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Abstract

A problem in the field of computer vision is the correspondence problem, the prob-
lem of finding pixels which correspond to each other in different images. A stereo
matching algorithm is used to solve this kind of problem, and typically produces a
disparity map, or a depth map. Current approaches are often too slow to be used
in real-time, leading to the question of which algorithm is best for such purposes.

This thesis explores which approach to stereo matching is most appropriate for
real-time purposes. In addition, it is also explored what optimizations and approx-
imations can be applied in order to improve performance. This was accomplished
by implementing an Adaptive Support Weights based stereo matching algorithm in
CUDA, and exploring various approximations and performance optimizations re-
lated to it.

It is shown that Adaptive Support Weights is a good method for real-time use. This
thesis’ most significant contribution is the performance optimizations presented,
which significantly improve upon the performance of the algorithm compared to
previous work.

Keywords: Stereo vision, stereo matching, gpu, cuda, optimization, real-time, adap-
tive support weights
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1
Introduction

Humans, and other two-eyed animals, are capable of perceiving depth through a
process known as stereopsis, or stereo vision. Essentially, two different images are
compared, and conclusions are drawn from the differences. If an object is at the
same position in both views, it is far away. If the object is horizontally offset in the
views, it is close to the viewer.

In 1960, Julesz [1] showed that humans are capable of seeing 3D patterns hidden in
two images seemingly only containing noise. The images consisted of a large number
of dots, some which corresponded to the hidden shape, some which were just noise.
The implication of this is that humans are inherently capable of pairing together
dots which correspond to the same object from two horizontally offset images. Thus,
the problem of stereo correspondence was introduced.

The problem of stereo correspondence consists of finding which pixels correspond to
which in two horizontally offset images. By solving it, the pixelwise depth to the
objects shown in the images can be acquired.

Finding the depth for an image is useful for many purposes. For one, it can be used
for 3D reconstruction, the process of creating a 3D representation of a real object.
Another common use of stereo vision is robotics, where it can for example be used
for navigation [2].

A stereo matching method is used to solve the stereo correspondence problem. It is
not an easy problem to solve, with many methods having been published throughout
the years [3]. It is particularly hard to create accurate methods that are fast enough
to be used in real-time.

1.1 Motivation

In this section, a problem that requires a fast stereo matching algorithm is described.
The problem is related to creating a system to assist drivers of logging trucks to
load the truck with logs.

A certain type of logging truck has an arm that can be used to pick up logs. Such
a logging truck is shown in Figure 1.1. This arm can be controlled from the small
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1. Introduction

Figure 1.1: A logging truck with an arm which can be used to pick up logs.

cabin in the back of the truck, but also via remote control.

It would be beneficial if the driver could load the truck without having to exit the
driver’s cabin. For one, it could potentially speed up the process of loading logs.
But it could also lead to the removal of the arm cabin in future truck models, saving
money and resources.

The problem is that it is hard to control the arm from the position of the driver’s
cabin. Specifically, it can be hard to get a good viewpoint of the logs and the arm.
A simple solution would be to mount cameras on the truck, and deliver video feeds
from them to a screen in the driver’s cabin. This leads to the question of whether
other systems to assist the driver could be implemented.

Specifically, it was suggested to use stereo vision. The depth information retrieved
could then either be used for a 3D reconstruction of the scene, or simply to add
assisting overlays to the video feeds. Since the arm and logs are moving around, a
real-time stereo matching algorithm is necessary.

1.2 Problem Definition

In order to select an appropriate solution for the problem described in Section 1.1, it
is necessary to perform a study on currently existing state of the art stereo matching
algorithms. In particular, algorithms which are fast enough to be used in real-time
is of interest.

The goal of this thesis is to explore the following questions:

• What stereo matching algorithm is most suited for real-time use, while still
creating high-quality results?

• What approximations and optimizations can be applied to improve upon ex-
isting work?

These questions are explored through the implementation of a state of the art stereo
matching algorithm. A ranking of many such algorithms is available at the Middle-
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1. Introduction

bury Stereo Vision Page1.

At the time of writing, an algorithm by Kowalczuk et al. [4] is the top-ranked one in
terms of speed. This algorithm is also the one that was chosen to be implemented
and explored in thesis. The motivation for this choice is explained in Section 4.1.

A few topics are explicitly excluded from this thesis. The first is the process of
rectification, which is briefly explained in Section 3.1.1. It is simply assumed that
perfectly rectified images will be available for use.

The second topic that is excluded is 3D reconstruction. This thesis only covers
stereo matching, how the resulting output should be used is not explored.

1vision.middlebury.edu/stereo/
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2
Previous Work

Stereo matching is an active area of research, with new algorithms being published
continuously. For this project a fast, yet accurate, method was needed. This chapter
summarizes the most relevant approaches to stereo matching.

2.1 Evaluation and Comparison

Scharstein and Szeliski [3] have created a taxonomy to compare and evaluate existing
stereo matching algorithms. Their taxonomy includes:

• Matching cost computation: A function used to assign a cost for matching two
given pixels.

• Cost (support) aggregation: The process of aggregating multiple matching
costs together to a single cost, mainly used in local algorithms.

• Disparity computation / optimization: The process of selecting disparity val-
ues for each pixel given the previously calculated costs.

• Disparity refinement: Refinement of a calculated disparity map.

They also mention that stereo matching algorithms are often separated into global
and local approaches. Local algorithms look at pixels within a local window around
the pixel being considered, while global algorithms attempt to minimize a global
cost function with smoothness constraints.

In addition to the taxonomy, they also created a platform for comparing the perfor-
mance and quality of stereo matching algorithms. This comparison is hosted at the
Middlebury Stereo Vision Page1, simply referred to as Middlebury from this point
on. Middlebury has become a standard benchmark for stereo matching algorithms,
with many modern algorithms being hosted there.

Middlebury has several ground truth datasets available. A ground truth dataset
contains stereo images with known depth for each pixel. The latest dataset at the
time of writing is the Middlebury 2014 dataset [5].

1vision.middlebury.edu/stereo/
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2. Previous Work

An alternative to Middlebury is the KITTI Vision Benchmark Suite2. Similarly to
Middlebury, they also publish ground truth datasets [6][7].

2.2 Semi-Global Matching

Hirschmuller [8] proposed a method called Semi-Global Matching (SGM ). The main
strength of SGM is that it uses a fast approximation of a global cost function. SGM
also uses mutual information as the matching cost function, which makes it more
robust against images with different illumination.

A modified version of SGM is available in OpenCV3, called StereoSGBM 4. OpenCV
is a commonly used open source computer vision library. The inclusion of SGM
makes it an easily available stereo matching solution. Some modifications are made
to the algorithm in this implementation, among other things the matching cost
function is replaced with one introduced by Birchfield and Tomasi [9].

There are several CUDA based implementations of SGM. Examples include Ernst
and Hirschmüller [10], Haller and Nedevschi [11], and recently Hernandez-Juarez et
al. [12].

2.3 Neural Networks

Žbontar and LeCun [13] introduced a stereo matching method that uses a convolu-
tional neural network to calculate the matching cost. The network was trained on
publicly available stereo image datasets with known disparity, including the Mid-
dlebury 2014 [5] and KITTI [6] [7] datasets. Two versions of the network were
developed, one designed to be fast and one designed to be as accurate as possible.

Neural networks are currently used by many of the top-ranking methods on the
Middlebury benchmark. Examples of methods that use the matching cost network
introduced by Žbontar and LeCun [13] directly include Drouyer et al. [14], Li et al.
[15], Zhang et al. [16] (only the extended variant), Kim and Kim [17] and Barron and
Poole [18]. In addition, Park and Lee [19] builds upon and improves the network.

2.4 Adaptive Support Weights

Adaptive Support Weights (ASW ) is a method introduced by Yoon and Kweon [20].
The method defines support weights for all pixels inside the local window around

2http://www.cvlibs.net/datasets/kitti/
3http://opencv.org/
4http://docs.opencv.org/3.1.0/d2/d85/classcv_1_1StereoSGBM.html
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2. Previous Work

a given pixel, for each pixel in both input images. Each support weight represents
how similar a neighboring pixel is to the pixel in question. These support weights
are then used during cost aggregation to weight the matching cost of similar pixels
higher.

Wang et al. [21] introduced a two-pass approximation of the original algorithm, to
reduce the computational complexity. A local window with dimensions w × w is
approximated as one w × 1 and one 1 × w window. The first pass uses the first
window to aggregate costs. The second pass aggregates the previously aggregated
costs, using the second window, into a final cost.

Kowalczuk et al. [4] created an efficient CUDA implementation and added a refine-
ment phase to the algorithm. The refinement phase adds a cost penalty term for
selecting disparities that differs from the expected value, given the previously se-
lected disparities in a local window. Disparities are reselected iteratively using the
continuously updated cost penalty terms.

The implementation by Kowalczuk et al. [4] currently holds the top-spot as the
fastest algorithm on Middlebury. At the same time, it is also reported to have
almost the same quality as SGM by Hirschmuller [8]. It should however be noted
that the quality is reported to be better than the SGM implementation used in
OpenCV.

2.5 Matching Cost Functions

Many matching cost functions have been proposed for stereo matching. A match-
ing cost function is responsible for calculating a cost for matching two given pixels.
Examples of simple functions include squared intensity differences and absolute in-
tensity differences [3]

Zabih and Woodfill [22] proposed the rank transform and the census transform.
These are both non-parametric local transforms, which means that they rely on
the order of pixel’s values instead of the values themselves. The rank transform
measures local intensity while the census transform summarizes local structure.

