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A potential threat to the performance of magnetically confined fusion plasmas is the problem of impurity
accumulation, which causes the concentration of highly charged impurity ions to rise uncontrollably in the
center of the plasma and spoil the energy confinement by excessive radiation. It has long been thought that
the collisional transport of impurities in stellarators always leads to such an accumulation (if the electric
field points inwards, which is usually the case), whereas tokamaks, being axisymmetric, can benefit from
“temperature screening,” i.e., an outward flux of impurities driven by the temperature gradient. Here it is
shown, using analytical techniques supported by results from a new numerical code, that such screening
can arise in stellarator plasmas, too, and indeed does so in one of the most relevant operating regimes,
where the impurities are highly collisional while the bulk plasma is at low collisionality.
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Tokamaks and stellarators are the two most developed
concepts for magnetic-confinement fusion. They have rela-
tive advantages and disadvantages,which have been explored
and discussed extensively over the years [1]. For instance, the
tokamak requires a current drive and suffers from “disruptive”
instabilities, whereas fast-ion confinement is difficult in
stellarators. A further problem for the stellarator is the threat
of heavy-ion impurity accumulation in the core of the plasma
[2–8]. Maintaining a fusion plasma at the necessary multi-
keV temperature requires excellent boundary control, and any
potential penetration of impurity ions released in plasma-wall
interactions must be dealt with. Unchecked, the radiation
from any significant buildup of partially ionized impurities
will prevent power balance and quench any fusion reaction.
The transport of impurity ions in a tokamak or stellarator

plasma is governed by turbulent and “neoclassical” proc-
esses, the latter being caused by the random walk executed
by these particles as they travel along complicated orbits set
by the magnetic-field geometry while colliding with other
particles [9–11]. The turbulent transport often dominates,
but the neoclassical transport can be very significant for
heavy impurities in both types of device. Moreover, it is
usually in the direction of the bulk-ion density gradient, i.e.,
inward, into the core of the plasma. To make things worse,
this inward neoclassical transport has been predicted to be
particularly strong, practically inevitable, in stellarators.
This has been an issue of great concern for several decades.
The aim of the present Letter is to show that the situation is
less serious than previously thought.
The neoclassical impurity flux is of the form [6,9]

Γz ¼
�Z

fzðvd ·∇rÞd3v
�

¼ nzðDzi
11A1i þDzz

11A1z þDz
12A2iÞ; ð1Þ

where z refers to impurity ions and i to the bulk (hydro-
genic) ions, vd denotes the drift velocity, r is an arbitrary
label of the magnetic surfaces serving as the radial
coordinate, angular brackets indicate an average over such
surfaces, and

A1a ¼
d lnpa

dr
þ eaϕ0ðrÞ

Ta
; A2a ¼

d lnTa

dr

denote the “thermodynamic forces.” Here pa ¼ naTa is the
pressure of species a, ea its charge, and ϕðrÞ the electro-
static potential, which like the density na and temperature
Ta is approximately constant on magnetic surfaces.
Different ion species usually have the same temperature,
so for simplicity we have A2i ¼ A2z. In axisymmetric
magnetic fields, the largest transport coefficients are Dzi

11

andDz
12, where the former is always positive and so tends to

drive impurities into the plasma if dpi=dr < 0. The coef-
ficient Dz

12 is usually negative and can (depending on the
collision frequency) exceed Dzi

11 [3]. If the ion temperature
profile is sufficiently steep, outward impurity transport will
then result. This beneficial property is referred to as
temperature screening. In tokamaks, the transport coeffi-
cients also have the property that the sum of all terms
containing the radial electric field E ¼ −ϕ0ðrÞ∇r vanish.
However, for heavy impurities [a¼z, ea ¼ Ze,mz=mi ¼

