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We set up a general density-operator approach to geometric steady-state pumping through slowly driven open
quantum systems. This approach applies to strongly interacting systems that are weakly coupled to multiple
reservoirs at high temperature, illustrated by an Anderson quantum dot. Pumping gives rise to a nonadiabatic
geometric phase that can be described by a framework originally developed for classical dissipative systems by
Landsberg. This geometric phase is accumulated by the transported observable (charge, spin, energy) and not
by the quantum state. It thus differs radically from the adiabatic Berry-Simon phase, even when generalizing
it to mixed states, following Sarandy and Lidar. As a key feature, our geometric formulation of pumping stays
close to a direct physical intuition (i) by tying gauge transformations to calibration of the meter registering the
transported observable and (ii) by deriving a geometric connection from a driving-frequency expansion of the
current. Furthermore, our approach provides a systematic and efficient way to compute the geometric pumping of
various observables, including charge, spin, energy, and heat. These insights seem to be generalizable beyond the
present paper’s working assumptions (e.g., Born-Markov limit) to more general open-system evolutions involving
memory and strong-coupling effects due to low-temperature reservoirs as well. Our geometric curvature formula
reveals a general experimental scheme for performing geometric transport spectroscopy that enhances standard
nonlinear spectroscopies based on measurements for static parameters. We indicate measurement strategies for
separating the useful geometric pumping contribution to transport from nongeometric effects. A large part of
the paper is devoted to an explicit comparison with the Sinitsyn-Nemenmann full-counting-statistics (FCS)
approach to geometric pumping, restricting attention to the first moments of the pumped observable. Covering
all key aspects, gauge freedom, pumping connection, curvature, and gap condition, we argue that our approach
is physically more transparent and, importantly, simpler for practical calculations. In particular, this comparison
allows us to clarify how in the FCS approach an “adiabatic” approximation leads to a manifestly nonadiabatic
result involving a finite retardation time of the response to parameter driving.
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I. INTRODUCTION

A. Geometric effects in open quantum systems

Currently, there is a heightened interest in geometric and
topological properties of open quantum systems where finite
temperature, dissipation, and nonequilibrium transport play a
key role. For closed quantum systems, topological properties
are generally appreciated for their robustness against pertur-
bations, assuming these perturbations keep the system closed.
This robustness, for example, underlies the successful topolog-
ical classification of phases of closed quantum systems [1–11].
It is a pressing question as to how this scheme is affected
when one opens up the system, allowing for finite temperature,
dissipation, and nonequilibrium [12–14]. To address this
issue, recently topological numbers for dissipative systems
have been discussed [9,15–17] starting from the Uhlmann
connection for mixed quantum states [18]. One may also utilize
topological robustness for controlling quantum systems. For
example, in the area of quantum information processing, this
is exploited in geometric quantum computing [19] and in
topological error correction [20,21]. Ultimately, topological
properties stand in the foreground because of their superior
robustness as compared to geometric properties. However, as
for classical mechanics [22–26], also for quantum systems a
deep understanding of the underlying geometric properties is

always a prerequisite for such control. One of the reasons why
the geometric properties of open quantum systems are more
complex than for closed systems is that they are described
by mixed states rather than pure states [18,27–43]. However,
as this paper will emphasize, this is not the only important
difference. There are also important geometric properties
associated with observables [43], including nonsystem ob-
servables [44] defined (partly) on the system’s environment
and their transport currents.

Indeed, geometric effects appear naturally in open quantum
systems when considering pumping of some observable
quantity, e.g., charge, which has been studied extensively
in electronic systems. In the long-time limit, the transport
through a mesoscopic system exhibits steady-state pumping
when its external parameters are periodically modulated
in time [45]. For example, in highly tunable quantum-dot
systems one can drive local system properties via electrical
gates, modulate the coupling to external reservoirs [46] by
tunnel barriers, or vary the external electrochemical poten-
tials [47] or temperatures [48]. Such time-dependent control
has been experimentally demonstrated even for atomic-scale
junctions [49] and is also of interest for realizing molecular
motors [50,51].

When slowly driving an open quantum system, there
are two effects to consider. First, one generically obtains a
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nonequilibrium current at every instant in time if there is an
instantaneous (possibly time-dependent) bias applied, either
electrochemical or thermal or both. This survives even in
the adiabatic limit of vanishing driving frequency �. The
net transported observable after one cycle then generically
contains an average over these instantaneous currents (“sum
of snapshots”). Since this part of the current is invariant under
inversion of the parameter driving, its effect can always be
canceled out experimentally or extracted theoretically.

However, there is also the pumping current contribution
which only derives from this time-dependent driving [52,53].
Physically, this contribution clearly differs from the instan-
taneous one: it arises because the state of the open system
cannot instantaneously follow the driving but lags behind. It
derives from the time average of the nonadiabatic part of the
current that is linear in driving frequency �. Nevertheless,
this pumping effect is often referred to as “adiabatic pump-
ing” [40,53–55] which we will emphatically avoid here. In
this paper, we focus on this adiabatic-response pumping in
open quantum systems which has the hallmark of a geometric
quantity [22,56–59] in its simplest meaning: the transported
observable per cycle depends on the driving parameter curve
alone and not on the driving frequency, in contrast to the
nongeometric, instantaneous part. Pumping thus arises as an
adiabatic response to driving [43,60] (“lag”) and is inherently
a (first-order) nonadiabatic geometric effect, in contrast to the
more commonly considered geometric phases associated with
adiabatic dynamics [38,58,61].

One reason for studying the geometric nature of pumping
lies in robust control of transport of quantities like charge,
spin, or energy. For example, for applications to charge-current
standards [62] the robustness of the geometric pumping with
respect to frequency fluctuations is relevant. Therefore, it is
of practical importance to be able to separate clearly this
frequency-independent pumped observable, responsible for
“clocked” electron transfer [63], from the driving-frequency-
dependent nongeometric contribution. The present paper
shows that a separate consideration of the geometric adiabatic-
response part is also of theoretical importance for identifying
the physical origin of the gauge freedom underlying pumping.

Further motivation is provided by the interest in topological
pumping mentioned at the beginning: namely, topological
pumping arises when geometric quantities depend only on
the “type” of the driving cycle (homotopy class). For example,
one characteristic is the number of windings of the parameter
cycle around a “hole” in parameter space (similar to the
Aharonov-Bohm effect). As long as this characteristic stays
unchanged, the pumped quantity is even protected against
continuous deformations of the geometric properties of the
driving cycle.

In this work, we are particularly interested in identifying
the geometric nature of the pumping contribution in systems
where strong interactions play a role. This is largely motivated
by experiments on quantum-dot systems1 in which one can
exploit strong Coulomb interactions to gain control over a

1Pumping has also been studied intensively in superconducting
systems. There, the pumping of Cooper pairs can be effectively
expressed as a closed-system geometric phase [159–163], i.e., a

single electron as already shown in early experiments on
pumping [64]. More recently, accurately clocked sources
of single charges [62,63,65] or spins [66,67] have been
implemented. This illustrates the high degree of control over
single electrons in a quantum-dot system in time.

The final point of interest, going beyond the aspects
of robustness and control, is the use of pumping as a
“spectroscopic” tool. In this paper, we discuss how pumping
effects can shed light on properties of an open quantum system
that remain hidden when considering only nondriven, station-
ary transport. This has use as an experimental tool since one
can infer, for example, the tunnel-coupling asymmetry and the
spin degeneracy of a quantum dot just by using the qualitative
features of an interaction-induced charge pumping [68–70]
effect. However, it may also function as a theoretical tool
similar to the usual linear response to a perturbation: in models
that are theoretically hard to analyze, physical characteristics
that are not revealed by stationary properties (e.g., due to
renormalization effects) may well appear in an adiabatic-
response calculation of pumping effects [55].

Before we can formulate the open questions that our
key results address,we need to outline a number of existing
theoretical approaches to pumping. This also serves to keep the
paper self-contained and makes it more accessible to readers
with interest in either geometrical effects or open quantum
systems or both. This seems furthermore warranted since a
number of quite different approaches, designed to deal with
different problems, have been put forward. We also point out a
number of useful relations between cited references that have
received little attention so far. A guide to our comparison of
the geometric aspects of these approaches and the different
aspects put forward in this work is given in Tables I and II.

B. Geometric density-operator approaches

For open systems without interactions (beyond the mean-
field level), Brouwer’s framework [53,76,77] for pumping
based on the Buttiker-Thomas-Pretre scattering theory for
time-dependent setups is by now standard. Within this ap-
proach, the geometric nature of charge pumping is associated
with unitary transformations of the scattering matrices [29,78].
This has played an important role, for example, in recent
theoretical work on current-induced forces in nanoscale
systems [79–83] and nanoscale motors [51,84–87].

However, when strong interactions become important, one
needs a different approach, even though Brouwer-type formu-
las emerge also in this case [69] (see Appendix F). Whereas
Green’s function approaches to pumping have been put for-
ward [88–90], there is a well-established approach to strongly
interacting systems based on the reduced density-operator
description. However, within this approach the situation is
less univocal regarding the geometric nature of pumping. This
is a primary topic of this paper. Several geometric frameworks
have been formulated based on the reduced density operator,
including contexts unrelated to pumping. We will tie together

Berry-Simon phase picked up by a superconducting state vector
during the cyclic evolution. Here, we study situations for which a
pure-state description is not possible.
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TABLE I. Comparison of geometric density-operator approaches relevant to this paper.

Approach Prior works This work

(I) Adiabatic state Adiabatic mixed-state geometric phase [37,38] Zero geometric phase for adiabatic steady state (Sec. III A)
evolution (ASE) Mixed-state adiabatic-response correction [37,38] Zero geometric phase for nonadiabatic state (Sec. III A)

Gauge freedom related to eigenvector rescaling [37,38] Restriction of gauge freedom by normalization and
Hermiticity (Sec. III A)

(II) Full counting Geometric part of generating function [40,44,71–74] Restriction of gauge freedom by real-valuedness observable
statistics (FCS) All moments have geometric part [40,44] (Sec. V C 3)

Clarification of “adiabaticity” in FCS (Sec. V C 4)
Conditions for applicability same as in AR (Sec. V C 4)

(III) Adiabatic Adiabatic response of unique stationary state [43] Adiabatic iteration for Born-Markov open system
response (AR) Geometric pumping of system observable [43] (Sec. III A, App. H)

Physical picture of gauge freedom in observable (Sec. III B)
Gauge freedom of current memory kernels (Sec. III B)
Geometric pumping of nonsystem observables (Sec. III C)

three of these formulations, found in [37,38,40,43,44,75],
respectively. Before we outline the key results of our paper, we
sketch these three geometric approaches, taking note of many
other density-operator based works [18,27–36,39,41,42].

(i) Adiabatic-state-evolution (ASE) approach. A perhaps
intuitive, but wrong expectation is that the geometric nature
of pumping in open systems arises from the dynamics of
the reduced quantum state. However, in the following (cf.
also [91]) it is still important to consider such geometric
phases. The geometric nature of this adiabatic mixed-state
evolution has been worked out by Sarandy and Lidar [37,38].
This closely follows the analogy to the adiabatic Berry-Simon
phase for adiabatic evolution of a pure state of a closed
quantum system. In the ASE approach, the mixed-state density
operator ρ(t) is considered as a ket vector |ρ(t)) in Liouville
(or Hilbert-Schmidt) space evolving according to a time-local
master equation

d

dt
|ρ(t)) = W [R(t)] |ρ(t)). (1)

Here, the kernel W [R(t)] takes over the role of the evolution
generator played by the Hamiltonian H [R(t)] in the Berry-
Simon case based on the Schrödinger equation d

dt
|ψ(t)〉 =

−iH [R(t)] |ψ(t)〉 for natural units setting h̄ = kB = e = 1.
The time dependence enters entirely through the instantaneous
values of the driving parameters R(t). Similar to the Berry-
Simon approach, in the ASE approach one expands the
solution of the master equation in the eigenvectors |vn) to
eigenvalues λn of the kernel W , all with parametric time de-
pendence. A gauge freedom emerges from the nonuniqueness
of the normalization of these eigenvectors, but in contrast
to the Berry-Simon case, these changes in the normalization
are nonzero complex numbers (nonunitary, noncompact gauge

group), rather than phase factors (unitary, compact). For slow
driving, the solution of the master equation (1) follows (a sum
of) these eigenvectors adiabatically resulting in dynamical and
geometric phases. Several points discussed in this paper can
be understood as a formal application of this generalization of
the Berry-Simon phase. However, the ASE approach does not
deal with steady-state pumping and the ASE phase essentially
differs from the simple geometric pumping phase that we
work out here: in our contexts, the ASE phase for the steady
state is identically zero, even when accounting for the first
nonadiabatic correction (adiabatic response) to the state. This
quenching of the Berry-Simon–type phase of mixed states
forms the starting point for the considerations of geometric
steady-state pumping.

(ii) Full-counting-statistics (FCS) approach to pumping.
Within the density operator framework, the geometric nature
of pumping of observables was first clarified when Sinit-
syn and Nemenmann [40] applied the well-established FCS
approach to pumping (“stochastic pumping”), introduced in
more detail in Sec. V. Interestingly, they found that pumping
can be induced by interaction. In the FCS one uses an
observable-specific generating function Zχ depending on a
“counting-field” variable χ to obtain the statistics of a selected
observable, i.e., all its moments and their dynamics. From
this generating function, the change of the first moment of a
reservoir observable Xr can be obtained as

〈Xr〉(t) − 〈Xr〉(0) = ∂iχ Zχ (t)|χ=0. (2)

The generating function is obtained from a “generating
operator” ρχ , which is the “adiabatic” solution of a master-type
equation similar to Eq. (1) and exhibits a geometric phase
similar to the one calculated in the ASE problem. This
elegant and powerful approach has been applied to various

TABLE II. Cross links between geometric density-operator approaches discussed in this paper.

Approaches Cross links in this work

ASE ↔ FCS FCS is equivalent to the ASE approach with χ dependence
ASE ↔ AR Nonadiabatic correction to ASE [Eq. (23) of [37]] agrees with AR result ρa [Eq. (43b)]

but contributes zero in unique steady state (Sec. III A) AR geometric phase instead in observable.
AR ↔ FCS Nonadiabatic Landsberg phase (Sec. V C 4) equal to χ -linear part of FCS phase [75]
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pumping problems and is reviewed in [44]: applications
range from molecular reactions [40,44,92] to heat transport
through strongly anharmonic molecules [93,94], and strongly
interacting quantum dots [75,95–98]. It was also used to
demonstrate that thermodynamic vector potentials arise in
slow but nonadiabatic transformations between nonequilib-
rium steady states [99] accounting for geometric heat and
excess entropy production. In a recent paper [75], Nakajima
et al. addressed a possible point of confusion in the FCS
approach: how can an “adiabatic” approach include physically
nonadiabatic pumping? In the last part of this paper we will
further clarify this issue, extending their observations.

(iii) Adiabatic-response (AR) approach. Finally, Avron
et al. studied [43] pumping in the density operator approach
also starting from Eq. (1). Interestingly, they considered
pumping for both unique and nonunique frozen-parameter
stationary states. The core idea of AR is to first expand the
master equation (1) in the driving frequency (smallest time
scale) and solve for the density operator in zeroth (ρ i) and
linear order (ρa) in this frequency:

ρ(t) ≈ ρ i(t) + ρa(t) + · · · . (3)

Importantly, the nonadiabatic part ρa accounts for the “laggy”
response and generates the pumping. However, they restricted
their analysis, using a Kato formulation, to pumping of system
observables (i.e., with current operators related to particle
transfer between parts within the open subsystem) and consid-
ered only a single reservoir. For the case of a unique stationary
state, the adiabatic-response pumping of system observables
calculated in [43] was related to Berry-Robbins’ “geometric
magnetism” [31,60,100,101] formulation of pumping. In this
paper, we instead study nonsystem observables and their
currents to multiple reservoirs, which is crucial for describing
the transport through an open quantum system, enabling a
geometric transport spectroscopy. This requires account of an
additional evolution equation, namely, for the current I r

X of a
nonsystem observable Xr into reservoir r:

I r
X = TrWÎXr

ρ(t). (4)

This brings in an additional observable-specific memory kernel
WÎXr

whose role in generating a geometric adiabatic response
has not been addressed so far.

C. Summary of results

The present paper was inspired by all three outlined
approaches, but in particular by a discussion in [43] of the
nonuniqueness of currents in relation to their observables,
reaching back to earlier works [102–105]. Following up on
an earlier remark in [44] (p. 8), we combine this idea with
Landsberg’s approach [26,106,107] to dissipative systems with
symmetries [108,109]. The key point is to consider the physical
role of the meter registering the pumping signal in the reduced
density-operator formalism. This results in an intuitive and
clear physical picture that does not seem to have been worked
out so far.

We outline the main steps and results of this paper:
(1) Landsberg geometric phase for pumping.In pumping

a local gauge freedom emerges in the relation between a
measurable pumped observable and its associated current

operator [Eq. (59)]. This is encoded in the simple adiabatic-
response equations for the mixed quantum state

0 = Wρ i,
d

dt
ρ i = Wρa (5)

and an “enslaved” equation for the current for a nonsystem
observable:

d

dt

〈
X̂r

g

〉 = TrWÎXr
g
(ρ i + ρa). (6)

Here, W and WÎXr
g

have only parametric time dependence.

Crucially, this observable X̂r
g(t) := X̂r + g[R(t)]1 includes

all possible parametrically time-dependent gauges g relative
to the “bare” time-constant observable X̂r . Physically, this
gauge freedom corresponds to a calibration of the meter scale.
In the current kernel, a gauge transformation g → g + f , a
recalibration, leads to

WÎXr
g

→ WÎXr
g+f

= WÎXr
g
+ ∇Rf, (7)

requiring an extension of the Heisenberg equation of motion
[Eq. (41)] to observables outside the open system. This makes
the pumping contribution of the transported observable an
instance of the geometric phase first considered by Landsberg

�Xr,a =
∮

C

dR AXr
g
[R], (8)

with the Landsberg connection (gauge potential) [Eq. (73)]

AXr
g
= (1|WÎXr

1

W
|∇Rρ i) + ∇Rg, (9)

where the pseudoinverse 1/W is defined on the nonzero
eigenspaces of W .

(2) Pumping determines a geometric effect. Geometrically,
the observable (not the quantum state) plays the role of a fiber
(group) coordinate in a (principal) fiber bundle over the space
of driving parameters with a tangible physical meaning. The
Landsberg geometric connection on this space is essentially the
adiabatic-response part of the total current IXr

g
= I i

Xr
g
+ I a

Xr
g

of a gauge-dependent observable. The geometric “horizontal
lift” defined by this connection corresponds to maintaining
the physical pumping current I a

Xr
g

to be zero at each time
instant by continuously adjusting the scale of the meter.
The geometric-phase “jump,” the holonomy of a horizontal
lift curve, corresponds physically to the resulting cumulative
adjustment of the meter’s scale over a driving period: the
pumped observable per period.