Hirschmuller and Scharstein [23] has shown that census transform was the most
robust matching cost function among the ones they tested in an evaluation of the
performance of matching costs functions for images with radiometric differences, e.g.
images with different exposure. They also state that census transform performs well
also at images without explicit radiometric differences. The reason for this is that
some implicit radiometric differences are unavoidable.

7
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3
Theory

This chapter covers the general theory behind stereo matching, the Adaptive Support
Weights (ASW ) algorithm, and the census transform matching cost function. In
addition, a brief overview of GPU programming using CUDA is provided.

3.1 Stereo Matching

Using a calibrated pair of cameras, it is possible to create an image pair showing the
same scene from slightly different viewpoints. Using the orientations and positions
of the cameras, it is possible to rectify these images so they appear on the same
image plane. This sets up the correspondence problem. By finding matching pairs
of pixels in both images it is possible to calculate their position in space.

A stereo matching algorithm is used to estimate the correspondence between the
pixels of these two input images. This section will elaborate on some steps common
to most stereo matching algorithms.

3.1.1 Epipolar Geometry and Rectification

Epipolar geometry is the relative geometry between two views. This relative geom-
etry is mainly useful for two reasons; it tells us which pixels need to be considered
for matching, and it can be used to reconstruct the scene when the pixel correspon-
dences are known. Figure 3.1 shows an example of epipolar geometry.

Knowledge of the epipolar geometry can be used to reduce the search space of a
stereo matching algorithm. Without any knowledge of the positions and orientations
of the viewpoints, a pixel in the first image could theoretically correspond to any
pixel in the other image. If the position and orientation of both views are known,
the line from the origin of one view through a given pixel projects to a line on the
other view’s image plane. This projected line is known as the epipolar line and is
shown in Figure 3.1. Hence, only pixels along the epipolar line need to be considered
for matching.

If the two images are rectified, the epipolar line is simply a row in the other image.

9
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𝑂𝐿 𝑂𝑅

𝑋0

𝑋1

𝑋2

𝑋𝐿 𝑋𝑅

Figure 3.1: An example of epipolar geometry. The line, starting from the origin of the
left view OL and continuing through the pixel on the image plane XL, is projected onto
the right image plane. This projected line is known as the epipolar line, and is shown as
a red line in the figure.

The images can be considered rectified if the only thing that differs between the views
is a horizontal offset. I.e. both views have the exact same orientation, and the same
position in y and z-axis. The epipolar line being a row is a good property, because
it improves cache-locality when fetching potential pixel candidates for matching.

Several things need to be done in order to create a rectified image pair from two
real cameras. For one, physical camera lenses distort the image, especially near the
edges. This distortion needs to be undone for the assumptions regarding epipolar
geometry to hold. The images also need to be projected onto a common image plane.
This entire process of creating rectified image pairs can be quite complicated, and is
not covered by this thesis. Interested readers can read more about camera geometry
and rectification in Multiple View Geometry in Computer Vision [24]. From this
point on, it is assumed that all image pars are perfectly rectified.

If the image pair is rectified, the pixel correspondence can be given in the form of a
disparity value. A disparity is simply a per pixel value that states how many pixels
offset the corresponding pixel is in the other image. In other words

xa + d = xb

where xa is the x-coordinate of the pixel in the first image, xb is the coordinate of
the corresponding pixel in the second image and d is the disparity. The output of
a stereo matching algorithm is usually a disparity map, an image with a disparity
value for each pixel.

Given a disparity value and the orientation and positions of the cameras, it is possible
to calculate each pixel’s position in space. Consider the pixel XL in Figure 3.1. A

10



3. Theory

disparity value of 0 would indicate that it represents the point X0, a disparity of 1
would indicate the point X1, etc.

3.1.2 Structure of a Stereo Matching Algorithm

The stereo correspondence problem is an optimization problem. A concept some-
times used is that of Disparity Space Image (DSI ), which is a 3-dimensional space
(x, y, d) which represents the confidence that a certain pixel (x, y) corresponds to
the disparity d [3]. The goal of a stereo matching algorithm is then to produce a
disparity map that best describes an optimal surface in the DSI according to some
measure, such as maximizing confidence and ensuring that the surface is smooth [3].

Two common classes of stereo matching algorithms are local and global ones. Local
algorithms only look at pixels within a local window around the pixel being con-
sidered. A global algorithm on the other hand attempts to minimize a global cost
function that combines the DSI and surface smoothness constraints [3]. The algo-
rithm implemented for this thesis is an ASW algorithm, which is a local method.
For this reason, mainly local methods will be detailed in this chapter.

Scharstein and Szeliski [3] have presented a taxonomy for stereo matching algo-
rithms. This taxonomy identifies parts common to many algorithms, they are as
follows:

• Matching cost computation: A function used to assign a cost for matching two
given pixels.

• Cost (support) aggregation: The process of aggregating multiple matching
costs together to a single cost, mainly used in local algorithms.

• Disparity computation / optimization: The process of selecting disparity val-
ues for each pixel given the previously calculated costs.

• Disparity refinement: Refinement of a calculated disparity map.

Matching cost computation and cost aggregation can be seen as one larger step, in
this thesis called cost computation. One can view this step as the process of creating
the DSI in which an optimal surface needs to be found.

Similarly, disparity computation and disparity refinement can also be seen as a larger
step. This step is referred to as disparity selection in this thesis. The goal of this
step is to select the optimal surface in the DSI.

3.1.3 Cost Computation

Cost computation is the part of the stereo matching algorithm where costs are as-
signed to different candidate disparities for a given pixel. This incorporates matching
cost computation and cost aggregation.

11



3. Theory

A matching cost function calculates the cost of matching a pixel with another pixel.
Common simple functions include [3] squared intensity differences:

f(IA, IB) = (IA − IB)2,

and absolute intensity differences:

f(IA, IB) = |IA − IB|,

where IA and IB are the scalar intensities of two pixels. A common version for pixels
with multiple color channels is sum of absolute differences (SAD), which calculates
the absolute difference for each channel and then sums the results.

These simple matching cost functions do not perform well when the input images
have different exposure. If one image is darker than the other, methods that compare
intensity will likely not match correct pixels. In order to match such images, other
more complex matching cost functions are available. Examples include the census
transform [22] and mutual information [25]. Census transform is described in more
detail in Section 3.2.5.

𝐏 𝐏
d=0d=1d=2d=3

Left Image Right Image

Figure 3.2: An example showing a problem with simple matching cost functions. Pixels
P and P̂ are in the same location in both images. The correct disparity (d) for P would
be 1, as the orange block is offset by 1 pixel in the right image. However, both disparity
1 and 3 will have the same cost as the pixels are the same color.

Another problem that can appear with simple matching cost functions is that invalid
pixels might have the same cost as the correct one. Consider a scene containing
something with a vertically striped pattern, as shown in Figure 3.2. Given a simple
matching cost function that only compares intensity, the same cost will be given for
each stripe in the scene. In local methods, this problem is often countered using
cost aggregation. Global methods often skip cost aggregation and solve the problem
using its global cost function instead [3].

Cost aggregation is a process in which multiple matching costs are aggregated to-
gether into a single cost, which is then defined as the cost for matching two pixels
together. A simple way to accomplish this is to define a window around each pixel,

12



3. Theory

calculate the matching costs for all pixels inside the window and then sum the costs
into a final cost. In other words, comparing image patches instead of single pixels.

It is important to note the assumption being made with the above cost aggregation
structure. The assumption is that all pixels in the local window are part of the
same surface, and are located at the same depth, i.e. same disparity value [20]. This
assumption breaks at edges of objects, as pixels that are not actually part of the
same surface (i.e., on a different disparity level) contribute to the final cost.

3.1.4 Disparity Selection

Disparity selection is the part of the stereo matching algorithm where disparities are
chosen, given the costs calculated in the cost computation step. This part consists
of disparity computation and disparity refinement. In local algorithms, this is often
accomplished using winner-takes-all, i.e. the disparity associated with the best cost
is taken.

𝑿𝑳
𝟎

𝑿𝑳
𝟏

𝑿𝑳
𝟐

𝑿𝑹
𝟎

𝑿𝑹
𝟏

Left Image Right Image

Figure 3.3: An example of staircasing artifacts caused by only using discrete disparity
values. Ideally the pixels in the left image should be assigned non-discrete disparity values
between X0

R and X1
R to represent the smooth surface. However, all values will be squashed

to either X0
R or X1

R, creating a staircase artifact.

A potential problem with winner-takes-all is staircasing artifacts. The best disparity
for a pixel might not be a discrete number. If costs are only calculated for discrete
disparities and winner-takes-all is used, staircasing artifacts as shown in Figure 3.3
might appear.

Disparity refinement is often a post-processing step done once the disparity com-
putation is complete. For example, this step could consist of simply blurring the
disparity map using Gaussian blur. In some situations, the problem with staircasing
artifacts can be mitigated in this step.
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3. Theory

3.2 Adaptive Support Weights

Adaptive Support Weights (ASW) is a class of local stereo matching methods orig-
inally introduced by Yoon and Kweon [20]. The original method utilizes SAD as
the matching cost function and winner-takes-all in the disparity computation step.
What makes it special is the cost aggregation step, which utilizes the so-called sup-
port weights.

3.2.1 Support Weights

In a simple local method, a window is defined around each pixel during the cost
aggregation step. The matching costs for all pixels inside the window is summed to
an aggregated cost for the center pixel. The idea behind support weights is that the
pixels inside the window are not equally important during this aggregation. Instead,
each pixel inside the window is assigned a support weight which is used to weigh its
influence on the final cost.