OðZÞ ≫ 1] in a stellarator, the picture has been pessimistic,
because the radial electric-field term does contribute to the
transport. Since this term is multiplied by the large number
Z ≫ 1 in A1z, it tends to dominate and will drive the
impurities in the direction of the electric field, which
typically points inward in fusion-relevant high-density
plasmas. Unless there is very strong turbulence, which
impairs energy confinement, any high-Z impurity will thus
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accumulate in the core, as is indeed often observed in
experiments [5–7]. A notable exception occurs in low-
density “impurity-hole” plasmas in the Large Helical
Device [8].
These conclusions were mostly based on calculations

that approximate the collisions between different particle
species by a simple scattering operator, sometimes
augmented by a term ensuring momentum conservation.
This treatment is adequate when all ions are at low
collisionality (set by the ratio of the major radius to the
mean free path and denoted by νab� for collisions between
two species a and b). However, the regime of greatest
practical interest is the one where the mean free path of
the bulk ions is long but that of high-Z impurities
relatively short. (It scales as Z−4 at constant impurity
density.) This mixed-collisionality regime cannot be
treated correctly by numerical codes that neglect inter-
action other than collisional scattering between different
ion species. For several decades, such codes have been
the work horses for neoclassical transport calculations in
stellarators [12].
We therefore consider the neoclassical transport in a

mixed-collisionality plasma with a single, highly charged
impurity species and calculate the cross-field flux Γz by
solving the kinetic equation for the distribution function fz
both analytically and numerically, using the full Landau
collision operator for the impurities. The numerical calcu-
lation can be done for arbitrary collisionality, but the
analytical treatment is possible only by considering the
asymptotic limit of short and long mean free paths,
respectively, for the impurities and bulk ions. More details
of both calculations will be published separately.
Analytical calculation.—In order to evaluate the impu-

rity particle flux analytically, it is useful to decompose it
into a sum of contributions [13,14], driven by the friction
against the background bulk ions and the pressure
anisotropy:

Γz ¼
1

Ze

�
uBRzi∥ þ ðpz∥ − pz⊥Þ

∇∥ðuB2Þ
2B

�
: ð2Þ

Here, the second term on the right is relatively small for a
highly collisional population, with Tz ¼ Ti ≡ T, and can
be neglected when the collisionalities satisfy νiz� νzz� ≫
nzZ1=2=ni, a condition we take to hold in the analytic
calculation. The remaining term contains the function u,
which is related to the parallel (to the magnetic field)
plasma current and pressure by u ¼ J∥=½Bp0ðrÞ�, and the
friction force

Rzi∥ ¼
Z

mzv∥Cziðfz; fiÞd3v

¼ mi

Z
νizDðvÞv∥fid3v −

miniVz∥

τiz
; ð3Þ

where the deflection frequency is νizDðvÞ ¼ ð3π1=2=4τizÞ×
ðvTi=vÞ3 and the collision time τiz ¼ 3ð2πÞ3=2 ffiffiffiffiffiffi

mi
p

T3=2ϵ20=
ðnzZ2e4 lnΛÞ [10]. To evaluate the first term appearing in
Eq. (3), we require the solution of the kinetic equation for
the distribution function fi, specifically the piece which is
odd in the parallel velocity v∥ ¼ σjv∥j.
A recently developed formulation allows a unified

treatment of this problem throughout the low-collisionality
regimes of the bulk ions [15]. If the distribution function is
split into even and odd pieces f�, the kinetic equation
becomes v∥∇∥f∓ ¼ C�ðfÞ − vd ·∇f�, where the inde-
pendent coordinates are (r, α, l, ϵ, μ, σ). Here α is a label for
the different field lines on the same flux surface, l the arc
length along the magnetic field, ϵ ¼ miv2=2þ eiϕðxÞ the
energy, and μ ¼ miv2⊥=2B the magnetic moment. The
electrostatic potential can be set to ϕ ¼ 0 on the surface
of interest, and particle orbits are defined as passing (able to
move over a whole flux surface) or magnetically trapped
depending on whether the parameter λ ¼ μ=ϵ is less or
greater than 1=BmaxðrÞ, where BmaxðrÞ is the maximum
field strength on the surface. The odd part of the bulk-ion
distribution function can thus be written as