(3) Conditions for nonzero pumping curvature. The
generic presence of gauge freedom implies that one can expect
a geometric pumping contribution unless the connection AXr

g

is integrable for some special reason. The gauge-invariant
curvature (gauge field)

BXr = (1|
(

∇RWÎXr

1

W

)
× (∇R|ρ i)) (10)

measuring this nonintegrability is just the pumped observable
per unit area of the driving parameter space. This quantity is
sensitive to crossings of lines in the parameter space where
the open system is in resonance with the reservoirs. This
enables a geometric spectroscopy of open quantum systems.
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Importantly, this formula also applies if there are no strict
conservation laws, which is relevant, e.g., for spin and heat
transport. It can, however, be easily simplified if such laws are
present. The application of our pumping formula to the explicit
example of a single-level Anderson quantum dot illustrates this
spectroscopy, showing that for a variety of driving protocols,
interaction is required to obtain a nonzero geometric pumping
phase.

(4) Connections of different approaches. We find that the
three approaches (ASE, AR, FCS) outlined in the previous
section are intimately related as summarized in Table II. Our
main line of comparison involves our AR approach with the
FCS approach. We show that when the FCS is applied to
the first moment of pumping, as done in many works, it is
term-by-term equivalent to our much simpler AR approach
on all levels (pumping formulas, gauge freedom, connection,
curvature, and their limits of applicability). We show that the
FCS not only unnecessarily complicates practical calculations,
but is also less clear regarding the physical meaning of the
geometric nature of pumping due to its “mixing” of effects
of the quantum state and the observable [see discussion after
Eq. (142)].

This comparison allows us to resolve the important issue
regarding the “adiabaticity” of the FCS going beyond the scope
of [75]. Also, we show how within this physical nonadiabatic
picture of the AR approach, the geometric nature of pumping
can be fully understood, independent of the FCS formulation,
thereby avoiding the nontrivial issue of its “adiabaticity.” In our
comparison, the ASE approach turns out to be very relevant
time and again. We also connect our approach to the Kato
formulation of the AR approach of Ref. [43], shedding some
new light on it.

D. Adiabatic-response real-time approach beyond
the Markovian, weak-coupling limit

An important implication of our work is that Landsberg’s
geometric framework is compatible with a more general
AR approach to pumping [55] applicable to non-Markovian,
strongly coupled open quantum systems: the gauge freedom
we point out derives from entirely general arguments. Since
this paper is written with this future extension [91] in mind, it
is important to briefly outline this more general AR approach.

This general adiabatic-response approach to pumping in
slowly driven open systems [55] is based on the exact time-
nonlocal kinetic equation for the density operator

d

dt
ρ(t) = −i[H [R(t)],ρ(t)] +

∫ t

−∞
dt ′W (t,t ′; {R(τ )})ρ(t ′),

(11)

here written for the time-dependent steady-state limit, i.e.,
switching on the system-reservoir coupling at t0 = −∞ and
starting from an initially factorizing system-reservoir state.
This approach is close in spirit to the AR approach to pumping
mentioned above under point (iii). However, it goes beyond
these by incorporating the fact that the open-system evolution
has a functional dependence on the entire driving-parameter
history, indicated by the dependence on {R(τ )} of the kernel
W . This is accomplished by systematically accounting for

processes of higher order in the coupling as well as the
Laplace-frequency dependence of both the kernel and the
density operator. From this point of view, the superoperator
W in Eq. (1) only accounts for the zero-frequency (z = i0)
part of the Laplace transform of W (z; R(t)) of the kernel in
Eq. (11) after freezing its parameters at the latest time τ = t .

Expectation values of nonsystem observables Xr , e.g.,
reservoir observables or reservoir-system currents, are de-
scribed by a similar time-nonlocal equation

〈X̂r (t)〉 = Tr
∫ t

−∞
dt ′WX̂r (t,t ′; {R(τ )})ρ(t ′), (12)

with an observable-specific memory kernel WX̂r that in general
needs to be calculated separately in addition to W in Eq. (11).
A key point of the paper is that this equation requires
careful consideration in order to ensure explicit physical gauge
covariance of the formalism.

For strongly interacting open systems at low temperature,
the time-nonlocal kernels required in Eqs. (11) and (12) can
be systematically computed using the real-time diagrammatic
technique [110,111]. This provides a general framework for
calculating kernels, including those required for noise [112],
correlation functions [113,114], and2 for the full counting
statistics [115]. The flexibility of this approach is illustrated
by the possibility of formulating a nonequilibrium renormal-
ization group scheme for calculating ρ(t) [111,116–121]. For
example, this enabled a nonperturbative adiabatic-response
analysis [122] of interaction effects on the universal charge-
relaxation resistance [123–125] for strong tunnel coupling and
low temperature.

So far, in this more general setting little attention has been
paid to the geometric aspects of pumping. This paper addresses
two questions relevant to this: First, where in the formalism
does the gauge freedom responsible for geometric pumping
arise? What is its concrete physical meaning? Second, the
general AR approach to pumping is based on real-time memory
kernels for nonsystem observables [Eq. (12)]. The role of these
kernels for the geometric nature of pumping has not been
considered at all within the other AR formulations outlined
under point (iii) above. What is this role?

These questions are intimately related and lead to the
insight that observables, rather than mixed quantum states,
accumulate a geometric phase that is responsible for steady-
state pumping. To see this, it is necessary, but not sufficient,
to account for generically time-dependent observables, even
when interested in the expectation values of time-constant
ones. This is the fundamental difference to the AR approaches
listed under point (iii) and also turns out to provide the link
to the FCS approach point (ii). Fortunately, this can already
be addressed in the much simpler setting of Eq. (1) instead of
the general density-operator approach based on Eq. (11). In
this paper, we thus start from this equation, i.e., the same kind
of master equation as the approaches (i)-(iii) reviewed above,
allowing a useful three-way comparison. The generalization

2Sinitsyn’s master equation (101) for the generating operator of
the FCS can be derived in both the “real-time” and the “Nakayima-
Zwanzig” approaches. This underlines that neither label is a mean-
ingful label for distinguishing different approaches to pumping.
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starting from Eqs. (11) and (12) requires more care and will
be discussed elsewhere [126].

E. Outline

In summary, our aim is to set up a geometric framework for
pumping through strongly interacting open systems that can
deal with nonsystem observables, that is more direct than the
FCS approach (when targeting only the first moment), and that
is a more suitable starting point for generalization to evolutions
more complicated than Eq. (1). The outline of the paper is as
follows:

In Sec. II, we review how the kernels for the evolution of
the state [Eqs. (1) and (5)] and for the observable expectation
values [Eq. (6)] can be derived. We pay attention to issues
related to inadvertent gauge fixing by the common procedure
of normal-ordering expressions with respect to the reservoirs.
The key formula is the Heisenberg equation (41) for the current
superoperator after the reservoirs have been integrated out. At
the end of this section, we formulate the guiding questions for
the remainder of the paper.

In Sec. III, we then show that in the pumping problem
a gauge freedom emerges that is related to the physical
calibration of the meter registering the transport of a nonsystem
observable (reservoir charge, spin, heat, etc.). The pumping
problem precisely fits into the general geometric framework
of Landsberg [106] for driven dissipative systems with a
continuous (gauge) symmetry. The solution determines a ge-
ometric connection (gauge potential) on a simple fiber bundle
of observables over the manifold of driving parameters. This
connection is essentially the nonadiabatic current response and
is closely related to a meter calibration.

In Sec. IV, we analyze the expression for the corresponding
geometric curvature (gauge field), essentially the measurable
pumped observable, and determine necessary conditions for a
nonzero pumping effect. We explain how under quite general
circumstances pumping can be used to perform a geometric
spectroscopy of a weakly coupled open system.

Finally, in the extensive Sec. V we compare the Landsberg-
AR approach in detail with the FCS approach, when applied
only to the first moment of the pumped observable. Despite
the quite different formulation, we show that this approach
is equivalent to the simpler and more direct Landsberg-AR
approach on all levels: gauge freedom, connection (gauge po-
tential), geometric pumping formula for the curvature (gauge
field), as well as the limits of applicability. Our formulation
highlights the physical role of the meter and allows us to further
clarify the puzzling fact noted in [75] that the “adiabatic” FCS
approach produces nonadiabatic contributions.

II. ADIABATIC-RESPONSE APPROACH TO PUMPING

A. Model, pumped observables, and steady-state pumping

The adiabatic-response approach to pumping that we
describe in this section applies to very general open quantum
systems. We consider a quantum system with a discrete
energy spectrum coupled to multiple noninteracting reservoirs
indexed by r . Whereas the reservoirs are assumed to be
made up of either fermions or bosons, the system can
be of mixed type as well. We allow for possibly strong

nonequilibrium conditions due to nonlinear biasing of the
reservoirs’ electrochemical potentials (μr 	= μr ′

). Of central
importance is that our findings also apply to a quantum
system that is locally strongly interacting, in contrast to
several existing pumping approaches [29,53,77]. For example,
Coulomb interaction is crucial if one wants to describe driven
transport through quantum-dot devices, such as semiconductor
heterostructures [127], but also molecules [51] and single
atoms [49]. However, the approach applies equally well to
bosonic models of pumping in chemical reactions between
strongly interacting molecules [40] and heat pumping using
anharmonic [93,94] molecules.

The total system has the generic form of the Hamiltonian

H tot(t) = H (t) +
∑

r

H r (t) + V (t), (13)

with H describing the system. H res(t) :=∑r H r (t) accounts
for the reservoirs including a driving term Hr (t) = Hr +
Vr (t)Nr for each reservoir r . Finally, V (t) =∑r V r (t) is the
coupling of the system to multiple reservoirs where V r (t)
describes the particle and energy exchange with reservoir r .
We denote the energy scale of the coupling by 
 ∝ V 2, having
in mind that for quantum-dot pumps this corresponds to the
tunnel rate of particles. In this case, 
−1 is the scale of the
electron lifetime on the quantum dot. To achieve pumping,
we allow that all Hamiltonians in Eq. (13) are driven time
dependently through a set of parameters. For example, for
a quantum dot coupled to metallic electrodes, this means
that aside from the reservoir electrochemical potentials and
couplings, any of the dot’s parameters can be driven through
applied voltages: the single-particle energy levels, but also the
two-particle interaction,3 etc.

At the initial time where the driving and the coupling to
the reservoirs are switched on the initial equilibrium density
operator of all reservoirs r = L,R, . . . is

ρres :=
∏

r

e−(Hr−μrNr )/T r

(14a)

=
∏

r

e−[Hr (t)−μr (t)Nr ]/T r

. (14b)

It is characterized by the constant temperatures T r , the
electrochemical [76,128,129] potentials μr , and the initial
Hamiltonians Hr without driving. In the following, we will
use the form (14b) in which we eliminated the undriven Hr

in favor of the driven Hamiltonian governing the dynamics,
Hr (t), by introducing a (canceling) time dependence through
driven electrochemical potentials μr (t) = μr + Vr (t). The
theory below can then be expressed entirely in terms of these
parametrically time-dependent quantities.4

We gather all driving parameters in one dimensionless
vector R(t), i.e., each parameter is taken relative to a relevant

3For experiments one should keep in mind that driving gate voltages
defining a quantum dot changes the screening properties [164] and
thus the effective interaction. This may well contribute to pumping
and can be accounted for in our approach.

4The seemingly inconvenient cancellation of time dependencies in
Eq. (14b) in the time constant ρres is actually advantageous.
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scale, and all parametric dependences are denoted by “[R]”.
For example, in driven quantum dots, R(t) would include
the applied voltages divided by temperature [see the explicit
example in Appendix D, Eq. (D7)]. This ensures that Ṙ has unit
energy setting h̄ = 1 [Eq. (16)]. The parameters are cyclically
driven in time at the frequency �. We denote the period by
T = 2π/� and the traversed oriented closed curve in the
parameter space by C.

Other simplifying assumptions used in this work are that
the coupling is weak compared to temperatures, i.e.,


 � T (15)

and that the driving velocity is slow on the scale of the system’s
inverse lifetime, reading for R(t) = R̄ + δRF (�t)

|Ṙ| ∼ |δR|� � 
. (16)

Note that this requires the product of amplitude |δR| and
frequency � to remain small [cf. Eq. (51)]. Physically, this
ensures that during one driving cycle many transport processes
(due to the coupling 
 ∝ V 2) occur, each process taking place
for instantly frozen parameters to first approximation.

We are interested in the net change �Xr of a physical
reservoir observable operator5 X̂r after one driving period
T = 2π/� in the time-dependent steady state. This state is
established at any finite time as the time t0 at which the system-
reservoir coupling is switched on is sent to t0 → −∞. Aside
from the slow-driving limit we always assume this steady-state
limit, in which case

�Xr = 〈X̂r〉(T ) − 〈X̂r〉(0) (17a)

=
∫ T

0
dt

d

dt
〈X̂r〉(t). (17b)

Examples of such observables X̂r are the charge, spin, or
energy of reservoir r . We refer to �Xr as the net transported
observable per driving period to clearly distinguish it from the
pumping contribution contained in it. Note that �Xr is not
the expectation value of an observable operator. Instead, it is
the result of a two-point measurement [130] at times 0 and
T in the steady-state limit t0 → −∞. In the FCS approach
discussed in Sec. V, one calculates this quantity essentially
using the first line (17a) via a moment generating function. In
the AR approach, on which we focus instead, one calculates
the second line (17b) by integrating the time-dependent current
operator of the observable X̂r .

B. Master equation

In this section, we briefly review the derivation of the
time-local master equation used to calculate the transported
observables via the second equation (17b). Although much
of this is standard, a number of important points related to
the gauge freedom need to be highlighted. Moreover, this
prepares for a similar but less standard analysis for observables
in Sec. II C, in which a gauge freedom emerges.

5We use a hat (̂ ) only when operators may be confused with their
expectation values.

In the simple limit of weak coupling and slow driving
we only need to consider the state evolution in the frozen-
parameter approximation [55]. This amounts to calculating
the evolution for fixed parameters R and in a second
step inserting their instantaneous, time-dependent value R(t)
[cf. Eq. (25)]. Thus, in the following

H 0 := H + H res (18)

as well as V are all time independent and the fixed parameter
value R will not be written until it is needed again. The master
equation concerns the reduced density operator, the partial
trace

ρ(t) := Trresρ
tot(t) (19)

of the density operator of system plus reservoir, as it evolves
under the unitary time evolution

ρ tot(t) = U (t − t0) ρ tot(t0) [U (t − t0)]†, (20a)

U (t) = e−i(H 0+V )t , (20b)

starting from an initially factorizing state

ρ tot(t0) = ρ(t0) ⊗ ρres, (21)

and letting t0 → −∞ after taking the trace over the continuous
reservoirs. For the present purposes, an easy way of obtaining
the master equation for the reduced density operator ρ(t)
suffices. We start from the Liouville equation for the density
operator of the total system

d

dt
ρ tot(t) = −i[H tot,ρ tot(t)], (22)

which we integrate, then iterate once, and finally trace over the
reservoirs. Assuming that the coupling V is partially normal
ordered, i.e., TrresVρres = 0 (cf. Appendix A and Sec. II C),
one obtains to leading order in the coupling 
 [cf. Eq. (A8)]

d

dt
ρ(t) = −iLρ(t) +

∫ t

−∞
dt ′W (t − t ′,R)ρ(t ′), (23)

where L• := [H,•] is the system Liouvillian superoperator
and the kernel W (t,t ′) is the superoperator [cf. Eq. (A9)]

W (t − t ′,R)• = −Trres
[
V,e−i H 0(t−t ′)[V,ρres •]eiH 0(t−t ′)].

(24)

Here and below, • denotes an arbitrary system operator
appearing as an argument of a superoperator.

Consistent with the weak coupling (
) relative to the
reservoir thermal fluctuations (T ) and the slow driving
(|δR|� � 
), one should [55] neglect the memory effects
by setting ρ(t ′) → ρ(t) in Eq. (23). From |δR|�,
 � T we
thus obtain the Born-Markov master equation

d

dt
ρ(t) = W [R(t)]ρ(t), (25)

where we now again explicitly write the frozen-parameter
dependence. Here, we have conveniently defined the effective
kernel W as the sum of the system Liouvillian and the
zero-frequency Laplace transform of the kernel (24) for fixed
parameters R:

W [R] := −iL[R] + lim
z→0+

∫ ∞

0
dt e−ztW (t ; R). (26)
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In both terms, the parameters are subsequently replaced by
their time-dependent values R → R(t).

We stress that the calculation of the required kernel raises no
practical problems since it is based on the weak-coupling, high-
temperature limit 
 � T (see Appendix D). It nevertheless
accounts nonperturbatively for effects of strong interactions on
the system which enter the kernel through H in Eq. (24). When
going beyond this limit, the time nonlocality of the kernel
becomes important as discussed after Eq. (23). However, this
can be addressed transparently6 by systematically extending
the adiabatic expansion in the driving (�) with the perturbative
expansion in the coupling 
 as established in [55].

C. Observable and current kernels

We next review how in an analogous way the expectation
value (17) of a nonsystem observable, i.e., also acting on the
reservoir, can be obtained using the system density operator,
the solution of Eq. (25). In general, for a given density
operator ρ(t) the expectation value of a system observable
X̂(t) := X̂[R(t)] can be obtained from 〈X̂〉(t) = TrX̂(t)ρ(t)
where Tr is the trace over the system only. However, this fails
for nonsystem observables X̂r (t) := X̂r [R(t)] that have our
interest here. For this, an additional piece of information, an
observable kernel or a related current kernel, is required. Even
though we are interested only in pumping of time-independent
observables, it will be crucial to allow for parametric time
dependence of such observables throughout the analysis and
specialize only at the end, setting X̂r [R(t)] → X̂r .

Observable kernels and partial normal ordering. Anal-
ogous to the state evolution, the expectation value of a
nonsystem observable [120,131,132] can be expressed as [see
Eq. (A15)]

〈X̂r〉(t) = Tr
∫ t

−∞
dt ′W:X̂r :(t,t

′)ρ(t ′) + Tr〈X̂r〉res
ρ(t). (27)

Below it will be important that X̂r (t) is allowed to be a hybrid
system plus reservoir (r) operator.

We first discuss the second term, involving the partial
average over the initial reservoir state

〈X̂r (t)〉res
:= TrresX̂

r (t)ρres. (28)

Since we do not perform the system trace (Tr), the resulting
expression (28) is still an operator on the system Hilbert space.
Often, this second contribution to Eq. (27) is not considered
since either by choice of observable or model the partial
trace (28) vanishes. Such operators for which 〈X̂r (t)〉res = 0

6The Wangsness-Bloch approach used here to obtain Eq. (23)
and (24) runs into problems when going beyond the weak-coupling
approximation (see [152] for a discussion). The real-time approach
allows for a systematic derivation of corrections [55] to Eqs. (23)
and (24) including higher-order coupling effects as well as non-
Markovian effects. As a result of these corrections to the frozen-
parameter approximation, the kernel’s time dependence will in
general not be mediated solely by the parameters as in Eq. (25).

we call partially7 normal ordered with respect to the reservoirs.
The consideration of more general observables that are not
partially normal ordered is important for the gauge freedom
that underlies pumping. Such a general observable can be split
uniquely into two parts

X̂r (t) = :Xr (t): +〈X̂r (t)〉res
1res, (29)

thereby defining :Xr (t):. The second, partially averaged part
of Eq. (29) generates the second term in Eq. (27).