𝟏. 𝟎𝟎. 𝟓 𝟏. 𝟎

𝟏. 𝟎𝟎. 𝟓 𝐏

𝟎. 𝟎𝟎. 𝟎 𝟎. 𝟎

𝜴𝑷

Figure 3.4: Some example support weights in a 3x3 window, ΩP , around the pixel P .
These example weights roughly correspond to the similarity in color between P and the
pixel in question.

Each pixel is assigned a support weight for each neighboring pixel inside its local
window. These support weights signify how similar a given pixel is to the pixel in
the center of the window. An example is shown in Figure 3.4. The assumption is
that similar pixels are part of the same surface, and thus have the same disparity
value [20]. In this way pixels which potentially have a different disparity value can
be excluded from the final weight.

The reason why it is desired to remove pixels with different disparities from the final
cost is that it introduces false information. Consider the example shown in Figure
3.5. In the example the leftmost pixel belongs to a different object (at a different
disparity level). The leftmost pixel adds the constraint that for an optimal cost the
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𝐏 𝐏

Left Image Right Image

𝐏 𝐏

Figure 3.5: Example of the problem with assuming all pixels inside the support window
belong to the same surface. The blue and orange column are at different depth, and
are therefore horizontally offset between the two images. The pixel P corresponds to P̂ ,
however the leftmost pixel in the 3x1 window differs between the images.

leftmost pixel should be blue in the other image, which is not the case for the correct
disparity.

Specifically, the support weight for pixel q in the local window Ωp around p is given
by:

w(p, q) = exp(−∆c(p, q)
γc

− ∆g(p, q)
γg

),

where ∆c is a function calculating the difference in color between the pixels and ∆g

is a function that returns the distance between the pixels’ locations. The constants
γc and γg are used to control how much the previously mentioned functions should
affect the total support weight.

Specifically, ∆g is defined as the Euclidean distance between the coordinates of p
and q, i.e.

∆g(p, q) =
√

(p.x− q.x)2 + (p.y − q.y)2.

∆c is defined as the Euclidean distance between the colors in CIELAB color space1.

The support weights are used during cost aggregation to weight the influence of
different pixels’ matching cost. Specifically, the following expression describes how
the cost for matching two pixels is calculated in ASW:

C(p, p̂) =

∑
q∈Ωp,q̂∈Ωp̂

w(p, q)w(p̂, q̂)δ(q, q̂)∑
q∈Ωp,q̂∈Ωp̂

w(p, q)w(p̂, q̂)

The special sum syntax means that each location in the support windows Ωp and Ωp̂

is visited once, i.e. q and q̂ will always correspond to the same location relative to
the center of the support window. δ is the matching cost function. In other words,

1https://en.wikipedia.org/wiki/Lab_color_space

15

https://en.wikipedia.org/wiki/Lab_color_space
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the aggregated cost is a weighted average over all matching costs in the support
windows.

3.2.2 Two-Pass Approximation

Given a local window of size w, there are w2 unique support weights per pixel in
both images. All these support weights need to be accessed when calculating the
aggregated cost for a given disparity. This means that the support weights can
either be recomputed every time they are needed, which is quite computationally
expensive. Or they can be pre-computed, which drastically increases the amount of
memory that needs to be read in order to calculate a single aggregated cost.

𝐏 𝐏

First Pass Second Pass

Figure 3.6: A 5x5 support window is approximated in a two-pass process. In the first
pass a 1x5 window is used to calculate to calculate an aggregated cost. In the second pass
a 5x1 window is used to combine the aggregated costs using the support weights.

A two-pass approximation has been proposed to improve upon this problem, by re-
ducing the number of support weights per pixel [21]. In the first pass, the aggregated
cost is calculated using 1-dimensional vertical support windows. In the second pass,
the aggregated costs from the first pass is combined using a horizontal 1-dimensional
window. The same equation, the one used to calculate C(p, p̂) in the last section,
is used for both passes. The difference is that in the second pass the matching cost
function is replaced with the aggregated cost calculated in the first pass. This ap-
proximation reduces the number of support weights that needs to be calculated per
pixel from w2 to w+w. An illustration of the approximation is shown in Figure 3.6.

Kowalczuk et al. [4] tested and compared several support weight approximations.
Overall, they found that the two-pass approximation was the most accurate one
among the ones tested. However, they also report a specific case where it fails to
produce accurate results, shown in Figure 3.7.
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𝐐

𝐏𝐑

Figure 3.7: An example of where an error is introduced with the two-pass approxima-
tion. The pixels P and Q are both blue, and thus related. However, Q is not related to R
as they are different colors. Since P obtains its information about Q through R’s vertical
window, the relationship between P and Q is lost.

3.2.3 Refinement

Kowalczuk et al. [4] have introduced an iterative refinement procedure. The pro-
cedure iteratively improves the disparity map after an initial calculation using the
original ASW method.

The concept of confidence is introduced. Confidence is calculated at the same time
as a disparity is chosen in the winner-takes-all step. Confidence is simply a number
between 0 and 1 that signifies how confident the algorithm is in a choice of disparity
for a given pixel. More precisely, the confidence for a pixel p is given by:

Fp = minCost2 −minCost1

minCost2
,

where minCost1 is the lowest cost (i.e. the cost for the selected disparity) and
minCost2 is the second lowest cost. This means that if a single choice of disparity is
significantly better than all other candidates, the confidence will be high. Conversely,
if the best disparity candidate has a cost that is just slightly better than the next
best one the confidence will be low.

The refinement procedure iteratively improves the disparity map through a number
of refinement passes. Each pass ultimately performs winner-takes-all again, choosing
new disparity values for each pixel. However, this time a cost penalty is added to
the cost for matching a given disparity. This cost penalty penalizes disparities that
deviate too much from an expected value calculated from the surrounding pixels in
a local window. Each pass also updates the confidence for each pixel after a new
disparity has been selected.

Kowalczuk et al. [4] use a statistical reasoning and a number of approximations to
come up with the expression for the cost penalty term. The last approximation they
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make is to approximate

α×

∣∣∣∣∣∣
∑

q∈Ωp

w(p, q)F i−1
q Di−1

q∑
q∈Ωp

w(p, q)F i−1
q

− d(p, p̂)

∣∣∣∣∣∣
as

α×
∑

q∈Ωp

w(p, q)F i−1
q

∣∣∣∣Di−1
q − d(p, p̂)

∣∣∣∣.
This thesis primarily focuses on the former and ignores the last approximation. This
is mainly because the author of this thesis found the former more intuitive. However,
a quick note about the difference in quality is made in Chapter 5.

The following is the expression for the cost penalty term for matching pixels p and
p̂ in iteration i:

Λi(p, p̂) = α×

∣∣∣∣∣∣
∑

q∈Ωp

w(p, q)F i−1
q Di−1

q∑
q∈Ωp

w(p, q)F i−1
q

− d(p, p̂)

∣∣∣∣∣∣
The sum is once again over each pixel q in the local window Ωp around p. The i− 1
syntax signifies that it is the value computed in the previous iteration, or for the
first refinement pass the value computed in the original ASW method. w(p, q) is the
support weight for q relative to p. F i−1

q is the confidence that the disparity assigned
to q in the previous iteration is correct. Di−1

q is the disparity assigned to q in the
previous iteration. d(p, p̂) is the disparity between p and p̂. α is a constant used to
scale the cost penalty.

The cost penalty penalizes the considered disparity, d(p, p̂), if it deviates too much
from surrounding disparities that the algorithm is confident in. The final cost for
matching pixels p and p̂ becomes:

Ci(p, p̂) = C0(p, p̂) + Λi(p, p̂),

where C0(p, p̂) is the original aggregated cost.

Similarly to the original cost expression, C0(p, p̂), the cost penalty term Λi(p, p̂)
can be approximated using the same two-pass method. However, unlike the original
cost expression which needs to be computed for each disparity candidate, the cost
penalty term only needs to be calculated once per pixel. This means that it is more
feasible to calculate the un-approximated term during refinement. Both approaches
are compared in Chapter 5.

3.2.4 Consistency Check

In addition to the refinement procedure, Kowalczuk et al. [4] also use a consistency
checking step after the initial disparity calculation and after each refinement pass.
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This consistency checks consist of comparing the calculated disparity maps from the
two available views.

Instead of only computing a disparity map for the target image (e.g. the left view),
an additional disparity must be calculated for the reference image (e.g. the right
view). Due to the way the cost function C(p, p̂) is defined (see Section 3.2.1), the
following holds:

C(p, p̂) = C(p̂, p).

This allows the already computed aggregated costs to be reused for the reference
disparity map. It is only necessary to perform the winner-takes-all step again to
create a disparity map for the reference image.

The consistency check utilizes the observation that if the pixel p in the target image
is paired with pixel p̂ in the reference image, the reverse should also hold, i.e., p̂
should be paired with p. This can be checked by comparing the values in the two
computed disparity maps.

If two pixels are not consistent, the confidence is set to 0 in both the target and
reference confidence maps. This ensures that the selected disparity is completely
ignored in the calculation of the cost penalty term during refinement, see Section
3.2.3.

3.2.5 Census Transform

The ASW method allows for many different matching cost functions to be used.
The matching cost function appears in the cost function C(p, p̂) (see Section 3.2.1)
as δ(q, q̂) and returns a cost for matching the two given pixels.

The choice of matching cost function is not obvious. Both Yoon and Kweon [20]
and Kowalczuk et al. [4] seems to utilize SAD. However, in the Middlebury entry
for the latter the description mentions a combination of census transform and a
gradient based function. For this reason, both sum of absolute differences and
census transform were implemented and compared for this thesis.

