

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Evaluation of open source operating
systems for safety-critical applications
Master’s thesis in Embedded Electronic System Design

Petter Sainio Berntsson

MASTER’S THESIS 2017

Evaluation of open source operating systems for

Safety-critical applications

Petter Sainio Berntsson

Department of Computer Science and Engineering

Chalmers University of Technology

University of Gothenburg

Gothenburg, Sweden 2017

Evaluation of open source operating systems for safety-critical applications

Petter Sainio Berntsson

© Petter Sainio Berntsson, 2017

Examiner:

Per Larsson-Edefors

Chalmers University of Technology

Department of Computer Science and Engineering

Academic supervisor:

Jan Jonsson

Chalmers University of Technology

Department of Computer Science and Engineering

Industrial supervisors:

Lars Strandén

RISE Research Institutes of Sweden

Dependable Systems

Fredrik Warg

RISE Research Institutes of Sweden

Dependable Systems

Master’s Thesis 2017

Department of Computer Science and Engineering

Chalmers University of Technology

University of Gothenburg

SE-412 96 Gothenburg

Telephone +46(0) 31 772 1000

Abstract

Today many embedded applications will have to handle multitasking with real-time time constraints and the

solution for handling multitasking is to use a real-time operating system for scheduling and managing the

real-time tasks. There are many different open source real-time operating systems available and the use of

open source software for safety-critical applications is considered highly interesting by industries such as

medical, aerospace and automotive as it enables a shorter time to market and lower development costs. If one

would like to use open source software in a safety-critical context one would have to provide evidence that

the software being used fulfills the requirement put forth by the industry specific standard for functional

safety, such as the ISO 26262 standard for the automotive industry. However, the standards for functional

safety do not provide a clear method for how one would go about certifying open source software. Therefore,

in this thesis we present identified important characteristics that can be used for comparing the suitability of

open source based real-time operating systems for use in safety-critical applications together with a proposed

outline for a methodology that can be used for certifying an open source real-time operating system. A case

study has been done where we compared two open source operating systems for small microcontrollers with

the previously mentioned characteristics in order to see which of the two is most suitable for use in safety-

critical applications. The most suitable candidate is then assessed in order to see to what degree it can adhere

with the requirements put forth in the widely used functional safety standards IEC 61508 and ISO 26262.

Keywords: Functional safety, open source software, real-time operating systems, software quality

Contents
1. Introduction .. 1

1.1. Background .. 1

1.2. Purpose .. 2

1.3. Scope and Limitations .. 2

1.4. Document structure ... 3

2. Project Workflow ... 4

2.1. Literature Survey ... 4

2.2. IEC 61508 Compliance .. 4

2.3. ISO 26262 Compliance .. 4

2.4. Quality Assessment ... 4

2.5. Case Study.. 5

3. Technical Background .. 6

3.1. Functional Safety ... 6

3.1.1. IEC 61508.. 7

3.1.2. ISO 26262.. 9

3.2. Open Source Software ... 11

3.2.1. Support .. 12

3.2.2. Maintainability .. 12

3.3. Software Quality ... 13

3.3.1. Capgemini Open Source Maturity Model .. 15

3.3.2. QualOSS ... 16

3.4. Real-Time Operating System .. 17

3.4.1. Scheduling .. 17

3.4.2. Synchronization .. 17

3.4.2.1. Deadlock .. 18

3.5. MISRA C ... 19

3.6. Software Metrics ... 20

4. Method for OSS Assessment .. 21

4.1. Safety Requirements for Operating Systems ... 21

4.2. Characteristics for Comparison .. 24

4.3. Methodology for Certification .. 25

5. Case Study: Evaluation of OSS RTOS .. 27

5.1. ChibiOS ... 27

5.2. ContikiOS .. 28

5.3. Quality Assessment of OSS ... 28

5.4. Comparison of RTOS Characteristics .. 31

5.5. Assessment of ChibiOS .. 31

5.5.1. IEC 61508 Assessment... 31

5.5.2. ISO 26262 Assessment... 37

6. Example: Safety-Critical Application .. 38

6.1. System Specification ... 38

6.2. Implementation .. 39

6.2.1. Edge Detection .. 42

6.2.2. Light-Weight Internet Protocol (LwIP) .. 42

7. Discussion and Conclusions .. 43

7.1. Discussion ... 43

7.2. Conclusion .. 43

7.3. Future Work .. 44

8. Bibliography .. 45

Appendices .. 50

Appendix A – Semi-formal methods IEC 61508 .. 50

Appendix B – Software architectural design IEC 61508 .. 51

Appendix C – Software testing and integration IEC 61508 ... 52

1

1. Introduction

This thesis project will propose an outline of a methodology for how to certify and compare the suitability of

open source based real-time operating systems for use in safety-critical applications with regards to the widely

used functional safety standards IEC 61508 and ISO 26262. This chapter will give the background to the

project as well as introducing the purpose, scope and limitations of the project. The structure of the report is

also presented in this chapter.

1.1. Background

The last few years have seen a remarkable rise in the demand of embedded systems, especially in the

automotive industry [1] where the automobiles are equipped with embedded electronic systems. The use of a

Real-Time Operating System (RTOS) is common in modern embedded systems due to the multitasking

requirement many applications have [2]. In the last two decades RTOSs have undergone continuous evolution

and many commercial RTOSs have been developed [3]. A real-time system is defined as a system in which the

correctness of the system does not only depend on the result of a computation but whether or not the correct

result is produced within the set time constraint [3]. Real-time systems often use an RTOS that provides a

framework that enables software developers to more easily create a real-time software application. By using an

RTOS it becomes easier to partition the entire software into smaller tasks, executed concurrently or in parallel,

which can then be separately distributed to individual programmers. An RTOS enables a proper structured

way to build multitasking applications [4]. One of the most important things for an RTOS lies in its degree of

predictability so that all the time-critical tasks are guaranteed to meet their deadlines. In order to achieve a

high degree of predictability the RTOS has to manage time-critical tasks on priority basis and keep the time it

takes to change between tasks as low as possible.

As many commercially available software products are relatively expensive people have developed their own

versions of such software and made them publicly available as Open Source Software (OSS). A common use

of OSS is operating systems which are normally application independent and can therefore attract a large user

base and can be ported to different hardware platforms. Easy access to the internet has resulted in the growing

use of OSS due to the fact that sharing code has become easier. However, a common perception is that closed

proprietary software is still superior in quality because only special people with access to the code can

contribute to it. Open source projects that have well-established communities (e.g. Linux and Apache) usually

employ stringent development processes [5], [6] and deliver high quality software, but they do not fulfill the

requirements of current safety standards such as IEC 61508 [10] and ISO 26262 [11]. These standards impose

strict demands on project management, developer qualification, risk management, requirements management,

quality assurance and documentation.

The use of OSS for safety-critical applications is considered highly interesting by industries such as medical,

aerospace and automotive, as it enables a shorter time-to-market and lower development costs. However, in

order for a piece of software to be part of a safety-critical application it requires a safety certification. A safety

certification demands that evidence regarding OSS quality is supplied, and an analysis is needed to assess if

the cost to produce certification evidence is worthwhile [7].

Today embedded applications with real-time constraints often use open source operating systems such as

Linux, ContikiOS, ChibiOS or Android for scheduling and managing tasks. These operating systems must be

able to guarantee response times within the specified time-constraints for certain tasks. Therefore, the quality

of these open source operating systems needs to be actively maintained because software reliability is one of

the most important aspects of software quality [8]. And even though RTOSs are a common sight in modern

embedded systems, the use of OSS in the area of dependable systems is still relatively rare, especially when

the products must adhere to functional safety standards. The reason for this is that standards require that the

quality of the software developed can be demonstrated by adhering to the requirements put forth in the

standard [9] and that a strict development process is being followed [10], [11]. This becomes a problem since

many OSS projects do not follow a strict development process [12]. And therefore, some of the requirements

2

are impossible to achieve after the software has been developed. However, in some cases software that has

been developed with a development process that is not compliant with the one proposed can still qualify for

certification if the software fulfills the requirements for reuse. This can be done by providing enough evidence

to support its use in safety-critical applications.

1.2. Purpose

Previous studies [7] have shown that software reliability is one of the most important aspects of software

quality. Therefore, this is a major concern for software being used in the automotive industry and other

industries as well where standards require a certain quality of the software being developed [8]. In an

automobile, one will most likely have an electronic system which needs to handle multitasking. The solution

for handling multitasking is to use an RTOS for scheduling and managing the real-time tasks. There are many

different open source RTOSs and if one would want to use an open source RTOS, or any form of OSS for that

matter, one would have to demonstrate that the software being used can fulfill the requirements put forth by

the standards required for the system being developed. So, if one would like to use a specific open source

RTOS already developed, one would have to assess to what extent the RTOS can adhere to the requirements

put forth in the standards.

Therefore, the first purpose of this master thesis project is to identify characteristics that can be used to

evaluate, mainly from a software perspective, an open source RTOS in regards to its use in safety-critical

applications. These characteristics also make it possible to compare the suitability of different RTOSs.

The second purpose of this master’s thesis is to propose a methodology to certify open source operating

systems for use in safety-critical applications. This certification methodology is proposed since it is desirable

to have a repeatable certification process which could be used by certification bodies and others to certify and

compare the suitability of multiple open source RTOSs for use in a safety-critical context. A case study will

then be performed where two open source operating systems is evaluated in order to see which option is most

suitable for use in a safety-critical application. This candidate will then be assessed as is, in order to see to

what extent, it can comply with functional safety standards IEC 61508 and ISO 26262.

The specification of a safety-critical application will also be presented in order to show how safety functions

can be specified in a given context together with its implementation.

1.3. Scope and Limitations

The two open source operating systems that have been chosen for this thesis project are ChibiOS and

ContikiOS. The reason for this is because RISE Electronics – Dependable systems (RISE) are interested in

getting an analysis of just these two open source operating systems since they are both open source operating

systems for small microcontrollers. RISE has used ChibiOS in previous projects and it is still being used in

various research projects and would therefore be interested in getting an analysis if it can possibly comply

with the functional safety standards IEC 61508 and ISO 26262. ContikiOS is a small operating system

designed specifically for Internet of Things (IoT) devices with support for Wireless Sensor Networks. This

thesis project will only assess to what extent one of the open source operating systems can comply with the

functional safety standards IEC 61508 and ISO 26262 which are used for industrial applications and road

vehicles, respectively. In this thesis, the focus is mainly on software, while both of these standards are focused

on systems that consists of both hardware and software components.

An integrity level (e.g. SIL/ASIL) is defined as a relative level of risk reduction provided by a safety function,

or to specify a target level of risk reduction. In the IEC 61508 standard, four Safety Integrity Levels (SILs) are

defined, with SIL 4 being the most dependable and SIL 1 the least. In the ISO 26262 standard there is also

four Automotive Safety Integrity Levels (ASILs) defined where ASIL D is the most dependable one and ASIL

A the least.

3

Most if not all SIL 4/ASIL D applications have hard real-time behavior defined and generally do not run under

any form of operating system, therefore the maximum SIL/ASIL that is considered in this thesis is SIL 3 /

ASIL C.

The international standards IEC 61508 and ISO 26262 apply to safety functions which are application

dependent in a given system context whereas an RTOS is application independent and will therefore be

considered as a context free software component in this thesis. The focus of the thesis is therefore reusing an

existing open source RTOS for safety-critical applications. The open source RTOS will only be assessed as is

and will not be modified, nor will any documentation be created. In order to see to what extent, it can adhere

to the requirements put forth in the standards in their current versions.

1.4. Document structure

The workflow used in this project will be presented in chapter 2. Next, the technical background for this

project will be described in chapter 3. In chapter 4 the identified characteristics are presented together with a

proposed methodology for certifying an open source operating system. In chapter 5 the two open source

operating systems looked at in this study are compared and the most suitable candidate is assessed. In chapter

6 an example of a safety-critical application is presented. And finally, in chapter 7 the whole project is

concluded and an evaluation is made to what degree the assessed open source operating system can adhere to

the functional safety standards IEC 61508 and ISO 26262.

4

2. Project Workflow

This chapter will describe the workflow of the project and present which parts of the functional safety

standards that have been analyzed.

2.1. Literature Survey

The first phase of the project was a literature survey. The survey served as a foundation for identifying

relevant characteristics that can be used for comparing the suitability of open source operating systems for a

safety-critical application. The survey was also used to get an overview of what kind of requirements there are

for on operating systems in safety-critical applications and how one can achieve compliance with the

functional safety standards IEC 61508 and ISO 26262. The survey was also done in order to find support and

maintainability issues that are commonly found in OSS projects and how the quality of OSS can be evaluated

with regards to the community behind an OSS project.

2.2. IEC 61508 Compliance

In IEC 61508 we have mainly looked at Part 3: Software requirements and the supplement that has been made

to Part 3 (that has yet to be accepted) regarding reuse of pre-existing software elements to implement all or

part of a safety function [15]. These parts of the standard have been further analyzed in order to see how the

open source RTOS can comply with the requirements concerning documentation and support that is available

for it.

OSS projects are often developed and maintained by an open collaborative community of volunteering

developers with no obligations and a development process that is not compliant with the requirements given in

IEC 61508. Therefore, an OSS project will most likely not qualify for the first route proposed for compliance

since that route specifically targets software components that has already been developed according to the IEC

61508 standard. The second route “proven in use” seems to be too hard to fulfill for an assessment to be made

and there is also a limitation of the use of “proven in use software” to SIL 1 and SIL 2 in the supplement that

has been made to IEC 61508-3. Therefore, route 3: assessment of non-compliant development will be used for

assessing the open source RTOS to implement all or part of a safety function in this thesis.

2.3. ISO 26262 Compliance

In ISO 26262 we have mainly looked at Part 6: Product development at the software level and Part 8 clause

12: Qualification of software components and gone over the documentation needed for the open source

operating system in order to see to what degree it can comply with the requirements put forth in the standard.

2.4. Quality Assessment

In order to assess the quality of the open source operating systems and the maturity of the community behind

the open source project, the Capgemini Open Source Maturity Model (see section 3.3.1) will be used. This

because the QualOSS (see section 3.3.2) project seems to be abandoned and the tools used for retrieval and

analysis of metrics are no longer available along with the database for storing the data. The quality assessment

of the two open source operating systems used in this thesis can be seen in section 5.3.

