Emmons, and

N. Paver, “Full-system analysis and characterization of interactive smart-

phone applications,” in Proc. IEEE International Symposium on Workload

Characterization, pp. 81–90, Nov. 2011.

[22] D. Sunwoo, W. Wang, M. Ghosh, C. Sudanthi, G. Blake, C. Emmons, and

N. Paver, “A structured approach to the simulation, analysis and characteri-

zation of smartphone applications,” in Proc. IEEE International Symposium

on Workload Characterization, pp. 113–122, Sept. 2013.

[23] D. Pandiyan, S.Y.Lee, and C. Wu, “Performance, energy characterizations

and architectural implications of an emerging mobile platform benchmark

suite — MobileBench,” in Proc. IEEE International Symposium on Workload

Characterization, pp. 133–142, Oct. 2013.

[24] Y. Huang, Z. Zha, M. Chen, and L. Zhang, “Moby: A mobile benchmark

suite for architectural simulators,” in Proc. IEEE International Symposium

on Performance Analysis of Systems and Software, pp. 45–54, Mar. 2014.

Appendix B. Appendix Title Here 58

[25] J. Poovey, M. Levy, S. Gal-On, and T. Conte, “A benchmark characterization

of the EEMBC benchmark suite,” IEEE Micro, vol. 29, Sept. 2009.

[26] J. Henning, “SPEC CPU2006 benchmark descriptions,” ACM SIGARCH

Computer Architecture News, vol. 34, pp. 1–17, Dec. 2006.

[27] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder,

“Using SimPoint for accurate and efficient simulation,” in Proc. ACM In-

ternational Conference on Measurement and Modeling of Computer Systems,

pp. 318–319, June 2003.

[28] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “SimPoint 3.0: Faster and

more flexible program analysis,” in Workshop on Modeling, Benchmarking

and Simulation, June 2005.

[29] C. Lefurgy, P. Bird, I. Chen, and T. Mudge, “Improving code density using

compression techniques,” in Proc. 30th IEEE International Symposium on

Microarchitecture, pp. 194–203, Dec. 1997.

[30] S. Segars, K. Clarke, and L. Goudge, “Embedded control problems, thumb,

and the arm7tdmi,” pp. 22–30, Oct. 1995.

[31] M. Dubois, M. Annavaram, and P. Stenström, Parallel computer organization

and design. Cambridge University Press, 2012.

[32] A. Smith, “Cache memories,” ACM Computer Surveys, vol. 14, pp. 473–530,

Sept. 1982.

	Mazdak thesis 1-1
	Mazdak thesis 2-1
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Purpose and Goal
	1.2 Challenges
	1.3 Limitations

	2 Background
	2.1 Related Work
	2.1.1 Android Benchmark Suites
	2.1.2 Cache Studies
	2.1.2.1 Cache Optimization
	2.1.2.2 Special Cache Structures
	Region Cache:
	Drowsy Cache:

	2.2 Cache Memories
	2.2.1 Locality
	2.2.2 Cache Optimization Design Aspects
	2.2.2.1 Cache Design
	2.2.2.2 Data/Instruction Caches
	2.2.2.3 Cache Size
	2.2.2.4 Multilevel Cache
	2.2.2.5 Replacement Policies
	2.2.2.6 Cache Mapping
	Direct-mapped Caches:
	Set-associative Caches:
	Fully Associative Caches:

	2.3 Android Software Stack
	2.4 gem5 Simulation Environment

	3 Method
	3.1 Experimental Setup
	3.1.1 Android Memory Management
	3.1.2 Virtual Memory Regions Miss Rate: The Preliminary Experiment

	3.2 Android Virtual Memory Region Accesses And Profiling Tools
	3.2.1 Conflict Matrix
	3.2.2 Reuse Distance
	3.2.3 Number of Consecutive Accesses to VM

	3.3 Our Experiment And Data
	3.4 Building Android on gem5
	3.4.1 Build
	3.4.2 Configuration
	3.4.3 Running gem5
	3.4.4 Modified gem5
	3.4.5 Building Android for gem5
	i. Build Android:
	ii. Preparing a Filesystem for gem5:
	iii. Building the Kernel:

	3.4.6 Plotting the Results

	4 Findings
	5 Discussion
	A VMA Accesses for D and I Cache in four Benchmarks
	A.1 VMA Data Access
	A.2 VMA Instruction Access

	B Scripts
	B.1 gem5 Run Script
	B.2 Python Parsing and Plotting Scrpts

	Bibliography