The first term of Eq. (27) comes from the first partially
normal-ordered term in Eq. (29). To leading order in 
,
a convenient explicit form of W:X̂r :(t,t

′) can be obtained
formally from W (t,t ′) by replacing in Eq. (24) the leftmost
V → i 1

2 X̂r (t) and the outer commutator by an anticommuta-
tor:

W:X̂r :(t,t
′) •

= −iTrres
1
2

[
X̂r (t),e−iH 0(t−t ′)[V,ρres•]e+iH 0(t−t ′)]

+. (30)

This expression allows for a physically irrelevant redundancy
(not to be confused with the gauge freedom) as one is free to
add any term to it that vanishes under the trace [cf. discussion
after Eq. (67)].

We stress the importance of the decomposition (27):
working with a partially normal-ordered observable, i.e.,
dropping the second term, removes the part of the observable in
which the physical gauge freedom lies. Such premature fixing
of the gauge freedom is very common, motivated by valid
practical reasons, but obscures the simple geometric nature of
the pumping from the very beginning.

Current kernels and Heisenberg equation. In the AR
approach, one follows the route (17b) and works with an
observable current kernel to obtain the pumped nonsystem
observable. The advantage is that the current becomes sta-
tionary for frozen parameters, in contrast to the observable
X̂r itself. As a result, the slow parameter driving the current
also evolves slowly in the steady-state limit, allowing for a
Born-Markov adiabatic-response approximation very similar
to the one made for the state evolution.

To this end, let X̂r now be a reservoir-only observable. Its
current into reservoir r reads as

IXr = d

dt
〈X̂r〉 = d

dt
TrtotX̂

r (t)ρ tot(t). (31)

The corresponding current operator, producing the time deriva-
tive of the expectation value

IXr =
〈
d̂Xr

dt

〉
= 〈ÎXr 〉, (32)

is given by the Heisenberg equation of motion

ÎXr := d̂Xr

dt
= i[H tot,X̂r ] + ∂X̂r

∂t
. (33)

This current is a “hybrid” nonsystem operator, i.e., acting on
both system and reservoir. Therefore, to integrate out the

7“Partial” distinguishes it from the usual operation of normal
ordering that ensures that any single Wick contraction of an operator
expression is zero instead of just the average.
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reservoirs by applying Eq. (27) we need to decompose it
according to Eq. (29) into two contributions. First, for the
partial average we obtain

〈ÎXr 〉res =
〈
∂X̂r (t)

∂t

〉res

. (34)

Here, we have assumed that the nonsystem observable X̂r is
conserved inside each reservoir r and conserves its particle
number for each value of the driving parameters, i.e.,

[Ĥ r ,X̂r ] = 0, [N̂ r ,X̂r ] = 0. (35)

This means that ÎXr is the operator for the net X̂r current
flowing out of the reservoir. This is appropriate when the
distribution of currents inside the reservoir is of no interest. A
consequence of Eq. (35) is that [X̂r ,ρres] = 0 [Eq. (14)] and
thus

〈[V r,X̂r ]〉res = Trres[V
r,X̂r ]ρres = 0 (36)

which we also used in writing Eq. (34). We stress that X̂r is
not assumed to be conserved by the coupling V . This will be
discussed separately [see Eq. (81)].

Second, for the partially normal-ordered contribution of the
current we obtain

:ÎXr : = :i[H tot,X̂r ]: . (37)

Here we have assumed that the explicit time derivative of the
observable has no partially normal-ordered part,

:
∂X̂r (t)

∂t
: = 0. (38)

To keep track of the gauge freedom of pumping, it is sufficient
to keep track of the limited class of observables whose time-
dependent operators satisfy Eq. (34) (cf. Sec. III).

Applying Eq. (27) for X̂r → ÎXr and using Eqs. (30), (34),
and (37), we obtain

〈ÎXr 〉(t) = Tr
∫ t

−∞
dt ′W:ÎXr :(t,t

′)ρ(t ′) + Tr〈ÎXr 〉res
ρ(t). (39)

We have thus traced out the reservoirs in the Heisenberg equa-
tion of motion. We can now apply the Markov approximation
to the first term in this equation in the same way as for
the master equation (25) since the frozen-parameter current
becomes stationary. We stress that the time dependence in the
second term that we keep through Eq. (34) can be arbitrary.8

We then obtain the key formula for the current:

IXr (t) = TrWÎXr
[R(t)] ρ(t), (40)

where we have defined the effective current kernel

WÎXr
[R] := W:i[V r ,X̂r ]:[R] +

〈
∂X̂r [R]

∂t

〉res

. (41)

Equation (41) is of central importance: it is the open-system
equivalent of the Heisenberg equation (33) for time-dependent

8This implies that the gauge transformations Xr → Xr + g(t)1with
arbitrary time-dependent functions g(t), introduced in Sec. III, do not
break the validity of the Markov approximations.

nonsystem observables that obey Eqs. (35) and (38). Here, the
first term is the zero-frequency Laplace transform of W:X̂r :(t,t

′)
with :X̂r : → :i[H tot,X̂r ]: given explicitly by Eq. (30). As
mentioned before, often the last term in Eq. (41) is not
considered because one assumes from the start that the
observable is time independent. This amounts to a premature
fixing of the gauge similar to assuming partial normal ordering
[see Eq. (28) ff.].

D. Pumped observables: “Naive calculation”

With the master equation (25) and the current formula (40)
carefully established, it is now easy to calculate the transported
observable �Xr in adiabatic response to the driving following
the route via Eq. (17b). We now discuss how this was done so
far [43,55,68–70,133–137] and then formulate in Sec. II E the
questions that this calculation leaves open.

For slow driving, the density operator ρ(t) can be expanded
in powers of the small driving velocity |Ṙ| = |δR|� � 


[Eq. (16)]:

ρ(t) ≈ ρ i(t) + ρa(t). (42)

Here, the first instantaneous term is of order O(1) and
the second term is the adiabatic response O(|δR|�/
)
accounting for the “lag.”9 Inserting this into Eq. (25) and
collecting orders of |δR|�/
 one finds

0 = W [R(t)]ρ i(t), (43a)

d

dt
ρ i(t) = W [R(t)]ρa(t). (43b)

These simple steps are equivalent to the asymptotic
analysis/time-scale separation found in other
works [43,106,138].

Equation (43a) defines the instantaneous stationary state
ρ i(t) = ρ i[R(t)], i.e., the stationary state that would be reached
if the parameters were frozen. Throughout the paper we
assume that this state is unique, as is the case in many
practical pumping problems (see discussion in Sec. VI). This
moreover helps to keep our discussion of the geometric phase
effect accumulated by the observable clearly separate from
geometric phase effects related to quantum states (see Sec. III).
Finally, most of the approaches we compare with rely on this
assumption (see, however, [138]).

In contrast, Eq. (43b) determines the adiabatic response,
i.e., the first-order correction to the instantaneous evolution,
which depends on both the parameters R and their velocities
Ṙ through d

dt
ρ i[R(t)]. It can be expressed as [69]

ρa(t) = 1

W [R]
∇Rρ i[R]

dR
dt

(t), (44)

9Note the difference between “lag” (Markovian, nonadiabatic) that
we keep and “memory” (non-Markovian) that we neglect: Since
thermal fluctuations are much faster than both coupling and driving
T � 
,|δR|�, we can neglect the “memory” in the kernel. This
results in Markovian dynamics of ρ(t) [Eq. (25)] on time scale 
−1.
For driving velocities slower than this, i.e., |δR|� � 
, the solution
ρ(t) of Eq. (25) develops a small “lag” responsible for pumping that
we do take into account.
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with the pseudoinverse 1/W [R], i.e., restricted to the subspace
of nonzero eigenvalues of W [R].

We now compute the observable as in most cited AR
works [43,55,68–70,133–137] by assuming that X̂r has no
parametric time dependence to begin with: setting ∂X̂r/∂t = 0
in Eq. (41),

WÎXr
[R] = W:i[V r ,X̂r ]:[R] (45)

and inserting the expansion (42) into Eq. (40) we obtain an
instantaneous part (“sum of snapshots”)

�Xr,i =
∫ T

0
dt Tr WÎXr

[R(t)]ρ i[R(t)], (46)

and an adiabatic-response part

�Xr,a =
∫ T

0
dt Tr WÎXr

[R(t)]ρa(R(t),Ṙ(t)). (47)

The pumping current under the integral in Eq. (47) is clearly
nonadiabatic, i.e., the system is “lagging behind,” since
Eq. (44) ∝ Ṙ. Therefore, the pumped observable (cf. Sec. I) is
geometric in the elementary sense that it can be expressed as
a line integral over the traversed driving parameter curve C:

�Xr,a =
∮
C
dR Tr WÎXr

[R]
1

W [R]
∇Rρ i[R]. (48)

Scaling with parameters. The instantaneous part (46) and
adiabatic-response part (47) and (48) differ in their scaling
with parameters, allowing them to be separately extracted
from measurements, both in principle and in practice. Since
a physical meter that registers the (pumped) observable will
be our key principle for understanding the geometric nature of
pumping, we now discuss its scaling summarized as

�Xr,i ∼ 


�
, �Xr,a ∼ |δR|2 as δR → 0. (49)

First, the pumped observable �Xr,a does not depend on
the parametrization of the driving cycle C and therefore is
independent of the driving frequency �. However, its sign is
reversed when inverting the orientation of the driving cycle
C. In contrast to this, the instantaneous contribution �Xr,i =∫ T

0 dtI i
Xr [R(t)] diverges ∝T ∝ �−1 at zero driving frequency

because the instantaneous current is frequency independent
(“infinite sum of snapshots”).

A second difference is that �Xr,i ∝ 
 since the currents
scale up linearly with the strength 
 of the coupling of
the system to its environment.10 This effect is also present
in Eqs. (47) and (48) but there it is compensated by the
downscaling of all relaxation times (W−1 ∝ 
−1). This makes
the adiabatic-response pumping �Xr,a independent of the
overall coupling scale 
. Physically speaking, for a more
strongly coupled system the currents are larger but the
“lag” time is correspondingly shorter, giving the same net
pumping effect. This difference between �Xr,i and �Xr,a

holds even when this scale is altered in time and can be
utilized experimentally. In Appendix C, we discuss how to

10In Eq. (46), WÎXr ∝ V 2 ∝ 
 by Eqs. (30) and (45).

use this scaling to extract the pumping contribution from
measurements.

Finally, for fixed � but vanishing amplitude of driving |δR|
around a working point R̄ the instantaneous part will saturate at
a value �Xr,i → I i

Xr [R̄]T set by the stationary current which
can be nonzero depending on the parameter set R̄. In contrast,
the pumped observable always vanishes11 �Xr,a ∝ |δR|2 as
|δR| → 0 (see Sec. IV).

Limits of applicability. There are two restrictions that limit
the applicability of the AR approach (cf. also Sec. V C 4). First,
to be consistent, the sum of the instantaneous plus adiabatic-
response correction to the state must remain small relative to
the neglected higher corrections, denoted by ρrest:

||ρrest|| � ||ρ i + ρa||, (50)

where || • || = (•|•) denotes the operator norm. As discussed
in Appendixes G and H, this requires that for all accessed
values of the dimensionless driving parameters the velocity is
sufficiently small compared to the open system’s relaxation
rates

|Ṙ| = � · |δR| � 
[R]. (51)

Here, 
 sets the magnitude of the nonzero eigenvalues of
W in Eq. (43). Thus, when driving with large dimensionless
amplitude |δR| the restriction on the driving frequency �

becomes more stringent.12 Also note that driving the coupling
amplitude 
[R] plays a special role, as compared to the other
parameters: the coupling amplitudes is additionally limited by
Eq. (15). Using Eq. (44) this implies that

||ρa|| ∼ � · |δR|

[R]

� 1 ∼ ||ρ i||. (52)

A second consistency condition is that the neglected
higher nonadiabatic contribution �Xr,rest to the transported
observable is small relative to the first two contributions that
are kept, �Xr,i and �Xr,a [Eqs. (46) and (47)]:

|�Xr,rest| � |�Xr,i + �Xr,a|. (53)

This was found to be of particular importance for pumping of
energy and heat [139]. Although this is often not discussed, it
may in fact impose tighter limits on the driving frequency than
expected just from the first condition (51) for the expansion of
the state.

Therefore, we now briefly outline how the expansion for
the current of some observable X̂r may break down even if
the expansion for the state ρ(t) is good. One can pictorially
understand what may go wrong by considering operators x

as either vectors in Liouville space, |x) = x or covectors
(x| = Trx†. The currents I k

Xr = Tr WÎXr
ρk = (V |ρk) for k =

{i,a,rest} are Hilbert-Schmidt scalar products of |V ) and |ρk),
i.e., the component of the latter along |V ).

One should now worry that if one chooses an arbitrary
observable, i.e., the vector |V ), then its orientation may be such

11Section IV shows that via Stoke’s theorem the pumped charge can
be expressed as an area integral which for small driving cycles scales
as |δR|2.

12Often the quoted condition � � 
 for pumping implicitly
assumes |δR| ∼ 1.

155431-10



GAUGE FREEDOM IN OBSERVABLES AND LANDSBERG’S . . . PHYSICAL REVIEW B 95, 155431 (2017)

that the projection of the shorter |ρrest) onto |V ) is larger than
that of the longer |ρ i) + |ρa). However, since these two parts
scale different with frequency � the importance of I rest

Xr relative
to I i

Xr + I a
Xr can still be decreased by lowering the frequency

and/or amplitude even further than required by condition (51).

E. Why is pumping geometric?

With Eq. (48) the pumping problem is solved in great
generality under the assumptions stated in Sec. II A. This
approach was formulated in [55] and subsequently analyzed
in detail in [68–70,133–137] and systematic higher-order
corrections, beyond the Born-Markov approximation, were
computed in [55,140].

However, one should wonder about the geometric nature
of the reported pumping effects in a more precise sense, i.e.,
beyond “the final answer can be written as a curve integral.” It is
clear from this that you can add a differential without changing
the answer for mathematical reasons. What this corresponds
to physically is unclear. Is the pumping effect, like so many
other physical problems [22–26], related to some underlying
gauge structure of the problem that is already physically
evident before solving it? If there is no gauge freedom, then
a geometric effect can never arise. Can the AR-pumping
problem be formulated in a manifestly gauge-covariant way?
We will show that fully answering these questions will lead
to a better physical understanding of why and how pumping
effects can appear at all. This is not obvious in the AR approach
even though the calculations are simple. Also, in more difficult
situations involving strong coupling and memory effects [126],
knowing about gauge structure in advance is helpful.

That there must be such a gauge structure in the AR
approach to pumping was mentioned already in [44] (p. 8)
in relation to earlier works by Landsberg [106,141]. It was
recently demonstrated [75] that the, geometric, FCS result
coincides in general with the explicit AR result (48). However,
it is quite unsatisfactory that the gauge structure must be
inferred via the more complicated FCS approach instead of
directly via the remarkably simple AR derivation: above we
found that one cannot really verify that the result (48) is
gauge invariant, a crucial test for any geometric effect, since
it was obtained by (silently) fixing a gauge. Therefore, in the
remainder of the paper we address the following questions:

(i) What is the gauge freedom “intrinsic” to the AR
approach? In other words, through which physical quantity
does a geometric phase enter the AR pumping analysis? From
closed quantum systems [31,142] one might expect that the
geometric phase of pumping resides in some freedom of the
quantum state. However, the open-system analog [37,38] of
the Berry-Simon geometric factor in the steady state exhibits
no change between start and end of the evolution. A direct
geometric origin of the pumping effect is thus not related to
this Berry-Simon–type geometric phase, and has to be sought
in the observable: What then constitutes the physical gauge
freedom for pumping of nonsystem observables? This remains
unclear despite the elegant geometric formulations of the AR
approach to pumping of system observables [43,138,143].

(ii) How does pumping generate a geometric effect? Given
that the observable, instead of the quantum state, exhibits a
geometric phase, how is a geometric connection and curvature

determined by the physics of pumping leading up to Eq. (48)?
The appearance of a geometric phase in such AR-type calcu-
lations is closely related to Landsberg’s [106,141] discussion
of classical dissipative systems exhibiting a symmetry.13

(iii) When is pumping nonzero? Under which conditions
does a nonzero pumped observable, quantified by the geo-
metric curvature, actually arise? In Sec. IV we exploit the
simplicity of the geometric Landsberg-AR pumping formula
[Eqs. (48) and (72)] to specify quite generally such necessary
conditions, and discuss simplifications that can be made when
the pumped observable is conserved.

(iv) How are the AR and FCS geometric-pumping ap-
proaches related? Our key point is that the above questions
can be answered entirely within the simple AR formulation:
the geometric nature of pumping does not require an FCS for-
mulation of the problem. However, we believe that a detailed
comparison with the established FCS approach to pumping is
still warranted since it addresses important questions about
this approach. The large remainder of the paper, Sec. V,
is dedicated to this but can be skipped by readers mainly
interested in the AR approach put forward in this paper.

III. GAUGE FREEDOM AND GEOMETRY OF PUMPING

In this section, we will address questions (i) and (ii)
regarding the geometric nature of pumping within the AR
approach. The key idea is that the gauge freedom responsible
for pumping has the literal meaning of “calibration” of the
meter registering the measured value of the observable. The
differential-geometric notion of “parallel transport,” determin-
ing the connection and geometric phase in a relevant fiber
bundle, corresponds physically to keeping the scale on the
meter aligned with the needle during the pumping cycle.

A. No gauge freedom in the quantum state

To set the stage for answering question (i), we point out
that pumping is not related to a Berry phase of the state:
the parametrically driven time-dependent steady-state density
operator ρ(t) = ρ i(t) + ρa(t) [cf. Eq. (42)] is continuous over
a driving cycle within the mentioned approximations:

ρ(0) = ρ(T ). (54)

Thus, a closed parameter curve produces a closed steady-state
curve, without any discontinuity.

For the instantaneous part ρ i(t), one may derive the re-
sult (54) using the ASE approach of Sarandy and Lidar [37,38],
mentioned in the Introduction. At first, the continuity (54) may
seem at odds with their results in [38], where quite generally a
Berry-Simon–type geometric-phase discontinuity is predicted
for the mixed quantum state ρ i(t). The crucial point is to
consider the steady-state limit of their result, which was not
explicitly analyzed in [38]. In Appendix G, we show that
indeed their Berry-Simon–type phase vanishes in this limit,
assuming only, as we do here, probability normalization and

13See [26,107] for a detailed exposition and generalization to the
non-Abelian case and the review [44] for related references.
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that a unique stationary state exists for frozen parameters [see
Eq. (43a) ff.].

To establish (54) it remains to be shown that when including
the adiabatic-response part ρ(t) ≈ ρ i(t) + ρa(t), the state is
still continuous. For this one can take the steady-state limit of
the result reported in [37] for the adiabatic-response correction
ρa(t) [Eq. (G8)] to ρ i(t). This coincides with the result (44)
of the AR approach as we verify in Appendix G. The result is
that ρ(t) is continuous, again by trace normalization.