5

2.5. Case Study

A case study has been performed where two open source operating systems is evaluated according to the

Capgemini Open Source Maturity Model together with the identified characteristics to find the most suitable

option for use in a safety-critical application. The most suitable candidate is then assessed to see to what

degree it can adhere to the requirements put forth in the functional safety standards IEC 61508 and ISO 26262.

The most suitable candidate will then be used in an example application in order to demonstrate how safety

functions might be specified in a specific context.

6

3. Technical Background

This chapter will present the technical base for the project. It will start by presenting the concept of functional

safety and introduce two widely used functional safety standards. This will then be followed by a summary of

what open source is and what type of problems one might face when using open source software. Following

this there will be an introduction to software quality and some models used for evaluating the quality and

maturity of OSS projects followed by an introduction to real-time operating systems. MISRA C will then be

introduced and finally, software metrics will be presented which can be used for comparing different operating

systems.

3.1. Functional Safety

Functional safety is everywhere since the concept applies to everyday life and to every industry that one can

imagine. It is fundamental for most safety-related systems. The oil and gas industry, nuclear plants, the

manufacturing sector, automotive and transportation all rely on functional safety to achieve safety in areas

where the operation of equipment can give rise to hazards.

Functional safety is related to the overall safety of a system or piece of equipment and generally focuses on

electronics and related software. It looks at aspects of safety that relate to the function of a device or system

and ensures that it is operating correctly in response to the commands it receives. In a systematic approach

functional safety identifies potentially dangerous situations, conditions or events that could result in an

accident which could potentially be of harm to someone or something. Functional safety enables corrective or

preventive actions in order to avoid or reduce the impact of an accident. The aim of handling functional safety

is to bring risk down to a tolerable level, but there is no such thing as zero risk. Functional safety defines risk

by how likely it is that a given event will occur and how severe it would be [13]. In other words, how much

harm it could cause.

Functional safety is achieved when every specified safety function is carried out and the level of performance

required of each safety function is met. This is normally achieved by a process that includes the following

steps as a minimum [10]:

1. Identify what the required safety functions are. This means that the hazards and the safety functions

have to be known.

2. Assessment of the risk-reduction required by the safety function. This will involve an Integrity Level

(e.g. SIL/ASIL) or performance level or other quantification assessment. An integrity level applies to a

safety function of the safety-related system as a whole, not just to a component or part of the system.

3. Ensure that the safety function performs to the designed intent, including under conditions of incorrect

operator input and failure modes. This will involve having the design and lifecycle managed by

qualified and competent engineers carrying out processes to a recognized functional safety standard.

In Europe, an important standard is IEC 61508, and one of the industry specific standards derived

from IEC 61508 (e.g. ISO 26262 for the automotive industry).

4. Validate that the system meets the assigned integrity level by determining the mean time between

failures and the safe failure fraction along with appropriate tests. These measures are only used for

hardware.

5. Conduct functional safety audits to examine and assess the evidence that the appropriate safety

lifecycle management techniques were applied consistently and thoroughly in the relevant life cycle

stages of the product. These aspects are applicable for both software and hardware.

A component, subsystem or system that claims to be functionally safe needs to be independently certified to

one of the recognized functional safety standards. Only when the product has been certified one can claim that

the product is functionally safe to a particular integrity level (e.g. SIL/ASIL) in a specific range of applications

[14].

7

An important element of functional safety certification is the on-going inspection by the certification bodies.

This follow-up inspection ensures that the product, subsystem or system is still being manufactured in

accordance with what was originally certified for the functional safety standard. Follow up surveillance may

occur at different intervals depending on the certification body and will typically look at the products

hardware, software as well as the manufacturer’s development process.

The IEC 61508 (see section 3.1.1) and ISO 26262 (see section 3.1.2) standards define four different integrity

levels for risk reduction with increasing reliability requirements for safety functions in order to have safer

functionality. For each integrity level the standards define a set of requirements for the software development

that can be divided in three main categories.

• Software Safety Requirements Specification: The safety requirements shall be derived from

technical safety concept (see IEC 61508-3 subclause 7.2 and ISO 26262-6 subclause 6). Requirements

must be clearly defined including the response times of safety functions.

• Software Design and Implementation: The requirements of this part have the objective of producing

readable, testable and maintainable source code by applying rules for writing code. This part also

recommends different techniques that can be used to specify the software in detail (e.g. semi-formal

methods, see Appendix A).

• Software Testing and Validation: The objective of this category is to verify that the behavior of the

software is working according to its software specification. This part also requires proof that the

requirements have been met according to the appropriate integrity levels.

In the second part: Software Design and Implementation, requirements for programming are defined, e.g. the

use of an adequate programming language that allows the use of structured and defensive programming and

possibly assertions. The programming requirements are there to produce verifiable code. It discourages the use

of machine-oriented languages (assembly). It also discourages the use of a set of features that many

programming languages have, such as recursion and dynamic memory allocation. A good practice is to use

programming rules and it is also a good idea to define a language subset that is considered safe. A common

one is MISRA C (see section 3.5) for the C programming language.

3.1.1. IEC 61508

IEC 61508 is an international standard published by the International Electrotechnical Commission that

consists of seven parts and is titled “Safety of Electrical / Electronic / Programmable Electronic Safety-related

Systems (E/E/PE or E/E/PES)” [15]. The first version of the standard was published in the year 1998 and the

second version which is the one currently used was released in the year 2010. The date for another new

version is not yet decided, but a decision has been made to produce a supplement to Part 3 and a draft for this

has been made regarding the reuse of pre-existing software elements to implement all or part of a safety

function. The IEC 61508 standard sets forth requirements for ensuring that safety related systems are

designed, implemented, operated and maintained in such a way that the system provides the necessary Safety

Integrity Levels (SILs) for its safety functions [13]. It provides guidelines and requirements for both hardware

and software parts of a system. The standard provides guidance for some ways to satisfy the requirements and

also provides an overview of techniques and measures for determining the SIL needed [10]. The seven parts of

the standard and what they contain are shown below. The first four parts are normative and the three later ones

are informative [16]:

• Part 1: General requirements

• Part 2: Requirements for electrical / electronic / programmable electronic safety-related systems

• Part 3: Software requirements

• Part 4: Definitions and abbreviations

• Part 5: Examples of methods for the determination of SIL

• Part 6: Guidelines on the application of IEC 61508-2 and IEC 61508-3

• Part 7: Overview of techniques and measures

8

The requirements for integrity (risk reduction) of safety functions are assessed according to SIL 1-4 where SIL

4 is the highest demand for risk reduction. Suitable SIL is determined by conducting a risk analysis where the

greater the risk, the greater the value of SIL is required.

There are different types of consequences to be considered and these are; harm to people, harm to equipment,

harm to environment, and finally information and economic damage (short-term or long-term). Figure 1 shows

how SIL is determined according to IEC 61508 Part 5 Annex E. However, note that Part 5 is informative, that

is, there is no requirement to follow it. In order to obtain a SIL one uses a risk graph that is based on

consequence, frequency, probability to avoid the event and the probability that the event occurs.

Because this master thesis project is about the use of OSS in safety-critical applications, we will mainly

consider Part 3: Software requirements and the draft that has been made regarding the supplement to Part 3

regarding the reuse of pre-existing software elements to implement all or part of a safety function [15]. We

will specifically consider aspects in the standard that can be applicable on OSS.

Figure 1 Example of determination of SIL according to IEC 61508

In the draft that has been made to IEC 61508-3 regarding the reuse of pre-existing software elements to

implement all or part of a safety function a reference is made to a requirement given in subclause 7.4.2.12 in

IEC 61508-3. The subclause offers three possible routes to the achievement of the necessary integrity for pre-

existing software elements that is reused to implement all or part of a safety function. The software element

shall meet both requirements that are given for a) and b) below for systematic safety integrity:

9

a) Meet the requirements of one of the following compliance routes:

1. Route 1: Compliant development. Compliance with the requirements of this standard for

the avoidance and control of systematic faults in software

2. Route 2: Proven in use. Provide evidence that the element is proven in use. See subclause

7.4.10 of IEC 61508-2

3. Route 3: Assessment of non-compliant development. Compliance with 7.4.2.13 of IEC

61508-3

b) Provide a safety manual (see Annex D of IEC 61508-2) that gives sufficiently precise and

complete description of the element to make possible an assessment of the integrity of a specific

safety function that depends wholly or partly on the pre-existing software element.

3.1.2. ISO 26262

ISO 26262 is an international standard published by the International Organization for Standardization that

consists of ten parts and is titled “Road Vehicles - Functional Safety”. The first version of the standard was

published in the year 2011 and is the most recent one. Work is in progress regarding a new revision of the

standard but there is no draft publicly available.

The standard is an adaptation of the Functional Safety standard IEC 61508 for Automotive Electric /

Electronic systems. It defines a detailed safety lifecycle for developing electrical and electronic systems for

production line automobiles as can be seen in figure 2. Some of the major differences are that ISO 26262 takes

supplier relations into account, and that the hazard analysis and risk assessment is adapted for automotive use

cases, e.g. adding the element of controllability (the possibility for the driver or other traficants to mitigate a

hazard). The automotive industry has already been using safety analysis, validation and verification techniques

in order to ensure safety of the vehicle. However, with the introduction of ISO 26262 this means that these

techniques must now be applied as a standardized methodology that is industry-wide [11].

The ten parts and what they are about and how they connect to each other can be seen below and in figure 2:

• Part 1: Vocabulary

• Part 2: Management of functional safety

• Part 3: Concept phase

• Part 4: Product development at the system level

• Part 5: Product development at the hardware level

• Part 6: Product development at the software level

• Part 7: Production and operation

• Part 8: Supporting processes

• Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analysis

• Part 10: Guideline on ISO 26262

A major focus of the ISO 26262 standard is the ability to consistently track how safety requirements are being

refined and met from the initial concept phase to the final working product [17].

In ISO 26262 (and other standards that relate to both hardware and software requirements) the safety

requirements are being assessed on a scale that is expressed in discrete risk levels and not in probabilities.

Traditionally safety requirements have been expressed quantitatively, using maximum allowable probabilities

for system failures that shall not be exceeded. However, techniques for quantifying the probability of software

failure are immature so instead the standard uses the discrete Automotive Safety Integrity Levels (ASILs) to

represent safety requirements regarding software and systematic failures in general [17].

For the automotive industry, ASILs are an adaption of the SIL defined in IEC 61508 [17]. The different ASILs

range from A to D and represent least strict and strictest respectively, whereas QM does not represent any

10

special safety requirement and normal quality management shall be applied. ASILs are set during the concept

phase once the major functions of the system have been identified since the standard requires that a hazard

analysis and risk assessment is performed for each function (called item in ISO 26262). This forces the

designers to examine the different functions in order to determine how they could malfunction in various

scenarios and what hazards could arise as a result of the malfunction [17]. The end result of the hazard

analysis and risk assessment is a set of safety goals each with an ASIL that reflect the level of risk associated

with the safety goal such that an unreasonable risk is avoided. The ASIL is determined by considering the

estimate of the impact factor, i.e. severity, probability of exposure and controllability. It is based on the item’s

functional behavior and therefore the detailed design of the item does not necessarily need to be known.

Figure 2 Overview of the ISO 26262 standard

ISO 26262 provides three methods for using (or reusing) a software component to satisfy a safety requirement,

these are:

1. Adherent to ISO 26262:

a) The component was originally developed according to the ISO 26262 standard.

b) Can be hardware or software.

c) These components can be reviewed by a third party.

2. Qualification of Software Components:

a) For software components only.

b) Can be third party commercial off-the-shelf product, or some other already developed

software component.

c) Generally developed for use in other industries (or general-purpose).

3. Proven in use:

a) For components used in systems that pre-date ISO 26262

11

In this master thesis project, we are focusing on the use of OSS in safety-critical applications and more

specifically reuse of existing software components. The reuse of qualified software components avoids re-

development for components with similar or identical functionality. In order for an existing software

component to be used in an item developed in compliance with ISO 26262, evidence for the suitability of the

software component shall be provided according to ISO 26262-8 sub clause 12 “Qualification of Software

Components”.

3.2. Open Source Software

OSS is software that has its source code made available for free with a license in which the copyright holder

provides the rights for anyone to study, change, and redistribute the software for any purpose [18]. OSS can be

found in many different kinds of devices, ranging from personal computers and mobile devices to the ones

used by industries such as aviation, medical, telecommunication etc. A common use of OSS is operating

systems since operating systems are normally application independent and can therefore attract a large user

base and can be ported to different hardware platforms.

Traditionally, software has been developed by companies in-house and the source code has been kept a secret

because the company behind proprietary software thinks that if the source code of their product would be

publicly available to anyone it would hold no commercial value for the company. This is called proprietary

software development and proprietary software is privately owned and controlled. A lot of proprietary

software has the advantage of having more “formal” software engineering methods behind them than open-

source development, but this comes with significant upfront and recurring costs. Additionally, the user is

dependent on the vendor to implement required changes [19]. Proprietary software development also means

that the software cannot be studied openly on a larger scale which eventually could help to improve the

software and its development process.

The organization of OSS projects often differs from proprietary ones in terms of their organizational structure,

membership, leadership, contribution policies and quality control. Open source projects are typically created

as a collaborative effort in which anyone with access to the source code can choose to improve upon it and

share the changes within the project community. The easy access to the internet has resulted in a growing use

of OSS due to the simplicity of starting and participating in an OSS project. As a result of this, during recent

years’ companies have started to consider how to gain a competitive advantage by using OSS [20]. Software

companies are releasing the source code of their commercial products and are participating in the OSS

communities for further developing their products [20]. OSS is therefore no longer developed only to serve a

small set of developers and their specific needs [20]. Instead there will be a growing number of users reporting

bugs in the software which can be compared to beta-testing. Typically, OSS developers rely on the user base

reporting bugs and volunteering co-developers that want to contribute to the project [21]. However, in this new

situation where everyone has the opportunity to contribute to the project, the quality of the software becomes a

very relevant issue and quality assurance must be done before a contribution reaches the final code [21].

A central aspect of any open source development is the management organization, which provides the

infrastructure (e.g. repositories, etc.) and defines and monitors the processes. The contributors of course play

an important role because they do the actual work on the deliverables according to the defined process.