f−ðr; α; l; ϵ; μ; σÞ ¼
Z

l

l0

½CþðfÞ − vd · ∇fþ� dl
0

v∥
þ X; ð4Þ

where Xðr; α; ϵ; μ; σÞ denotes an integration constant that is
independent of α in the passing region and vanishes in the
trapped region if l0 is chosen to be a bounce point. At such
points λ ¼ 1=B, the parallel velocity vanishes, and so
therefore must f−.
The parallel streaming term in the kinetic equation is

annihilated by the orbit average, which is defined as a time
average taken along a trajectory following themagnetic field
between two consecutive bounce points for trapped particles
or many times around the torus for passing ones. (Formally,
this average is obtained by multiplying the kinetic equation
by dl=v∥ and integrating.) This gives the equation

vd ·∇fþ ¼ CþðfÞ

for fþ, where the orbit average is indicated by ð…Þ. For
passing particles and for trapped ones at moderately low
bulk-ion collisionality (the 1=ν regime), the right-hand side
dominates, and the solution is approximately Maxwellian:
fþ ≃ F0ðr; ϵÞ. At lower bulk-ion collisionality (the

ffiffiffi
ν

p
regime), trapped-particle drifts produce strong deviations
from such an equilibrium and prevent effective plasma
confinement unless the magnetic field is optimized to be
nearly omnigeneous [16] or the radial electric field is
sufficiently strong to produce an in-surface E ×B drift
which averages out the magnetic drift motion over an orbit
[17]. In both cases, particles stay close to a flux surface on an
orbit average, so that fþ ¼ F0 þ F1 is determined by
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vd ·∇α
∂F1

∂α þ vd ·∇r
∂F0

∂r ≃ 0:

This equation holds for all trapped particles except those in a
thin layer around the trapped-passing boundary, which is
unimportant for our present purposes but regulates the
transport of the bulk ions [17]. We thus conclude that vd ·
∇fþ ≃ ðvd ·∇rÞ∂F0=∂r in the 1=ν regime and vd ·∇fþ ≃
ðvd ·∇r − vd · ∇rÞ∂F0=∂r in the

ffiffiffi
ν

p
regime [15].

We now evaluate the friction force between the main ions
and the impurities by substituting the solution (4) in Eq. (3).
The collision term in Eq. (4) is small in the

ffiffiffi
ν

p
regime but

generally produces a contribution to the friction in the 1=ν
regime. However, a commonly used, and successful [18],
approximation to the collision operator for transport appli-
cations takes the form of a pitch-angle scattering operator
with a momentum-conserving term, in which case this
contribution vanishes. We will therefore neglect it, but its
impact can be tested in the final numerical comparison. The
remaining terms give

Rzi∥ ¼
pimi

eτiz

�
A1i −

3

2
A2i

�
ðuþ sÞBþ PðrÞB −

miniVz∥

τiz
;

where terms that vary as B over the flux surface have been
combined into PðrÞ, a flux surface function that turns out
not to affect the impurity flux. In deriving this result, we
have written vd ·∇r ¼ Ω−1

i v∥ðB × ∇rÞ · ∇ðv∥=BÞ, and
defined s ¼ 0 in the 1=ν regime and

sðlÞ ¼ 3

2

Z
l

lmax

dl0
Z

1=Bðl0Þ

1=Bmax

dλ
ξðl0Þ ξðb̂ ×∇rÞ ·∇

�
ξ

B

�
ð5Þ

in the
ffiffiffi
ν

p
regime, with ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λB
p

.
The impurity flow Vz∥ takes the well-known form

nzVz∥ ¼ ðpz=ZeÞA1zuBþ KzðrÞB, where Kz is an integra-
tion constant determined by the force balance along the
magnetic field, which reduces to hBRzi∥i ¼ 0 in the colli-
sional limit [19]. Using this relation to determine Kz, we
eliminate the flux function PðrÞ from the required flux
surface average huBRzi∥i and obtain the final expression for
the impurity flux (2):