There is an elegant way of seeing that this continuity
actually corresponds to the vanishing of another geometric
phase, one that is associated with the nonadiabatic part
ρa. This relies on a generalization of Berry’s “adiabatic
iteration” [144] to open quantum systems with a stationary
state. This we set up in Appendix H where we again find
that Eq. (54) is enforced by probability normalization, not
only when including the adiabatic response ρa, but even when
adding all higher nonadiabatic corrections. Thus, the time-
dependent steady-state exhibits no discontinuity in any order
of the driving frequency when starting from the Born-Markov
equation (25).

Inquiring into question (i), we must therefore conclude
that within the reduced density-operator approach steady-state
pumping is associated with a geometric phase of an entirely
different kind, unrelated to the quantum state. In fact, as we
will see in Sec. III C, the quenching of the Berry-Simon–type
geometric phase of the quantum state allows the Landsberg
geometric phase in the observable to emerge.

B. Gauge freedom in pumped observable

We now answer question (i) regarding the physical gauge
freedom that underlies the geometric nature of pumping.
The key idea is that the current is not uniquely defined in
a pumping process. Nonsystem observables in such cyclic
processes exhibit a gauge freedom that is not present in general
for nonperiodic driving.

Total system description. On the level of the total system, the
Heisenberg expression for the current operator (33), repeated
here, reads as

ÎXr := d̂Xr

dt
= i[H tot,X̂r ] + ∂X̂r

∂t
. (55)

An obvious transformation that leaves the observable current
invariant [44] is

X̂r (t) → X̂r
g(t) = X̂r (t) + g1, (56)

where g is some fixed number independent of parameters and
time. Its physical meaning is clear when one accounts for the
meter registering the measured value of the observable X̂r :
the number g is simply a “recalibration” of that meter. As
illustrated in Fig. 1(a), one can picture the observable X̂r as
the scale bar of a meter whereas the meter’s needle corresponds
to the quantum state producing the measured expectation
value 〈X̂r〉(t). The recalibration (56) is now a shift of the
reference point of the scale bar behind the needle that indicates
the measured value. The Heisenberg equation (55) says that
the current operator ÎXr , and therefore also the transported
observable, remains unaltered.

FIG. 1. (a) Global gauge transformation X̂r → X̂r
g = X̂r + g1

leaving both currents IXr and transported observable �Xr invariant.
The gray scale bar is translated by fixed amount g relative to the
ungauged one (g = 0, dashed outline). The needle corresponds to the
quantum state that from the observable X̂r

g the measurement expecta-

tion value 〈X̂r
g〉 = 〈X̂r〉 + g indicated. (b) Local gauge transformation

X̂r → X̂r
g = X̂r + g[R]1, changing the currents to IXr

g
but leaving

the transported observable �Xr invariant. Since the meter scale is
gauged in a continuous way as function of the parameters R, it returns
to its original position every period: g[R(T )] = g[R(0)].

However, these global, R-independent, gauge transforma-
tions are a too narrow class for the present problem of pumping:
here we require only that the transported observable, the
integral of the current over a driving period [Eq. (17b)],
remains invariant. This allows for a much larger group of
local gauge transformations: for each parameter value R we
can choose a different gauge for the observable, determined
by a continuous real function g[R]:

X̂r [R] → X̂r
g[R] = X̂r [R] + g[R]1. (57)

In the physical picture of Fig. 1(b), this means that when
driving R in time the scale bar on the detector is allowed to
vary in time but only through the parameters. Because g[R] is
continuous, this cannot affect the measurement of the pumped
observable since at the end of a driving cycle the parameters,
thus also the scale of the meter, has returned to its initial
position: one reads off the change correctly as

�Xr
g = 〈X̂r

g

〉
(T ) − 〈X̂r

g

〉
(0) = �Xr (58)

for any such calibration function g, continuous along the pa-
rameter driving curve C. We stress that during the driving cycle
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the currents have changed due to the gauge transformation,
which is entirely physical.14

A prime example of working with such a driving-parameter-
dependent observable is when one ignores (gauges away)
the displacement charge currents when calculating the charge
(X̂r = N̂ r ) transported through a driven quantum dot from a
capacitive model [145]. In this case, the gauge function g[R]
has the concrete physical meaning of minus the screening
charge on electrode r which depends on the time-dependent
voltages (R) applied to all the terminals of the circuit (see,
e.g., [69], for a detailed discussion). We stress, however, that
our considerations hold equally well for other observables X̂r ,
for example, reservoir spin, energy, etc., for which there may
be no obvious concept of displacement current or which may
not be conserved.

In answer to question (i), we thus see that contained in
every pumping problem there is a simple local gauge group
of meter recalibrations, which is much larger than the trivial
global constant shifts (56) of the observable. It is nearly always
hidden since one fixes the gauge to g[R] = 0 as soon as one
decides to work only with the “bare” observable X̂r which
is time and parameter independent [see Eq. (28) ff.]. This
is one of the two “naive” things that we did in deriving
the AR pumping formula (48). However, we stress that our
arguments so far did not invoke any “open-system” ideas or
related approximations (e.g., integrating out the reservoirs,
Born-Markov or adiabatic approximation). We also note that
the gauge freedom (57) related to the identity operator is
present for any pumping problem: it holds irrespective of the
form of the parametrically time-dependent Hamiltonian H tot.
It is thus truly a gauge freedom of the nonsystem observables
that emerges for any periodic driving. Thus, before having
solved for, or even introduced, ρ i or ρa it is already clear that
the geometric nature of pumping is going to be associated with
the freedom of calibrating the meter.

Open-system description. Now, we show how this clear
physical picture is reflected in the reduced density operator
description, i.e., after integrating out the reservoirs. This brings
in open-system aspects. For this we return to the AR pumping
equations (25) and (40), and our careful discussion of partial
normal ordering and current kernels in Sec. II C.

The current kernel equation (41) replaces the Heisenberg
equation for the current in the total system description (55) in
our above discussion. Clearly, all observables differing by a
constant lead to the same current kernel because of the time
derivative in the second term of Eq. (41). However, a time-
local gauge transformation X̂r [R] → X̂r [R] + g[R]1 causes
the current kernel (41) to transform as

WÎXr
→ WÎXr

g
= WÎXr

+ d

dt
g[R(t)]I, (59)

14Whereas often gauge invariance (dependence) is a test for
“(un)physicality” of computed quantities, this is not the case here:
only a change of an expectation value is gauge invariant. One-point
measurements, e.g., of the current 〈IX〉(τ ) in the interval τ ∈ [0,T ]
are gauge dependent which is perfectly physical: changing the meter
gauge changes the measured current.

where I denotes the identity superoperator. For any gauge
function g[R] this current kernel produces the same trans-
ported observable

�Xr
g =

∫ T

0
dt Tr WÎXr

g
[R(t)][ρ i(t) + ρa(t)] = �Xr (60)

by virtue of the probability normalization of Eq. (42) [implying
Trρa(t) = 0] and the continuity g[R(T )] = g[R(0)].

Although the transported observable is gauge invariant, the
current kernel that produces it is not (as we changed the meter
gauge). To relate this to the observable as in (57), or rather
of its expectation values, requires a little extra effort in the
open-system picture. To this end, we separate the current in
Eq. (60),

IXr
g
(t) := Tr WÎXr

g
[R(t)][ρ i(t) + ρa(t)], (61)

into an instantaneous, gauge-independent part

I i
Xr := Tr WÎXr

[R(t)]ρ i(t), (62)

and a remaining adiabatic-response part that is gauge
dependent:

I a
Xr

g
(t) = IXr

g
(t) − I i

Xr (t) (63a)

= Tr WÎXr
[R(t)]ρa(t) + d

dt
g[R(t)]. (63b)

As before, the labels “a” or “i” indicate whether the current
component depends on Ṙ(t) or not. Now, we can identify
the geometric part of the expectation value of the gauged
nonsystem observable by splitting it up15 at any time t as
〈X̂r

g〉(t) = 〈X̂r〉i(t) + 〈X̂r
g〉a(t) into an instantaneous, gauge-

independent part

〈X̂r〉i(t) − 〈X̂r〉(0) :=
∫ t

0
dτI i

Xr (τ ), (64)

and an adiabatic-response part that contains the gauge depen-
dence: 〈

X̂r
g

〉a
(t) − 〈X̂r〉(0) :=

∫ t

0
dτI a

Xr
g
(τ ). (65)

We stress that here we do not integrate over a driving period,
but up to any time t within the driving period, 0 � t � T . Thus,
after integrating out the reservoirs the gauge dependence of the
total system operator X̂r

g = X̂r + g1 resides in the adiabatic-
response part of the observable

〈X̂r〉a(t) → 〈
X̂r

g

〉a
(t) = 〈X̂r〉a(t) + g[R(t)] (66)

and not in the instantaneous one 〈X̂r〉i. This is the open-system
equivalent of Eq. (57) that we sought.

Unphysical redundancy. At this point, it is important (cf.
Sec. V A) to note that the current kernel has an additional,
completely unrelated redundancy that may obscure the above
clear physical picture. Even when fixing the gauge g[R] of
the observable X̂r , the associated current kernel is still not

15This split-up is relative to 〈X̂r〉(0) since it can only be defined
via the corresponding split-up of the current. The latter exploits the
gauge freedom (57) that emerges only for periodic driving.
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unique: one can always add to it a time-dependent system
superoperator (t),

WÎXr
→ WÎXr

+ (t), (67)

for which Tr(t)• = 0, without changing any expectation
value, including the AR part 〈X̂r

g〉a(t). We actually made use
of this when writing the current kernel in the form (30).
Importantly, this redundancy is independent of the physical
gauge freedom16 and need not be considered further until we
discuss the FCS approach [cf. Eq. (94)].

Geometric nature of pumping. Thus, the geometric nature
of pumping in open systems emerges naturally when one
considers the current of the transported observable, i.e., via
the route (17b). In the total (open-) system description, the
gauge freedom lies in the nonunique association17 of (the
adiabatic-response part of) the transported observable �Xr

(�Xr,a) with a current (kernel super)operator ÎXr
g

(WÎXr
g
).

Associated with the measurable transported observable is
thus a whole class of different, parametrically time-dependent
observables X̂r

g . We see that the space in which the physical
pumping problem is solved is correspondingly much larger
than thought initially based on our “naive” calculation in
Sec. II D. More precisely, it has the structure of a simple fiber
bundle [59], sketched in Fig. 2. To each driving parameter R in
the base space is attached a “copy” of the space of all possible
gauge-equivalent, adiabatic-response expectation values of the
observable, i.e., all possible gauge choices (66) for fixed R.
For the “vertical” coordinate in this space we can just take
g[R], i.e., our simple fiber is isomorphic to the real line. This
reflects the direct physical meaning of the real valued g[R] as
a calibration of the meter scale of Fig. 1.

As in many other areas of physics [22–26] where one solves
a physical problem in such a fiber-bundle space, a geometric
phase is expected to emerge. Viewed in this larger space it is
now clear from the start that there is “room” for a geometric
phase to develop along the “vertical” fiber direction of the
observable, even though there is no “Berry phase” in the time-
dependent steady-state evolution of the mixed state (Sec. III A).

Returning to Fig. 2, we can visualize most clearly in what
way the geometric origin of pumping effects remains hidden
if one starts from the “bare,” time-independent observable
operator18 and/or enforces partial normal ordering of the
current operator (cf. Sec. II C). These technical assumptions

16The rewriting of the result (30) in Appendix A involves adding
a commutator [X̂r ,•] to the expression, which is invariant under the
physical gauge transformations (57). This means one can do such
rewriting at any stage of the calculation.

17The freedom in the assignment of a current operator to an
observable was discussed in [43] for geometric pumping of system
observables connected to a single reservoir, motivated by other
works [102–105]. Here, we consider more general nonsystem ob-
servables and multiple reservoirs, requiring consideration of current
kernels. This allows steady-state transport through the system to be
discussed. See further Appendix E.

18Throughout the paper we assume that the “bare” ungauged
observable X̂r does not depend on the parameters: it is the “probe”
used to detect a response of the driving (R) and should be independent
of the stimulus. However, when observable X̂r + X̂ is conserved, the

FIG. 2. Fiber bundle space in which the pumping problem (68)
and (69) is solved: the plane corresponds to the base space of driving
parameters R containing the driving curve C. The “vertical” space
at each point R is formed by all adiabatic-response expectation
values (66), 〈X̂r

g〉
a
, each coordinated by a real value of g[R] at that

point R.

physically amount to working in the fixed gauge g = 0.
Geometrically, this corresponds to using a special coordinate
system relative to the plane in the sketches in Figs. 2 and 3.
However, all smooth coordinate systems in this space are
physically meaningful and equivalent for pumping.

C. Landsberg’s geometric pumping connection

Having answered question (i) by identifying the gauge
freedom (the fiber bundle relevant for pumping) we will now
answer question (ii): we show how the solution of the pumping
problem determines a geometric connection whose geometric
phase is just the pumped observable. This determines the actual
magnitude of this geometric phase effect allowed by gauge
freedom. Following the AR approach, the pumping problem is
described by two equations (cf. Secs. II B and II C), the state
evolution

∂t |ρ(t)) = W [R(t)] |ρ(t)) (68)

exhibiting a unique frozen-parameter stationary state
W [R]|ρ i) = 0, and a second equation for a variable “enslaved”
to this, the gauge-dependent current

d

dt

〈
X̂r

g

〉
(t) = (1|WÎXr

g
[R(t)]|ρ(t)

)
. (69)

corresponding system observable X̂ may well be dependent on R [see
discussion after Eq. (81)].
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FIG. 3. In a fiber-bundle space, the notion of what is “horizontal”
is completely undefined, in contrast to “vertical,” which is naturally
the direction along gauge coordinate g, the fiber space. “Horizontal”
cannot be defined as orthogonal to “vertical” since there is no
physically motivated metric in this space. However, the function
Ag[R] arising in the solution of the physical pumping problem
of Eqs. (68) and (69) can be used to define what “horizontal”
means at each point, thus defining a geometric “connection.” The
nonintegrability of the connection Ag leads to the discontinuity in
the horizontal lift of the curve C into the bundle space. This is
the differential-geometric significance of Landsberg’s connection for
pumping.

Such pumping equations fit [44] into Landsberg’s general
framework of nonlinear, dissipative dynamics with a symme-
try [106,141], extended in [26,107] to the non-Abelian case.
In our special case, the symmetry is an Abelian gauge freedom
expressing changes of the coordinate system in the fiber bundle
space as in Fig. 2. Moreover, our dynamics is linear as we have
emphasized by introducing Liouville-space vector notation for
operators and linear functions of operators, respectively:

(1| := Tr, |ρ) = ρ. (70)

Here, we highlight the two most relevant aspects of Lands-
berg’s framework: (a) Equation (68) alone does not exhibit a
geometric phase, i.e., in the time-dependent steady-state limit
the solution should be continuous [see Eq. (54)]. For a unique
stationary state that we consider here, we showed in Sec. III A
that this is always the case due to the general constraint of
probability normalization. (b) The variable 〈X̂r

g〉(t), enslaved
to the dynamics of the state ρ(t), is not geometric as whole:
only its adiabatic-response part is geometric, as noted above.
However, even for this part to make sense in differential
geometry, the enslaved equation (69) needs to transform in

a specific way, as emphasized in [26]. If this were not the case,
pumping could not be related to a connection and curvature,
the basic concepts for relating physical results to geometric
and topological properties of a fiber bundle. In our case, this
corresponds to the physical transformation law for the current
kernel (59), which is essentially the Heisenberg equation of
motion after integrating out the reservoirs.

Following [26,107], in Landsberg’s approach one solves
Eqs. (68) and (69) for the time-dependent steady state using
the AR procedure, now including the gauge dependence in
contrast to Eqs. (25)–(40), and extracts a geometric phase
that is thus a leading-order nonadiabatic effect (adiabatic
response). Proceeding as before in Sec. II D, we compute ρ i

and ρa and insert these into Eqs. (62) and (63b). This gives for
the instantaneous part of the transported observable

�Xr,i =
∫ T

0
dtI i

Xr (t) =
∫ T

0
dt(1|WÎXr

[R(t)]|ρi), (71)

which is equal to Eq. (46). However, the adiabatic-response
correction now reads as

�Xr,a =
∫ T

0
dtI a

Xr
g
(t) =

∮
C
dR Ag[R], (72)

where using Eq. (41) we introduced the expressions

Ag := A0[R] + ∇Rg[R], (73a)

A0[R] = (1|WÎXr
[R]

1

W [R]
∇R|ρ[R]). (73b)

The pumping is now explicitly seen to be geometric, in a
more restricted sense, since we have now formulated the
problem without inadvertently fixing a gauge. It is now clear
why “adding a differential under the integral” must physically
always be possible: it is a meter recalibration. Answering
question (ii), the pumped observable (72) is indeed a geometric
phase determined by Ag , which, as we discuss below, plays the
role of a geometric connection with a clear physical motivation.
By Eq. (59) the gauge potential Ag indeed shows the proper
transformation to a new gauge with the simple additive gauge
group ∼R of meter recalibrations:

Af [R] → Af +g[R] = Af [R] + ∇Rg[R]. (74)

This ensures that the pumped observable is gauge invari-
ant, even though it is computed from the gauge-dependent
adiabatic-response part of the current IXr

g
(t) ∝ Ṙ(t).

When applying our considerations to the simpler case
of pumping of system observables and a single reservoir
our formulation recovers the geometric pumping result of
Avron et al. [43] for the case of a unique stationary state.
This is worked out in Appendix E, further showing the
complementarity to [43] which inspired the above.

D. Physical meaning of horizontal lift, parallel transport,
and holonomy

The answer to question (ii), i.e., that pumping defines a
geometric connection, can be further clarified by considering
the physical meaning of key concepts of differential geometry
of the fiber bundle of meter calibrations. In this regard,
the connection (73a) has the advantage that it is a global
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connection [59], i.e., defined in the total space of the fiber
bundle (in contrast to local connection forms independent of
the gauge coordinate). This global object has the most direct
geometric significance, which is also why it is favored in
differential geometry. Also, physically it is most revealing as
we now explain.

The central notion of “horizontal space” in a fiber bundle
can be defined directly by requiring this connection [a linear
function of vectors in the total space (Ṙ,ġ), transforming
as (74)] to vanish. Since we avoid the use of differential forms,
this should be written as

I a
Xr

g
(t) = Ag[R(t)] Ṙ(t)

= A0[R(t)] Ṙ(t) + ġ[R(t)] = 0. (75)

This locally determines a linear relation between a direction in
the base parameter space (Ṙ) and the “vertical” gauge direction
(ġ). This is sketched in Fig. 3. From the point of view of
differential geometry, the pumping current can thus be used to
define the notion of a “horizontal” direction in the total space.
Moving tangent to this so-defined “horizontal” space is called
“parallel transport” and by Eq. (75) physically corresponds
to maintaining zero pumping current as the measurement
proceeds. We stress that this zero-current condition Eq. (75)
derives ultimately from physics, i.e., from the state evolution
[Eq. (68)] plus the open-system Heisenberg equation of motion
[Eq. (69)]: it is not imposed. This is illustrated in Fig. 4: one
calibrates the meter’s scale in a parameter-dependent way such
that the needle always indicates a fixed expectation value for
X̂r

g relative to this moving scale.
From the sketch of these calibrations in Fig. 4 it is clear

that, if there is a nonzero pumping effect, this condition cannot
be maintained in a continuous way along the closed driving
curve C: the “vertical” jump at R(0) = R(T ) is the cumulative
calibration required to maintain zero current during the driving
period. This calibration must equal minus the pumped value.
To see this, let h(t) denote the curve that solves the differential
equation (75) along the closed base space curve C. This curve
is known as the “horizontal lift” of C in Fig. 3. Substituting
g[R(t)] → h(t), we find for the discontinuity

h(T ) − h(0) = −
∮
C
dR A0[R] = −�Xr,a. (76)

This discontinuity is the geometric phase or the “holonomy”
of the horizontal lift. Indeed, in the present problem this is just
minus the pumped observable.