Typically, there is a lead developer or a small amount of developers together forming a core team that controls

the architectural design and course of the project [22]. Volunteering developers contribute by reading the code

and delivering patches of certain code sections to the core developers. The core developers then review the

patches and decide if they are accepted or not.

12

3.2.1. Support

There is a major difference between OSS and proprietary software in how support is being handled. Generally,

OSS users have multiple choices for support [23]:

1. They can choose a traditional commercial model, where they pay someone (typically a company) to

provide support,

2. They can choose to provide support-in-house (designating some persons or groups to do support), or

3. They can depend on the OSS development and users’ community for support (e.g. through mailing

lists or forums).

These choices apply to each of the various tasks (training, installing, answering questions, fixing bugs, adding

new capabilities), and the answers can even be different for the different tasks. In many cases, larger

companies choose to use a more traditional support model, that is, they will pay some company to give them

all that support. Choosing a traditional commercial model for support will add another problem: which

company shall one choose? Unlike support for proprietary software (which is usually provided by the vendor),

there may be several competing companies that are offering support. One shall favor companies that are

clearly involved in the development of the software since organizations that include developers can potentially

fix any problems one might have and have the fix added to the main project so that the same problem won’t

happen again in the future [23].

3.2.2. Maintainability

Maintainability is the ease of which a system can undergo modifications and repairs after delivery [24].

Maintainability is an important software quality attribute. Associated with this quality attribute is the

maintenance process, which has long been known to represent the majority of the costs during the

development of a new software component. Therefore, the maintainability of a software system can

significantly impact the development costs [25].

Software maintainability is defined as “the degree of effectiveness and efficiency with which a product or

system can be modified by the intended maintainers” where modifications can include corrections,

improvements or adaptation of the software to changes in environment, and in requirements and functional

specifications [26].
Software maintenance on the other hand is defined as “the process of modifying a software component after

delivery in order to correct faults, improve performance or other attributes, or adapt to a different environment

“.

From the definitions it is clear that maintenance is the process performed during the software development

life-cycle whereas maintainability is the quality attribute associated with the software product. A software

maintainability prediction model is a software quality model that enables organizations to predict the

maintainability of their software, and therefore providing a means to better allocate their resources. This can

help in reducing the maintenance effort and reduce the overall cost and time spent on a software project.

Maintenance of OSS projects is quite different compared to proprietary software in general. In OSS projects,

more effort is devoted on maintaining a healthy community, such as participating in threads in an issue

tracking system, and answering questions through forums or mailing lists. A project which is easy to

contribute to is an important aspect for OSS maintainers. OSS maintainers spend more effort on submitting

good commit messages, conforming with coding styles, writing useful guides and so on [27].

Quality is the level of which a product meets the mentioned requirements or fulfils customer needs and

expectations [28]. OSS developers and organizations are facing many challenges and questions regarding the

quality of code when compared to proprietary software. They are worried about the level of satisfaction that

can be achieved in OSS as the software is written by volunteer developers.

13

Both OSS and proprietary software can be assessed, utilizing basically the same methodology. Nonetheless,

the way one acquires the data to assess OSS is regularly distinctive, on the ground that OSS tends to create

various types of data that can be used for the assessment.

Before the emergence of OSS quality models there were already quality models in existence based on the ISO

9126 Software Engineering - Product Quality standard [29]. These models however did not factor in some

quality attributes that are unique to OSS such as the community around an OSS project. Today there are quite

a number of OSS quality models available. These models emerged as a result of the need to measure quality in

OSS, which is quite unlike proprietary software. ISO 9126 forms the basis from which most of these models

are derived from. However, ISO/IEC 9126 has been replaced by ISO/IEC 25010 [26], [30].

3.3. Software Quality

Software quality is an external software measurement attribute. Therefore, it can be measured only indirectly

with respect to how the software, software development processes and resources involved in software

development relate to software quality. The ISO / IEC 25010 standard [26] views quality from three different

perspectives, namely:

1. Process quality: is the quality of any of the software lifecycle processes (e.g. requirement analysis,

software coding and testing, software installation).

2. Product quality: can be evaluated by measuring internal metrics (metrics which do not rely on

software execution) or by measuring external metrics (typically by measuring the behavior of the code

when executed). Further, while the goal of quality is always to achieve end-user needs, software users’

quality requirements shall play a major role in the quality assessment model. This aspect of software

quality is evaluated by quality-in-use.

3. Quality-in-use: Measure the extent to which a product meets the needs of specified users to achieve

specified goals with effectiveness productivity, safety and satisfaction in a specific context of use. In

overall assessing and improving process quality improves product quality and improvements to

product quality contribute to higher quality-in-use.

In proprietary software the project information is mostly confidential, whereas in an OSS development model

this information is generally available to the public. Further, OSS project success / failure is highly dependent

on specific software development processes and resources attributes and these types of attributes can, for the

most part, be gathered for OSS and simplify their quality assessment process [31].

ISO/IEC 25010 defines:

1. A quality in use model composed of five characteristics (some of which are further subdivided into

sub-characteristics) that relate to the outcome of interaction when a product is used in a particular

context. This system model is applicable to the complete human-computer system, including both

computer systems in use and software products in use.

2. A product quality model composed of eight characteristics (which are further subdivided into sub-

characteristics) that relate to static properties of software and dynamic properties of the computer

system.

The characteristics defined by both models are relevant to all software products and computer systems. The

characteristics and sub-characteristics provide consistent terminology for specifying, measuring and evaluating

system and software product quality. They also provide a set of quality characteristics against which stated

quality requirements can be compared for completeness. The quality in use model presented in ISO / IEC

25010 defines five characteristics related to outcomes of interaction with a system, namely:

14

1. Effectiveness: The accuracy and completeness with which users achieve specified goals.

2. Efficiency: Resources expended in relation to the accuracy and completeness with which users

achieve goals.

3. Satisfaction: The degree to which user needs are satisfied when a product or system is used in a

specified context of use.

4. Freedom from risk: The degree to which a product or system mitigates the potential risk to economic

status, human life, health or the environment.

5. Context coverage: The degree to which a product or system can be used with effectiveness,

efficiency, freedom from risk and satisfaction in both specified contexts of use and in contexts beyond

those initially explicitly identified.

The product quality model presented in ISO / IEC 25010 categorizes software product quality properties into

eight characteristics [26]:

1. Functional Suitability: The degree to which a product or system provides functions that meet stated

and implied needs when used under specified conditions.

2. Performance efficiency: The performance relative to the amount of resources used under stated

conditions.

3. Compatibility: The degree to which a product, system or component can exchange information with

other products, systems, and/or perform its required functions, while sharing the same hardware or

software environment.

4. Usability: The degree to which a product or system can be used by specified users to achieve

specified goals with effectiveness, efficiency and satisfaction in a specified context of use.

5. Reliability: The degree to which a system, product or component performs specified functions under

specified conditions for a specified period of time.

6. Security: The degree to which a product or system protects information and data so that persons or

other product or systems have the degree of data access appropriate to their types and levels of

authorization.

7. Maintainability: The degree of effectiveness and efficiency with which a product or system can be

modified by the intended maintainer.

8. Portability: The degree of effectiveness and efficiency with which a system, product or component

can be transferred from one hardware, software or other operation of usage environment to another.

The quality model proposed in ISO / IEC 25010 is well established. However, it does not provide sufficient

support for assessing the quality of OSS. This is due to the particularities present in OSS development such as

shared code repositories and online communities of developers and users [32]. Some quality models have been

designed specifically for assessing the quality of OSS, and a comparative study [30] has been made between

different OSS quality models and the ISO / IEC 25010 model. The study revealed that the Capgemini Open

Source Maturity Model [33] was the most comprehensive model satisfying all eight factors under Product

Quality and Context coverage under Quality in Use factors. However, it does not provide any tool support for

the assessment of OSS. Tool support is an important aspect of quality assessment since it automates parts of

the assessment process and reduces the time and effort for applying such methods [32]. One of the quality

models compared in [30] that also offer tool support is the QualOSS quality model [34]. The QualOSS also

satisfies all eight factors for Product Quality in the ISO / IEC 25010 quality model [30].

15

3.3.1. Capgemini Open Source Maturity Model

Capgemini Open Source Maturity Model [33] grades software against a set of product indicators and

application indicators. The model points out the significance of information. The model incorporates various

criteria and suggests their exhaustiveness. It includes product development, developer and user community,

product stability, maintenance and training and many other factors. It was designed as a tool that could be used

to compare and decide on the most suitable open source product option for an organization based on the

product’s maturity. The product indicators are categorized into four categories, namely:

1. Product: focuses on the product’s inherent characteristics, age, selling points, developer community,

human hierarchies and licensing.

2. Integration: measures the product’s modularity, adherence to standards as well as options to link the

product to other products or infrastructure.

3. Use: informs on the ease of which the product can be deployed and the way in which the user is

supported in the everyday use of the product.

4. Acceptance: tells about the market penetration of the product and the user base formed around the

product.

An open source product can’t (just as any other product) be introduced into a working environment based

solely on a measurement of its strengths and weaknesses. To properly assess a product, one must also take into

account several environmental aspects and, naturally, the present and future demands of the user. The

Capgemini Open Source Maturity Model takes these factors into account by defining the following application

indicators:

• Usability: The intended user audience, the experience of that group.

• Interfacing: Required connectivity, which standards are applicable. How does this fit into the

organization?

• Performance: The expected load and processing capability. The performance demands that must be

met.

• Reliability: What level of availability shall the product deliver?

• Security: What security measures are required; what restrictions are imposed onto the product.

• Proven technology: Does the product use technology that has proven itself in daily production?

• Vendor independence: What level of commitment between supplier and user does the product

demand?

• Platform independence: Is the product available for particular ICT environments only, or does the

product allow a wide range of platforms.

• Support: What level of support is required?

• Reporting: What reporting facilities are required?

• Administration: Does the product allow the use of existing maintenance tools, the demands for

operational management?

• Advice: Does the client require validation / recommendation by independent parties, if so, what is

required.

• Training: Required training and facilities.

• Staffing: Is product expertise bought, taught or hired.

• Implementation: Which implementation scenario is preferred?

16

3.3.2. QualOSS

The Quality of Open Source Software (QualOSS) quality model [34] is a high-level methodology that is

highly automated using measurement tools [35], [36]. The model is intended to support the quality assessment

of OSS projects with a focus on evolvement and robustness. One important underlying assumption while

defining the model was that the quality of a software product is not only related to the product itself (code,

documentation, etc.), but also to the way the product is developed and distributed. For this reason, and since

the development of OSS products is the responsibility of an open collaborative community, the QualOSS

model takes both product and community-related aspects into account on an equal basis, and as

comprehensively as possible.

The model groups quality characteristics into two groups: those that relate to the product, and those that relate

to the community. On the product side, the QualOSS model covers the following top-level quality

characteristics:

• Maintainability: The degree to which the software product can be modified. Modifications may

include corrections, improvements, adaptation of the software to changes in the environment, an in

requirements and functional specification.

• Reliability: The degree to which the software product can maintain a specified level of performance

when used under specified conditions.

• Transferability (Portability): the degree to which the software product can be transferred from one

environment to another.

• Operability: The degree to which the software product can be understood, learned, used and is

attractive to the user, when used under specified conditions.

• Performance: The degree to which the software product provides appropriate performance, relative to

the amount of resources used, under stated conditions.

• Functional Suitability: The degree to which the software product provides functions that meet stated

and implied needs when the software is used under specified conditions.

• Security: The ability of system items to protect themselves from accidental or malicious access, use,

modification, destruction, or disclosure.

• Compatibility: The ability of two or more systems or components to exchange information and/or to

perform their required functions while sharing the same hardware or software environment.

The community side of the model, in turn, covers the following characteristics:

• Maintenance Capacity: The ability of a community to provide the resources necessary for

maintaining its product(s) (e.g., implement changes, remove defects, provide support) over a certain

period of time.

• Sustainability: The likelihood that an OSS community remains capable of maintaining the product or

products over an extended period of time.

• Process maturity: The ability of a developer community to consistently achieve development-related

goals (e.g., quality goals) by following established processes. Additionally, the level to which the

processes followed by a development community are able to guarantee that certain desired product

characteristics will be present in the product.

17

3.4. Real-Time Operating System

A real-time system is a system that is subject to real-time constraints. It is defined as a system in which the

correctness of the system does not only depend on the result of a computation but whether or not the correct

result is produced within the set time constraint [3] often referred to as deadline. A real-time system is a

system that has an application-specific design with carefully specified system properties, timing constraints,

high reliability and is predictable. Most real-time applications need to handle multitasking since most

applications need to handle events in the operating environment that occur in parallel.

A common way of making a single-core system handle parallel events is by introducing support for concurrent

programming and a common way of doing this is by using a real-time operating system (RTOS). An RTOS is

a piece of software with a set of functions for users to develop applications with. It makes it easier to partition

the entire software into small modular tasks that can then be executed in parallel or concurrently and

separately distributed to individual programmers. It also enables the RTOS user a structured way to build

multitasking applications [4]. An RTOS differs from a regular non-real-time operating system which is

optimized to reduce response time while an RTOS is optimized to complete tasks within their deadlines. There

are two different types of RTOSs. The most common type is called event driven and this type gives each task a

priority and allows the task with the highest priority to execute first. The other type is called time driven and

this type differs from event driven as it has a predefined running schedule that the tasks execute according to.

By using an RTOS one is not guaranteed that the system will always meet its deadlines, as it depends on how

the overall system is designed and structured.

The multitasking of an RTOS is handled by the scheduler which is a software component in the operating

system. The scheduler decides which of the tasks that will be allowed to execute next depending on its priority

or other factors which may vary depending on the implemented scheduling algorithm. In software systems

there are also a finite amount of resources available and certain tasks may be competing for the same

resources. Therefore, there is a need for task synchronization where two or more concurrent tasks ensure that

they do not simultaneously execute some part of the program where they both make use the same resource at

the same time since it can give rise to hazards. Task synchronization is required in a multitasking system, and

where there is task synchronization there is a chance of deadlock.

3.4.1. Scheduling

An application that is running on a system can be subdivided into multiple tasks and when the tasks are

executed concurrently or in parallel it is called “multitasking”. Multitasking is essential when developing real-

time applications and the application must be able to respond in a predictable way to multiple, simultaneous

events.