Γz ¼ −
mipi

Ze2τiz

�
A1z

Z

�
hu2B2i − huB2i2

hB2i
�

−
�
A1i −

3

2
A2i

��
huðuþ sÞB2i

− hðuþ sÞB2i huB
2i

hB2i
��

; ð6Þ

where we recognize the Pfirsch-Schlüter diffusion
coefficient

DPS ¼
miTi

e2τiz

�
hu2B2i − huB2i2

hB2i
�

¼ ρ2i
τiz

hJ2∥ihB2i − hJ∥Bi2
ðdp=drÞ2 ;

with ρ2i ¼ miTi=e2hB2i.
The impurity transport coefficients Dza

ij appearing in
Eq. (1) can now be identified, and we note the following
points. The Schwartz inequality implies DPS ≥ 0, so Dzz

11 is
negative as required by entropy considerations. In the 1=ν
regime (moderate bulk ion collisionality) s ¼ 0, and we
see Dzi

11 ¼ −ZDzz
11, as is also true in the very-high-

collisionality limit where both ion species are collisional
[13]. The direct drive of the flux by the electric field thus
cancels out in both of these regimes. Furthermore, we note
thatDz

12 ¼ −ð3=2ÞDzi
11, so there is temperature screening in

the 1=ν regime. At lower bulk ion collisionality, the electric-
field drive no longer cancels exactly, becoming proportional
to the quantity husB2i − hsB2ihuB2i=hB2i, which must be
evaluated numerically. The same additional contribution,
due to the trapped particle drift, appears in the transport
coefficient multiplying dT=dr, but the relation Dz

12 ¼
−ð3=2ÞDzi

11 continues to hold, so there is either temperature
screening or outward transport due to the bulk-ion density
gradient, depending on the sign of the last term in Eq. (6).
This analytical calculation thus shows that (i) there

can be temperature screening (or outward bulk-density-
gradient-driven impurity flux) in both the 1=ν and

ffiffiffi
ν

p
regimes and (ii) the radial electric field may only weakly
drive impurity transport. Both results are at odds with
conventional wisdom.
Numerical calculation.—A novel computational tool has

recently been developed, the continuum δf SFINCS code,
which solves the coupled first-order drift-kinetic equations
in general magnetic geometries (with flux surfaces) and
calculates the neoclassical transport for an arbitrary number
of species, retaining the full linearized multispecies Landau
collision operator. The numerical implementation, which
includes the calculation of perturbed Rosenbluth potentials,
is detailed in Ref. [18]. SFINCSwas used byMollén et al. [20]
in an extensive study of the transport of impurities and their
effect on the bootstrap current in the recently completed
Wendelstein 7-X stellarator [21]. Puzzling indications of
temperature screeningwere seen already in this work, which
we are now able to understand and clarify in terms of the
analytical theory above and further numerical results.
Figure 1 shows an example where the transport coeffi-

cients for commonly occurring C6þ impurity ions in a bulk
Hþ plasma were studied over a wide range of impurity
collisionality, defined as νzz� ¼ R=ðvTzτzzÞ with τzz ¼
ðmz=miÞ1=2Z−2τiz and R ¼ ðGþ ιIÞ=B00, where the mag-
netic field is B ¼ K∇rþ I∇θ þG∇φ in Boozer coordi-
nates and B00 denotes the m ¼ n ¼ 0 Fourier harmonic of
the field strength Bðr; θ;φÞ. In both Figs. 1(a) and 1(b),
Er ¼ 0, and, as expected from the analytical calculation, the
coefficient Dzz

11 þDzi
11 þDz

12 multiplying the temperature
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gradient is negative, implying temperature screening up
to the collisionality where the bulk ions leave the long-
mean-free-path regime and become collisional, at which
point the temperature screening disappears [13]. If the
collision operator is replaced by pure pitch-angle scattering,
however, the temperature screening disappears from the
entire range of high impurity collisionality. The range of
collisional impurities (νzz� > 1) and collisionless (νiz� < 1)
bulk ions is demarked by the thick black line, which gives
the value of the coefficient obtained from Eq. (6). Note that
this valuematches the results from both SFINCS (with the full
Landau collision operator) and the DKES code if a momen-
tum-conserving term is added to the scattering operator [22].
However, the latter treatment fails in the very-high-
collisionality limit where all species are collisional. This
limit can be treated analytically [13], and the asymptote is

shown as a dashed red line, along with that for pitch-angle
scattering without momentum correction, matching the
corresponding numerical results in the appropriate limit.
The coefficient Dzz