In summary, by starting from the gauge freedom in a system
plus reservoir description, we arrived at the tangible physical
meaning for all the relevant geometric notions that arise in the
reduced density operator description of steady-state pumping.
By simply formulating the AR calculation of pumping in
the physically natural larger fiber-bundle space, it becomes
clear that there is always room for a geometric pumping
phase to develop for any nonsystem observable. Physically,
this is just the space that includes all possible meter gauges.
Although in the present case the actual calculations are all
easy, this simple picture has received little attention so far.
Much attention has been given to the more general but
also more complicated geometric FCS approach. The relative

FIG. 4. Physical meaning of differential geometric notions of
Fig. 3 in the pumping problem. The linear space defined by the
connection [Eq. (75)] locally determines a plane of “horizontal”
vectors in Fig. 3. Pumping corresponds to “parallel transporting” such
a vector thereby producing a “horizontal lift” of the closed parameter
drive curve C. Physically, this signifies that one calibrates the meter
for the observable, drawn in same way as in Fig. 1, such that one
maintains zero pumping current I a

Xr
g

in this gauge. If there is pumping
(the connection is nonintegrable), the lifted curve “breaks” as shown
in Fig. 3. Physically, the “vertical” discontinuity, the holonomy, is
minus the pumped observable, i.e., the cumulative calibration (purple)
required to maintain zero current during one driving period. Along
the horizontal lift, the scale (gray) is made to follow the pointer.

simplicity of Landsberg’s approach is a crucial advantage when
addressing more complicated models and dynamics [126].

IV. PUMPING CURVATURE

We now turn to question (iii) posed in Sec. II E by analyzing
necessary conditions for the pumped observable in the AR
approach to be nonzero.

A. Pumping curvature and response covector

It is useful to rewrite the pumped observable (72) as a
surface integral over a curvature BXr [R] = ∇R × AXr [R]:

�Xr,a =
∫
S

dS BXr . (77)
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By working with dimensionless parameters R, this curvature
has the direct physical meaning of pumped observable per
unit area of the driving parameter space. In view of the fol-
lowing discussion, we now explicitly indicate the considered
observable Xr in the curvature B. Clearly, adiabatic-response
pumping always requires at least two parameters to be driven.
Otherwise, the driving curve C does not bound a surface S and
Eq. (77) gives a zero result. This rules out all driving schemes
that are trivial one-dimensional curves in parameter space.

Given the driving cycle is two dimensional, we investigate
when the integrand, i.e., the pumping curvature BXr [R], is
nonzero by writing it in the transparent form

BXr [R] = (∇R�Xr [R]| × |∇Rρ i[R]) (78)

deriving from the Landsberg connection (73). We define
(a × b)ij := aibj − ajbi componentwise, which in two di-
mensions corresponds to the cross-product vector that is
normal to the parameter plane.19 Extending ideas of [69] (cf.
also Appendix F), here we introduced an adiabatic-response
covector

(�Xr [R]| := (1|WÎXr
[R]

1

W [R]
. (79)

That the Landsberg curvature (78) is explicitly gauge invariant
[cf. (73)] indicates that it has a direct physical interpretation
as a pumped observable: by Eq. (77) BXr [R] is the pumped
observable per unit area of the parameter space, i.e., bounded
by an infinitesimal pumping cycle at R. Thus, the pumping
curvature can be experimentally obtained in the limit of small
amplitude driving as BXr = d(�Xr,a)/dS.

The response covector (79) has a physically transparent
form: a nonzero pumping curvature (78) necessarily requires
that the combined effect of the “lag time” of the retarded mixed
quantum state (pseudoinverse relaxation kernel W−1) together
with the observable current (current kernel WÎXr

) is parameter
dependent.

The cross product in Eq. (78) imposes a stringent condition:
the pumping curvature does not only vanish when the gradient
of the response covector itself is zero, but also when it is
parallel to the parametric gradient of the stationary state,
schematically:

∇R�Xr [R] ‖ ∇Rρ i[R]. (80)

Here, the gradients are vectors obtained from each R-
dependent matrix element of the two operators in the cross
product in Eq. (78). Expanding both operators in a basis,
one obtains a Brouwer-type formula (see Appendix F), which
shows that for a nonzero result it is necessary that in this
expansion at least some components of the two operators
should pairwise have nonparallel gradients. In general, this
is not yet sufficient since in the sum they may cancel. An
explicit example of the curvature for an interacting quantum
dot is is given in Eq. (D16).

19For simplicity, we consider the parameters R to form a vector
space. For general nontrivial parameter manifolds one should instead
consider the exterior 2-form BXr [R] = (1|d(WÎXr W

−1) ∧ |dρ i) on the
tangent space of the manifold.

B. Geometric spectroscopy

The schematic condition (80) forms the basis for
the adiabatic-response pumping spectroscopy proposed
in [68,69,135] in the specific setting of quantum dots. Here, we
outline how this spectroscopy works in more general terms,
indicating that it extends to a much broader class of open
systems.

The physical idea is the following: in Eq. (80) clearly
both the kernel W [R], defining ρ i[R] [Eq. (43a)], and the
current kernel WÎXr

, defining �Xr [R] [Eq. (79)], depend on
the spectral properties of the closed system, the Hamiltonian
H , and of the reservoirs H res. Due to the weak coupling
to the reservoirs strong variations of these two quantities as
function of the parameters R are expected when the driving
curve C hits a parameter point for which the system is in
energetic resonance with the reservoirs. For particle transport,
for example, this happens when the electrochemical potential
of one of the reservoirs lines up with one of the system’s
particle-addition energies. When only such a single-resonance
parameter value is traversed by the driving curve, the R
dependence is thus effectively one dimensional, i.e., effectively
we drive a single parameter. We then have the situation (80)
of effective one-parameter driving and the adiabatic response
is zero on general grounds.

However, the driving may also visit parameter values where
the system simultaneously satisfies two (or more) resonance
conditions. For example, two or more system addition energies
may line up with electrochemical potentials of two reservoirs.
Then, the R dependence of the operators �Xr [R] and ρ i[R]
in Eq. (80) will in general be different, giving the necessary
lifting of condition (80) for zero pumping: the magnitude of
the pumping curvature is thus generically expected to show a
peak at crossings of resonances.

Indeed, in quantum dots this leads to a sharp pattern of
“spots” [68,69,98,135] at the crossings of single-resonance
parameter lines in the plane of applied voltages (“stability dia-
gram”) when plotting B[R]. However, as the above argument
indicates, the idea is more general: a recording of �Xr,a or BXr

as function of the driving parameter working point R contains
detailed information on the open system, both through its sign
and magnitude. Some of this information is not contained in the
instantaneous transported observable �Xr,i. For example, in
an interacting quantum dot, the sign of the curvature reveals the
spin-degeneracy through pumping (without using a magnetic
field) as well as the direction of the junction asymmetry [68].
Also, different pumping observables have different resolving
capabilities: for example, some resonances that are hidden in
charge pumping are revealed by spin pumping [69,135].

The basic principle of the geometric spectroscopy is thus
to probe the system’s properties via its leading parameter
dependence in adiabatic response to slow driving rather than
to more drastic physical excitation. The pumping formula (78)
provides a straightforward approach for computing the detailed
response for a variety of systems and observables [91],
illustrated in Appendix D for a driven quantum dot. In general,
this formula can be written in a Brouwer-type [53] form
with additional terms (see Appendix F). Before we discuss
simplifications of this formula in more special situations, we
stress its generality: It holds, within our approximations, for
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any weakly coupled open quantum system, e.g., comprised of
many orbitals with arbitrary interactions [as described by H

in Eq. (13)].

C. Pumping of conserved observables

The Landsberg pumping curvature (78) has the advantage
that it can easily be simplified when the considered nonsystem
observable X̂r is conserved by the coupling [Eq. (13)] at
junction r for each traversed parameter value:

[X̂[R] + X̂r ,V r [R]] = 0. (81)

Here, X̂[R] is the corresponding system observable. As for the
reservoirs [cf. Eq. (35)], we assume that this observable is also
conserved inside the system (in the absence of coupling):

[H [R],X̂[R]] = 0. (82)

Examples are the charge Nr + N for a tunnel junction to a
normal-metal electrode or the spin Sr

z + Sz for a nonmagnetic
tunnel junction to a ferromagnetic electrode with polarization
in z direction. In these cases, both observables are R indepen-
dent.

However, Eq. (81) allows that the conservation law20 yields
a system observable that does depend on R, even though X̂r

is R independent. The prime example for this is the pumping
of heat where in Hr [R] − μr [R]Nr the R dependence may
cancel out between the two terms, as we assumed in Eq. (14),
but the corresponding system observable H [R] − μr [R]N is
still R dependent. We stress that this parameter dependence
cannot be gauged away since it is in general not of the
form g[R]1 and thus contributes to both the instantaneous
and the adiabatic response of the transported observable. Our
considerations apply to this case as well deserving a separate
study [91].

The conservation law (81) together with Eq. (82) implies
that the computation of WÎXr

can be avoided by using

(1| WÎXr
[R] = −(X[R]| Wr [R]. (83)

Notably, on the right-hand side, X̂ is the system observable
and Wr is the part of the known time-evolution kernel due
to the coupling V r to reservoir r alone. The latter is easily
obtained from W as given by Eq. (26) by dropping L and also
all contributions from reservoirs r ′ 	= r . We stress that in order
to use Eq. (83) only conservation at junction r is required, not
at all junctions.

The relation (83) is derived in Appendix A using the same
assumptions and the same approach as in Secs. II B and II C.
Its use is illustrated in Eq. (D12). For weak coupling and
memoryless master equations this relation is well known in a
less convenient form discussed in Appendix B. The form (83)
has the advantage of having a very similar exact general-
ization [120] that relies only on the decomposition of the
coupling as V =∑r V r , allowing the present considerations
to be extended [126].

20For bilinearly coupled quantum dots, the energy current is
conserved only to the first order in the coupling, which is considered
here. See [165] for a detailed study of the corrections.

Using Eq. (83), the response vector (79) simplifies to

(�Xr [R]| = −(X[R]|Wr [R]
1

W [R]
. (84)

Physically, WrW−1 describes the “fraction of X̂” in the system
that flows through the junction to reservoir r where it “turns
into X̂r .” Combined with Eq. (78) we see that the R dependence
of this fraction is the decisive factor for the pumping of a
conserved observable:

BXr [R] = −(X[R]|
[
∇RWr [R]

1

W [R]

]
× |∇Rρ i[R]) (85a)

− (∇RX[R]|Wr [R]
1

W [R]
× |∇Rρ i[R]). (85b)

The second term is entirely due to the above-mentioned
possible parameter dependence of the “bare” (ungauged)
observable. It is absent for constant X̂[R] = X̂ such as charge
or spin. In this case, the remaining term (85a) nicely shows that
nonzero pumping requires spatial symmetry breaking. For ex-
ample, for two reservoirs one expects that some electric or ther-
mal bias or different coupling strengths at the two junctions is
needed to break spatial symmetry for at least some of accessed
parameters R. Otherwise, there is no net preferred direction
of transporting charge and the time-dependent charge current
averages out over one pumping cycle. This is clearly expressed
by Eqs. (84) and (85a): in such a case, the kernels Wr [R], W [R]
are proportional, i.e., the fraction Wr [R]W [R]−1 is constant.
The curvature then vanishes because the covector is zero [not
just parallel to ∇Rρ i as in Eq. (80)]:

(∇R�Xr [R]| = 0. (86)

This then implies that there is no pumping of any such
conserved, constant observable X̂. For example, for a quantum
dot with symmetric coupling to two normal-metal electrodes
r = L,R one finds Wr [R]W [R]−1 = 1

2I independent of R and
r . As a result, (�r

Xr | = − 1
2 (X| = − 1

2 Tr X̂ for the quantum-dot
observables such as charge (N ) and spin (Sx , Sy, or Sz).

Finally, we note that the term (85a) can also be related
to the expressions for the simple case of pumping of system
observables obtained using the AR approach of [43] (see
Appendix E).

V. FULL-COUNTING-STATISTICS APPROACH TO
GEOMETRIC PUMPING

We have completed our discussion of the Landsberg-
AR framework for geometric pumping. Now, we turn to
the final question (iv) raised in Sec. II E by comparing
this approach with the established geometric FCS density-
operator approach [40], which has been applied to various
problems [40,75,93,94,97,99]. We first review its formulation
for arbitrary moments of an observable X̂r , making the same
general assumptions21 as we made in Sec. II. Then, we
highlight some insights offered by the close analogy to Sarandy
and Lidar’s earlier geometric ASE approach to adiabatic
mixed-state evolution [37]. Then, focusing on the first moment

21We assume [Xr,H r ] = 0 as in Eq. (15) of [166].
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only, we discuss how the FCS formalism reduces exactly to
the Landsberg-AR approach: first by giving a very simple
a priori argument and then by simplifying the explicit FCS
expressions using standard perturbation theory in the counting
field χ . Using the latter explicit relation, we show how the clear
picture of the physical gauge freedom in pumping obtained in
the AR approach can be transferred to the FCS approach.
Finally, we discuss how the “adiabatic Berry phase” of the
FCS can produce pumping effects of nonadiabatic origin and
how the corresponding “adiabatic” restriction on the driving
relates to this.

A. FCS density-operator approach

The core idea of the full-counting-statistics density-
operator approach [95,130] is to describe transport processes
by studying a single object, a generating function Zχ (t).
This function incorporates the statistics for all moments
of a selected reservoir observable X̂r (or several [75]). Its
use is thus broader than the AR approach based on the
master equation (25) complemented by an observable current
kernel (40). Instead of taking the route via Eq. (17b) by
focusing on the current dX̂r/dt , the FCS approach follows
the route via Eq. (17a), computing the cumulative change of
the expectation values of X̂r between time t and an initial time
t0. In fact, the FCS generalizes the transported observable
Eq. (17a) to all moments n = 0,1,2, . . .:

(�Xr )n(t) := 〈T̂ (X̂r (t) − X̂r (t0))n〉, (87)

where T̂ denotes time ordering and X̂r (t) is the Heisenberg-
picture operator. It is obtained from the generating function
Zχ (t) by

(�Xr )n(t) = ∂n
iχZχ (t)

∣∣
χ=0, (88)

taking the steady-state limit t0 → −∞ [cf. Eq. (17) ff.]. Here,
the variable χ∈ (−π,π ) is the counting field and we use the
shorthand ∂iχ := −i∂/∂χ . Although we will not indicate this,
it is important to keep in mind that Zχ , and below any object
depending on χ , is specific to the selected observable X̂r .

The function Zχ (t) is a transform of the probability density
P (t ; �Xr ) to obtain a change �Xr in the discrete two-point
measurement outcomes of observable 〈X̂r〉 at the start and end
of the time interval [t0,t]:

Zχ (t) :=
∫

d�XrP (t ; �Xr )eiχ�Xr

. (89)

In the following, some general properties will be important:
(a) normalization of the probability distribution P (t ; �Xr )
implies at χ = 0

Zχ (t)|χ=0 = 1 for all t � t0. (90)

(b) Hermiticity of the observable X̂r requires

[Zχ (t)]∗ = Z−χ (t) for all t � t0 and all χ. (91)

(c) At t = t0 the changes in 〈Xr〉 are zero by definition (87):

Zχ (t0) = 1 for all χ. (92)

To obtain the required time evolution of the generating
function Zχ (t), one studies an auxiliary operator ρχ (t) (here

referred to as generating operator) that produces this function
upon tracing over the system:

Zχ (t) = Tr ρχ (t). (93)

It is crucial for the following that in this step the FCS approach
introduces an additional redundancy, irrelevant for the gauge
freedom, in the description: ρχ (t) can be shifted by any time-
and χ -dependent traceless operator without altering Zχ (t):

ρχ (t) → ρχ (t) + θχ (t). (94)

There is a corresponding redundancy also in the AR approach
[cf. (67)].

As reviewed in [130] the generating operator can in turn be
expressed as

ρχ (t) = Trres ρ tot,χ (t), (95)

the partial trace over a generating operator ρ tot,χ (t) for system
plus reservoir that evolves under a formal nonunitary time
evolution from the initially factorizing density operator (21):

ρ tot,χ (t) = Uχ/2(t − t0) ρ tot(t0) [U−χ/2(t − t0)]†, (96a)

Uχ (t) = eiχXr

U (t)e−iχXr

, (96b)

where U (t) = e−i(H 0+V )t . Here, all driving parameters are
frozen [cf. Eq. (20b)] and the limit t0 → −∞ is taken after
the reservoir trace. This introduces a strong formal analogy
of the generating operator ρχ (t) = Trresρ

χ
tot(t) to the reduced

density operator ρ(t) discussed in the ASE approach will be
exploited below. An elegant aspect of the FCS approach is that
by the definitions (95) and (96), the quantum state evolution is
included in the χ = 0 part of the generating operator

ρχ (t)|χ=0 = ρ(t) for all t � t0, (97)

ensuring condition (90) holds:

Tr ρχ (t)|χ=0 = 1. (98)

Furthermore, the dynamics (96) ensures condition (91) by

ρχ (t)† = ρ−χ (t) for all χ. (99)

The χ -independent initial condition for the dynamics

ρχ (t0) = ρ(t0) for all χ (100)

guarantees condition (92). The flip side of this inclusion of
ρ(t) in ρχ (t) is that it becomes less clear what the “adiabatic”
approximation for the formal time evolution within the FCS
approach entails physically (Sec. V C 4). From ρχ (t) all
moments of the transported observable can be obtained by
Eqs. (88) and (93).

B. FCS approach to pumping

Born-Markov counting kernel. To calculate the generating
operator ρχ (t) of the FCS we can now exploit its analogy to
the quantum state ρ(t) in the ASE. It allows, for example,
to calculate the time-nonlocal kernels for the time evolution
of ρχ (t) using techniques developed for a quantum-state
evolution kernel [cf. Eq. (11)], e.g., using Nakayima-Zwanzig
projections [130,146] or real-time diagrams [115], with min-
imal modifications. Using either technique one finds in the
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simple22 Born-Markov limit that the generating operator obeys
a FCS master equation [95] with the counting field χ as a
formal continuous parameter:

∂

∂t
|ρχ (t)) = Wχ (t)|ρχ (t)). (101)

Here, we have again introduced the Liouville-space nota-
tion (70) for operators ρχ (t) = |ρχ (t)). The concrete expres-
sion for the FCS kernel Wχ is not crucial for the following. In
Appendix I we give an explicit example for charge pumping
through a single-level quantum dot. To preserve the general
properties (97) and (99) of the observable statistics the FCS
kernel is restricted by, respectively,

Wχ (t)|χ=0 = W (t), (102)

Wχ (t) = KW−χ (t)K, (103)

where Kx := x† denotes Hermitian conjugation.23

Pumping. We now outline how the FCS approach applies
to pumping. In this case, the driving of the parameters R(t) is
responsible for the time dependence, i.e., Wχ (t) → Wχ [R(t)]
in Eq. (101). Instead of following the original works [40,44]
we highlight the analogy to Sarandy and Lidar’s earlier ASE
approach [37,38] (summarized in Appendix G) which can
be applied to the FCS master equation (101) with the sole
modification of keeping track of the additional parameter χ .