The scheduler is one of the core features of an operating system and its function is to decide which task shall

execute next. If more than one task wants to use the processor at the same time, a scheduling algorithm is

needed to decide which task will get to execute first. A widely used scheduling algorithm is Rate-Monotonic

Scheduling (RMS) and it is a static priority assignment algorithm where the static priorities are assigned

according to the periodicity of each task, the more often a task needs to execute, the higher priority it will

have. Round-robin scheduling is another well-known scheduling algorithm where each task is given equal

amount of execution time in a circular fashion.

3.4.2. Synchronization

In computer systems concurrently executing tasks may be either independent tasks or cooperating tasks. A task

is independent if it cannot affect or be affected by the other executing tasks in the system. Any task that does

not share resources with any other task is independent. A task is cooperating if it can affect or be affected by

the other tasks executing in the system. Clearly, any task that shares resources with other tasks is a cooperating

task [37].

18

Concurrent accesses to shared resources can lead to unexpected or erroneous behavior. That is why certain

parts of the program where the shared resources are accessed need to be protected. This protected part is called

critical region and cannot be entered by more than one task at the same time, thus enabling mutual exclusion.

In a single processor system, interrupts can be disabled in order to achieve mutual exclusion. However,

disabling interrupts is not a good way to handle the problem since it will block higher priority tasks that has

nothing to do with the critical region from preempting the lower priority task until it is done executing its

critical region. This approach also only works for single processor systems and is not feasible on

multiprocessor systems. In multiprocessor systems, there is a set of instructions with the ability to atomically

read and modify a memory location and these instructions are the building block of creating user-level

synchronization operations such as locks, barriers and semaphores etc. [37].

3.4.2.1. Deadlock

In a computer system, there is a finite amount of resources that can only be used by one task at a time. These

resources include peripherals, variables, files and so forth. In a multitasking environment, several tasks may

compete for the same resources. A task that requests a resource which is not available at that time will enter a

waiting state. Sometimes a waiting task is never again able to change state because the resource it has

requested is being held by another task and that task won’t release that resource until it has gotten a resource

that is being held by the waiting task, the result of this is a deadlock, illustrated by figure 3.

A deadlock situation can arise if and only if the following four conditions hold:

1. Mutual exclusion: There must be some resource that can’t be shared between the tasks.

2. Hold and wait: Some task must be holding one resource while waiting for another.

3. No preemption: Only the process holding a resource can release it.

4. Circular wait: There must be some cycle of waiting tasks T1, T2... Tn such that each task Ti is

waiting for a resource held by the next task in the cycle.

To prevent deadlock, one has to ensure that at least one of the four conditions is violated at any given time.

Deadlocks can also be avoided by giving the operating system additional information in advance concerning

what resources a task will request and use during its lifetime. With this additional information, the operating

system can decide whether the current request can be satisfied or must be delayed. The system must consider

the resources currently available, the resources currently allocated to each task and the future requests and

releases of each task [37].

Figure 3 Illustration of a deadlock situation

19

3.5. MISRA C

MISRA C is a set of software development guidelines for the C programming language developed by MISRA

(Motor Industry Software Reliability Association). Its aims are to facilitate code safety, security, portability

and reliability in the context of embedded systems. It first appeared in the year 1998 with the objective of

proving a set of guidelines to restrict features in the C programming language of known undefined or

otherwise dangerous behavior. The guidelines were assembled by collaboration between vehicle

manufacturers, component suppliers and engineering consultancies which seeked to promote best practice in

developing safety-related electronic systems in road vehicles and other embedded systems in response to the

rapidly growing use of C in electronic embedded systems [38].

MISRA C is becoming industry standard for all embedded systems, no matter their nature. The MISRA C

2012 is sometimes considered a strongly typed subset of C.

In order for a piece of software to claim to be compliant to the MISRA C Guidelines, all the mandatory rules

shall be met and all the required rules and directives shall either be met or subject to a formal deviation.

Advisory rules may be unimplemented without a formal deviation, but this shall still be recorded in the project

documentation. In order to ensure that the source code written does conform to the guidelines it is necessary to

have measures in place indicating which of the rules have been broken. The most effective means of achieving

this is to use one or more of the static checking tools that are commercially available [39] and support MISRA

C checking. These tools can then automatically find violations in the source code for any MISRA rules. This

kind of analysis can be used as a quantitative measure to assess implementation quality. A full MISRA

conformance check will require more effort than just running a static code analyzer, like a manual inspection

and rigorous rule deviations. For the purpose of this study this measure is considered sufficient and indicative

of code quality. As an example, Misra rule 9.2 specifies how to initialize two-dimensional arrays. Both

variants shown below are valid in ISO C, but the first one does not adhere to the MISRA rule.

int16_t y[3][2] = { 1, 2, 3, 4, 5, 6 }; /* not compliant */

int16_t y[3][2] = { { 1, 2 }, { 3, 4 }, { 5, 6 } }; /* compliant */

20

3.6. Software Metrics

Software metrics were first introduced in 1977 [40] and have been used to set development guidelines. These

guidelines are specifically used in applications that cannot afford bugs such as safety-critical applications. In

these types of applications software metrics are used during the development life cycle to assure reliability of

the software [41]. Software metrics are measurements or indications of some properties of a software system;

its specification and/or the software project that developed it. It is a common approach in software evaluation

and development to measure the quality of software. The goal is to obtain objective reproducible and

quantifiable measurements, which may have numerous valuable applications e.g. metrics used early can aid in

detection and correction of requirement faults that will lead to prevention of errors later in the life cycle.

However, there is still insufficient information on how to choose and select the best metrics [42].

The most important aspect of an RTOS is that it behaves according to its specification and that the intended

functionality is verified. A common way of verifying software is by running it through test cases to see that it

behaves correctly. Software testing is one of the most practical approaches for assuring the quality of software

systems, and one of the challenges in software testing is evaluating the quality of test cases. Such quality

measures are called test adequacy [43] and one of the most commonly used metrics for test adequacy is code

coverage [44]. Most existing automated test generation tools use code coverage as their quality evaluator. The

tools try to generate test cases that cover 100% (or as close as possible to that) of the source code [45]. It shall

be noted that even with 100% code coverage it is not certain that everything has been tested, for example all

variants of expressions and calculations. However, it is a good way to find places in the code that has no test

cases at all. The goal of testing is to ensure correctness and predictability of a system.

Cyclomatic complexity is a metric that measures the number of linearly independent paths through a piece of

code. It was introduced by Thomas McCabe in 1976 and to this day it still remains one of the most popular

and meaningful measurements for analyzing code [46]. Cyclomatic complexity is simple to calculate and

easily understood. Too many nested decisions make code more difficult to understand and make it more prone

to errors due to the many potential flows through the code. The cyclomatic complexity value of a software

component directly correlates with the number of test cases necessary for path coverage. A high cyclomatic

complexity value implies high complexity and the code will have a higher defect density and the test effort is

higher which also makes the code harder to maintain.

21

4. Method for OSS Assessment

In this chapter, a summary of the safety requirements is given followed by characteristics that are relevant for

an open source RTOS in safety-critical applications. These characteristics will then be used to evaluate and

compare two RTOS. A certification methodology is proposed that can be used to evaluate the suitability of an

open source RTOS for use in safety-critical applications and how one shall proceed in order to certify an

RTOS with regards to the two functional safety standards IEC 61508 and ISO 26262.

4.1. Safety Requirements for Operating Systems

The international standards for functional safety considered in this thesis are the IEC 61508 (see section 3.1.1)

and ISO 26262 (see section 3.1.2). Relevant parts of these standards and previous studies have been analyzed

in order to find attributes that can be used to assess an open source RTOS for use in safety-critical

applications. A previous study [50] has been made regarding the use of Linux in safety-critical applications

and three criteria were set out in order to assess the suitability of an operating system and a simplified version

of these three criteria are the following:

1. The behavior of the operating system shall be sufficiently well defined.

2. The operating system shall be suitable for the characteristics of the application.

3. The operating system shall be of sufficient integrity to allow the system safety integrity requirements

to be met.

Considering the first criterion, it is important that the software developer of the safety-critical application has

full knowledge of the intended behavior of the operating system. This is necessary so that hazards don’t arise

due to misconceptions that the application developer might have about the intended functionality of the

operating system. It shall also be clear that the second criterion is necessary, since no matter how well

specified an operating system might be, if it does not provide the desired functionality to support the software

design chosen for the safety-critical application, it won’t be suitable for use. This can be most clearly seen in

the timing domain: if the application has hard real-time requirements and the operating system cannot support

deadlines then the operating system cannot be used with confidence. The third and final criterion is fairly self-

evident. However, it shall be noted that what is sufficient will depend on the complete system design,

including any system level measures that can mitigate operating system failures and thus allow the operating

system to have a lower safety requirement than would be the case without system mitigation measures.

In order for an operating system assessment to be useful, sufficient information shall be provided that allows a

reasonable judgement to be made of whether the combination of the specific software application, the

operating system and the system design features meets the three criteria for a given safety-critical application.

The operating system features that were identified in [50] that are recommended to be used as a minimum to

assess the sufficiency of an operating system with regard to being used in safety-critical applications can be

seen below and these features have been helpful for identifying the characteristics used for comparison in this

study.

1. Executive and scheduling: The process switching time and the employed scheduling policy of the

operating system must meet all time-related application requirements.

2. Resource management: The internal use of resources must be predictable and bounded.

3. Internal communication: The inter-process communication mechanisms must be robust and the risk

of a corrupt message affecting safety shall be adequately low.

4. External communication: The mechanisms used for communication with external devices must be

robust and the risk of a corrupt message shall be adequately low.

5. Internal liveness failure: The operating system shall allow the application to meet its availability

requirements.

22

6. Domain separation: If an operating system is used functions shall be provided that allows safety

functions of lower integrity levels to not interfere with the correct operation of higher integrity safety

functions.

7. Real-Time: Timing facilities and interrupt handling features must be sufficiently accurate to meet all

application response time requirements.

8. Security: Only if the operating system is used in a secure application.

9. User interface: When the operating system is used to provide a user interface, the risk of interface

corrupting the user input to the application or the output data of the application must be sufficiently

low.

10. Robustness: The operating system shall be able to detect and respond appropriately to the failure of

the application process and external interfaces.

11. Installation: Installation procedures must include measures to protect against a faulty installation due

to user error.

In order for a piece of software to be used in a safety-critical application, the software must also be certified

according to the relevant standards for the chosen field of application. For example, considering the ISO

26262 standard for the automotive industry, all the software components that are needed to perform a safety-

related function must be certified with an ASIL depending on the safety requirement level required. The

standard considers the use of an operating system as a component to create different execution domains, which

can be used to separate the different tasks, especially the safety-relevant from the non-safety-relevant. The ISO

26262 standard also mandate that the operating system, if used, must withstand an ASIL equal or higher than

the highest ASIL of all the tasks handled by the operating system.

An operating system needs to satisfy a number of requirements. These are usually similar to high-reliability

systems requirements, although it must be noted that reliability and safety are two different things. While

reliability is related to the percentage of time the system operates as expected, safety is related to the residual

error probability in a system, i.e. errors are admitted but they must be detected, and the system must be able to

react accordingly, in order to avoid damages or injuries to persons or environment.

The ISO 26262 standard has a series of requirements for how software must be developed, for every phase of

the V-model as can be seen in figure 2 spanning from specification to implementation and testing. These

requirements vary depending on the required integrity level.

In order to assess the suitability of using the chosen open source RTOS in a safety-critical application we will

look at the desired functionality that is requested along with a number of characteristics that are considered,

some of these characteristics are described below:

Implementation: Embedded software systems are often implemented in the C programming language and in

order to increase the quality of the implementation it is common to define a set of coding rules that must be

followed. The coding rules can include for example the conventions used to format the source code,

complexity limits for modules, hierarchical organization of the modules and language subsets. For safe and

reliable software written in C, a commonly used subset is the MISRA C subset (see section 2.5), which

effectively defines a subset of the C programming language, removing features which are usually responsible

for implementation errors or compiler dependencies. The MISRA C 2012 subset is sometimes considered a

strongly typed subset of C.

23

Test Coverage: Test-driven development has become widespread both in proprietary software and OSS

projects, in particular, the possibility to perform automated tests. The purpose of testing is to detect faults in

the software component under test in order to find discrepancies between the specification and the actual

behavior of the software. For example, by running the automated test after every single commit to the code

base is of great help to detect bugs and ensure the intended functionality of the software. It is common to

define a percentage of test coverage which is the percentage of software that is covered by the tests. There are

different ways in which this percentage can be defined; the most common one is the number of lines of code

executed or the number of branches taken which is often referred to as code coverage and branch coverage

respectively. However, no set of test procedures can achieve 100% coverage for complex software

components such as an RTOS in a practical amount of time. This has to do the number of test cases that results

from choosing different combinations of input values for each test case would be too many and would be

impractical. The test cases shall therefore be chosen in a manner such that the test cases test different aspects

of the RTOS to maximize the test coverage. It is also recommended that an argument is made for justifying

why certain test cases don’t require testing.

Domain Separation: Mixed criticality systems are systems that consist of multiple safety functions where the

safety functions are of different integrity levels. An important functionality, desirable especially for mixed

criticality systems, is the ability to execute different tasks in different domains, where the operating system

guarantee the independency of these domains. The purpose of having different execution domains is to control

any additional hazards or failure conditions that may be introduced when multiple tasks are sharing the same

processor, memory or other system resources. Domain separation provides fault containment between different

tasks. This can make it easier to perform a safety analysis and it increases safety assurance, if properly

implemented and verified. Domain separation is meant to prevent a task in one domain from overwriting or

corrupting the memory of a task in another domain. A common way of implementing domain separation is

through hardware support that creates different domains that allows tasks to execute in different regions of

memory by using a Memory Protection Unit (MPU) or Memory Management Unit (MMU). This hardware

component then performs checks whenever memory is being accessed in order to prevent unauthorized access

to certain memory locations.

Another important aspect is temporal independency of tasks; this can be described using an example where a

low priority task must not prevent the correct execution of a high priority task. This is usually achieved by a

priority based preemptive scheduler with an appropriate priority assignment, depending for example on the

criticality of the task, the deadline for periodic tasks, etc. If domain separation is implemented, other shared

resources like for example a communication stack or interface must be handled so that a malfunctioning task

cannot affect other tasks. An example of domain separation can be seen in figure 4.