Census transform is a matching cost function introduced by Zabih and Woodfill
[22]. Unlike the sum of absolute differences and similar simple functions, it utilizes
information from surrounding pixels in a local window, somewhat similarly to cost
aggregation. This is accomplished by a pre-processing step that creates processed
images for both the target and reference image. These processed images are then
compared instead of the original ones.

The pre-processing step compares a given pixel with pixels inside a local window
around it. Specifically, the center pixel p is compared to a surrounding pixel q using

ξ(p, q) =

1 if I(q) < I(p)
0 otherwise

,

19



3. Theory
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Figure 3.8: An example 3x3 window around the pixel p. The first figure shows the
different pixels and which bit in the resulting bitmask the result will be written to. The
second figure shows the results of the comparison function ξ(p, qi) in both the image and
in the resulting bitmask.

where I(p) is the intensity of p. The result of this comparison is stored in a bitmask.
Figure 3.8 shows an example with a 3x3 window.

The matching cost is the Hamming distance between the bitmasks in the processed
images. The Hamming distance is the number of bits that differ between two bit-
masks. E.g., for:

b1 = 0010 0110

and
b2 = 0000 0100,

the Hamming distance would be 2, as two bits differ.

3.3 GPU Programming

This section gives a brief overview of some important concepts related to GPU
programming. A very brief overview of CUDA is given. In addition, the concept of
thread blocks and shared memory, which are very important for the implementation
of the ASW algorithm, are detailed.

3.3.1 CUDA

CUDA2 is a platform for developing programs for NVIDIA based GPUs. It allows
for writing GPU programs in C++, with a few extensions and limitations.

One of the central concepts in CUDA is that of a CUDA kernel. A kernel is essen-
tially a program that runs on the GPU. It can be launched directly from normal

2https://www.nvidia.com/object/cuda_home_new.html
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// CUDA kernel, indicated by __global__ keyword
__global__
void cudaAdd(int* dst, const int* src1, const int* src2, int size)
{

// Calculate this thread's index
int idx = blockIdx.x * blockDim.x + threadIdx.x;

// Kill thread if index is out of range
if (idx >= size) return;

// Add values from src1 and src2 and store in dst
dst[idx] = src1[idx] + src2[idx];

}

// CPU function that calls cudaAdd() kernel
void cpuAdd(int* dst, const int* src1, const int* src2, int size)
{

// Calculate the number of threads to start
int threadsPerBlock = 32 * 4; // 4 warps per block
int numBlocks = (size / threadsPerBlock) + 1;

// Call CUDA kernel
cudaAdd<<<numBlocks, threadsPerBlock>>>(dst, src1, src2, size);

// Synchronize to ensure execution of cudaAdd() is finished
cudaDeviceSynchronize();

}

Listing 1: Example of a simple CUDA kernel and a function that calls it.

C++ code running on the CPU, however the number of threads and how they are to
be configured need to be specified. An example kernel is shown in Listing 1.

3.3.2 Thread Blocks

A CUDA kernel needs more information to launch than a normal C++ function.
Specifically, the number of threads and their configuration needs to be known.

Consider Listing 1. The kernel cudaAdd() is responsible for adding the two size-
dimensional arrays src1 and src2, then storing the output in dst. However, the
kernel itself does not know how many threads to launch. That depends on the size
of the arrays in this case. For this reason, two parameters that control the number
of threads must be supplied, as can be seen in the following example:

cudaAdd<<<numBlocks, threadsPerBlock>>>(/* ... */ );
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CUDA kernels are launched in blocks, with a set number of threads per block. Both
the number of threads per block and the amount of blocks itself does not need to be
scalars. It is possible, and quite common, to define a 2D or 3D grid of blocks with
an internal 2D or 3D arrangement of threads. E.g., 10x2 blocks with 16x16 threads.

One last thing of note regarding threads is the concept of coalesced memory accesses.
Essentially, if 32 threads access consecutive, aligned memory it can be performed in
a single transaction3. This is important to consider when choosing block sizes.

3.3.3 Shared Memory

On a CPU, it is typically expensive to synchronize resources between threads, on
a GPU different rules apply. Some sorts of synchronization can be very expensive,
while others are very cheap. One type that is very cheap is shared memory.

Shared memory is a type of memory on a GPU that is shared between threads in
a block. In other words, threads in the same block can very quickly and efficiently
communicate to each other through this shared memory. A common usage, which
is also utilized for the ASW implementation, is to have a 2D block read a pixel each
into shared memory. That way a thread can access many pixels from an image,
while only having read one.

3devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/
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4
Implementation

This chapter covers the implementation of an Adaptive Support Weights based stereo
matching algorithm with the refinement procedure designed by Kowalczuk et al. [4].
This includes the structure of the algorithm and how it is organized to run on GPUs.
It also details various performance optimizations to the algorithm.

4.1 Method

This section aims to give a brief overview of the methodology used in this thesis.
Among other things, the choice of algorithm will be motivated.

An implementation of an ASW algorithm was made. Specifically, the implementa-
tion is heavily inspired by the one made by Kowalczuk et al. [4]. The main reason it
was chosen was because it was ranked as the fastest algorithm on Middlebury at the
time, while still producing quite high-quality results. The other potential choices
of algorithms included Semi-Global Matching (SGM) [8] and neural network based
approaches.

According to results reported on Middlebury, the neural network based approaches
produce very high quality disparity maps. A potential candidate for this project
was the fast network developed by Žbontar and LeCun [13], which was reported
to have an excellent quality to runtime ratio. However, the runtime itself was still
longer than for the fastest algorithms. Some optimization would have been needed
to make it suitable for real-time use.

In order to improve the runtime of a neural network based approach, it would likely
be necessary to create and train a faster network. We suspected that it would be
too huge an undertaking to accomplish this while still developing the rest of the
stereo matching algorithm. For this reason, all neural network based approaches
were excluded from consideration.

As mentioned, an SGM algorithm was also considered. As shown on Middlebury,
the quality of SGM is slightly higher than for the chosen algorithm. However,
even though previous CUDA based implementations of SGM had been made, it was
unclear if it would perform as well as a fast ASW based approach. For this reason, it
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was decided to not implement SGM. But it should be noted that it would probably
also have been an excellent choice.

For matching cost functions, census transform and sum of absolute differences were
implemented. The motivation for the choice of census transform over other more
complicated functions was its robustness [23], and the fact that Kowalczuk et al. [4]
was using it according to their Middlebury entry.

To test a stereo matching algorithm some kind of ground truth data is necessary.
For this thesis, the Middlebury 2014 dataset [5] was used. The generated disparity
maps were compared with the ground truth in this dataset in order to measure the
quality.

4.2 Structure

The stereo matching algorithm described in this thesis is split into two distinct
phases, aggregation and refinement. Figure 4.1 shows a diagram of these phases and
what the input and output of each phase is.

Target & Reference 
Input Images

Aggregation Phase

Refinement Phase

Target & Reference 
Disparity Images

Target & Reference 
Confidence Images

Cost Volume

Target & Reference 
Disparity Images

Multiple 
Iterations

Figure 4.1: The different phases in the algorithm. Orange boxes represent data struc-
tures, blue boxes represent computational phases of the algorithm. The dotted line at the
bottom signifies that multiple iterations of the refinement phase can be run.

The following sections will give an overview of what each phase consists of.

4.2.1 Aggregation Phase

The aggregation phase is the part of the algorithm where the initial cost volume,
disparity maps and confidence maps are calculated. Figure 4.2 shows a diagram
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over the various steps in this phase. The aggregation and winner-takes-all steps
essentially correspond to the original ASW algorithm by Yoon and Kweon [20].
The consistency check step and the confidence images are extensions needed for the
refinement phase introduced by Kowalczuk et al. [4].

Target & Reference 
Input Images

Aggregation

Cost Volume

Target Winner-
Takes-All

Reference Winner-
Takes-All

Consistency Check

Target Disparity

Target Confidence

Reference Disparity

Reference Confidence

Target & Reference 
Disparity Images

Target & Reference 
Confidence Images

Aggregation Phase

Cost Volume

Figure 4.2: The different steps of the aggregation phase. Orange boxes represent data
structures, blue boxes represent computational steps.

A number of different versions of the aggregation step are tested. The two-pass
approximation, described in Section 3.2.2, is compared with the non-approximated
original approach. For the two-pass approximation, both SAD and census transform
is used. However, the non-approximated approach is only implemented using SAD.

The goal of the aggregation step is to produce a cost volume. The cost volume is a
structure containing the aggregated costs for matching each pixel in the target image
with each potential disparity candidate. Or, put differently, contains the results of
C(p, p̂) (see Section 3.2.1) for all pixels p in the target image and all pixels p̂ inside
the disparity range considered. Thus, the cost volume uses a lot of memory, this is
explored more in depth in Section 4.3.3.

The entire cost volume needs to be kept in memory, because it is used in the refine-
ment phase. In the original ASW method, cost calculation and disparity selection
(winner-takes-all) could be performed intermittently, only storing the best disparity
and cost. However, since the aggregated costs are accessed multiple times during
refinement, it is advantageous to store them instead of recalculating them each time
they are needed. Even more so because calculating the aggregated costs is the most
expensive part of the entire algorithm [4].
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4.2.2 Refinement Phase

The refinement phase is the part of the algorithm where the disparity maps are re-
fined using the process described by Kowalczuk et al. [4]. Figure 4.3 shows a diagram
over the parts in this phase. It should be noted that unlike the aggregation phase,
the refinement phase can be run multiple times. Running it one time corresponds
to one iteration of refinement, etc.

