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Abstract

We present ALMA 12CO (J=1-0, 3-2 and 6-5), 13CO (J=1-0), and C18O (J=1-0) observations of the local
ultraluminous infrared galaxy (ULIRG) IRAS13120-5453. The morphologies of the three isotopic species differ,
as 13CO shows a hole in emission toward the center. We measure integrated brightness temperature line ratios of
12CO/13CO�60 (exceeding 200) and 13CO/C18O�1 in the central region. Assuming optical thin emission,
C18O is more abundant than 13CO in several regions. The abundances within the central 500 pc are consistent with
the enrichment of the interstellar medium via a young starburst (<7Myr), a top-heavy initial mass function, or a
combination of both.

Key words: galaxies: abundances – galaxies: individual (IRAS 13120-5453) – galaxies: interactions – galaxies:
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1. Introduction

Isotopic abundances in the interstellar medium (ISM) can be
used as a tracer of stellar nucleosynthesis. The 12C/13C isotope
ratio is an important tracer of the relative degree of primary
versus secondary processing in stars. The 12C atom is a primary
species produced in intermediate- and high-mass stars (e.g.,
Prantzos et al. 1996). Massive stars are also responsible for the
majority of 16O and 18O. The 13C atom is an intermediary
species that is transformed into 14N. In the red giant phase of
low/intermediate-mass stars, 13C is lifted to the envelope via
convection (Wilson & Matteucci 1992) and eventually released
into the ISM. Massive stars are short-lived and start to enrich
the ISM in 12C in ∼106 years, while 13C enrichment needs
∼109 years (e.g., Vigroux et al. 1976).

Ultra/Luminous Infrared Galaxies (ULIRGs) are extreme
starbursts offering great laboratories in which to study high-
mass star formation. It has long been observed that 13CO
emission is unusually weak relative to 12CO (∼20–40; Aalto
et al. 1991; Casoli et al. 1992) compared to that from normal
disk galaxies (∼10; e.g., Paglione et al. 2001). Pioneering work
by Casoli et al. (1992) and Henkel & Mauersberger (1993)
presented several scenarios by which to explain this unusual
emission ratio, such as: optical depth effects; abundance
variations via some mechanism such as photo-dissociation,
inflowing low-metallicity gas, or enrichment of the ISM; and a
two-phase molecular medium consisting of a diffuse envelope
where 12CO can better self-shield than 13CO. Recent radiative
transfer modeling of the molecular gas in several ULIRGs is
consistent with high [12CO]/[13CO] abundance6 ratios (>90;
Sliwa et al. 2013, 2014; Henkel et al. 2014; Papadopoulos
et al. 2014; Tunnard et al. 2015).

Recent work on the [16O]/[18O] abundance in ULIRGs using
Herschel H2O and OH observations have shown varying values
from �30 for Mrk231 (González-Alfonso et al. 2010), around

50–150 for Arp220 (González-Alfonso et al. 2014) and Zw
049.057 (Falstad et al. 2015), and�500 for Arp 299 (Falstad et al.
2017) and NGC 4418 (González-Alfonso et al. 2014). König et al.
(2016) used Atacama Large Millimeter/submillimeter Array
(ALMA) CO data to show that the [16O]/[18O]�900
for NGC1614. The high [16O]/[18O] abundance ratios are
believed to be due to inflowing gas and the low values to stellar
processing.
IRAS13120-5453 (dubbed the “Yo-yo”) is a nearby

ULIRG (DL=144Mpc) with a far-infrared luminosity
(LFIR=1.5×1012 Le; Sanders et al. 2003) similar to that of
Arp220. The system has been classified as a post-merger
(Haan et al. 2011). X-ray emission is consistent with a
Compton-thick active galactic nucleus (AGN; Iwasawa
et al. 2011) and contributes ∼18% to the infrared luminosity
(Sturm et al. 2011). The Herschel Fourier Transform Spectro-
meter (FTS) observed multiple high-J CO lines as well as C I,
H2O, N II, OH and more (Mashian et al. 2015; Rosenberg et al.
2015; Pearson et al. 2016; Privon et al. 2017). Privon et al.
(2017) shows that the HCN/HCO+ line ratio observed with
ALMA suggests an increased HCN abundance via turbulent
heating.
In this Letter, we present new ALMA Cycle2 observations

of IRAS 13120-5453 where we have detected three 12CO
transitions, 13CO, and C18OJ=1–0. The morphology of the
three species differs and offers insight into the mechanism that
may be controlling the [12CO]/[13CO] ratio. We show that
massive stars have enriched the ISM in 12C and 18O and drive
the observed line ratios in IRAS13120-5453.