Figure 4 Domain separation of three tasks with different levels of criticality and real-time requirements. Color

indicates the level of criticality: red high, yellow medium, green none

24

Real-Time Performance: In safety-critical applications, it is necessary to have timely execution of a recovery

or emergency procedure, which cannot be delayed or prevented to execute. This can be given for example by

an operating system with priority-based preemptive scheduling that support deadlines. However, it shall be

noted that different concurrency models if appropriately used, can result in predictable execution of critical

tasks. For example, often the firmware of Electronic Control Units (ECU) has no operating system, but all the

tasks are implemented in the main function and executed periodically. This is similar to having a cooperative

scheduler for all the tasks. In this case, if the worst-case execution time of all the tasks is known then the

worst-case reaction time is also known.

These and other characteristics are evaluated in chapter 5 for the two open source operating systems looked at

in this thesis. The information regarding the attributes has been gathered through information that is freely

available.

4.2. Characteristics for Comparison

Based on the material from previous chapters together with information gathered from the literature survey we

below present some characteristics that are relevant for an open source RTOS for use in a safety-critical

context and a methodology on how one shall proceed in order to certify an open source RTOS to get

compliance with the functional safety standards.

• Coding rules: Is the RTOS implemented with coding conventions throughout the entire code base?

• Language subset: Is the RTOS implemented using any defined language subset to reduce the

likelihood of faults?

• Version-control: Is version control being used to track changes in the code base?

• Documentation: Is there documentation available?

o What functionality does it cover?

• Static resource allocation: Does the operating system use static memory allocation? Dynamic

memory allocation is not recommended in the standards since it can give rise to hazards.

• Priority-based preemptive scheduling: The scheduling policy needs to be priority-based preemptive

in order to be used with confidence.

• Hard real-time support: Does the RTOS support deadlines?

• Domain separation: Is there support for domain separation, if so, how is it supported?

o Hardware support.

o Software support.

• Synchronization primitives: Are there synchronization primitives available (e.g. semaphores,

mutexes, etc.) to allow safe inter-task communication?

• Verification: Are there any verification procedures to verify the functionality of the RTOS?

o Test suite: Is there a test suite available?

▪ Does the test suite provide test coverage metrics? (e.g. code/branch coverage)

• Configuration (Option to turn off undesired functionality): Is there an option to turn off undesired

functionality in the operating system so that unused functionality won’t be compiled?

• Active community: Is the community behind the open source RTOS active?

o Quality assurance: Are measures made in order to keep out “bad” code from the project code

base.

o Bug tracking: Is there a list of known bugs?

o Bug fixing: Are bugs being fixed at regular intervals?

If the open source operating system fulfills all of the above characteristics it is a good candidate for

certification since it holds some of the functionality that is desirable for a safety-critical operating system and

some attributes that are preferred from an open source perspective. However, if it does not fulfill all of the

above characteristics it could still be valid for certification but the effort to get compliance with functional

safety standards is considerably higher.

25

4.3. Methodology for Certification

Based on the material from the previous sections, the process for choosing and certifying a suitable open

source RTOS candidate is described below and the proposed workflow can be seen in figure 5.

First off one would have to identify open source operating system candidates. When enough candidates have

been identified it is recommended to evaluate the “quality” and the maturity of the OSS projects. In our

proposed methodology, we are using the Capgemini Open Source Maturity Model (see section 3.3.1) in order

to see what support options there are for the project, if there are different licensing options available, does it

have a stable and active community with regular updates, bug tracking and bug fixing etc. These and other

criteria are then graded with certain number of points based on guidelines given in [33]. When the quality

assessment has been done, one shall do a comparison of the characteristics presented in section 4.2. Based on

the results produced by the quality assessment and the comparison of characteristics, one shall be able to draw

a conclusion of which of the candidates is most suitable for use in a safety-critical application.

When a candidate has been identified one has to make a decision of which standard one would like to certify

for. In order to assess to what degree, the open source operating system can comply with the functional safety

standards IEC 61508 and ISO 26262 one has to study the available documentation of the open source

operating system and other available information and compare it with the requirements for reuse of software

components that are described in section 2.2 and section 2.3 However, if the required documentation is

insufficient or unavailable. Then one has the option of creating the formal documentation required. It shall be

noted that no documents will be created due to this in this thesis since it is out of the scope of this project and

the RTOS will be assessed as is with the documentation that is currently available.

The certification process shall be carried out as follows:

1. Creation of a specification of expected system behavior. However, if a detailed specification already

exists the creation of a specification is not necessary.

2. Creation of tests that are intended to verify the functionality of the operating system that can be traced

back to the specification. If test cases already exist but they are insufficient, then additional test cases

shall be developed.

3. Running of the test cases to validate the functionality and make corrections where necessary.

4. Manual code inspection to increase the confidence of the software. This manual inspection shall then

target:

a. Code sections of high complexity as shown by code metrics.

b. Statements which do not conform to guidelines e.g. according to MISRA C.

5. Running the test cases with code for collecting test coverage measurements.

6. Compliance analysis, result against functional safety standard.

The output of the certification process would be the following:

1. A manual describing the certification process.

2. A detailed specification of the operating system.

3. A test suite.

4. Test results with summary of test coverage.

5. An inspection report with recommendations for code changes where anomalies have been discovered.

6. Document describing how the requirements for compliance are fulfilled according to a specific

functional safety standard together with a conclusion of the certification stating if the operating system

is suitable for use in safety-critical application and to what integrity level.

26

 Figure 5 Proposed workflow for assessing an RTOS for safety-critical applications with regards to the

functional safety standards IEC 61508 and ISO 26262.

27

5. Case Study: Evaluation of OSS RTOS

In this chapter, two open source operating systems are compared in order to find the most suitable candidate

for use in a safety-critical application. The most suitable candidate is then assessed to see to what degree it can

adhere to the requirements put forth in the functional safety standards IEC 61508 and ISO 26262.

5.1. ChibiOS

ChibiOS [47] is an open source project that is made up of three major software components: ChibiOS/Nil,

ChibiOS/RT which are two RTOS where ChibiOS/Nil is aimed at extremely low resource usage, but with

limited functionality, while ChibiOS/RT is slightly more resource demanding and has a more complete set of

functionalities. The third software component is ChibiOS/HAL and it is a set of peripheral drivers for various

embedded platforms which can in principle be used with any RTOS or even without an RTOS.

Implementation: The ChibiOS RTOS is implemented in MISRA C 2012, with some exceptions that are

justified based on design decisions. A static code analysis has been performed using the PC-Lint analyzer, on

the ChibiOS 16.1.7 release and it reported no violations of the checked MISRA rules, using the configuration

provided with the source code. Additionally, the coding standard in terms of naming conventions, design

patterns are explicit and consistently used on all the software. The documentation for the source code is

available and generated with Doxygen which is a tool for generating documentation from source files and

includes a description of all the modules and their relationship.

Test Coverage: ChibiOS has a test suite which is used to verify the functional correctness of the core

mechanisms in the operating system like priority inversion, priority-based scheduling, timers and all the

synchronization primitives that are offered by the operating system. The test suite can be executed both on a

simulator and on real hardware and can be used for benchmarking a given hardware platform. The test suite is

available for both versions of the operating system (Nil/RT) and also for the HAL so that the peripheral drivers

can be tested and verified.

Domain Separation: Separation of different tasks can be done in the time domain, which is done by using

priority-based preemptive scheduling. Care must be taken while using critical regions, since they can introduce

unexpected latency. To avoid this, the different tasks must be developed coherently to avoid timing

interference between the different tasks. The only execution model available for ChibiOS is single process-

multi thread execution model, which means that all tasks share the same addressing space and memory

separation is not implemented which means that mixed-criticality is not possible with ChibiOS. However, it is

possible by using a Memory Protection Unit (MPU) or Memory Management Unit (MMU) in some of the

supported architectures.

Real-Time Performance: The ChibiOS/RT scheduler is a priority-based preemptive scheduler with Round-

Robin scheduling for tasks at the same priority level and it is suited for hard-real time systems. The time

overhead of operations like context-switch, interrupts and synchronization primitives can be obtained by

running the test suite on the target hardware.

28

5.2. ContikiOS

ContikiOS [48], [49] is a lightweight open source operating system that is highly portable and is designed to

run on Internet of Things devices with limited resources such as memory. ContikiOS provides three network

mechanisms: the uIP TCP/IP stack which provides IPv4 networking, the uIPv6 stack which provides IPv6

networking, and the Rime stack which is a set of custom lightweight networking protocols designed for low-

power wireless sensor networks.

Implementation: ContikiOS is mainly developed in standard C (ISO C) and is portable to various platforms.

The coding rules used only covers the formatting style and can be found in the documentation of the project. A

MISRA C compliance check has been performed using PC-Lint static analyzer with the default configuration

for MISRA C checking. All the files under the dev/, cpu/, platform/ and core/ directories of the ContikiOS 3.0

code base have been checked. In total over 70 000 messages were generated by the static analyzer most of

them relating to either styling issues or errors that are easily correctable. However, there were also reports of

more severe errors such as:

• Recursive functions

• Discarding of volatile or constant qualifiers

• Variable shadowing

• Uninitialized variables

• Unused return codes from functions

• Dereferencing of null pointer

• Buffer overruns

Test Coverage: On every new version of ContikiOS regression tests are performed. However, they seem to

mostly cover the communication protocols and not the functionality of the operating system like scheduling,

inter-task communication and synchronization primitives.

Domain Separation: Memory separation is not used because of lack of support in most supported

architectures. The scheduler does not support priorities; it only handles two types of tasks: cooperative and

preemptive. There are also no well-defined mechanisms for inter-task communication and concurrency issues

must be handled manually.

Real-Time Performance: The scheduler in ContikiOS does not support different priorities for tasks.

However, the tasks can be either cooperative or preemptive and a number of timer modules exist and these can

be used to schedule preemptive tasks.

5.3. Quality Assessment of OSS

The quality of the two open source operating system looked at in this thesis have been evaluated with the

Capgemini Open Source Maturity Model (see section 3.3.1) and with the help of the guidelines given in [33].

First the product indicators that were mentioned in section 3.3.1 form the basis of the model. Using these

indicators, the maturity of the open source products can be determined. Product indicators receive a score

valued between one and five. One is poor, five is excellent and 3 is average. All the scores are summed to

produce a product score. A comparison of the two products can be seen in table 1 and this data allows us to

determine a score for each group of indicators. This makes it possible to compare the products on a group

basis and we can draw the graph shown in figure 6.

29

Table 1 Comparison of product indicators according to Capgemini Open Source Maturity Model (see section

3.3.1)

Figure 6 Score per group with data from table 1 where each axis has been normalized to the max value of 1

since the groups have different max values.

However, the data in table 1 and figure 6 are only a comparison of the products strengths and weaknesses. To

properly assess the product, we must also take into account the application indicators described in section

3.3.1.

Indicator ChibiOS ContikiOS

Product
Age 5 5

Licensing 5 3

Human hierarchies 5 5

Selling points 3 3

Developer community 3 3

Integration
Modularity 5 5

Collaboration with other
products 3 3

Standards 5 3

Use
Support 3 3

Ease of deployment 3 3

Acceptance
User community 3 1

Market penetration 3 1

Total 46 38

0

0,2

0,4

0,6

0,8

1
Product

Integration

Use

Acceptance

ChibiOS

ContikiOS

30

Table 2 Application indicator comparison according to Capgemini Open Source Maturity Model

From the data presented in figure 6 and table 1 and table 2 we can see that the most suitable candidate for our

given purpose is ChibiOS. However, it shall be noted that these values do not guarantee a certain quality of the

product they are just indicators of which product has the highest “quality” of the development.

 ChibiOS ContikiOS

Indicator Priority (P) Score (S) PxS Score (S) PxS

Usability 5 5 25 5 25

Interfacing 3 3 9 3 9

Performance 5 4 20 3 15

Reliability 5 5 25 4 20

Security 3 3 9 3 9

Proven technology 3 3 9 3 9

Vendor independence 4 4 16 4 16

Support 4 3 12 2 8

Reporting 2 4 8 2 4

Administration 2 3 6 3 6

Advice 1 1 1 1 1

Training 3 3 9 3 9

Staffing 3 2 6 2 6

Implementation 3 4 12 2 6

Total 167 143

31

5.4. Comparison of RTOS Characteristics

In this section, the requirements presented in section 4.1 will be evaluated together with the characteristics

presented in section 4.2 to find the most suitable open source operating system option. The most suitable

operating system will then be assessed to see how well it can comply with the functional safety standards IEC

61508 and ISO 26262.

A quality assessment has already been made in section 5.3 between the two open source operating systems to

indicate which option has the highest quality of development. This comparison is helpful but not nearly

sufficient to make a decision. Therefore, the characteristics presented in 4.2 will be used to compare the two

open source operating systems and this comparison can be seen in table 3.

Table 3 Comparison of important characteristics, an “X” indicates that the operating system is a holder of the

characteristic and “-“indicates that it is not available

5.5. Assessment of ChibiOS

As we can see from the quality assessment made in section 5.3 together with the comparison of characteristics

in table 3 we can see that the most suitable choice for use in a safety-critical context is ChibiOS. Therefore, we

will assess ChibiOS and see to if it can comply with the functional safety standards IEC 61508 and ISO 26262.

5.5.1. IEC 61508 Assessment

As described in section 2.2 we will for the IEC 61508 standard assess ChibiOS according to the subclause

7.4.2.13 of IEC 61508-3 since it is developed with a development process that is non-compliant with the one

proposed in IEC 61508. The RTOS will be regarded as a context free software component. A safety manual

shall be provided that gives sufficiently precise and complete description of the software element to make

possible the integrity of a specific safety function that depends wholly or partly on the pre-existing software

element. A complete description of the various functions of the RTOS is available in the reference manual [51]

together with the supporting book [52].

Characteristic ChibiOS ContikiOS

Coding rules X X

Language subset X -

Version control X X

Documentation X X

Static resource allocation X X

Priority-based preemptive scheduling X -

Hard real-time support X -

Domain separation support X -

Synchronization primitives X -

Verification X X

 Test suite X X

Configuration X X

Active community X X

 Quality assurance X X

 Bug tracking X X

 Bug fixing X X

32

In order to assess ChibiOS with the requirements of subclause 7.4.2.13 of IEC 61508-3 we will have to go

through the documentation that is available for ChibiOS and state how these requirements are fulfilled. These

requirements and how they are fulfilled can be seen below. However, a detailed description of the

requirements is not given here. For a more detailed description of the requirements, see [10].