Target & Reference 
Input Images

Target
Refinement

Target
Cost Penalty

Target Winner-
Takes-All

Reference Winner-
Takes-All

Consistency Check

Target Disparity

Target Confidence

Reference Disparity

Reference Confidence

Target & Reference 
Disparity Images

Target & Reference 
Confidence Images

Refinement Phase

Cost Volume

Reference 
Refinement

Reference
Cost Penalty

Target & Reference 
Confidence Images

Target & Reference 
Disparity Images

Figure 4.3: The different parts of the refinement phase. Blue boxes represent compu-
tations, orange boxes data structures. The dotted lines from the output of the phase to
the input represent what changes if multiple refinement iterations are used.

Target refinement and reference refinement in Figure 4.3 are responsible for calcu-
lating part of the cost penalty term. The cost penalty term is described in Section
3.2.3. Rewritten slightly to be a function of a pixel and a given disparity value, it
is:

Λi(p, d) = α×

∣∣∣∣∣∣
∑

q∈Ωp

w(p, q)F i−1
q Di−1

q∑
q∈Ωp

w(p, q)F i−1
q

− d

∣∣∣∣∣∣,
where d is the disparity considered. It should be noted that nothing inside the sums
depends on the disparity value d, thus the following sub-expression is calculated for
each pixel: ∑

q∈Ωp

w(p, q)F i−1
q Di−1

q∑
q∈Ωp

w(p, q)F i−1
q

.

The rest of the cost penalty term is calculated in the winner-takes-all step for each
disparity candidate.

Similarly to the aggregation phase, different versions of the refinement are compared.
One version using two-pass approximation and one without is compared. In addition,
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a version using the last approximation of Kowalczuk et al. [4] is compared. This
version is based on the pseudocode presented in their paper. More information
about the approximation is available in Section 3.2.3.

4.3 Implementation Details

This section details various implementation details that need to be considered.

4.3.1 Color Difference in Support Weight Calculation

As mentioned in Section 3.2.1, during the calculation of the support weights a func-
tion, ∆c, is used to measure the difference in color between pixels. In the original
version of ASW, the Euclidean distance of the pixels in CIELAB color space was
used.

In this implementation, it was decided to use sum of absolute differences on the nor-
mal RGB images instead. This approach has the advantage of not having to convert
the images to CIELAB first. Another advantage is that CUDA has built in intrinsics
for calculating sum of absolute differences, which should improve performance. This
is explored more in Section 4.4.2.

One disadvantage to not using CIELAB is that the resulting quality of the algorithm
could suffer. This is not investigated in this thesis, so it is unknown what the cost
is.

4.3.2 Window Size

In both the aggregation and refinement phases, it is necessary to calculate the sup-
port weights. In order to calculate the support weights for a given pixel, the sur-
rounding pixels in the local window need to be read.

Assuming each pixel is represented by a thread that calculates its support weights,
there is an overlap in which pixels neighboring threads needs to access. Instead of
each thread reading all the pixels it needs itself, threads inside a thread block can
collaborate and read pixels into shared memory. See Section 3.3 for more informa-
tion.

The above-mentioned trick is used by Kowalczuk et al. [4]. They use a window size
of 33x33, or rather 33x1 and 1x33 for the two-pass approximation. Their thread
block size is 16x16. This means that each thread block needs to read a 16x48 block
of pixels into shared memory, in order to provide all threads with the image data
they need for their support weights. A simplified example is shown in Figure 4.4.

By using shared memory in this way, the choice of window size becomes tied to
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𝐏𝟐

𝐏𝟏

Figure 4.4: Simplified example of how shared memory is used. The vertical window
size is 9x1, the thread block size is 4x4, each thread in the block corresponds to a pixel
on the image. The blue thread block in the figure reads the three shown image blocks
into shared memory. This allows all threads in the blue block to access the pixels they
need to calculate the support weights directly from shared memory. The vertical window
is illustrated for P1 and P2 using red dotted boxes.

the dimensions used for the thread blocks. Selecting a good block size is quite
complicated, and among other things includes considerations related to the amount
of shared memory available. The amount of shared memory available per block
varies on factors such as the dimensions of the block and which GPU is used. The
choice of optimal window size and block size is thus not covered in this thesis.

For the implementation made for this thesis, a window size of 33x33 is used for
aggregation, and a 65x65 window is used for refinement. These are the same sizes
reported for the algorithm of Kowalczuk et al. [4] in their Middlebury entry. Unlike
their approach, the block size for the aggregation is 32x16 instead of 16x16 in order
to ensure coalesced memory accesses, see Section 3.3.2. For the refinement, the block
size is 32x32.

According to Yoon and Kweon [20], the algorithm is fairly robust against the size
of the local window. They claim it is because outliers do not have as much effect
on the total aggregated cost as they have in some other aggregation schemes. This
is a fairly good indication that the fixed window sizes are not much of a problem.
However, this is not actually validated in this thesis.
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4.3.3 Memory Usage

As mentioned in Section 4.2.1, the cost volume takes up a lot of memory. The
amount of memory needed is

O(w × h× d)

where w is the width of target image, h is the height of the target image and d is
the number of disparity candidates being considered.

To give an example, assuming Full-HD (1920x1080) images are being used, dispar-
ities within the range 0 to 300 are being considered and each cost is stored as a
32-bit floating point value. Then the total size of the cost volume would be:

1920× 1080× 300 disparities× 4 bytes/float = 2.32GiB.

This can be compared with the amount of memory available in GPUs, which at the
time of writing is 12GiB for a high-end NVIDIA GPU1 and 2GiB for a more low-end
card2.

In addition to the memory for the cost volume, some other images need to be
available in memory as well. These include the input images, the disparity maps,
the confidence maps, and images containing the sub-expression in the cost-penalty
term. However, the memory needed for these images is insignificant in comparison
to the requirements of the cost volume. Something of more concern is that the
algorithm also needs scratch memory for the two-pass approximation.

The two-pass approximation cannot read and write to the same memory at the same
time, and therefore needs scratch memory. As explained in Section 3.2.2, the first
pass of the two-pass approximation aggregates the result in a vertical window. The
second pass aggregates the result from the first pass in a horizontal window.

The cost volume can be thought of as containing layers. Each layer is an image
containing the aggregated costs for assigning each pixel in the target image a specific
disparity. I.e., there is a layer for d = 0, d = 1, etc. When calculating a single layer
using the two-pass approximation, there also needs to be a layer of scratch memory.

It is unclear if there is any benefit to calculating more than one layer at a time. An
extreme would be to calculate the whole cost volume simultaneously, then the same
amount of scratch memory as for the cost volume itself would be needed. Quanti-
tative performance results for different amount of scratch memory is presented in
Chapter 5.

1NVIDIA Titan Xp: https://www.nvidia.com/en-us/geforce/products/10series/
titan-xp/

2NVIDIA GTX 1050: https://www.nvidia.com/en-us/geforce/products/10series/
geforce-gtx-1050/
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4.3.4 Census Window Size

Using the census transform instead of sum of absolute differences brings a few im-
plementation related questions. One of them is what window size to use when
pre-processing the images.

According to the entry on Middlebury, Kowalczuk et al. [4] use 9x7 windows for their
census transform. Since 9× 7− 1 = 62 they would need at least a 64-bit integer per
pixel to store the bitmask. This might sound trivial, but it has consequences during
aggregation.

As mentioned in Section 4.3.2, pixels are stored in shared memory during aggrega-
tion. Vertical aggregation, the first step of the two-pass approximation, is the only
time the matching cost function is used. During vertical aggregation, the block size
is 32x16. This means that

32× 16× 3 blocks× 2 images = 3072 pixels
need to be stored in shared memory per block. On a NVIDIA GTX 1080 the
amount of shared memory available per block of this size is 24 KiB. The original
version requires 3072× 32 bits/pixel = 12KiB of shared memory.

Assuming the original pixels could just be replaced with the 64-bit census bitmasks,
the amount of shared memory needed would be 24 KiB, which is exactly what is
available. However, the original pixels are still required to calculate the support
weights. This means that 12KiB+ 24KiB = 36KiB of shared memory is necessary.

The kernel will still launch and run correctly even though it uses too much shared
memory. The consequence is that it is no longer possible to keep the maximum
number of threads in flight, which means that memory latency cannot be hidden as
effectively.

P

Figure 4.5: Figure showing which pixels were utilized in a 7x5 census window to fit the
result in 32 bits. The pixel P and the crossed pixels are skipped.

It was observed by the author of this thesis that if the size of the bitmask could be
reduced from 64 to 32 bit, the shared memory available per block would be enough.
A smaller window size, 7x5, could fit into 32 bit if a few pixels were skipped. This
is shown in Figure 4.5.

Both the difference in quality and performance between sum of absolute differences,
census transform with a 9x7 window and census transform with a 5x7 window are
compared in Chapter 5.
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4.4 Performance Optimization

A number of different techniques were implemented in order to improve the per-
formance of the algorithm. This section explains and motivates the performance
optimizations developed.

As was noted by Kowalczuk et al. [4], the most expensive part of the algorithm is to
calculate the cost volume in the aggregation phase. For this reason, all optimizations
mentioned in this section are primarily aimed at improving the performance of the
aggregation. Most of the optimizations are also applicable for the refinement phase,
but this is not investigated in-depth.

As mentioned in Section 4.2.1, two versions of the aggregation were tested. Of
these two versions only the one using the two-pass approximation was considered
when designing the optimizations. The two-pass approximation version consists of
two CUDA kernels, one responsible for the vertical aggregation and one for the
horizontal.

4.4.1 Simplifying Support Weight Expressions

The first of these optimizations is related to simplifying the expressions evaluated
when calculating support weights. By profiling the two CUDA kernels using NVIDIA
Nsight3, it was noted that the kernels were compute bound, i.e. the number of
compute operations should be reduced in order to improve performance.