2. Observations and Line Ratios

ALMA was used to observe IRAS 13120-5453 in Cycle 2
using Bands 3, 7, and 9 (Table 1). We calibrated all data sets
manually in CASA v4.5.3 (McMullin et al. 2007) using
standard calibration steps. We implemented two iterations of
phase-only self-calibration on the 12CO data sets, which did not
significantly alter the morphology of IRAS 13120-5453. We
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6 Square brackets denote an abundance ratio, while all other ratios are
integrated brightness temperature ratios.
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CLEAN the data cubes using a Briggs robust weighting of 0.5
down to 1σ level with channels widths of 20 or 35 km s−1.
Integrated intensity maps were created using the CPROPs
(Rosolowsky & Leroy 2006) masking routine7 and only
channels that contained masked emission were included down
to 1.5σ. All maps were primary-beam corrected (Figure 1).

All three 12CO transitions have similar morphologies with a
single nucleus.

The 13COJ=1–0 emission is more interesting, with
no emission above 1.5σ near the central nucleus
(∼0 85×0 3=590 pc×210 pc) and two relatively strong
emission regions outside of the nucleus. The region lacking
emission is within the starburst region (0.5 kpc) measured by
Privon et al. (2017). Interestingly, the C18O emission is
relatively strong where there is no 13CO emission. In the
central 0 3 spectrum (Figure 2), it is evident that C18O is
stronger than 13CO. We note that C18O may be partially
contaminated by HNCO (50,5−40,4) and several higher-energy
transitions that lie on top of the C18O line. Along a line of sight,
the maximum contamination is likely 30% determined from the
peak of the HNCO (50,5−40,4) transition; however, we do not
make any corrections since this is an upper limit to the
contamination and may only contribute to part of the C18O line
profile.

Selective UV photo-dissociation of the rare CO isotopolo-
gues should affect both 13CO and C18O, with the nominally
rarer C18O affected the most. Thus, it could not produce the
observed relative line intensity ratio variations between them,
let alone boost the C18O abundance to be higher than 13CO in
the inner 500pc of IRAS 13120-5453. If optical depth effects
were causing the ring, C18O should also be observed in a ring
since both 13CO and C18O are assumed to be optically thin. The
Band 3 observations, observed 19 days apart, have similar uv-
coverage, adding confidence to the observed differences in
morphology and corresponding intensities between the lines.
The three 12CO maps (Figure 1) also show that as we go to a
higher resolution (J=1-0J=6-5) we do not see a ring
in 12CO.

Integrated brightness temperature I T dVBò=( ) line ratio
maps can offer some insight into the conditions of the

molecular gas. We create the following line ratios maps:
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We match the 12CO, 13CO, and C18OJ=1–0 maps to an
angular resolution of 0 60×0 45. We then create line ratio
maps by cutting emission below 2σ in each map and converting
the units from Jybeam−1 km s−1 to K(TB) km s−1 (Figure 3).
The R10 line ratio shows a wide range of values from ∼10 to

over 250. While values of around 30 are common for local
ULIRGs (e.g., Sliwa et al. 2012, 2013, 2014, 2017; Sliwa &
Downes 2017), values exceeding 100 have never been
observed before in local ULIRGs. The Y10 line ratio ranges
from 0.2 to over 4. Values below 1 are rare in extragalactic
systems where normal disk galaxies have an average Y10 value
of ∼6 and normal starbursts show Y10 values of ∼3 (Jiménez-
Donaire et al. 2017). Arp220 (Greve et al. 2009; Matsushita
et al. 2009) and the high-z ULIRG SMMJ2135-0102
(Danielson et al. 2013) show a Y10 ratio of 1, while the
LIRG merger remnant, NGC2623, shows a Y10 ratio of ∼1.8
(K. Sliwa et al., in preparation). The Z10 values range from
∼20–140 and are similar to those of Mrk231 (González-
Alfonso et al. 2010), Arp220 (González-Alfonso et al. 2014),
and Zw 049.057 (Falstad et al. 2015).