Thus, an approximate solution of the FCS master equa-
tion (101) is obtained by first diagonalizing Wχ for fixed
parameters R (instantaneous solution) and then neglecting the
couplings between different eigenspaces in the dynamics (see
Appendix G). Formally similar to adiabatic state dynamics,
in the steady-state limit only the left and right eigenvectors
of Wχ (t) for the eigenvalue24 λ

χ

0 (t) with largest real part are
required since the contributions of all other terms are expo-
nentially smaller. The condition for the validity of this approx-
imation will be discussed at the end in Sec. V C 4, clarifying
what the “adiabaticity” assumed in the FCS physically entails.

Also analogous to the ASE approach is that the gauge
freedom in the FCS approach lies in the freedom of choosing
the eigenvectors25: for every R they can be multiplied by any
nonvanishing complex function of χ , which we will discuss
in more detail below [Eq. (132)]. We will always choose26

the right eigenvector for eigenvalue λ
χ

0 (t), denoted by |vχ

0 [R]),
to depend continuously on R. Normalization (102) further
requires that (

1
∣∣vχ

0 [R]
)∣∣

χ=0 = 1. (104)

22Beyond the first moment, non-Markovian, higher-order effects
and initial correlations are important as shown in [115].

23K is the antilinear superoperator that effects Hermitian conjuga-
tion of an operator x (see [120], Appendix G).

24As in the AR approach, the kernel’s eigenvalue with largest real
part is assumed to be nondegenerate in the FCS approach.

25See Eq. (19) ff. in [40] and p. 25 of [44].
26This is possible for driving cycles that can be covered by one

single coordinate patch of the parameter manifold. For other cycles,
one can glue the solutions together in the standard way using the
gauge invariance of the curvature (see, e.g., [58]).

The remaining gauge freedom amounts to specifying the trace
of the operator |vχ

0 ) as function of χ . In the following, we
choose (

1
∣∣vχ

0 [R]
) = 1 for all χ. (105)

It will turn out that by this we fix the physical gauge to the case
g = 0 of the AR formulation. We investigate other choices of
the FCS gauge later on.

In addition, it follows from Eq. (103) that λ
χ∗
0 = λ

−χ

0
and that the operators of the right eigenvectors for opposite
counting fields are related:27 one can always choose this
eigenvector to additionally satisfy for any R and χ

v
χ

0 [R] = [v−χ

0 [R]
]†

. (106)

With these choices, the “adiabatic” solution of Eq. (101) in
the long time limit is given by

|ρχ i(t)) = Zχ (t)
∣∣vχ

0 [R(t)]
)
, (107)

where we have reset the initial condition (v̄χ

0 [R(t0)]|ρ(t0)) → 1
to ensure Zχ (0) = 1 rather than Eq. (100). This redefines
Zχ (t) by extracting only the steady-state part of the generating
function relative to t = 0, the only quantity that can be
compared with the steady-state results of the AR approach
[Eq. (22)]. Here, the label “i” is chosen in view of our later
comparison with the AR approach (cf. Sec. V C 4). It should
be noted that after the “adiabatic” approximation the χ = 0
part does not keep track of the quantum state in the same way
as the AR does [ρa(t) is missing]. Remarkably, as we will see,
it does keep track of the pumping effects [75] in the specific
observable X̂r that in AR are caused by this missing term ρa(t).

Inserting Eq. (107) as an ansatz into Eq. (101) and solving
along the closed driving curve C traversed in period T , one
obtains

|ρχ i(T )) = e�χ (T )eγ χ (T )
∣∣vχ

0 [R(0)]
)
. (108)

Here, the dynamical phase derives from the eigenvalue

�χ (T ) :=
∫ T

0
dt λ

χ

0 [R(t)], (109)

whereas the geometric phase is obtained as

γ χ (T ) := −
∮
C
dR Aχ [R] (110)

from the corresponding left and right eigenvector through

Aχ [R] = (vχ

0 [R]
∣∣∇R

∣∣vχ

0 [R]
)
. (111)

Geometric nature of the FCS of pumping. In geometric
terms (cf. Sec. III D), the generating operator |ρχ,i(T )) is, up
to the dynamical factor e�χ (T ), a horizontal lift of the closed
curve C in the driving-parameter space. In the FCS, the relevant
“vertical” space attached to each parameter in the R plane
consists in the space of all possible instantaneous-eigenvector
choices |vχ

0 [R]) that one can make for the eigenvalue λ
χ

0 [R].

27The general relation reads as v
χ

0 [R] = βχ [v−χ

0 [R]]† where βχ is
a nonvanishing complex function which is restricted as βχ∗β−χ = 1
by consistency when taking the adjoint of the relation and setting
χ → −χ . By taking βχ = 1 for all χ , we obtain Eq. (106).
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In this different space, a different notion of “horizontal” can
be defined using the FCS expression Aχ , thus defining a
geometric FCS connection (gauge potential). Therefore, part
of the generating operator has the properties of a geometric
quantity: it depends only on the driving cycle C and the
geometric connection Aχ [R] and is independent28 of the
eigenvector gauge choice. Finally, the total prefactor is just
the moment generating function [cf. Eq. (93)]

Zχ (T ) = (1|ρχ,i(T )) = e�χ (T )eγ χ (T ), (112)

and its exponent is by definition the cumulant29 generating
function. Hence, the FCS geometric “phase” is just the
geometric part of the cumulant generating function [40,44].
Its magnitude can be related by Stokes theorem to an FCS
curvature (gauge potential):

Bχ [R] := (∇Rv̄
χ

0 [R]
∣∣× ∣∣∇Rv

χ

0 [R]
)
. (113)

This comprises the FCS approach to pumping.
First moment of the pumped observable. A merit of the

FCS approach is that it provided the first density-operator
formulation of geometric pumping applicable to strongly
interacting systems. Moreover, FCS deals with the geometric
nature of the entire pumping process (all moments). One
extracts the first moment of the transported observable �Xr =
�Xr,i + �Xr,a by

�Xr,i = ∂iχ�χ (T )|χ=0, (114)

�Xr,a = ∂iχγ χ (T )|χ=0. (115)

The pumped observable (115) is thus given by the χ derivative
of a geometric-phase function of χ obtained from the “adia-
batic” solution of the counting master equation. Although [75]
explicitly showed that after involved manipulations this co-
incides with the simple AR result (48), the pumped first
moment does not emerge directly as geometric phase by
itself: due to the χ dependence it is not yet clear what is the
differential-geometric meaning of ∂iχAχ [R]|χ=0 and how it
transforms under the physical gauge transformations [Eq. (57)]
that we found in the AR approach. To see this, we need to
linearize Eq. (108) with respect to the counting field χ .

C. Linearization in the counting field: Reduction to
Landsberg-AR approach

1. Equivalence of FCS and AR for first moment

Before specializing to pumping situations in the following
sections, we first show that the FCS master equation, as regards
the description of the first moment of an observable X̂r , is
exactly equivalent30 to the equations that form the starting
point of the AR approach. In the generating operator

|ρχ (t)) = |ρ(t)) + iχ |�̂X(t)) + O(χ2), (116)

28This requires the transformation (137b) of the FCS connection.
29Since we focus on the first moment, cumulants need not be

introduced here.
30Compare with a similar derivation given in [75] [see Eq. (22)

there].

the χ -linear term is an operator that we denote here by

�̂Xr (t) := ∂iχ ρχ (t)|χ=0. (117)

By definition (88) with t0 → 0 produces the first moment by
taking its trace over the system space (not: expectation value):

�Xr (t) = Tr �̂Xr (t). (118)

The operator �̂Xr (t) is thus not an observable, but just
an auxiliary quantity to compute two-point measurement
outcomes. We now insert the χ linearization of the generating
operator (116) and of the Born-Markov generator

Wχ (t) = W (t) + iχ∂iχWχ (t)|χ=0 + O(χ2) (119)

into Eq. (101) and compare the terms by powers of χ . The
zeroth order of Eq. (101) accounts for the quantum state
[Eq. (97)] and the generator of its evolution

Wχ (t)|χ=0 = W (t), (120)

and gives the Born-Markov master equation (25), d
dt

|ρ) =
W |ρ).

The terms linear in χ give an equation of motion for the
operator �̂Xr (t) of Eq. (118):

d

dt
|�̂Xr (t)) = ∂iχWχ (t)|χ=0|ρ(t)) + W |�̂Xr (t)). (121)

The last term constitutes a redundant part because it is traceless
by probability normalization TrW = 0. We take the trace and
comparing with the AR result (40) expressed in the physical
current kernel:

d

dt
�Xr (t) = (1|∂iχWχ (t)|χ=0|ρ(t)) (122a)

!= d

dt
〈X̂r〉(t) = (1|WÎXr

|ρ(t)). (122b)

We conclude that the χ -linear term of Wχ must be the current
kernel up to some time-dependent superoperator (t) with
(1|(t) = Tr(t) = 0 [Eq. (70)]:

∂iχWχ (t)|χ=0 = WÎXr
(t) + (t). (123)

This  reflects that in the FCS and AR approaches one may
choose the redundancy for the current kernel differently (see
Appendix I for an example):  is the difference between these
conventions and can be dropped:

Wχ (t) = W (t) + iχWÎXr
(t) + O(χ2). (124)

With the  redundancy out of the way, it is now immediate
from the linear expansions (116) and (124) that the physically
relevant, trace full part of the FCS equation (101) is exactly
equivalent to those of the “naive” AR approach (g = 0) to
pumping. When consistently applied, these two approaches
should thus produce identical answers (Sec. V C 2), exhibit the
same gauge freedom (Sec. V C 3), keep track of nonadiabatic
“lag,” and have the same limits of applicability (Sec. V C 4).

2. Pumping formulas: Connection and curvature

We now follow how the FCS result for the pumped first
moment simplifies to the AR result in practice. Although this
explicit equivalence has been shown in [75], we here present
an alternative derivation. It employs more standard operations
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and is easily extended to further important aspects discussed
in the following.

The physically motivated form of the linearization of the
counting kernel (124) suggests how to proceed: we calculate
the eigenvectors perturbatively to first order in iχ utilizing
the known unperturbed (χ = 0) eigenvectors of W for the
state evolution by treating the physical current kernel WÎXr

as
perturbation. Not writing the R dependence, the formulas for
the nth nondegenerate eigenvalue λ

χ
n of Wχ and its right [|vn)]

and left [(vn|] eigenvectors to linear order in iχ are

λχ
n = λn + iχ (vn|WÎXr

|vn), (125a)

∣∣vχ
n

) = |vn) − iχ
∑
m	=n

|vm)
(vm|WÎXr

|vn)

λm − λn

, (125b)

(
vχ

n

∣∣ = (vn| + iχ
∑
m	=n

(vn|WÎXr
|vm)

λn − λm

(vm|. (125c)

Here, λn, |vn), (vn| denote the corresponding quantities at
χ = 0, i.e., those discussed for the quantum-state evolution
studied in the ASE approach (see Sec. V C 4 and Appendix G).

The eigenvalue with largest real part, labeled by n = 0,
is nondegenerate by assumption. As the eigenvectors and
eigenvalues of Wχ |χ=0 = W are known, we use λ0 = 0,
|v0) = |ρ i), and (v0| = (1| = Tr to obtain in leading order iχ :

λ
χ

0 = iχ (1|WÎXr
|ρ i), (126a)∣∣vχ

0

) = |ρ i) − iχ
1

W
WÎXr

|ρ i), (126b)

(
v

χ

0

∣∣ = (1| − iχ (1|WÎXr

1

W
. (126c)

Here, as before, W−1 denotes the pseudoinverse excluding the
zero eigenvalue. Inserting these expansions, the instantaneous
part of the transported observable [Eqs. (109) and (114)]
simplifies to

�Xr,i = ∂iχ

∫ T

0
dt λχ (t)|χ=0

=
∫ T

0
dt (1|WÎXr

[R(t)]|ρ i[R(t)]) (127)

and the pumping part [Eqs. (110) and (115)] reduces to

�Xr,a = −
∫

C

dR ∂iχ Aχ [R]|χ=0 =
∫

C

dR A0[R]. (128)

In the last step, we used trace normalization for χ = 0,
(v0[R]|∇R|v0[R]) = 0, and we computed

∂iχAχ [R]|χ=0 = ∂iχ

(
v

χ

0 [R]
∣∣∇R

∣∣vχ

0 [R]
)∣∣

χ=0

= [∂iχ

(
v

χ

0 [R]
∣∣]∇R

∣∣vχ

0 [R]
)∣∣

χ=0

= −(1|WÎXr
[R]

1

W [R]
∇R|ρ i[R])

= −(1|WÎXr
[R]|ρa[R])

= −A0[R], (129)

where A0 is the gauge-independent part of the Landsberg
connection (73b). Apart from the Liouville notation (1| = Tr

and |ρ i) = ρ i, these are the expressions (46) and (47) obtained
directly from the naive AR approach to pumping, i.e., in the
g = 0 gauge. When accounting for the conditions (104) and
(106), the χ linearization of the FCS connection in the FCS
gauge (105) thus reduces exactly to the Landsberg connection
of the AR approach in the g = 0 gauge:

Aχ (t) = −iχA0(t) + O(χ2). (130)

It follows that the χ -linear part of the FCS curvature Bχ :=
∇R × Aχ , which gives the first-moment pumping per unit
parameter surface, reduces exactly to the Landsberg AR
curvature B = ∇R × A0:

Bχ [R] = −iχB[R] + O(χ2). (131)

The results for the pumped observable are identical since both
sides are gauge invariant. However, the gauge transformations
in the FCS and AR are two different, but related, constructions
that will be discussed next. As a practical matter, we note that
before taking χ → 0 the explicit FCS curvature (113) does not
seem to separate into physically distinct factors coming from
the observable (response vector) and from the state, as it does
in the AR curvature (78).

3. Gauge freedom and geometry of pumping

We now relate the FCS and AR approach to each other on
the level of the gauge freedom. This will allow us to clarify a
few more points that were not addressed in [75]. In the FCS
approach, the choice of the (nondegenerate) eigenvector with
largest real part for fixed χ and fixed parameters R is left free
up to multiplication by a nonzero complex factor

∣∣vχ

0 [R]
)→ gχ [R]

∣∣vχ

0 [R]
)
, (132a)

(
v

χ

0 [R]
∣∣→ 1

gχ [R]

(
v

χ

0 [R]
∣∣. (132b)

This preserves the biorthonormality (vχ

0 [R]|vχ

0 [R]) = 1 re-
quired of left and right eigenvectors but changes the FCS
gauge (105) to (1|vχ

0 [R]) = gχ [R]. To maintain the condi-
tions (104) and (105) we need to restrict the gauge transfor-
mations of the FCS approach by (a) probability normalization

gχ [R]|χ=0 = 1 for all R, (133)

and (b) observable Hermiticity

[gχ [R]]∗ = g−χ [R] for all R and χ. (134)

Sinitsyn31 emphasized that the generating operator is restricted
by trace normalization (102) only for χ = 0, but not for χ 	= 0.
This point has received little further attention, but turns out to
provide the crucial link to the real-valued gauge freedom in the
AR approach, related to the physical calibration of the meter
discussed in Sec. III. To connect this to the FCS, we consider
the χ linearization of the gauge transformation

gχ [R] = g0[R] + iχg1[R] + O(χ2), (135)

31See Eq. (20) ff. in [40].
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which is determined by the first two Taylor coefficients g0[R]
and g1[R], both being functions of the driving parameters. The
restrictions (133) and (134) imply

g0[R] = 1, g1[R] ∈ R for all R. (136)

The identification of the gauge freedom now follows by
comparing the gauge transformation appropriate to each con-
nection. Under the transformation (132) the FCS connection
Aχ [R] given by Eq. (111) changes to

A
χ
gχ [R] = (

v
χ

0 [R]
∣∣ 1

gχ
∇R
[
gχ
∣∣vχ

0 [R]
)]

(137a)

= Aχ [R] + 1

gχ [R]
∇Rgχ [R] (137b)

=−iχ [A[R] − ∇Rg1[R]] + O(χ2). (137c)

Comparing the χ -linear part of Eq. (137c) with Eq. (130)
we see that the Landsberg connection transforms as A[R] →
Ag[R] = A[R] + ∇Rg[R] [Eq. (74)] by the gauge transforma-
tion X̂r → X̂r + g[R]1 with a smooth, real function

g[R] = −g1[R] (138)

apart from an unimportant constant. We have thus located
the physically relevant gauge freedom (57) in the first Taylor
coefficient of the restricted FCS-gauge function [Eqs. (133)
and (134)]. The general relation between the FCS connection
and the Landsberg connection of the AR approach, both
formulated in an arbitrary physical gauge, reads as

A
χ
gχ (t) = −iχAg(t) + O(χ2), (139a)

gχ [R] = 1 − iχg[R] + O(χ2). (139b)

This shows that the object ∂iχA
χ
gχ (t)|χ=0 obtained in the FCS

under the curve integral for the first moment [Eqs. (110)
and (115)] by itself is indeed a valid geometric connection:
it is just minus the Landsberg connection Ag which has a
clear and direct geometric meaning in a physically motivated
fiber bundle, independent of the more complicated different
geometric structure of the FCS approach.

4. “Adiabatic Berry phase” of the FCS approach

We finally address the question how the generating operator
|ρχ,i), obtained by an “adiabatic” solution of the FCS master
equation (101), can produce the pumped observable generated
by the nonadiabatic state correction |ρa) in the AR approach.
Does not the slow driving required for such “adiabaticity” in
the FCS imply that it should neglect such corrections?

To clarify this, we revisit key points of our comparison
now that the details have been taken care of. We make a
three-way comparison of the FCS, AR, and ASE approach,
the key relations being illustrated in Fig. 5. The relevance of
this issue was recognized in [75], where the FCS was denoted
as being “χ adiabatic” but without specifying which physical
conditions on the driving limit the applicability of the FCS.

In the FCS approach, “adiabatic” is operationally under-
stood in the same way as in the ASE approach, namely,
as decoupling of the dynamics of different eigenspaces (cf.
Appendix G); this formally connects these approaches (cf.
Fig. 5). In the case of the ASE approach we showed that

FIG. 5. Relations between adiabatic-state evolution (ASE, Ap-
pendix G), adiabatic response (AR, Sec. III), and full-counting-
statistics (FCS, Sec. V) approach discussed in the text.

in the steady-state limit the result of the (first correction to
the) decoupling equals the (first-) zeroth-order term in the AR
frequency expansion of the quantum state, denoted there by
ρ i (ρa). Thus, the nonadiabatic term ρa arises from coupling
of the instantaneous stationary state to nonstationary decay
modes. This justifies our labeling of the ASE contributions
with the corresponding labels “i” and “a” that were used in the
AR for instantaneous and adiabatic response, respectively.