1. There is a requirement that a software safety requirements specification shall be available for

the software element in its new application and that it shall be documented to the same degree of

precision as would be required by the IEC 61508 standard. This specification shall also cover the

functional and safety behavior of the software element in its new application.

The software safety requirements specification is a specification that contains all system safety

requirements, in terms of system safety function requirements and the system safety integrity

requirements, in order to achieve the required functional safety. The software safety requirements

specification must be valid in the system context. A pre-existing operating system is unlikely to have

any specific safety requirements defined since it is not bound to a specific context, therefore in this

thesis we assume that the requirement of a software safety requirement specification can be replaced

by the requirement that the behavior of the operating system shall be precisely defined.

For ChibiOS there is a detailed reference manual [51] covering all the functionality of the real-time

kernel together with a supporting book [52] that describes the architectural design of the operating

system and how all the kernel submodules works.

For safety functions considered to be of SIL 1 and SIL 2 it is recommended to use semi-formal

methods and for SIL 3 they are highly recommended. Semi-formal methods are used to express parts

of a specification unambiguously and consistently, so that some types of mistakes, such as wrong

behavior can be detected. There are multiple techniques recommended as semi-formal methods in

order to model, verify, specify or implement the control structure of a system, one of which is finite

state machines as can be seen in Appendix A.

If we look at the documentation that is available for ChibiOS we can see that when the ChibiOS real-

time kernel is used the system can be in one of the given multiple logical states [53]. One can also see

transitions between the different states and what event that triggers the transition. However, a finite

state machine containing all the different submodules that can be found in the operating system would

be too extensive for one state machine; therefore, ChibiOS provides finite state machine diagrams for

all their modules that are implemented as a state machine e.g. the binary semaphore implementation

[54]. The IEC 61508 standard states that state transition diagrams can apply to the whole system or to

some objects within it.

2. There are requirements for implementing code and it is highly recommended that coding rules

are being followed and that each module of software is reviewed in order to assure a certain

quality of the code.

ChibiOS is an open source project that is split in two parts:

1. The core ChibiOS codebase. This code is thoroughly tested and maintained, bugs are tracked

and fixed, and the code is released in stable packages regularly.

2. The community overlays codebase. All the community contributed code goes initially into this

public repository without review. It is an incubator, the code that survives time and user’s

feedback can eventually be migrated to the core codebase. The repository is organized as an

“overlay” over the core codebase. That is the core codebase together with community

contributed code. The two parts together form the global ChibiOS project [58].

Therefore, in order for code to be added to the core codebase, the code has to follow strict coding

guidelines and go through extensive reviews and testing. Therefore, one can expect the code in the

core codebase to be thoroughly tested, reviewed and documented.

33

3. There are requirements that recommended practices shall have been considered for the software

architectural design for safety related software and evidence shall be provided that justifies the

use of a software element.

The recommended practices for the software architectural design of safety related software can be

seen in Appendix B. Some of these are however not applicable to an operating system such as graceful

degradation which is something that needs to be implemented on the application level. Some of the

recommended techniques and measures for high integrity software are that the software shall be

designed with a modular approach and the behavior of the software shall be modeled with semi-formal

methods (e.g. finite state machines). Other recommended practices are to use static resource allocation

for more predictable resource usage and it is recommended to have a time-triggered architecture with

cyclic-behavior.

ChibiOS has a modular design [55]; it is internally divided in several major independent components.

It uses static resource allocation, which means that everything in the kernel is static; nowhere memory

is allocated or freed. There are allocator subsystems but those are optional and not part of the core

operating system. If the memory allocator subsystems are to be used, then evidence has to be provided

that proves that failure as a cause of using these subsystems won’t affect the safety-related behavior of

the system. ChibiOS has a time-triggered architecture [62], when the processor does not currently

have anything to execute it will be running the idle thread which is an endless loop waiting for an

interrupt to occur which will invoke the scheduler and check if some task is ready for execution. The

scheduler also implements cyclic behavior, it will prioritize tasks of higher priority and if there are

multiple tasks at the same priority level it will schedule them according to the Round-Robin

scheduling algorithm [62].

4. For all integrity levels there it is highly recommended that a suitable strongly typed

programming language is used together with a language subset. In section 4.1 we can see what

implementation requirements there are for embedded software systems in a safety-critical

context.

ChibiOS fulfills these requirements since it is mainly written in C with small code sections written in

assembly language. C is a suitable programming language since ChibiOS is developed for embedded

systems where performance is important with limited amount of resources, such as memory. Although

C was not specifically designed for this type of application, it is widely used for embedded and safety-

critical software for several reasons. The main properties of note are control over memory

management (which, for example allows you to avoid having to garbage collect), simple, well

debugged core runtime libraries and mature tool support. While manual memory management code

must be carefully checked to avoid errors, it allows a degree of control over application response times

that is not available with languages that depend on garbage collection. The core runtime libraries of

the C language are relatively simple, mature and well understood, so they are amongst the most

suitable platforms available. ChibiOS also implements the C subset MISRA C 2012 which is

sometimes considered a strongly typed subset of C.

Another important fact is that you can find a C compiler for the vast majority of embedded devices.

This is not true for every high-level language.

5. There are requirements that the software produced shall be modular and each software module

shall be verifiable and testable with measurements indicating the test coverage.

For specifying the detailed software design, it is again highly recommended to use semi-formal

methods, a modular approach with design and coding standards. If we look into the architecture of

ChibiOS we can see that it has a modular design [55]; it is internally divided in several major

independent components where the components themselves are divided in multiple subsystems. We

34

can see that the behavior of different submodules is modeled with finite state machines as well as strict

coding conventions.

There are also requirements that the implementation shall be verifiable and testable and this is done by

the test suite provided. The kernel code of ChibiOS is subject to rigorous testing by the core

development team. The test suite aims to test all the kernel code and reach a code coverage as close to

100% as possible. In addition to the code coverage, the kernel code is tested for functionality and

benchmarked for speed and size before each official release. In addition to the code coverage and

functional testing a batch compilation test is performed before each release. The kernel is compiled by

alternatively enabling and disabling all the various configuration options, the kernel code is expected

to compile without errors nor warnings and execute the test suite without failures (a specific simulator

is used for this execution test, it is done automatically by a script because the entire sequence can take

hours). All the tests results and benchmarks are included as reports in the operating system distribution

under ./docs/reports [56].

Code that is ported to certain hardware platforms is tested by executing the kernel test suite on the

target hardware. The ported code is valid only if it passes all the tests. Speed and size benchmarks for

all the supported architectures are performed, both size and speed regressions are monitored [56]. The

Hardware Application Layer (HAL) high level code and device driver implementations are tested

through specific test applications that can be seen in [57].

The functionality of ChibiOS is subject to rigorous testing through its test suite. This test suite aims to

test all the kernel code and tries to reach a code coverage as close to 100% as possible. In addition to

this the kernel code is tested for functionality in order to verify that the software behaves according to

its specification. The various modules of the kernel are also modeled using finite state machines as can

be seen in [59] for semaphores, mutexes (for mutual exclusion) and condition variables [60].

6. There are requirements on how the programmable electronics integration (hardware and

software) is being handled and appropriate software system integration tests shall be available

to ensure that the behavior of the software can be validated on different hardware platforms.

The test specification shall state the test cases, test data and which types of tests to be performed.

The integration testing shall be documented, stating the results of the tests. If there is a failure,

the reason for the failure shall be documented.

Different recommended techniques/measures that are recommended for software testing and

integration can be seen in Appendix C. Software module testing is a way of verifying the functionality

of a software module. The software verification shall show whether or not each software module

performs its intended function and does not perform unintended functions and the results shall be

documented with test coverage.

Most of the ChibiOS demos link a set of software modules (test suite) in order to verify the proper

working of the kernel, the port and the demo itself. The operating system components are tested in

various modes depending on their importance [56].

• Kernel: The kernel code is subject to rigorous testing. The test suite aims to test all the kernel

code and reach a code coverage as close to 100% as possible. In addition to the code coverage,

the kernel code is tested for functionality and benchmarked for speed and size at each stable

release. In addition to the code coverage and functional testing a batch compilation test is

performed at each release, the kernel is compiled by alternatively enabling and disabling all

the various configuration options, the kernel code is expected to compile without errors nor

warnings and execute the test suite without failures (a specific simulator is used for this

execution test, it is done automatically by a script because the entire sequence can take hours).

• Ports: Code that is ported to a specific hardware platform is tested by executing the kernel test

suite on the target hardware. A port is valid only if it passes all the tests. Speed and size

35

benchmarks for all the supported architectures are performed, both size and speed regressions

are monitored.

• HAL: The HAL high level code and device driver implementations are tested through specific

test applications under ./testhal and can be seen in [57].

• Various: The miscellaneous code is tested by use in the various demos.

• External Code: Not tested, external libraries or components are used as-is or with minor

patching where required, problems are usually reported upstream.

Kernel Test Suite: The kernel test suite is divided in modules or test sequences. Each test module

performs a series of tests on a specified kernel subsystem or subsystems and can report a failure/success

status and/or a performance index as the test suite output. The test suite is usually activated in the demo

applications by pressing a button on the target board; see the readme file into the various demos

directories. The test suite output is usually sent through a serial port and can be examined by using a

terminal emulator program [56]. All the tests results are included as reports in the operating system

distribution under ./docs/reports.

7. There are requirements for validation of software aspects of safety related functions.

Software usually cannot be validated separately from its underlying hardware and system environment

and the validation of safety related functions is bound to a very specific context. Therefore, we assume

that this requirement can be replaced by the requirement that the functionality of the operating system

shall be precisely defined and verifiable. This verification can be done by running the test suite on a

specific hardware platform as described earlier.

8. In the IEC 61508 standard there are also requirements for how software modification shall be

handled. If the modification has an impact on something that is safety-related, then a hazard

and risk analysis has to be performed in order to detect any possible hazards that might arise

due to the modification.

Due to this requirement, if one chooses to use ChibiOS in a safety-critical context it shall be used as is

and shall not be modified. However, if for some reason the source code of ChibiOS were to be

modified, a detailed specification is needed for the modification with a given verification plan for the

software modification. An analysis shall also be carried out on the impact of the proposed software

modification on the functional safety of the system context in order to determine whether or not a

hazard and risk analysis is required. The results from the impact analysis shall then be documented.

9. There are requirements that a functional assessment shall be carried out for all the safety-

related functions.

Functional safety assessment is context bound and as stated earlier we are in this thesis considering the

RTOS as a context free software component. We have looked at the recommended techniques and

measures that are to be used for strengthening the evidence that a software component provides a

certain level of integrity and compared them with what is provided by the ChibiOS documentation and

how the software is designed and implemented. A general description of the requirements and how

they are fulfilled are been presented above and a conclusion will be drawn and presented in chapter 7.

36

10. When software elements are present which are not required in the safety-related system, then

evidence shall be provided that the unwanted functionality will not prevent the system from

meetings its safety requirements.

If ChibiOS is used in a safety-critical context, the configuration used shall be documented. When

certain functions in ChibiOS aren’t required by the safety-related system, the unwanted functions can

be removed from the build by disabling them in the ChibiOS configuration file so that they won’t be

compiled at all. Functionality that can be disabled/enabled or modified can vary from hardware

peripheral drivers, software subsystems, debugging options, speed optimization, system tick frequency

etc. [63], [64].

11. There shall be evidence that all credible failure mechanisms of the software element have been

identified and that appropriate mitigation measures have been implemented.

ChibiOS provides support for domain separation different of tasks in the time domain, which is done

by using priority-based preemptive scheduling. Care must be taken while using critical regions, since

they can introduce unexpected latency. To avoid this, the different tasks must be developed

coherently to avoid timing interference between the different tasks. The only execution model

available for ChibiOS is single process-multi thread execution model, which means that all tasks share

the same addressing space and memory separation is not implemented which means that mixed-

criticality is not possible with ChibiOS. However, it is possible by using a MPU or MMU in some of

the supported architectures

Mitigation measures shall also be done at the application level if it is considered necessary in the

context of use.

37

5.5.2. ISO 26262 Assessment

ISO 26262 does not provide a specific method for certifying OSS in safety-critical applications since

certification is intended for software developed specifically according to the ISO 26262 standard. “Proven in

use” is specifically for software previously used and that is not being changed in any way. This allows

components developed and deployed before ISO 26262 to be reused if enough evidence is provided that

support the claim of proven in use. As described in section 2.3 we will for the ISO 26262 standard assess

ChibiOS with the requirements given in ISO 26262-6 Product Development at the Software Level as well as

looking at the requirements given subclause 12 of ISO 26262-8 Qualification of Software Components. The

RTOS shall be regarded as a context free software component.

From a general point of view, all the sections of the ISO 26262:2011 standard must be addressed (at the

appropriate ASIL) to be considered compliant. The high-level steps for compliance will include creation and

approval of a safety plan, safety goals and safety cases along with a complete safety lifecycle with bi-

directional traceability. The activities and work products shall include verification, validation, independent

assessment (by an accredited certification body) and a complete list of documentation supporting the required

activities. The organization of ISO 26262-6 and other ISO 26262 parts are relevant for approval, assessment

and reuse of software components intended to be used in a variety of applications. The organization of the

software lifecycle requirements and all the activities that shall be carried out in ISO 26262 are staged. This

means that the outputs of one phase are the inputs to the next phase. The other parts of ISO 26262 that are

relevant to software components include part 2 (Management of Functional Safety) and part 8 (Supporting

Processes). The software developer shall demonstrate that the internal planning processes are aligned with

requirements given in part 2. At a minimum, this shall include a functional safety management plan and a

quality management plan as well as evidence of safety culture and personnel who are trained and responsible

for enforcing the safety culture in both the development and production phases. Additional plans that would be

required (and defined in the safety plan or quality plan) are the verification plan, validation plan and test plans

that demonstrate adherence to ISO 26262 requirements. Once a supplier can support the requirements of part

2, they have a framework to ensure their software developed under part 2 requirements can support the other

parts of ISO 26262

In order to assess ChibiOS with the requirements for compliance in ISO 26262 we have also looked at the

requirements given in subclause 12 of ISO 26262-8 Qualification of software components because that

subclause specifically targets reuse of software components such as commercial off-the-shelf software or

previously developed software components. The objective of the qualification process is to provide evidence

for the suitability of a software component developed according to other safety standards to be reused in items

newly developed in compliance with ISO 26262. Because of this, it won’t be possible for ChibiOS to fulfill

the requirements for any of the ASILs since there is a lack of formal documents that would have been

produced in the earlier stages of the V model as can be seen in figure 2. These documents are necessary in

order to fulfill the requirements for compliance with the ISO 26262 standard.