11 þDzi
11 þDz

12 is negative also at low
impurity collisionalities, but its contribution to the transport
is expected to be overwhelmed by the inward flux produced
by a radial electric field. The corresponding electric-field
transport coefficient (the field is assumed to be weak
enough to allow the 1=ν regime over the collisionality
range) is shown in Fig. 1(b) and can be seen to be large at
low collisionality but small in the mixed-collisionality
regime, enabling temperature screening.
Figure 2 shows transport coefficients similar to Fig. 1 but

for the heavy trace impurity Fe16þ and Zeff ¼ 1.07. Again,
the analytical prediction (6) is confirmed, but now there is
temperature screening also in the very-high-collisionality

(a) (b)

FIG. 1. Normalized transport coefficients ofC6þ impurity flux driven by (a) the bulk ion temperature gradientDzi
11 þDzz

11 þDz
12 and (b) the

radial electric field ZDzz
11 þDzi

11, in an Hþ plasma for Er ≈ 0, as a function of impurity self-collisionality at a fixed density ratio, in the
W7-X standard configuration. The transport coefficients are normalized to niρ2i =ðZnzτizÞ, the effective ion charge is Zeff ¼P

i;znaZ
2
a=
P

i;znaZa ¼ 2, and the normalized radial position r=a ¼ 0.88. Red diamonds, SFINCS output with the full Landau collision
operator; yellow circles, SFINCS output retaining only pitch angle scattering in collisions; green crosses, output from DKES with momentum
conservation. Thick black line, the value from Eq. (6) for Er ¼ 0, extending over the mixed-collisionality range. Dashed lines, high-
collisionality asymptotes from the analytical theory using the linearized Landau collision operator and the pitch-angle scattering operator.

(a) (b)

FIG. 2. The same as Fig. 1 but for Fe16þ and Zeff ¼ 1.07. There is now temperature screening both in the mixed-collisionality regime
and at higher collisionalities, where both ion species are in the Pfirsch-Schlüter regime.
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regime where both ion species are collisional, as expected
for very clean plasmas [4].
When a larger radial electric field is present, the terms in

Eq. (6) involving the quantity s are important and can be
expected to reduce the transport driven by the bulk-ion
density and temperature gradients [15]. Temperature
screening is still possible, but the contributions from the
radial electric field in these terms no longer exactly cancel
that from the impurity thermodynamic force A1z. On the
one hand, there is thus a reduction of the overall neo-
classical transport (making it easier, for instance, for
turbulence to expel the impurities), but, on the other hand,
some direct electric-field-driven transport now remains.
The net transport thus depends sensitively on the collision-
ality, the charge number, and the relative size of the
density and temperature gradients. By way of example,
Fig. 3 shows the transport coefficients in the same magnetic
W7-X configuration as for Figs. 1 and 2 but in the presence of
a finite radial electric field of Er ¼ −5 kV=m. Temperature
screening still occurs (if the temperature gradient is strong
enough) but at a lower level, as one would expect from the
theory above, making the coefficient comparable to the
electric-field coefficient at high collisionality.
Conclusions.—In summary, we have found that highly

charged, collisional impurity ions in stellarators can expe-
rience neoclassical temperature screening if the mean free
path of the bulk ions is long and the temperature profile is
sufficiently steep, just as in a tokamak. Under these
conditions, which are common in experiments, the radial
electric field must compete to drive the impurities inward.
Impurity accumulation is therefore not inevitable, and
impurities may be expected to enjoy outward collisional
transport when the conditions are right.
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