In the case of the FCS we have provisionally used the
same labeling “i” for the “adiabatic” FCS solution ρχ,i to
indicate the decoupling. The first “nonadiabatic” correction to
this decoupling, ρχ,a, we correspondingly label by “a.” The
crucial point is that the intimate connection of the decoupling
and the frequency expansion, existing between ASE and AR
approaches, is not present for the FCS. This means that our
provisional labeling of the FCS by “adiabatic” or equally by
“i” is not uniquely related to a physical frequency expansion:
what it means depends on whether χ = 0 or χ 	= 0. In fact, this
is unavoidable since precisely by the formal trick of including
a counting field χ the FCS is able to include the nonadiabatic
effects into the framework of a formal “adiabatic Berry-Simon
phase.”

Guided by Fig. 5, we now outline (a) how this works out
for the terms that are kept in the three approaches and (b)
how the terms that are neglected limit the applicability of each
approach.

a. Adiabatic FCS solution. The adiabatic solution of
the FCS master equation (101) can be written using
Eqs. (108), (114), and (115) as

|ρχ,i(t)) = eiχ[�Xr,i(t)+�Xr,a(t)]+···{|ρ i[R(t)]) + · · · }. (140)

Here, only the χ -linear terms are indicated since we ex-
clusively discuss the first moment. A χ -linear term in the
eigenvector [Eq. (126b)] is also omitted since it is redundant
[zero trace, cf. Eq. (94)]. From hereon we will not indicate
such omissions (. . .) for clarity.
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χ = 0: FCS is adiabatic. In this case, the adiabatic FCS
generating operator (140) only keeps track of the adiabatic,
zeroth order in frequency, result for the state:

|ρχ,i(t))|χ=0 = |ρ i[R(t)]). (141)

Thus, only that part of the AR [Eq. (97)] and ASE [Eq. (G13a)]
result is kept that describes the instantaneous dependence on
the driving parameters. Here, the label “i” is thus appropriate.

χ 	= 0: FCS is nonadiabatic. In contrast, the generating
operator |ρχ,i(t)) for nonzero χ is not a function of the instan-
taneous parameters alone. By introducing χ , the FCS circum-
vents the normalization constraint that prevents a Berry-Simon
phase from appearing in the AR and ASE approaches for the
steady state (cf. Sec. III A). The FCS gauge freedom (132a) for
χ 	= 0 allows the exponential term in Eq. (140) to accumulate
a dependence on parameters at all previous times t ′ ∈ [t,0].
We found [Eqs. (127) and (128)] that at t = T this produces
the sum of the dynamical term �Xr,i = ∫ T

0 dt ′I i
Xr [R(t ′)] and

the geometric term �Xr,a = ∫ T
0 dt ′I a

Xr [R(t ′)] = ∮C dRA0[R]
as given by the AR expressions (46) and (48), respectively
(g = 0 gauge). As in the original Berry-Simon situation, the
geometric term ∝(Ṙ)1] in the exponent is of one order higher
in the driving frequency than the dynamical one [∝(Ṙ)0, cf.
Eq. (49) and Appendix G]. In this way, the FCS also includes
the pumped observable of nonadiabatic origin by allowing the
adiabatic solution (140) to accumulate a phase.

Remarkably, this is an effect of the nonadiabatic state
correction ρa, that we have just neglected in the χ = 0 part
[Eq. (141)]. How does the FCS keep track of this effect without
calculating ρa explicitly? A reconsideration of our perturbative
treatment of the χ linearization Wχ = W + iχWÎXr

sheds
some light on how this is achieved by combining the χ

bookkeeping with adiabatic decoupling. As in Sec. V C 1,
this requires us to consider currents and the FCS master
equation (101). We now think for a moment of Eq. (140)
as a solution ansatz, |ρχ,i(t)) = eiχ�Xr (t)|ρ i[R(t)]), in which
the transported observable �Xr (t) is to be determined. One
notes that the nonredundant part of right eigenvector |ρ i[R(t)]),
from which it is built contains no nonadiabatic information
whatsoever. Neither does the corresponding eigenvalue: it is
just the instantaneous current λ

χ

0 [R(t)] = iχI i
Xr [R(t)]. The

nonadiabatic effect can thus only enter through the step of
adiabatic decoupling, i.e, when inserting this ansatz into the
FCS master equation d

dt
|ρχ ) = Wχ |ρχ ) and projecting this

onto the eigenspace with the corresponding left eigenvector
(v̄χ

0 | = (1| − iχ (�Xr |. One immediately obtains an equation
for the nonadiabatic part of the total FCS current d

dt
�Xr (t):

I a
Xr :=

[
d

dt
�Xr (t)

]
− I i

Xr =
(

�Xr

∣∣∣∣ d

dt

∣∣∣∣ρ i

)
. (142)

This shows most directly that by the formal adiabatic decou-
pling, the instantaneous state |ρ i) is combined with a time
derivative and the nonadiabatic response covector (�Xr |. Only
together they produce the nonadiabatic effect for observable
X̂r . Even though the AR expression ρa = W−1 d

dt
|ρ i) does

not explicitly appear, the FCS thus keeps track of the three
required pieces required on the right-hand side of Eq. (142) in
three different places.

The response covector has precisely the right form (�Xr | =
(1|WÎXr

W−1 [Eq. (126c)] required to obtain the AR result by a
perturbative mixing. This is the point where the physical “lag”
enters the FCS analysis [cf. the AR discussion of Eq. (79)].
The formal χ -controlled mixing of (1| with (�Xr | into the
left eigenvector thus substitutes for the nonadiabatic coupling
induced by physical time evolution. It is this mixing that
allows the FCS to circumvent the probability normalization
obstructing geometric phase accumulation (Sec. III A).

Finally, we also note how the gauge transformation in the
FCS corresponds to the physical meter recalibration Xr →
Xr

g = Xr + g1, discussed in the AR approach [Eq. (63b) ff.].
One obtains the same generating operator when changing
the gauge factor of the right eigenvector while compensating
for this by using Xr

g instead of Xr in the ansatz |ρχ,i(t)) =
eiχ�Xr

g (t) · [e−iχ[g[R(t)]−g[R(0)]]|ρ i[R(t)])]. The adiabatic decou-
pling then leads to a different FCS current

I a
Xr

g
:=
[

d

dt
�Xr

g(t)

]
− I i

Xr = (�Xr | d

dt
|ρ i) + d

dt
g (143)

which, however, integrates to the correct value �Xr,a.
b. Nonadiabatic corrections to FCS. We now address the

question whether or not the slow driving required for the
“adiabaticity” of the FCS implies that it should neglect
nonadiabatic effects it produces. It is therefore relevant to
compare the terms that the approaches in Fig. 5 neglect. These
conditions have received little attention in FCS works that
compute the first moment of pumping (see, however, [40]).

For this we return to the general formulation of the FCS of
Sec. V A and decompose the generating operator as follows:

ρχ = ρχ,i + ρχ,a + ρχ,rest. (144)

As noted before, this labeling is tentative and we should
distinguish zero and nonzero values of χ .

χ = 0: FCS neglects nonadiabatic effects. In this case, each
term reduces by Eq. (97) to the corresponding contribution in
the ASE and AR expansions:

ρ = ρ i + ρa + ρrest. (145)

For χ = 0 the labeling is thus appropriate. For the FCS to be
consistent, the nonadiabatic correction plus higher corrections
that are neglected must be small relative to the adiabatic one
that is kept:

||ρrest + ρa|| � ||ρ i||. (146)

This condition is satisfied if the condition (51) of slow driving,
|Ṙ| � 
, holds, since it guarantees ||ρrest|| � ||ρa|| � ||ρ i||.
This can equivalently be expressed as a gap condition
commonly used to justify the decoupling of eigenspaces
[Eq. (G10)]. For the ASE approach, this leads to the same
driving restriction as for the AR approach [Eq. (G11)]. A
possible source of confusion is that in the AR approach the
contribution ρa is necessarily and correctly kept, being aware
that it is small [Eq. (50)].

χ 	= 0: FCS keeps leading nonadiabatic effects, neglecting
higher ones. In the FCS approach consistency also requires
that the moments computed by Eq. (88) with t0 → 0 from the
adiabatic solution dominate the ones that are neglected, i.e.,
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the first nonadiabatic correction and higher ones:

∂n
iχ (1|ρχ,rest + ρχ,a)|χ=0 � ∂n

iχ (1|ρχ,i)|χ=0. (147)

For the first moment, n = 1, noting on the right-hand side
that the FCS result reduces to the AR expressions [Eqs. (127)
and (128)], we obtain

|�Xr,rest| � |�Xr,i + �Xr,a|. (148)

Both terms on the left in Eq. (147) together form the term on the
left in Eq. (148), while the term on the right in Eq. (147) pro-
duces both terms on the right in Eq. (148). Here, the tentative
labeling is thus not appropriate but as mentioned above this
is unavoidable. Importantly, the consistency condition (148)
is exactly that of the AR approach [Eq. (53)], in which the
small ρa is kept to compute �Xr,a. Thus, within the FCS
this nonadiabatic effect is effectively kept, despite the fact that
one neglects nonadiabatic effects in the state based on a gap
condition at χ = 0.

As summarized in Fig. 5, in the FCS approach adiabaticity is
merely a formal statement about the validity of the decoupling
similar to the ASE, but applied to a formal device, the
generating operator ρχ . In contrast, in the AR approach
(non)adiabaticity is directly related to different terms in
a frequency expansion, corresponding to the (corrections
to) decoupling of eigenspace in the ASE approach in the
steady-state limit. This underlines that the useful notions of
adiabaticity, Berry-Simon phase, and decoupling should care-
fully be distinguished, in particular in open quantum systems
with a unique stationary state. Our discussion illustrates the
usefulness of having a clear physical picture of what all the
geometric notions in a problem with gauge freedom stand for,
going beyond the level of “the final result can be written as a
curve integral.”

D. Discussion of the FCS approach

Having answered question (iv) of Sec. II E regarding the
equivalence of the FCS and AR approach, we emphasize the
obvious advantage of the FCS approach when one actually
goes beyond the first moment of pumped quantities on which
we focused here, as, e.g., in [147,148]. As discussed from its
inception [149], the FCS can be considered a full description
of an ideal meter detecting transport of an observable (see
also [150]). The relation between meter recalibrations and
gauge freedom in pumping formalisms, highlighted in our
paper in the simplest setting, deserves further consideration
within the more general FCS approach, possibly, also for
nonideal meters.

However, in applications where FCS is used only to calcu-
late the first moment it must be stressed that a definite overhead
is introduced: aside from deriving a more complicated kernel
Wχ , one needs to compute a specific instantaneous eigenvalue
of Wχ with both its left and right eigenvectors in dependence
of the continuous variable χ . Even when one afterwards lin-
earizes in χ to extract only the first moment, this is much more
involved than solving the corresponding problem analytically
or numerically in the AR approach, even for very simple
models. For more complicated systems, the FCS approach
may become so involved that in order to make progress,
one may be inclined to introduce further approximations,

which are unnecessary when using the AR approach. As
explicitly shown here and in [75], χ linearizing FCS cal-
culations beforehand amounts to using the AR approach.
This overhead is even more relevant when considering strong
coupling and memory effects [Eqs. (11) and (12)] on geometric
pumping that arise beyond the Born-Markov approximation
[55,140].

VI. DISCUSSION AND OUTLOOK

In this paper, we have discussed the geometric nature of
pumping through open quantum systems using the reduced
density-operator approach. We focused explicitly on the
memoryless, weak-coupling, high-temperature limit and the
ubiquitous case of a unique parametric stationary state. This
allows treating geometric pumping phases of complicated
discrete quantum systems with essentially arbitrary local
interactions, including in particular geometric phases that, in
order to emerge, require interactions.

We outlined how in our solution of the physical pump-
ing problem (much simpler than equivalent alternative ap-
proaches) a local gauge freedom emerges in the relation be-
tween a measured pumped observable (two-point expectation
value) and an observable operator [Eq. (59)]: the choice of
gauge corresponds to a meter calibration. In striking contrast
to closed quantum systems, the gauge freedom is therefore a
nonunitary group, reflecting the very different physical setting
in which geometry enters here: the observable, not the quantum
state, accumulates the geometric phase over one driving period,
as physically expected in transport problems.

Our paper combines definite computational advantages
with a clear view of the tangible physical meaning of all
relevant geometric concepts. We tie together the differential
geometry defined by a connection AXr

g
with nonadiabaticity

[Ṙ(t)] and the gauge freedom of recalibrations: the Landsberg
geometric connection is essentially the nonadiabatic part of
the current

AXr
g
[R(t)] = δIXr

g
(R,Ṙ(t))

δṘ(t)
, (149)

with Xr
g = Xr + g1. The corresponding curvature of this

connection, its curl, is the pumped charge per unit area of
the driving-parameter space. We provided explicit formulas for
the efficient computation of pumping phases applicable to very
general interacting systems that are weakly coupled to reser-
voirs, showing how computational overhead can be avoided
and conservation laws, present for specific observables, can be
exploited. We demonstrated these advantages for the example
of a single-level Anderson quantum dot illustrating how a
geometric pumping phase can be induced by electron-electron
interaction.

Moreover, we showed that the geometric “horizontal lift”
defined by this connection corresponds to a (discontinuous)
meter gauge that maintains the physical pumping current I a

Xr
g

to be zero at each time instant by continuously adjusting the
scale to follow the meter’s “needle.” The geometric-phase
“jump” (the holonomy) exhibited by this horizontal lift is
given by the resulting cumulative adjustment of the meter’s
scale over a driving period, i.e., the pumped observable
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per period. We believe this is the most direct geometric
significance one can attach to physical transport quantities in a
pumping experiment. We demonstrated the importance of such
a clear view by discussing the important issue how “adiabatic”
approximations employed in the full-counting-statistics (FCS)
approach produces a (correct) geometric pumping phase that
is due to nonadiabatic currents.

It is an interesting question as to whether and how our
approach relates to ideas for closed systems, in particular to
the widely used Berry-Simon formulation of geometric phases
appropriate for quantum-state evolution. Such a relation can
be established, but requires a construction different from –
but relying on – the one presented in this paper and will be
discussed elsewhere [126]. In fact, aside from the obvious
consideration of topological pumping effects in strongly
interacting systems, our work can be continued in several other
directions:

(i) An important implication of our work is that Lands-
berg’s geometric framework is compatible with the more
general adiabatic-response approach to pumping based on
real-time kernels [55] [Eq. (11)]: the nonuniqueness in the
choice of the observable operator during a driving cycle does
not rely on the state dynamics. We thus expect that the present
approach can be extended to non-Markovian, strongly coupled
open quantum systems with a unique parametric stationary
state.32 For this reason, we stressed that the gauge structure
already requires attention when deriving quantum master
equations and expectation value of the current for a nonsystem
observable, an issue that has received little to no attention so
far. This is crucial since measurements that display geometric
effects are performed in the environment, that one would like
to integrate out to keep the calculations simple. These are
situations which existing formulations, such as generalizations
of Kato’s method to open systems [138], have not dealt
with.

(ii) Our paper stressed the important distinction between
the gauge freedom of the quantum state and that of the
pumped observable. We showed that the state gauge freedom
is quenched in the ubiquitous case of a unique stationary
state for fixed driving parameters, our well-motivated working
assumption. Clearly, an interesting extension of our work
would be to consider nonunique stationary states [43] leading
to an interplay of the state gauge freedom with the independent
observable gauge freedom in steady-state pumping. Counter
to standard intuition, a twofold degenerate stationary state
does not yet lead to a non-Abelian gauge freedom, but to
an Abelian one due to physical restrictions imposed by trace
and Hermiticity preservation, which are often not discussed.
For higher degeneracies of the stationary state, a non-Abelian
gauge structure does seem to emerge, but this requires a careful
account of the mentioned nontrivial restrictions.

(iii) One may furthermore also consider a more compli-
cated gauge group of non-Abelian character for the observable.
In fact, Landsberg’s general geometric framework has already
been extended to this case in [107,151]. However, its relation

32This requires consideration of observable operators that are
sufficiently general, i.e., explicitly time dependent and not partially
normal ordered with respect to the reservoirs.

to the physical density operator formalism and to measurable
pumping quantities (the starting point stressed throughout this
paper) needs to be clarified first.

In any case, to address these important problems, the present
formulation of Landsberg’s approach seems to provide the
simplest and physically most transparent geometric picture:
for the simple, but ubiquitous, class of problems addressed
here, we demonstrated this by explicit comparison with several
other approaches, highlighting geometric, physical, and com-
putational advantages. Our work illustrates that the standard
intuition about geometric effects in quantum physics needs
to be drastically reconsidered when turning to open quantum
systems and motivates further work into this direction.
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APPENDIX A: BORN KERNELS AND
CONSERVATION LAW

In this section we derive the Born approximation33 to
the kernels governing the dynamics of the system state
[Eq. (24)] and the expectation values of nonsystem observables
[Eq. (30)]. We also derive the simplification (83) in case the
observable is conserved at a junction.

Partial normal ordering. Although we follow the well-
known Wangsness-Bloch approach [152], a key point, central
to the issue of gauge freedom addressed in the main text,
deserves to be highlighted: it is crucial to split up both the
coupling V and the nonsystem observables X̂r into a partially
averaged term and a partially normal-ordered term according
to Eq. (29).

Throughout the paper it is assumed that the coupling V (t)
is partially normal ordered, i.e.,

〈V (t)〉res = 0. (A1)

This constitutes no approximation since for any Hamiltonian
of the form of Eq. (13) the coupling can be partially normal or-
dered by absorbing the partial average of the original coupling,
which is a system operator, into the system Hamiltonian.34

Assuming initial decoupling of system and reservoir state,
i.e., ρ tot(0) = ρ ⊗ ρres, and the interaction picture

AI := ei(H+H res)tAe−i(H+H res)t (A2)

33The further Markov approximation is discussed in detail in the
main text. Consistent with the Born-Markov approximation, the
kernels (A9) and (A16) can be calculated for frozen parameters as
discussed in the main text.