38

6. Example: Safety-Critical Application

In this chapter, a specification of a safety-critical application is given followed by its implementation. This is

done in order to show how safety functions can be specified in a given context.

6.1. System Specification

The specification presented here is an example of a safety-critical application where an RTOS is used. In this

thesis, it is used to demonstrate how certain functionality of the RTOS is used to implement certain Safety

Functions (SFs). The example application comes from an industrial context where Automated Guided

Vehicles (AGVs) are used to move materials around a manufacturing facility or warehouse [65], [66]. The

AGV can navigate itself through vision guidance e.g. following a visual line painted or embedded in the floor.

Figure 7 Overview of the system. On the cortex-M4 microcontroller, a safety-critical application shall be

running on an RTOS. The application shall be capable of capturing real-time video and stream the video to a

Linux computer over Ethernet at a steady frame rate. The microcontroller shall also be able to do image

processing on the captured video before transmitting it over Ethernet.

The Cortex-M4 microcontroller shall run ChibiOS which was evaluated in chapter 5. The microcontroller shall

configure the camera module over a serial communication interface. When the camera has captured an image,

the pixel data of the image shall be transmitted over a synchronous parallel interface to the microcontroller

where the image will be processed before it is to be transmitted to a Linux computer over Ethernet.

The system shall implement fault detection, if one of the subsystems fails it shall be detected and the system

shall enter safe state. Graceful degradation shall be implemented, if it cannot achieve a steady frame rate of 15

frames per second (FPS) at the resolution 160x120 it shall lower the camera resolution. If it cannot lower

resolution more than the minimum resolution of 160x60, then the system shall be stopped and kept stopped

(safe state).

39

Safe state: The system shall be stopped and kept stopped with all functionality disabled and it shall be

indicated that the system has failed by blinking a red LED.

Safety functions (SFs):

SF 1: If possible, the resolution shall be lowered in order to keep a steady frame rate of 15 FPS. If not

possible the system shall enter safe state.

SF 2: If a subsystem fails the system shall enter safe state

SF 3: The system shall complete the image processing of one frame in 65 milliseconds. If not

possible; the system shall enter safe state.

SF 4: If the system loses track of the white line on the floor the system shall enter safe state.

6.2. Implementation

The system that is specified in section 6.1 is implemented on the development board that can be seen in figure

8. On the microcontroller expansion card, there is a STM32F407VGT6 microcontroller from

STMicroelectronics and together with this is an OV7725 camera module from Omnivision as can be seen in

figure 9. The microcontroller used also has a watchdog timer which can be used to reset the system if

something goes wrong.

While implementing the system the image processing turned out to be too heavy for the microcontroller while

sustaining a stable framerate of 15 FPS. Therefore, we lower this requirement of SF 1 to 5 FPS and increase

the deadline of one frame in SF 3 to 200 ms in our implementation. A solution to this could be to move the

image processing over to the system running Linux in order to achieve this requirement, but in our example,

we want the safety-critical functions to be carried out on the microcontroller. The reason is that the embedded

system is less complex than a system running a full Linux distribution and would make a safety certification of

such system more likely.

Figure 8 Easy MX PRO v7 Development Board Figure 9 OV7725 Camera Module

40

The microcontroller initializes the camera module through the Inter-Integrated Circuit (I2C) serial

communication protocol where settings like resolution, image settings (contrast, gamma, brightness etc.) and

output format are configured among other things. The camera module is configured to output pixel data in the

format RGB565 which means that each pixel will require two bytes of data as can be seen in figure 10.

Figure 10 Pixel map of RGB565

In order to capture the pixel data received from the camera module we make use of the microcontrollers

Digital Camera Interface (DCMI). The DCMI is a synchronous parallel interface that is able to receive high-

speed data from an external CMOS camera module. The DCMI is configured to receive RGB565 pixel data

through an 8-bit parallel interface. The data flow is synchronized by hardware using horizontal and vertical

synchronization signals. The DCMI stores the received data in a 32-bit register before requesting a Direct

Memory Access (DMA) transfer to a RAM buffer.

The RAM buffer is handled by the DMA controller and not by the DCMI. The DCMI is configured to capture

pixel data until the buffer has been filled by the DMA controller. When the buffer is full, an interrupt is

generated by the DMA controller and the DMA transfer from the DCMI to RAM is disabled and a flag is set

in order to indicate that the picture is ready for processing. When the image processing has been completed the

data is to be transmitted through a TCP socket over Ethernet. When the data has been sent and an

acknowledgement has been received the whole process is repeated.

Before an image is to be captured the microcontroller reads from a static register in the camera module. This is

done in order to make sure that the camera module is present. If the data received is correct the microcontroller

will command the camera module to capture an image. However, if there is no data received or if the data is

incorrect we assume that something is wrong and the system will enter safe state.

The camera module is configured to always output an image with the resolution 320x240 which is too big for

the microcontroller’s memory; therefore, we have configured the DCMI to crop the captured image so we only

capture a certain part of the image which we then perform edge detection on. If the microcontroller fails to

complete the image processing of one 160x120 image within its deadline of 200 ms the system will first

reconfigure the cropping register of the DCMI to only receive an image resolution of 160x60 in order to speed

up the image processing. However, if the deadline is missed a second time the application will enter safe state.

When the image processing has been completed the embedded application will transmit the processed image

over a TCP socket. The application running on Linux will then send an acknowledgement message when the

picture has been received. However, if there is no acknowledgement message received within a time interval

of 50 ms the embedded application will enter safe state. If the application gets stuck in any of the cases for too

long the 250 ms watchdog timer will eventually reach zero and it will trigger a reset of the application. If the

application ends up in the safe state the watchdog timer is disabled. A state diagram of the application can be

seen in figure 11.

41

Figure 11 State diagram of example application

The RTOS used is ChibiOS and it is used for scheduling the various tasks of the application so that the most

critical tasks will be prioritized and to make sure that deadlines will be met. ChibiOS have an API for

peripherals such as I2C, Ethernet, DMA and GPIO that have been helpful while developing the application.

ChibiOS also has support for the LwIP TCP/IP stack that has been used to handle the communication over

Ethernet.

A C++ application has been developed on Linux that connects to the embedded device through Ethernet and

receives the pixel data over a TCP socket and then displays the image.

42

6.2.1. Edge Detection

In order to locate a line in the image received from the camera module we implemented a Sobel operator using

only the horizontal Sobel kernel. This allows us to only locate horizontal edges in an image as can be seen in

figure 12. Sobel filters are commonly used in image processing and computer vision, particularly within edge

detection algorithms where it creates an image emphasizing edges. This technique is sometimes used for

detecting other vehicles in autonomous driving cars [67].

Before the Sobel operators can be applied on an image it has to be converted into grayscale as can be seen in

figure 12. When we have the image in grayscale we can convolve the image with the horizontal Sobel kernel.

The Sobel operator uses two 3x3 kernels which are convolved with the original image to calculate

approximations of the derivatives, one for horizontal changes and one for vertical changes. If we define A as

the source image and Gx and Gy are two images which at each point contain the horizontal and vertical

derivative approximations respectively, the computations to distinguish the edges are as follows:

Where * denotes the two-dimensional signal processing convolution operation.

Figure 12 Picture showing RGB565 to grayscale conversion (left) and horizontal edge detection (middle and

right)

6.2.2. Light-Weight Internet Protocol (LwIP)

In order to handle the communication over Ethernet the LwIP TCP/IP stack [68] was used. The main focus of

the LwIP stack is to reduce memory usage and code size, making it suitable candidate for use in embedded

systems with limited amount of resources such as memory. In order to reduce processing and memory

demands, LwIp uses a tailor-made application programmable interface that does not require copying of data.

43

7. Discussion and Conclusions

In this chapter, we will first discuss how the project went, the applicability of OSS operating systems, what we

could have done differently and how useful the developed application was. We will then present our

conclusions based on the analysis that has been performed as a part of this thesis. Finally, possible future work

is discussed.

7.1. Discussion

In this thesis project, we have identified a model that can be used for evaluating and comparing the quality and

the maturity of an open source project with regards to the collaborative community behind the OSS. This

model was then used together with identified characteristics for choosing which of the two open source

operating systems looked at in this study was the most suitable candidate for use in safety-critical applications.

This candidate was then assessed in order to see to what degree it could adhere to the requirements in the

widely used functional safety standards IEC 61508 and ISO 26262.

We have also presented the outline of a methodology that could be used for certifying an open source

operating system together with a proposed workflow for assessing OSS for safety-critical applications with

regards to the functional safety standards IEC 61508 and ISO 26262. This is useful since it is desirable to have

a repeatable certification process that can be used by certification bodies and others to certify and compare the

suitability of multiple open source operating systems for use in a safety-critical context.

The safety-critical application that is specified in section 6.1 was implemented successfully with some minor

modifications due to the fact that the image processing was too heavy for the target hardware platform. As a

result of this we could not achieve the required real-time requirements. This could have been easily fixed by

moving the image processing over to the computer running Linux or by changing the target hardware.

However, the intention of the application was only to show how safety functions might be specified in a given

context and that safety measures must also be implemented on the application level in order to mitigate

failures.

In this study, we have only looked at two open source operating systems for small microcontrollers and

assessed the one that we found to be the most suitable candidate for use in a safety-critical context. It would

have been interesting to look for more suitable candidates but that was out of the scope of this thesis project.

7.2. Conclusion

The purpose of this thesis project was to identify characteristics that could be used to compare the suitability

of an open source RTOS for use in safety-critical applications and propose an outline for a methodology that

can be used by certification bodies and others. The results for these can be seen in chapter 4.

A case study was done as can be seen in chapter 5 where we evaluated two open source operating systems for

small microcontrollers in order to find out which of the two were most suitable for use in safety-critical

applications. The most suitable candidate was assessed according to the widely used functional safety

standards IEC 61508 and ISO 26262 and our conclusions are presented below based on the analysis that was

carried out in chapter 5.

For the IEC 61508 standard we have on the basis of the evidence presented in section 5.5.1 and the limited

analysis carried out in this study concluded that ChibiOS would be acceptable for use in safety-critical

application of SIL 1 and SIL 2. This statement must of course be qualified by stating that the hardware must

be of suitable SIL. It may also be feasible to certify ChibiOS for use in SIL 3 applications by providing further

evidence from testing and analysis. Certification in this way would also increase confidence in the use of

ChibiOS in appropriate SIL 1 and SIL 2 applications.

44

Any safety justification for using ChibiOS in a given application shall include evidence that an analysis has

been carried out in order to show that ChibiOS is suitable for the given application, and that appropriate

techniques are applied on the application level to mitigate failures of the RTOS such as graceful degradation,

fault detection and fault containment in order to avoid propagation of the failure.

ChibiOS holds many of the desirable characteristics that are required by an RTOS in safety-critical

applications. However, as described in section 5.5.2 qualification is intended to support reuse of high quality

software components where rewriting the software is not an option. ISO 26262-8 subclause 12 Qualification of

software components are intended to be used for modules developed for other industries but with functionality

that is also useful in the automotive industry. Qualified software components “must” then be developed

according to an appropriate safety standard and open source development practices do not qualify to these

requirements as of today. Therefore, the conclusion is drawn that ChibiOS won’t fulfill the requirements of

any ASIL in its current version since there is a lack of documentation in accordance with the ISO 26262:2011

standard.

7.3. Future Work

As a follow up project, effort could be made to perform a real assessment of ChibiOS with regards to IEC

61508 and see if it can fulfill certification for SIL 1 or SIL 2. This is because the assessment done in this thesis

project is general and a real certification assessment would require trained professionals from an accredited

certification body to actually perform an analysis of the available code and documentation. If ChibiOS cannot

fulfill the requirements for certification supporting documentation would have to be produced. Therefore, the

first certification project would be the costliest since the certification process would have to be defined and

supporting materials would have to be produced.

It would also be interesting to look at other accepted standards which do not specifically have to safety related

and see if OSS development could qualify for that given development process. This because subclause 12.4.1

in ISO26262-8 states that ”evidence that the software development process for the component is based
on an appropriate national or international standard.”. And a note connected to this statement is that
some “re-engineering activities” could be needed in order qualify already developed software components.

Generally speaking, one may wish to go deeper and see if the process of a given OSS project is close to an

acceptable standard and then create the documentation that is missing and see how much “re-engineering” is

required in order to gain compliance with the specific standard and then use this documentation and argue for

ISO 26262 compliance according to subclause 12 in ISO 26262-8.

45

8. Bibliography

[1] G. Macher et al, “Automotive Embedded Software: Migration Challenges to Multi-Core Computing

Platforms” in IEEE 13th International Conference on Industrial Informatics (INDIN), 2015, pp. 1386 - 1393.

[2] S. Tan and T. N B. Anh, “Real-time operating system (RTOS) for small (16-bit) microcontrollers” in IEEE

13th International Symposium on Consumer Electronics (ISCE), 2009, pp. 1007 - 1011.

[3] P. Hambarde, R. Varma and S. Jha,”The Survey of Real Time Operating System: RTOS” in IEEE

International Conference on Electronic Systems, Signal Processing and Computing Technologies, 2014, pp.

34-39.

[4] A.K. Vishwakarma, K.V. Suresh and U.K Singh, “Porting and Systematic Testing of an Embedded RTOS”

in IEEE International Conference on Computer and Communication Technologies (ICCCT), 2014.

[5] J. Corbet, How the Development Process Works (The Linux Foundation, San Francisco, 2011)

[6] A. Mockus, R.T. Fielding, J.D. Herbsleb, Two Case Studies of Open Source Software Development:

Apache and Mozilla in ACM Transactions on Software Engineering and Methodology, 2002, pp. 306-346.