3https://www.nvidia.com/object/nsight.html
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// Inside thread for pixel p in target image and pRef
// in reference image. I.e. p.x + d = pRef.x

for (offset from center in 1-dimensional vertical window)
{

// Read pixels from shared memory
q = readFromSharedMemory(targetImage, offset)
qRef = readFromSharedMemory(referenceImage, offset)

// Calculate support weights
swT = calcSupportWeight(p, q)
swR = calcSupportWeight(pRef, qRef)
weight = swT * swR;

// Calculate matching cost
cost = matchingCost(q, qRef)

// Update variables holding sums
accumulated += weight * cost
totalWeight += weight

}

// Normalizing the vertically aggregated cost
vertAggregatedCost = accumulated / totalWeight

Listing 2: Pseudocode for the initial inner loop in the vertical cost aggregation kernel.

Listing 2 shows some pseudocode for what the initial vertical aggregation kernel
was doing. The horizontal aggregation works more or less the same, except it uses
a horizontal window and reads the previously aggregated cost from shared memory
instead of calculating a matching cost. Since the matching cost is only part of one
of the kernels, the most promising target is the calculation of the support weights.

The support weights are defined as

w(p, q) = exp(−∆c(p, q)
γc

− ∆g(p, q)
γg

),

see Section 3.2.1 for more details. An observation that can be made is that the
support weights themselves are never used individually, only combined. I.e.

wcombined = w(p, q)w(p̂, q̂)

where p̂ and q̂ are the corresponding pixels in the reference image. According to the
laws of exponents we can simplify the combined weight as follows:

wcombined = exp(−∆c(p, q)−∆c(p̂, q̂)
γc

+ −∆g(p, q)−∆g(p̂, q̂)
γg

).
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This removes one exp() operation per iteration.

The next observation is related to ∆g(p, q), the Euclidean distance between two
pixels. It can be noted that the distance between p and q will always be the same
as the distance between p̂ and q̂, due to how the aggregated cost is defined. This
means that the combined weight can be further simplified to the following:

wcombined = exp(−∆c(p, q)−∆c(p̂, q̂)
γc

+ −2∆g(p, q)
γg

).

Among other things this removes one sqrt() operation per iteration.

One last observation can be made regarding ∆g(p, q), this one specifically in the
context of the two-pass approximation. Since the two-pass approximation only ag-
gregates in 1-dimensional vertical or horizontal windows, one of the coordinates of
p and q will always be the same. If a vertical window is used the following holds:

∆g(p, q) =
√

(p.x− q.x)2 + (p.y − q.y)2 =
√

(p.y − q.y)2 = |p.y − q.y|.

This means that the last sqrt() operation, and a multiplication, can be removed
and replaced with the faster abs() operation.

The final expression for the combined weight, for the vertical aggregation, is as
follows:

wcombined = exp(−∆c(p, q)−∆c(p̂, q̂)
γc

+ −2|p.y − q.y|
γg

).

The expression for the horizontal aggregation is the same, except the x-coordinate
is compared instead of the y-coordinate.

These simplifications might seem trivial, but they are easy to miss and are not
mentioned in previous work. As will be shown in Chapter 5, the performance is
greatly improved at no cost in quality.

4.4.2 CUDA Video SIMD Instructions

During profiling of the aggregation kernels, it was noted that a lot of time was
spent converting integers to floating point numbers. Specifically, in the inner loop
(pseudocode shown in Listing 2) the target and reference images were converted
from 1 byte per channel RGBA to 32-bit floating-point RGB. In other words, at
least 6 conversions per iteration.

Conversion from integer to floating-point is unavoidable. The final combined sup-
port weight must be a floating-point number, since it was created using an exp()
operation. The input data needs to be converted to floating-point at some point
before the exp() operation.

One option that was considered was to move the conversion to before the inner loop,
and store the floating-point RGB values in shared memory directly. However, this
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would triple the amount of shared memory necessary. As discussed in Section 4.3.4,
shared memory usage is already strained to the limit as is. This was not a feasible
option.

Another option considered was to instead delay the conversion to floating-point as
late as possible, preferably just before the exp() operation. The simplified weight
expression from Section 4.4.1 is shown below:

wcombined = exp(−∆c(p, q)−∆c(p̂, q̂)
γc

+ −2|p.y − q.y|
γg

).

γc and γg are user defined floating point numbers, so they are a limiting factor. If

−∆c(p, q)−∆c(p̂, q̂)

and
−2|p.y − q.y|

could be calculated without converting the input data to floating-point, only two
conversions per iteration would be needed. It can be trivially seen that the latter is
computable with integers, which leaves only the former expression involving ∆c.

Fortunately, NVIDIA has built-in instructions capable of calculating sum of absolute
differences on a 4-byte variable4. Using these instructions make it trivial to compute
∆c with only integers. It is worth noting that this would not be possible if Euclidean
distance was used for ∆c, as is the case in the original method by Yoon and Kweon
[20].

As a conclusion, performing more calculations using integer arithmetic and built-in
SIMD instructions allows for fewer conversions to floating-point per iteration. It
will be shown in Chapter 5 that this is a significant improvement to performance.

4.4.3 Rolling Threads

The previous optimizations focused on reducing the number of compute operations
performed, this one focuses on reducing the number of memory reads. Specifically,
the focus is on reducing the number of memory reads during the calculation of a
single layer in the cost volume. Since the kernels were initially compute bound,
this optimization is only relevant after the optimizations mentioned in the previous
sections have been implemented.

As mentioned in Section 4.3.2, and shown in Figure 4.4, each block of threads reads
three blocks of pixels from each image into shared memory. Given that thread blocks
are launched so that each pixel is assigned a thread, each pixel will be read a total
number of three times. An illustration of why this is the case is shown in Figure
4.6. The idea of this optimization is to reduce that number to one, i.e. each block
of pixels is only read once into shared memory.

4http://docs.nvidia.com/cuda/parallel-thread-execution/#video-instructions
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Figure 4.6: An example image consisting of 5x5 blocks of pixels. A thread block is
launched for each of these blocks. The three blue blocks are thread blocks, and the adjacent
grey blocks with arrows on them are memory that is read into the shared memory of that
thread block. Each pixel block in the image will be read into shared memory a total of
three times. Consider row 2 as an example.
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Figure 4.7: Figure showing a single thread block moving down a column in an image.
The first iteration it reads 2 pixel blocks into shared memory. In the coming iterations, it
only needs to read 1 pixel block into shared memory.

This is accomplished by launching fewer thread blocks, and letting each thread
block process more than one pixel block for the layer in the cost volume. More
specifically, for vertical aggregation, a single row of thread blocks is launched at the
top of the image. First, they read the necessary pixel blocks into shared memory and
calculate the aggregated costs, just like before. Unlike before, after having written
the aggregated cost they do not stop executing. Instead they move one pixel block
down in the image. At this point they already have two of the necessary pixel blocks
available in shared memory from the last iteration, so they only have to read one
new pixel block into shared memory. This continues until the threads have rolled
down the entire image. Thus the name, rolling threads. An illustration is shown in
Figure 4.7.

This approach drastically reduces the number of threads launched. Consider an
image size of 1920x1088 and a block size of 32x16. In the old approach this would
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result in 4080 thread blocks, for a total of 2088960 threads. With the new approach,
there would only be 60 thread blocks, or 30720 threads. In other words, 68 times
less threads.

The reduced number of threads can potentially be a problem. Specifically, it will
reduce performance if there are no longer enough threads to utilize the whole GPU.
One way this can be mitigated is by increasing the number of layers in the cost
volume to be computed at the same time, i.e. increasing the amount of scratch
memory.
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Results

This chapter presents the results of this study. Various options presented in this
thesis are compared, mainly in terms of quality and performance.

5.1 Testing Environment

This section details the environment in which the algorithm is tested. This includes
which hardware is used, what dataset the algorithm is run on and how the algorithm
is configured.

5.1.1 Datasets and Error Metrics

In order to test the quality of a stereo matching algorithm, ground truth data is
necessary. Ground truth implies that the true disparity map is known, i.e. the pixel-
wise depth from the cameras to scene has been measured somehow. By comparing
the results from the generated disparity map with the true one, it is possible to
calculate various error metrics.

The error metric primarily used in this thesis is the Bad 4.0 metric. This metric
is the percentage of pixels whose assigned disparity value differs with more than 4
pixels from the true disparity. In addition, occluded pixels, i.e. pixels which are
only visible in one of the input images, are ignored in this calculation.

It should be noted that the Bad 4.0 metric is calculated in code written by the
author of this thesis, and not through the Middlebury framework. The Middlebury
framework requires a Linux environment to run, while Windows was used as the
development platform for the algorithm. There might be some slight differences
in how the values are calculated, and the results might therefore differ slightly.
This should be kept in mind when comparing them with the ones presented on the
Middlebury evaluation page.

The dataset used is from Middlebury. More specifically, a subset of the 2014 dataset
[5] is used. Figure 5.1 shows the images used. They are all from the perfect dataset,
which means that the images are perfectly rectified.
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Figure 5.1: The Middlebury ground truth images used to measure quality and perfor-
mance. The leftmost column is the left image (used as target image), the middle column
is the right image (reference image), and the rightmost column is the true disparity map
(for the left image). The name of the image pairs are, from top to bottom, Adirondack,
Classroom, Jadeplant, Motorcycle, Piano, and Playtable.