3. Extreme Isotopic Abundances

We argue that IRAS 13120-5453 has an extreme isotopic
abundance ratio when compared to normal star-forming
galaxies. The brightness temperature line ratio of species A
and B can be expressed as
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where Tex is the excitation temperature and τ is the optical
depth of the particular species and transition. For simplicity, we
assume local thermal equilibrium (LTE; i.e., T T T .ex

A
ex
B

kin= = )
(Significant radiative trapping for the abundant species can give
T Tex

A
kin= while T Tex

B
kin< .) If species B is optically thin and

Table 1
Observational Data

Parametera 12COJ=1–0 12COJ=3–2 12COJ=6–5 13COJ=1–0 C18OJ=1–0

Obs Data 2015 Jul 03 2015 Jun 07 2015 Jun 09 2015 Jul 22 2015 Jul 22
Calibrators J1107-4449 J1427-4206 J1256-0547 J1107-4449 J1107-4449

J1551-1755 Titan J1427-421 J1427-421 J1427-421
Titan J1329-5608 J1329-5608 J1329-5608 J1329-5608

J1329-5608 J1315-5334 J1427-4206
Integration Time (s) 652 867 1567 3117 3117
Median PWV (mm) 2.4 0.63 0.37 3.2 3.2
Median Tsys (K) 64 135 984 82 82
Fluxb (Jy km s−1) 126 (±2) [±13] 1265 (±15) [±130] 2460 (±25) [±370] 2.21 (±0.05) [±0.2] 2.1 (±0.05) [±0.2]
rms (mJy beam−1) 1.5 (20 km s−1) 1.1 (20 km s−1) 16 (20 km s−1) 0.3 (35 km s−1) 0.3 (35 km s−1)
Resolution (arcsec) 0.58×0.35 0.39×0.29 0.25×0.16 0.55×0.41 0.55×0.41

Notes.
a Other lines present in the data will be discussed in a forthcoming paper (K. Sliwa et al., in preparation).
b Uncertainties in curved and square brackets denote measurement and calibration uncertainties, respectively.

7 The routine finds pixels greater than 3σ in two channels and then includes
emission down to some σ level around the pixel. This method is excellent at
excluding spurious noise pixels.
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Figure 1. Integrated intensity maps for IRAS13120-5453: (a) 12COJ=1–0, (b) 12COJ=3–2, (c) 12COJ=6–5, (d) 13COJ=1–0, and (e) C18OJ=1–0. The
ellipse in the bottom-left corner represents the synthesized beam.
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species A is optically thick, then
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If 12CO is optically thick, the line ratios R10 and Z10 are lower
limits to the relative abundance of 12CO to 13CO and C18O,
since the observed line ratio is attenuated by the optical depth
of 12CO. Since R10 and Z10?1, both 13CO and C18O must be
optically thin. Thus, the Y10 line ratio of <1 implies that C18O
is more abundant than 13CO in the central region; this would
still be true even if the HNCO contamination were to
reach 50%.

4. Root of the Extreme Abundances

Photo-dissociation: Since C18O is bright relative to 13CO,
we can rule out selective photo-dissociation as the dominant
mechanism, since both C18O and 13CO would be destroyed by
UV radiation.