[7] D. Cotroneo et al,” Prediction of the Testing Effort for the Safety Certification of Open-Source Software:

A Case Study on a Real-Time Operating System” in IEEE 12th European Dependable Computing Conference

(EDCC), 2016

[8] H. Okamura and T. Dohi, “Towards Comprehensive Software Reliability Evaluation in Open Source

Software” in IEEE 26th International Symposium on Software Reliability Engineering (ISSRE), 2015, pp.

121-129.

[9] A. Ismail and W. Jung, “Research Trends in Automotive Functional Safety” in IEEE International

Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), 2013.

[10] IEC 61508, International Standard. Functional Safety of Electrical / Electronic / Programmable Electronic

Safety-Related System, 2010.

[11] ISO 26262, International Standard. Road vehicles – Functional safety, 2011.

[12] L. Zhao and S. Elbaum, “Quality assurance under the open source development model” in The Journal of

Systems and Software 66, pp. 65-75, 2003.

[13] J.V. Bukowski et al, “Software Functional Safety: Possibilities & limitations of IEC 61508-7 Annex D”

in IEEE Annual Reliability and Maintainability Symposium (RAMS), 2016.

[14] Functional Safety: Essential to overall safety. [Online].

Available: http://www.iec.ch/about/brochures/pdf/technology/functional_safety.pdf
Accessed: Feb. 7, 2017.

[15] IEC 61508-3-1 (Draft), Functional Safety of Electrical / Electronic / Programmable Electronic Safety-

Related Systems - Part 3-1: Software requirements - Reuse of pre-existing software elements to implement all

or part of a safety function, 2015.

http://www.iec.ch/about/brochures/pdf/technology/functional_safety.pdf

46

[16] IEC 61508 Edition 2.0. [Online].
Available: http://www.iec.ch/functionalsafety/standards/page2.htm
Accessed: Feb. 7, 2017.

[17] L. Silva Azavedo et al, “Assisted Assignment of Automotive Safety Requirements” in IEEE Software,

2013.

[18] A. M. St. Laurent and A. M. St Laurent, Understanding open source and free software licensing, 1st ed.

United States: O’Reilly Media, Inc, USA, 2004.

[19] D. Watzenig and M. Horn, Automated driving: Safer and more efficient future driving., Switzerland:

Springer International Publishing, 2017.

[20] B. Fitzgerald, “The Transformation of Open Source Software” in MISQ 30(3). Pp. 587-598, 2006.

[21] H Hedberg et al, “Assuring quality and usability in open source software development” in 1st

International Workshop on Emerging Trends in FLOSS Research and Development, 2007.

[22] A. Mockus et al, “A case study of open source development: The Apache server” in Proceedings of the

International Conference on Software Engineering (ICSE), pp. 263-272, 2000.

[23] D. A. Wheeler, "How to evaluate open source software / free software (OSS/FS) programs," 2011.

[Online].
Available: https://www.dwheeler.com/oss_fs_eval.html
Accessed: Feb. 23, 2017.

[24] A. Avizienis et al, “Basic Concepts and Taxonomy of Dependable and Secure Computing” in IEEE

Transactions on Dependable and Secure Computing, 2004.

[25] M. Riaz et al, “A Systematic Review of Software Maintainability Prediction and Metrics” in Proceedings

of the 2009 3rd International Symposium on Empirical Software Engineering and Measurement, pp. 367 - 377,

IEEE Computer Society, 2009.

[26] ISO / IEC 25010, International Standard. Systems and Software Engineering - Systems and Software

Quality Requirements and Evaluation, 2011.

[27] H. Wu et al, “Maintenance Effort Estimation for Open Source Software: A Systematic Literature Review”

in IEEE International Conference on Software Maintenance and Evolution, 2016.

[28] S. K. Khatri and I. Singh, “Evaluation of Open Source Software and Improving its Quality” in the 5th

International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future

Directions) (ICRITO), 2016.

[29] ISO / IEC 9126, International Standard. Information Technology - Software engineering - Product

quality, 2001.

[30] A. Adewurmi et al, “Evaluating Open Source Software Quality Models against ISO 25010” in IEEE

International Conference on Computer and Information Technology; Ubiquitous Computing and

Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing,

2015.

[31] G. Polancic et al, “Comparative Assessment of Open Source Software Using Easy Accessible Data” in

IEEE 26th International Conference on Information Technology Interfaces, 2004.

http://www.iec.ch/functionalsafety/standards/page2.htm
https://www.dwheeler.com/oss_fs_eval.html

47

[32] D. Di Ruscio et al, “Supporting Custom Quality Models to Analyse and Compare Open-Source

Software”, in the 10th International Conference on the Quality of Information and Communications

Technology, 2016.

[33] F.W. Duijnhouwer, C. Widdows, "Capgemini Expert Letter Open Source Maturity Model", Capgemini,

2003, pp 1-18.

[34] M. Soto, and M. Ciolkowski, “The QualOSS open source assessment model measuring the performance

of open source communities”. In Proceedings of the 3rd ESEM, pp. 498–501, 2009.

[35] R. Glott et al, “Quality models for Free/Libre Open Source Software - towards the “Silver Bullet”?” in

the 36th EUROMICRO Conference on Software Engineering and Advanced Applications, 2010.

[36] D. Izquerdo-Cortazar et al, “Towards Automated Quality Models for Software Development

Communities: the QualOSS and FLOSSMetrics Case” in 7th International Conference on the Quality of

Information and Communications Technology, 2010.

[37] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating system concepts. Hoboken, NJ: Wiley, 2013.

[38] L. Hatton, “Safer Language Subsets: An Overview and Case History, MISRA C” in Information and

Software Technology, pp. 465 - 472, 2004.

[39] MISRA-C Guidelines for the Use of the C Language in Critical Systems Motor Industry Software

Reliability Association, UK, 2004.

[40] T. Glib, Software Metrics 1977.

[41] L. Rosenberg, T. Hammer and J. Shaw, “Software Metrics and Reliability” in the 9th International

Symposium on Software Reliability Engineering (ISSRE), 1998.

[42] Z. Bukhari et al, “Software Metric Selection Methods: A Review” in the 5th International Conference on

Electrical engineering and Informatics, 2015.

[43] A. P. Mathur, Foundations of Software Testing, second edition. Pearson Education India, 2008.

[44] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage and adequacy,” in ACM Computing

Surveys, vol. 29, no. 4, 1997.

[45] H. Hemmaty, “How Effective Are Code Coverage Criteria”, in IEEE International Conference on

Software Quality, Reliability and Security, 2015.

[46] C. Ebert and J. Cain, “Cyclomatic Complexity” in IEEE Software, vol. 33, 2016.

[47] ChibiOS [Online]
Available: www.chibios.org
Accessed: Apr. 6, 2017.

[48] ContikiOS [Online]
Available: www.contiki-os.org
Accessed: Apr. 18, 2017.

http://www.chibios.org/
http://www.contiki-os.org/

48

[49] A. Dunkels et al, “Contiki - a Lightweight and Flexible Operating System for Tiny Networked Sensors”

in the 29th Annual IEEE International Conference on Local Computer Networks, pp. 455-462, 2004.

[50] R. H. Pierce, “Preliminary Assessment of Linux for Safety Related Systems”, HSE contract research

report RR011/2002. London: 2002.

[51] ChibiOS/RT Reference Manual
Available: http://chibios.sourceforge.net/docs3/rt/index.html
Accessed: Apr. 27, 2017.

[52] ChibiOS Book: The Ultimate Guide
Available: http://www.chibios.org/dokuwiki/doku.php?id=chibios:book:start
Accessed: Apr. 27, 2017.

[53] ChibiOS System states
Available: http://www.chibios.org/dokuwiki/doku.php?id=chibios:book:kernel#system_states
Accessed: Apr. 27, 2017.

[54] ChibiOS Binary semaphore
Available:

http://www.chibios.org/dokuwiki/doku.php?id=chibios:book:kernel_semaphores#binary_semaphores
Accessed: Apr. 27, 2017.

[55] ChibiOS General Architecture
Available: http://wiki.chibios.org/dokuwiki/doku.php?id=chibios:documents:architecture
Accessed: Apr. 27, 2017.

[56] ChibiOS Test suite
Available: http://chibios.sourceforge.net/html/testsuite.html
Accessed: Apr. 27, 2017.

[57] ChibiOS TestHAL
Available: https://github.com/ChibiOS/ChibiOS/tree/master/testhal
Accessed: Apr. 27, 2017.

[58] ChibiOS Community Overlay
Available: http://wiki.chibios.org/dokuwiki/doku.php?id=chibios:community:guides:community_overlay
Accessed: Apr. 27, 2017.

[59] ChibiOS Semaphores
Available: http://www.chibios.org/dokuwiki/doku.php?id=chibios:book:kernel_semaphores
Accessed: Apr. 27, 2017.

[60] ChibiOS Mutexes and Condition Variables
Available: http://www.chibios.org/dokuwiki/doku.php?id=chibios:book:kernel_mutexes
Accessed: Apr. 27, 2017.

[61] ChibiOS Integration guide
Available: http://www.chibios.org/dokuwiki/doku.php?id=chibios:articles:rt_integration_guide
Accessed: Apr. 27, 2017.

http://chibios.sourceforge.net/docs3/rt/index.html
http://www.chibios.org/dokuwiki/doku.php?id=chibios:book:start
http://www.chibios.org/dokuwiki/doku.php?id=chibios:book:kernel#system_states
http://www.chibios.org/dokuwiki/doku.php?id=chibios:book:kernel_semaphores#binary_semaphores
http://wiki.chibios.org/dokuwiki/doku.php?id=chibios:documents:architecture
http://chibios.sourceforge.net/html/testsuite.html
https://github.com/ChibiOS/ChibiOS/tree/master/testhal
http://wiki.chibios.org/dokuwiki/doku.php?id=chibios:community:guides:community_overlay
http://www.chibios.org/dokuwiki/doku.php?id=chibios:book:kernel_semaphores
http://www.chibios.org/dokuwiki/doku.php?id=chibios:book:kernel_mutexes
http://www.chibios.org/dokuwiki/doku.php?id=chibios:articles:rt_integration_guide

49

[62] ChibiOS Scheduler
Available: http://www.chibios.org/dokuwiki/doku.php?id=chibios:book:kernel_scheduler#the_scheduler
Accessed: Apr. 27, 2017.

[63] ChibiOS kernel configuration options

Avaialble: http://chibios.sourceforge.net/html/group__config.html
Accessed: Apr. 27, 2017

[64] ChibiOS HAL configuration options

Available: http://chibios.sourceforge.net/html/group___h_a_l___c_o_n_f.html

Accessed: Apr. 27, 2017

[65] B. Kotze et al, “Reconfigurable Navigation of an Automatic Guided Vehicle Utilising omnivision” in

the 6th Robotics and Mechatronics Conference, 2013.

[66] J.H. Lee et al, “Indoor Navigation for an Automatic Guided Vehicle with Beacon Based Relative

Distance Estimation”, in the 8th International Conference on Ubiquitous and Future Networks (ICUFN), 2016.

[67] A. N. Shazwani et al, “Vehicle Detection Based on Underneath Vehicle Shadow Using Edge Features” in

the 6th International Conference on Control System, Computing and Engineering, 2016.

[68] A. Dunkels, “Design and Implementation of the LwIP TCP/IP Stack”, Swedish Institute of Computer

Science, 2001.

http://www.chibios.org/dokuwiki/doku.php?id=chibios:book:kernel_scheduler#the_scheduler
http://chibios.sourceforge.net/html/group__config.html
http://chibios.sourceforge.net/html/group___h_a_l___c_o_n_f.html
http://chibios.sourceforge.net/html/group___h_a_l___c_o_n_f.html

50

Appendices

Appendix A – Semi-formal methods IEC 61508

Technique/Measure SIL 1 SIL 2 SIL 3

1 Logic/function block diagarams R R HR

2 Sequence diagrams R R HR

3 Data flow diagrams R R R

4 Finite state machines / state transition diagram R R HR

5 Time Petri nets R R HR

6 Entity-relationship-attribute data models R R R

7 Message sequence charts R R R

8 Decision/turth tables R R HR

9 UML R R R

NR - Not Recommended

R - Recommended

HR - Highly Recommended

51

Appendix B – Software architectural design IEC 61508

Technique/Measure
SIL
1

SIL
2

SIL
3

Architecture and design feature

1 Fault detection - R HR

2 Error detecting codes R R R

3a Failure assertion programming R R R

3b
Diverse monitor techniques (with independence between the monitor and the monitored
function in the same computer)

- R R

3c
Diverse monitor techniques (with separation between the monitor computer and the
monitored computer)

- R R

3d Diverse redundancy, implementing the same software safety requirements specification - - -

3e
Functionality diverse redundancy, implementing different software safety requirements
specification

- - R

3f Backward recovery R R -

3g Stateless software design () - - R

4a Re-try fault recovery mechanisms R R -

4b Graceful degradation R R HR

5 Artificial intellegence - fault correction - NR NR

6 Dynamic reconfiguration - NR NR

7 Modular approach HR HR HR

8 Use of trusted/verified software elements (if available) R HR HR

9
Forward traceability between the software safety requirements specification and software
architecture

R R HR

10 Backward traceability between the software safety requirement and software architecture R R HR

11a Structured diagrammatic methods HR HR HR

11b Semi-formal methods R R HR

11c Formal design and refinement methods - R R

11d Automatic software generation R R R

12 Computer-aided specification and design tools R R HR

13a Cyclic behaviour, with guaranteed maximum cycle time R HR HR

13b Time-triggered architecture R HR HR

13c Event-driven, with guaranteed maximum response time R HR HR

14 Static resource allocation - R HR

15 Static synchronization of access to shared resources - - R

NR - Not Recommended

R - Recommended

HR - Highly Recommended

52

Appendix C – Software testing and integration IEC 61508

Technique/Measure SIL 1 SIL 2 SIL 3

1 Probabilistic testing - R R

2 Dynamic analysis and testing R HR HR

3 Data recording and analysis HR HR HR

4 Functional and black box testing HR HR HR

5 Performance testing R R HR

6 Model based testing R R HR

7 Interface testing R R HR

8 Test management and automation tools R HR HR

9
Forward traceability between the software design specification and the
module and integration test specification

R R HR

10 Formal verification - - R

NR - Not Recommended

R - Recommended

HR - Highly Recommended