The images are always downsampled to half the resolution, i.e. half the width and
height, before being fed to the algorithm. Running the algorithm on the full images
is possible, but requires too much memory to be practically feasible in a lot of
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cases. The downsampling of the images is not counted towards the running time
during performance measurement. The bad 4.0 metric is still calculated at the full
resolution, the output disparity map is simply upscaled first. This is done in an
attempt to mimic the calculation of the bad 4.0 metric as done by Middlebury as
close as possible.

5.1.2 Hardware

The algorithm is tested on a computer with an NVIDIA GTX 10801 GPU and
an Intel i7-6700K2 CPU. The algorithm should behave similarly on other NVIDIA
GPUs from the same architecture (i.e. Pascal3). However, it might behave differently
on older or newer NVIDIA architectures, such as Maxwell4. The performance on
other architectures or cards is not tested in this thesis.

5.1.3 Default Configuration and Constants

A number of different options has been presented in this thesis. One example is the
two-pass approximated aggregation vs non-approximated aggregation (see Section
4.2.1). In addition, a number of constants that need to be set have been presented.
These constants include, among others, γc and γg from the support weight expression
(see Section 3.2.1).

The optimal value for these constants will likely vary a bit between different al-
gorithm configurations. Optimally, a set of constants would be selected for each
configuration. However, the total number of configurations becomes unwieldy to
handle. For this reason, a default configuration is defined along a set of default
constants.

The default configuration for the aggregation phase (see Section 4.2.1) is as follows:

• The two-pass approximation is used

• The window-size is 33x33

• Census transform with 7x5 window is used as matching cost

• 32 layers of scratch memory is used (see Section 4.3.3)

The constants chosen for this phase, used to calculate the support weights (see
Section 3.2.1), are:

• γc = 259.65
1https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080/
2https://ark.intel.com/products/88195/Intel-Core-i7-6700K-Processor-8M-Cache-up-to-4_

20-GHz
3https://developer.nvidia.com/pascal
4https://developer.nvidia.com/maxwell-compute-architecture
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• γg = 28.0

For the refinement phase (see Section 4.2.2), the default configuration is as follows:

• The two-pass approximation is used

• The window-size is 65x65

• The next-to-last approximation of [4] is used, see Section 3.2.3

• 7 iterations of refinement is applied

The constants for this phase, used to calculate the support weights (see Section 3.2.1
and scale the cost penalty (see Section 3.2.3), are:

• γc = 9.0

• γg = 12.0

• α = 0.16

Unless otherwise noted, it is to be assumed that the default configuration with the
default constants is used for the results presented in this thesis.

5.2 Quality

This section presents the quality of the algorithm. By quality, it is referred to the
quality of the disparity map output from the algorithm. I.e., how close they are to
the ground truth, see Section 5.1.1.

5.2.1 Aggregation Phase Quality

This section presents the quality of aggregation phase of the algorithm. The aggre-
gation phase is described in Section 4.2.1.

Four versions of the Aggregation Phase are tested. Among them is one version with
(nonApproxSAD) and one without the two-pass approximation (twoPassSAD). They
both use sum of absolute differences (SAD) as the matching cost function. In addi-
tion, there are also two versions using census transform as matching cost function
(twoPassCensus7x5 and twoPassCensus9x7 ). Both use the two-pass approximation.
The results are shown in Figure 5.2.

Three things are immediately obvious from the results. Firstly, the two-pass approx-
imation performs about as well as the non-approximated version when using sum of
absolute differences. Secondly, census transform gives a huge increase in accuracy
for most images. Thirdly, the difference between a 7x5 and a 9x7 census window is
not that significant in most images.
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Figure 5.2: The Bad 4.0 result for the aggregation phase on the dataset shown in Figure
5.1.

A visualization of the resulting disparity maps for the Adirondack image is shown in
Figure 5.3. The difference between sum of absolute differences and census transform
is especially apparent in these images. But it should be noted that the Adirondack
images are more significantly improved by census transform than some of the other
images.

5.2.2 Refinement Phase Quality

This section presents the quality of the refinement phase of the algorithm. The
refinement phase is described in Section 4.2.2.

Since the refinement phase runs after the aggregation phase, the results presented
here really correspond to the results of the whole algorithm. The aggregation version
used is the one described in Section 5.1.3.

Multiple versions of refinement are tested. A non-approximated variant (nonAp-
prox) is once again compared with the two-pass approximation (twoPassApprox).
A special version designed using the pseudocode presented by Kowalczuk et al. [4]
is also tested (twoPassApproxIDR). This version uses the last approximation they
introduce, which has generally been skipped in this thesis. See Section 3.2.3 for
more details. The results are presented in Figure 5.4. In addition, Figure 5.5 shows
how the quality differs depending on how many iterations of refinement are used for
the two-pass approximated version.

Unlike for the aggregation phase, the results are not quite as clear. The refinement
phase seems to improve all images, but for some, the difference is negligible. From
Figure 5.5 it is clear that using only a few iterations of refinement is fine, as the
result does not get that much better after that. It is also worth noting that the IDR
version of aggregation performs worse than the others, leading to suspicions that
something might be wrong with the last approximation presented by Kowalczuk et
al. [4].

A visualization on the Adirondack images is shown in Figure 5.6. From this vi-
sualization, the advantage of the refinement becomes clearer, the refinement pass
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Figure 5.3: Resulting disparity maps for the Adirondack images for various aggregation
versions. From left-to-right then top-to-bottom: nonApproxSAD, twoPassSAD, twoPass-
Census7x5, and twoPassCensus9x7.

removes outliers from the image. In other words, the resulting disparity map be-
comes less noisy.

5.2.3 Overall Quality

It is also of interest to compare the results of the algorithm with that of other
algorithms. In this section, the result of the default configuration of the algorithm
is compared with OpenCV’s5 StereoSGBM6.

In StereoSGBM, disparities are not produced for pixels at the edge of the image
where some of the disparity candidates would be out of range on the other image.
I.e., if disparities are searched for in the range 0 to 32, the 32 first columns in the left
image would not be assigned any disparities. For this reason, the results presented
here cuts off these columns before calculating the error metric. This is done for both
StereoSGBM and our algorithm in order to be as fair as possible.

As can be seen in Figure 5.7, our algorithm produces higher quality disparity maps
for all the test images. However, it should be noted that the parameters for Stere-
oSGBM are taken from the Middlebury page. It is possible the gap could be closed
by performing a proper parameter search for StereoSGBM.

5http://opencv.org/
6http://docs.opencv.org/3.1.0/d2/d85/classcv_1_1StereoSGBM.html
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Figure 5.4: The Bad 4.0 result for the aggregation and refinement phase on the dataset
shown in Figure 5.1.

Figure 5.5: The average Bad 4.0 result for the default algorithm configuration, i.e. the
two-pass approximated refinement version, per number of refinement iterations.

A direct comparison between the output of StereoSGBM and our algorithm is shown
in Figure 5.8. It should be noted that the disparity is calculated at half the input
resolution in our tests, while the ground truth is at full resolution (see Section
5.1.1). This makes it a bit harder to visually compare the results, but in general the
difference should still be somewhat clear.
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Figure 5.6: Resulting disparity maps for the Adirondack images for various refinement
versions. From left-to-right then top-to-bottom: noRefinement, nonApprox, twoPassAp-
prox, and twoPassApproxIDR. The difference in brightness is caused by different normal-
ization and should be ignored.

Figure 5.7: Bad 4.0 results from our algorithm compared with the result from OpenCV’s
StereoSGBM.
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Figure 5.8: First column is ground truth, middle column is results from the default
configuration of our algorithm, last column is results from OpenCV’s StereoSGBM.
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5.3 Performance

This section presents the performance of the algorithm. Various alternatives and
optimizations presented in this thesis will be compared against each other. Perfor-
mance is in this case referring to the running time of the algorithm.

Two different metrics are used to measure performance, timeMP and timeGD. The
first of them is simply running time normalized by the number of megapixels in the
input images, i.e. seconds

megapixels . It should be noted that the timeMP metric will vary
depending on how big the disparity range is, 100 disparity candidates per pixel will
take longer than 10 candidates. For this reason, the latter metric, timeGD, is also
used. In this metric, the running time is normalized by the number of disparity
candidates tested, i.e. seconds

gigapixels×disparities .

5.3.1 Aggregation Phase

This section presents the performance results of the aggregation phase. The different
aggregation versions for which results were presented in Section 5.2.1 are covered
here. In addition, the performance of the optimizations covered in Section 4.4 is
also included. This includes results for the baseline (twoPassSAD (Naive)), the
simplified support weight expression (twoPassSAD (Opt SW Expr)), the CUDA
SIMD instructions (twoPassSAD (Opt SIMD)), and the rolling threads optimization
(twoPassSAD (Rolling Threads)).

The results are presented in Figure 5.9 and 5.10. The first figure is the average
runtime of the algorithm on a single image pair (in half resolution) from the dataset
used (see Figure 5.1). The latter figure presents the results in the timeMP and
timeGD metrics. The non-approximated aggregation version is only included in the
figure showing the average running time.

Figure 5.9: The average runtime (in milliseconds) for the different aggregation versions.
Optimizations are accumulative, i.e. twoPassSAD (Opt SIMD) also have the optimizations
from twoPassSAD (Opt SW Expr), etc.

From Figure 5.9 it is clear that the two-pass approximation is an immense improve-
ment to the performance of the algorithm. As was shown in Section 5.2.1, it is
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Figure 5.10: Performance results for different aggregation versions. To the left, the
timeMP metric. To the right, the timeGD metric. For the timeMP metric 320 disparity
candidates were used for each pixel. Optimizations are accumulative, i.e. twoPassSAD
(Opt SIMD) also have the optimizations from twoPassSAD (Opt SW Expr), etc.

also clear that the loss in quality is negligible. However, it should be noted that the
non-approximated version has not been as optimized as the two-pass approximation.