Fractionation: The most important carbon isotope exchange
is

EC CO CO C . 313 12 13 12+ + + D+ + ( )

(Watson et al. 1976), where the forward reaction dominates in
cold environments (<30 K) favoring the formation of 13CO. In
hot environments, both directions have equal probability (Roueff
et al. 2015). We use the non-LTE code RADEX (van der Tak
et al. 2007) and a Bayesian likelihood code (Kamenetzky
et al. 2012) to constrain the molecular gas physical conditions
within the ∼400 pc central region using only the 12CO
observations. We fit the 12COJ=1–0 line with a Gaussian
profile of FWHM=375 km s−1. The most probable solution is
warm, dense molecular gas with a T 130kin 77

400= -
+ K, log

(nH2)=4.2 0.0
2.4

-
+ cm−3, and log(M(H2)/Me)=7.8 0.1

1.0
-
+ . Since the

molecular gas is not cold enough for the forward reaction to
dominate, we can rule out fractionation as a possible mechanism
affecting the abundance. We also note that C18O does not
undergo fractionation and should reflect stellar processing
(Langer et al. 1984).
Infalling Gas: The merger process can drive a gas inflow

toward the nuclear regions (e.g., Hopkins et al. 2006; Kewley
et al. 2006; Ellison et al. 2008). The Galaxy has an increasing
radial gradient in the [12CO]/[13CO] abundance ratio, ranging
from 30 in the center to >100 at large radii (e.g., Milam
et al. 2005). Jiménez-Donaire et al. (2017) have shown that a
trend with [13CO]/[C18O] exists in disk galaxies as well with
an average value of 6.0±0.9. Analyses of close galaxy pairs
have shown that their metallicities are lower than similar field
galaxies (Kewley et al. 2006; Ellison et al. 2008). Rupke et al.
(2008) found that the dilution of the nuclear metallicity (Z) due
to gas inflow is Zfinal/Zinitial∼0.5; therefore, if we assume an
initial [12CO]/[13CO] ratio of 30, we would expect a final ratio
of ∼60. This would not be sufficient to explain the observed
line ratios in the central regions, particularly the brighter C18O
emission.
Nucleosynthesis: Enrichment of the ISM via massive stars is

a likely mechanism. Massive stars are the dominant sources of
12C, 16O, and 18O, while 13C is predominately released from
low/intermediate-mass stars. Simulations show that the
metallicity in the merger increases when the star formation
rate increases significantly, especially near the end of the
merger process (Torrey et al. 2012).
For nucleosynthesis enrichment to be plausible, the starburst

must be young. With a normal initial mass function (IMF) such as
the Kroupa IMF (e.g., Kroupa 2001) within ∼6Myr, all stars
>30Me will have gone supernova, ejecting material. Using the
nucleosynthesis yield calculations for core-collapse supernovae

Figure 2. Averaged spectra for (top) the central 0 3 diameter aperture scaled down by a factor of 6 and shifted up by 0.4 mJybeam−1 and (bottom) over a 3″ diameter
aperture. Identified spectral lines are marked with vertical dashed lines (z=0.03112). For HNCO, we mark the 50,5−40,4 transition.
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(CCSNe) of Nomoto et al. (2006) and assuming a total star-
forming molecular mass of 109Me and an initial metallicity
of Z=0.02 (∼Ze), the [12CO]/[13CO] value of the ejected
material after 6Myr will be ∼575, while after 7Myr, when all
stars above 25Me will have gone supernova, the [12CO]/[13CO]
will be ∼60.
If the starburst is older (>7Myr), an alternative solution is a

top-heavy IMF. Bartko et al. (2010) find a top-heavy IMF for
the Galactic center of dN/dm∝m 0.45 0.3-  . Habergham et al.
(2010) also invoke a top-heavy IMF to explain the excess of
CCSNe in interacting/mergers galaxies when compared to
isolated galaxies. Assuming that only stars of 10–130Me will
eject material via CCSNe, a Kroupa IMF will produce a
[12CO]/[13CO] abundance of 40 while a flat, top-heavy IMF
(fm∝m0) will produce a [12CO]/[13CO] abundance of 270.
While a flat IMF is an arbitrary choice, if the starburst is older
than ∼6 Myr a top-heavy IMF of some variety is required to
explain our observed abundances in the central region. We also
note that a combination of both a young-starburst and a top-
heavy IMF is also plausible. Future work into the star
formation history of IRAS 13120-5453 is required to clarify
the starburst-age/IMF degeneracy.
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