Most of the optimizations implemented for the two-pass approximation can also
be applied to the non-approximated version. By implementing them, the author
suspects that it is possible to significantly improve the running time. On the other
hand, implementing the census transform might be trickier because shared memory
pressure is higher for the non-approximated version.

It can be seen that the optimizations presented in Section 4.4 significantly improves
the performance. Worth noting is that these optimizations do not affect the quality
in any way, they only improve performance. Going from sum of absolute differences
to census transform has a non-negligible impact on performance, however reducing
the census window size to 7x5 mitigates this.

5.3.2 Refinement Phase

This section presents the performance results of the refinement phase. Specifically,
for the refinement versions which results were presented in Section 5.2.2.

Figure 5.11 shows the average running time for the different versions and a plot
showing how the number of refinement iterations affects performance for the default
refinement version. Figure 5.12 presents the performance according to the timeMP
and timeGD metrics. 7 iterations of refinement are used for everything.

Before these results are studied there are a couple of things to note. Most of the op-
timizations described in Section 4.4 are applicable for the refinement phase, however
they have not been implemented. The author suspects that the performance cost
per iteration of refinement can be expected to drop significantly if the optimizations
were to be implemented. Another thing to note is that 7 iterations of refinement is
used. In practice, this is probably unnecessary. Kowalczuk et al. [4] uses 3 iterations
of refinement in their implementation for example.
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Figure 5.11: In the left figure, the average runtime (in milliseconds) for the different
refinement versions (7 iterations of refinement). In the right figure, the average runtime for
different number of refinement iterations for the default two-pass approximated refinement
version.

Figure 5.12: Performance results for different refinement versions. To the left, the
timeMP metric. To the right, the timeGD metric. 7 iterations of refinement. For the
timeMP metric 320 disparity candidates were used for each pixel.

As can be seen in Figure 5.11, there is a linear increase in runtime proportional to
the number of refinement iterations. From the numbers presented, it can therefore
be calculated that the performance cost for a single pass of two-pass approximated
refinement is approximately 21.2 ms.

5.3.3 Memory Usage

This section presents the memory usage and performance tradeoff for different
amount of scratch memory. The tradeoff is explained more in depth in Section
4.3.3.

The sizes of the images in the dataset (see Section 5.1.1) used varies. The average
width is 1408 and the average height is 965. This means that one layer in the cost
volume approximately uses 1408×965×4 bytes = 5.18MiB of memory. The complete
cost volume, assuming 320 disparity candidates, then uses a total of 1.66GiB.

During the tests the default configuration is used, with the exception that the re-
finement phase is disabled. Only a single layer of scratch memory is necessary for
the refinement, thus it is not as interesting to look at from this perspective.
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Figure 5.13: The average runtime on the images in the dataset. 320 disparity candidates
are used.

As can been in Figure 5.13, using only a single layer of scratch memory has a
significant impact on performance. This might be caused by a lack of threads to
fully utilize the GPU, due to the rolling threads optimization (see Section 4.4.3).
But it can also be seen that there is an impact on performance even at two layers,
where lack of threads should no longer be an issue as twice as many are launched.

Fortunately, it seems that there is no need to have scratch memory for the whole
cost volume. The performance gain seems to level off at around 12 layers, meaning
that using more layers of scratch memory will only yield a negligible performance
improvement at best. Exactly how many layers are optimal will likely depend on
factors such as which hardware is used, the size of the input images, and how many
disparity candidates are considered.
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6.1 Discussion

This section contains some discussion of the results and future work.

6.1.1 Results

When using census transform and refinement, the resulting disparity map becomes
quite good. At the very least, the results were good enough to be used in the
problem detailed in Section 1.1. But there is still a small gap to the results reported
by Kowalczuk et al. [4] on Middlebury. This gap could be explained by the fact that
they combine census transform and gradients in their matching cost function, or it
could be caused by differences in how the error metric is calculated.

Something that was surprising to the author was how important census transform
was for the quality. It was implemented fairly late in the project, and was only
expected to slightly improve the results. This was partly because in the papers of
both Yoon and Kweon [20] and Kowalczuk et al. [4], the matching cost function is
glossed over.

The author is pleased with how well the optimizations turned out. Being able
to improve the performance by about 50 % (depending on resolution, number of
disparity candidates, etc.) without sacrificing any quality is quite nice. The author
would also like to state that it is a good example of why low-level optimization
matters. There is a lot of potential performance that can be extracted with a bit of
work.

6.1.2 Future Work

One potential optimization was briefly considered, but not implemented due to lack
of time. This optimization was an extension of the rolling threads optimization
detailed in Section 4.4.3. One can note that this optimization only reduces the
amount of memory read when calculating a single layer of the cost volume, but
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there is quite a lot of work repeated between layers of the cost volume as well. For
example, the support weights are recalculated many times for each pixel. If the
same thread block could also traverse between layers, it might be possible to reuse
some of this shared work.

Besides the lack of time, it was also expected that this optimization would be com-
plicated to implement. Especially shared memory would likely have been an issue,
as usage was already stretched to its limits before. If this optimization can be imple-
mented in an efficient way, it will likely yield a significant performance improvement.

One potential problem with the adaptive support weights aggregation scheme was
discovered. As described in Section 3.2.1, the support weight from both images
are combined when aggregating matching costs. It was discovered that the results
seemed to become slightly better in some situations for the aggregation phase when
only the support weights from the target image was used. A theory was suggested by
my company advisor, Erik Landolsi, that it might be because the support weights
from the reference image can sometimes remove information that is relevant for
matching.

This problem was not explored in this thesis, mainly for two reasons. First, the fact
that both support weights are combined is the reason the cost volume can be used
for both the target and reference image. Only using support weights for one image
means that two cost volumes would need to be calculated for the refinement phase to
work. This would have been prohibitively expensive. Secondly, the problem seemed
to be less severe with census transform as the matching cost function.

Regardless, future work exploring what the cost in quality is for using the support
weights from both images would be useful. If it turns out the quality becomes
significantly better, it might be worthwhile to modify the algorithm and calculate
two cost volumes anyway.

6.2 Ethical Considerations

This section covers some ethical considerations regarding this thesis work. The
consequences of stereo vision research in general is omitted, as it can be difficult
to assess the impact of research in a field with many different applications. What
is covered is potential issues with adding the technology to logging trucks, i.e. the
application described in Section 1.1.

It should be noted that even without the stereo matching algorithm developed for
this thesis, a system for remote controlling the logging truck arm would still be
developed. The main contribution of the stereo matching algorithm is that depth
information will be available, which can hopefully be used to make the system easier
to use. This research is thus responsible for making the system better, which makes
it more likely that it will be adopted at a larger scale.

52



6. Conclusion

One concern with the system is the effect on the truck drivers themselves. By letting
them remote control the arm from the driver’s cabin, they would likely sit still for
a longer period of time. This could have a negative impact on their health.

Another concern is the topic of automation in general. The logging truck system
allows a human to control the arm remotely, even if they happen to be inside the
driver’s cabin. One can imagine that a logical extension of the system would be to
control the arms of many trucks from a centralized location, i.e. a command center.

By combining this technology with that of a self-driving cars, the logging trucks
would no longer need drivers. The trucks could drive themselves. When they arrive
at a spot with logs, a human from the command center could take over and remote
control the arm. This way the amount of people needed could be greatly reduced.

The people currently employed as truck drivers would likely be worse of in the future
described above. But so would many other people affected by automation. It is hard
to argue that reducing the amount of work that needs to be done would be a bad
thing in itself. Which leads to questions about how a society should be run, whether
everyone needs to work, etc.

In the short term, the author suspects the technology is fairly harmless. We think
it will simply be a tool that makes the life of the drivers easier. In the long term,
we suspect that these jobs will disappear to automation, even without the logging
truck system. Hopefully society itself has figured out how to deal with these types
of problems by then.

6.3 Conclusion

This section contains a summary of the results presented, and a short conclusion.

It has been shown that the two-pass approximation introduced by Wang et al. [21]
is a very good approximation. The difference in quality between it and the non-
approximated approach is small, while the difference in speed is considerable.

The census transform introduced by Zabih and Woodfill [22] greatly improves the
quality of the algorithm, at a small cost in performance. This cost can be mitigated
by using a smaller census window, which only yields an almost negligible reduction
in quality.

It has been shown that algorithm performs very well. On an NVIDIA GTX 1080,
the average runtime was about 181 ms for the aggregation phase plus 21.2 ms per
iteration of refinement. Depending on what definition of real-time is used, this
is already good enough. For the problem described in Section 1.1, this was fast
enough. If there are stricter constraints, the performance can be improved by using
lower resolution images, reducing the number of disparity candidates and using fewer
passes of refinement.
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A few optimizations have been presented. These optimizations include simplifying
the expressions used to calculate support weights, reducing the number of integer
to float conversions using CUDA SIMD instructions, and reducing the amount of
memory read by letting threads calculate multiple costs. As shown by the results,
these optimizations all significantly improve performance. In fact, these optimiza-
tions can likely be considered this thesis’ most significant contribution on the work
of Kowalczuk et al. [4].

To tie back to the questions asked in the problem statement (see Section 1.2),
it cannot be conclusively stated that the algorithm implemented is the one most
suited for real-time usage. But it can be stated that it is a very good algorithm that
works well for real-time use. This is based on the performance and quality results
presented, which compete well with the ones from other algorithms on Middlebury.

To the question of whether approximations and optimizations can be applied to
existing work, the answer is yes. The optimizations introduced in this thesis signif-
icantly improves the performance without sacrificing any quality.
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