34The system Hamiltonian may then depend on reservoir parameters
(e.g., temperature, electrochemical potentials).
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the Liouville–von Neumann differential equation for the total
system state reads as

∂tρ
tot
I (t) = −i

[
VI (t),ρ tot

I (t)
]

(A3a)

ρ tot
I (t0) = ρI (t0) ⊗ ρres, (A3b)

which is equivalent to the Dyson integral equation

ρ tot
I (t) = ρ tot

I (t0) − i

∫ t

t0

dt ′
[
VI (t ′),ρ tot

I (t ′)
]
. (A4)

Time-evolution kernel. To obtain the evolution equation for
the reduced density operator ρI (t) = Trresρ

tot
I (t) to leading

order V 2 ∼ 
 in the coupling, we insert Eq. (A4) into
Eq. (A3a) and take the partial trace

∂tρI (t) = − iTrres
[
VI (t),ρ tot

I (t0)
]

−
∫ t

t0

dt ′Trres
[
VI (t),

[
VI (t ′),ρ tot

I (t ′)
]]

. (A5)

The first term in Eq. (A5) vanishes due to the partial normal
ordering (A1). The second term in Eq. (A5) can be simplified
consistent with the Born approximation by inserting

ρ tot
I (t ′) ≈ ρI (t ′) ⊗ ρres (A6)

since the corrections, computed in [152], end up in higher
orders of the kernel, which we neglect. As a result, within
the Born approximation the kinetic equation reads as in the
interaction picture

∂tρI (t) = −
∫ t

t0

dt ′Trres[VI (t),[VI (t ′),ρI (t ′)ρres]] (A7)

and, correspondingly, in the Schrödinger picture

∂tρ(t) = −i[H,ρ(t)] +
∫ t

t0

W (t − t ′)ρ(t ′) (A8)

with the time-nonlocal kernel (24) of the main text:

W (t−t ′) •
= −Trres

[
V,e−i[H+H res](t−t ′)[V,ρres•]e+i[H+H res](t−t ′)]. (A9)

Observable kernels. For an arbitrary time-dependent non-
system observable we can proceed in close analogy. The
crucial step is not to approximate the expectation value
of X̂r

I (t), but instead the expectation value of its partially
normal-ordered part [Eq. (29)]

〈:X̂r (t):〉 = 〈X̂r (t)〉 − Tr(〈X̂r (t)〉res
ρI (t)), (A10)

which does not exhibit fluctuations in the sense that

〈:X̂r (t0):〉res = 0. (A11)

Now, inserting the Dyson equation (A4) into the expectation
value we obtain two terms, similar to Eq. (A5):

〈:X̂r (t):〉 = Tr Trres :X̂r
I (t): ρ tot

I (t) (A12a)

= Tr Trres :X̂r
I (t): ρ tot

I (t0) (A12b)

− i Tr
∫ t

t0

dt ′TrresX̂
r
I (t)
[
VI (t ′),ρ tot

I (t ′)
]
. (A12c)

Again, the first term (A12b) vanishes by virtue of partial
normal ordering of the observable: inserting the initially
factorizing state (A3b) and using Eq. (A11)

Tr Trres :X̂r
I (t0): ρ tot

I (t0) = Tr〈:X̂r
I (t0):〉res

ρI (t0) = 0. (A13)

In the second term (A12c) we again insert the Born approxi-
mation (A6). In analogy to Eq. (A7), we thus obtain

〈:X̂r (t):〉 (A14a)

= −i Tr
∫ t

t0

dt ′Trres :X̂r
I (t):[VI (t ′),ρI (t ′)ρres] (A14b)

=−i Tr
∫ t

t0

dt ′Trres
1

2

[
:X̂r

I (t): ,[VI (t ′),ρI (t ′)ρres]
]
+.

(A14c)

In the last step to Eq. (A14c) we have used that for a product
AB = 1

2 [A,B] + 1
2 [A,B]+, the commutator part does not

contribute under the trace. As mentioned after Eq. (67), this is
equivalent to changing W:X: → W:X: +  by a superoperator
with Tr  • = 0. Using Eq. (A10) we obtain the expectation
value (27) of the main text:

〈X̂r (t)〉 = Tr〈X̂r (t)〉res
ρ(t) + Tr

∫ t

t0

dt ′W:Xr :(t,t
′)ρ(t ′),

(A15)

with the time-nonlocal observable kernel (30):

W:Xr :(t,t
′)• =−i 1

2 TrR
[

:X̂r (t): ,e−i[H+H res](t−t ′)

× [V,ρres•]e+i[H+H res](t−t ′)]
+, (A16)

which explicitly depends only on the partially normal-ordered
part of the observable :X̂r :.

Conservation law at a junction r . We now derive the
identity (83), which is used to simplify Eq. (30), assuming
that the R-independent nonsystem observable X̂r is conserved
as in Eq. (81). We follow [120] [Eq. (174) ff.] adapting the
simpler formulation used in the above derivations. We allow
the system operator X̂[R] to depend on R (cf. Sec. IV).

Accounting for our assumptions that X̂r is R independent,
[Ĥ r ,X̂r ] = 0 [Eq. (35)] and [Ĥ ,X̂] = 0 [Eq. (82)], the current
operators read as

ÎXr = i[V r,X̂r ], ÎX = i
∑

r

[V r,X̂] + ∂X̂

∂t
. (A17)

The conservation law (81) implies that the part of the current
due to the coupling V r , indicated by |r , is conserved:

〈ÎXr 〉 = 〈i[V r,X̂r ]〉 (A18)

=−〈i[V r,X̂]〉 := −
〈
ÎX − ∂X̂

∂t

〉∣∣∣∣
r

. (A19)

Going to the interaction picture, the right-hand side is easily
related to the state evolution:〈

ÎX − ∂X̂

∂t

〉∣∣∣∣
r

(A20a)

=−iTr Trres
[
X̂I (t),V r

I (t)
]
ρ tot

I (t) (A20b)
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= TrX̂I (t)Trres
{−i
[
V r

I (t),ρ tot
I (t)

]}
(A20c)

= −TrX̂I (t)
∫ t

t0

dt ′Trres
[
V r

I (t),[VI (t ′),ρI (t ′)ρres]
]
.

(A20d)

In step (A20b), we used Tr Trres[A,B]C = Tr TrresA[B,C] to
pull the leftmost system operator out of the reservoir trace.
Under the partial trace in Eq. (A20c) we have precisely the
right-hand side of the Liouville equation (A3a) except for
VI (t) → V r

I (t) and we thus perform the same steps that led
from Eq. (A5) to Eq. (A7)].

In the resulting Eq. (A20d), the time integral is just the
right-hand side of the kinetic equation (A7) “resolved with
respect to junction r” at the latest time t . Correspondingly, in
the Schrödinger picture we obtain

〈ÎXr 〉(t) = −TrX̂(t)
∫ t

t0

dt ′Wr (t,t ′)ρ(t ′), (A21)

where Wr (t,t ′) is obtained from Eq. (A9) by simply replacing
V (t) → V r (t). Finally, by comparing the Markov limit of
Eq. (A15) for X̂r → ÎXr and the Markov limit of Eq. (A21)
we obtain the result (83) of the main text

〈ÎXr 〉(t) = TrWÎXr
(t)ρ(t) = −TrX̂Wrρ(t) (A22)

with WÎXr
:= W:IXr :(t) + 〈ÎXr 〉res

defined as in Eq. (41).

APPENDIX B: CONSERVATION LAW: EXAMPLE

Here, we illustrate how Eq. (83) in the main text takes a
more commonly known form when it is expressed in terms
of “current rates” as in [153]. For the stationary-state charge
current into the reservoir r ,

INr = (1|WÎNr
|ρ i) = −(N |Wr |ρ i). (B1)

Let |k〉 be a particle-number eigenstate, i.e., N̂ =∑k Nk|k〉〈k|
with particle number Nk in state k. We now expand the density
operator in basis operators |kk′) := |k〉〈k′| and expand (N |• =
TrN̂• =∑j Nj (jj | in the dual basis (jj ′| = Tr|j ′〉〈j |. For
simplicity, we ignore contributions from the off-diagonal
elements k 	= k′ of the stationary-state density operator in the
H basis. Denoting the transition rates (jj |Wr |kk) := Wr

j,k we
obtain the well-known expression

INr = −
∑

k

∑
j

NjW
r
jkρ

i
kk + · · · (B2)

= −
∑

k

∑
j 	=k

(Nj − Nk)Wr
j,kρ

i
kk + · · · , (B3)

using only the probability conservation Wr
kk = −∑j 	=k Wr

j,k .
Physically, this counts minus the change in N going from state
k → j , which by conservation of N̂ + N̂ r should equal the
change in N̂ r .

APPENDIX C: PUMPING VERSUS INSTANTANEOUS
CONTRIBUTION

Here, we discuss how the different scalings with parame-
ters, mentioned in Sec. II D, allow the instantaneous part (46)
and adiabatic-response part (47) and (48) to be separately

extracted from measurements, both in principle and in practice.
How can one get rid of the nongeometric “sum of snapshots”
of the instantaneous current, even in strong nonequilibrium
situations? In particular, one would like to do this directly
in an experiment35 in view of applications where pumping
current is the main tool (Sec. I), but also in view of the
pumping spectroscopy discussed in Sec. IV B. We summarize
three possible ways to extract the geometric pumped charge
from the instantaneous background:

(a) Zero bias: I i
Xr (t) = �Xr,i = 0. The characteristic of

this case of pure pumping is that although at each instant the
current for X̂r is zero, a cyclic parameter change can still
transport this observable.

(b) Bias driving with cancellations: I i
Xr (t) 	= 0 but

�Xr,i = 0. When driving the applied bias the instantaneous
current is generally nonzero. The “sum of snapshots” may,
however, still average to zero if the bias driving probes regions
with opposing currents. This happens, e.g., for charge transport
through a symmetrically coupled quantum dot when driving
gate and bias voltage at constant frequency �.

If this cancellation is slightly incomplete for constant
frequency, e.g., due to a nonsymmetric coupling, then one
may slowly modulate the frequency to shift weight between
positive and negative contributions during the period in order to
still achieve cancellation and realize �Xr,i = 0. Importantly,
this does not alter the adiabatic-response part because of its
geometric nature: it depends only on the traversed parameter
curve.

Another possibility is to perform a global modulation of the
coupling, i.e., a time-dependent, spatially uniform rescaling of
all couplings by V r [R] → √

α[R]V r [R] with a non-negative
function α[R]. Such a rescaling modifies the instantaneous
current by I i

Xr → αI i
Xr but drops out in the pumping current:

I a
Xr → I a

Xr . This modification36 of the instantaneous part can
be used to cancel it to zero by equally weighting forward
and backward instantaneous current contributions along the
driving cycle. Then, after one driving cycle only a geometric
pumped charge remains.

(c) General case with bias and/or bias driving: I i
Xr 	= 0 and

�Xr,i 	= 0. Finally, if the driving cycle probes only parameter
values with a definite bias, then one is “pumping with/against
the flow” and the cancellation cannot be achieved in the
way indicated above. However, a simple modification of the
measurement scheme as suggested in [154] still allows one to
cancel out the instantaneous part: one first drives the system for
a large number of cycles M and measures the total observable
during time MT . One then reverses the time-dependent driving
protocol and repeats the measurement. Subtracting the two
measurements and dividing by 2M the instantaneous part
cancels out (it does not change sign), leaving only the pumping
part.

35This can be done of course computationally if one has first
measured the instantaneous currents at all parameter values accessed
by the driving curve, but this seems less accurate as measurement
errors for different times may accumulate.

36Such a procedure is usually used to rectify the instantaneous
current by suppressing it to values �1 for parameter values R where
the current flows in an undesired direction and setting it to 1 otherwise.
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Situation (a) is at the focus of studies motivated by
metrology [155], where topological protection is desired.
Here, its geometric nature protects the pumping signal against
various kinds of perturbations of the driving protocol. For
example, different parametrizations R(t) of the same curve,
e.g., due to fluctuations in the driving speed, leave the pumping
invariant. Also, the deformation of the driving cycle has
a smaller effect on the pumping contribution than on the
stationary part since the former scales with the area enclosed
by the driving cycle for small amplitude driving.

Situations (b) and (c) are relevant to recent studies dis-
cussing pumping [75,93], pumping-spectroscopy [68–70,135],
and excess entropy production in nonequilibrium thermody-
namics [99] in the presence of a nonlinear bias. The interesting
point here is that the pumping contribution contains spectro-
scopic information [55] that is not contained in the averaged
stationary-state information of in the instantaneous part.

APPENDIX D: INTERACTION-INDUCED PUMPING
THROUGH A QUANTUM DOT

Here, we explicitly work out the AR approach for the
simple fermionic example of electron charge pumping through
a single-orbital quantum dot. This example was analyzed
in [69]. Here, we extend it by allowing for driving of the
tunnel barrier and in fact of any parameter. This serves as an
illustration of the general approach presented in this paper.

The system Hamiltonian describing such an example reads
as

H = εN + BSz + 1
2N↑N↓U (D1)

with bilinear tunnel couplings V r specified through tunnel
rates 
r (treated in the wide-band limit) and electron reservoirs
r = L, R, characterized by T and μr . The magnetic field
B is initially added for our comparison with the FCS
approach in Appendix I. We later focus on zero magnetic
field results [68,69,75,98], and make use of the supplemental
information to [156] where more details can be found.

State dynamics. We first give the time-evolution kernel in
Eq. (25) Due to spin and charge conservation, the off-diagonal
elements of the quantum-dot density operator ρ in the H

eigenbasis, describing, e.g., the transverse spin Sx and Sy ,
decouple from the diagonal ones describing the spin Sz along
B and the charge (N ) dynamics. We can thus restrict the state
dynamics to Liouville vectors spanned by pure states for an
empty, spin-up, spin-down, and double-occupied quantum dot,
respectively:

|ρ) = p0|0〉〈0| +
∑

σ

pσ |σ 〉〈σ | + p2|2〉〈2|. (D2)

Acting on this subspace, the Liouvillian L[R] that we defined
into the effective W [R] in Eq. (26) is zero and can thus be
ignored. In this basis, the master equation (25) for the example
of this section reads as

∂t

⎛
⎜⎜⎝

p0

p↑
p↓
p2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−W↑,0 − W↓,0 W0,↑ W0,↓ 0

W↑,0 −W0,↑ − W2,↑ 0 W↑,2

W↓,0 0 −W0,↓ − W2,↓ W↓,2

0 W2,↑ W2,↓ −W↑,2 − W↓,2

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

p0

p↑
p↓
p2

⎞
⎟⎟⎠. (D3)

Letting σ̄ denote the opposite of σ = ↑,↓ and
εσ = ε + σB/2, the rates Wx,y =∑r Wr

x,y are given
by

Wr
σ,0 = 
rf

+
r (εσ ), Wr

2,σ = 
rf
+
r (εσ + U ),

(D4)
Wr

0,σ = 
rf
−
r (εσ ), Wr

σ,2 = 
rf
−
r (εσ + U ),

with the Fermi functions f α
r (ω) = 1/[1 + exp α(ω − μr )/T ]

and temperature T .
Now, focusing on the case of zero magnetic field, B =

0, the charge dynamics decouples from spin Sz as well.
Changing the operator basis for N = 1 to the mixed spin state
1
2

∑
σ |σ 〉〈σ | and the spin operator 1

2

∑
σ σ |σ 〉〈σ | = Sz and

defining transition rates

Wr
1,0 = 
rf

+
r (ε), Wr

2,1 = 2
rf
+
r (ε + U ),

(D5)
Wr

0,1 = 2
rf
−
r (ε), Wr

1,2 = 
rf
−
r (ε + U ),

we obtain the master equation reduced to charge subspace:

∂t

⎛
⎝p0

p1

p2

⎞
⎠ =

⎛
⎜⎝

−W1,0 W0,1 0

W1,0 −W0,1 − W2,1 W1,2

0 W2,1 −W1,2

⎞
⎟⎠
⎛
⎝p0

p1

p2

⎞
⎠.

(D6)

Here, pN is the occupation probability of the charge N = 0,1,2
state, which is a mixed state for N = 1 and a pure one for
N 	= 1.

We now introduce the time-dependent driving through any
of the parameters entering the master equation via Eq. (D5).
There is little need to explicitly express the rates WN,N ′ in
terms of R. We only illustrate for this example how to define
these dimensionless parameters, required in the main text,
starting from the physical quantities ε,μL,μR,U,
L,
R. Since
ε,μL,μR,U enter the master equation through Fermi functions
in Eq. (D5), temperature T is a relevant energy scale. The
tunnel strengths 
L,
R play a special role since they set
the scale of the rates in Eq. (D5), in contrast to the other
parameters. The time average of the total tunnel strengths
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̄ = 
̄L + 
̄R can be used to normalize them. Note that both the scales T and 
̄ are by our assumptions non-negative. Thus, the
driving parameters37 can be concretely chosen as

R =
(

ε

T
,
μL − μR

T
,
U

T
,

L


̄
,

R


̄

)
. (D7)

Using the notation of Sec. V C 2, the real eigenvalues, left and right eigenvectors of the superoperator W in Eq. (D6) are

Eigenvalue Left eigenvector Right eigenvector

λ0 = 0 v0 = (1 1 1) v0 = 1
W0,1

W1,0
+ W2,1

W1,2
+ 1

⎛
⎜⎝

W0,1

W1,0

1
W2,1

W1,2

⎞
⎟⎠ (D8a)

λ1 =−1

2
(W1,0 + W1,2) v1 =

(
− W1,0

W0,1 − W2,1
1

W1,2

W0,1 − W2,1

)
v1 = 1

W1,0W0,1+W1,2W2,1

(W0,1−W2,1)2 + 1

⎛
⎜⎝

− W0,1

W0,1−W2,1

1
W2,1

W0,1−W2,1

⎞
⎟⎠ (D8b)

λ2 = −W1,0 − 2W0,1 = −2
 v2 =
(

W1,0

W0,1
− 2

W1,2

W2,1

)
v2 = 1

W1,0

W0,1
+ W1,2

W2,1
+ 4

⎛
⎝ 1

−2
1

⎞
⎠, (D8c)

where the parameter dependence has been suppressed. The
zero eigenvalue λ0 is associated with preservation of the
trace, represented by (v̄0|, and with the unique stationary state
|v0) = |ρ i). The negative eigenvalues ∝
 describe the decay
mode of the charge N̂ , |v1), and fermion parity [120,157,158]
(−1)N̂ , |v2), and their associated amplitude covectors. These
are additionally required to compute the response vector.

Observable response vector. We focus on charge pumping
and choose for the observable operator

Xr = Nr. (D9)

As mentioned in the main text [Eq. (57)] and discussed in [69],
at this point we already make use of the gauge freedom
Nr → Nr + g[R]1: to compute the physical time-dependent
currents in a quantum dot one actually needs to account for
screening currents [145]. The resulting screening currents
average out in one driving period. Thus, the gauge freedom in
the observable is used from the start to discard these, Eq. (D9)
giving the correct pumped charge.

Since charge is conserved by the tunnel coupling, i.e.,
[V r,N + Nr ] = 0 [Eq. (81)], we can use the simplifica-
tion (83) to obtain the connection (73a). With the pseudoin-
verse W−1 =∑k=1,2

1
λk

|vk)(vk| and using

2Wr
0,1[R] + Wr

1,0[R] = 2
r [R], (D10)

2Wr
2,1[R] + Wr

1,2[R] = 2
r [R], (D11)

37Choosing two tunnel rates 
L/
̄ and 
R/
̄ as driving parameters
does not lead to pumping. For nonzero rates the reason for this is that
the pumping contribution depends only on the ratio of tunnel rates.
Therefore, driving of 
L/
̄ and 
R/
̄ effectively amounts to single
parameter driving.

using notation borrowed from [156] the pumping response
covector (84) is obtained as

(�Nr [R]| = −(N̂ |Wr [R]
1

W [R]
(D12a)

= λr
1[R]

λ1[R]
[(N̂ | − N0[R] (1|] (D12b)

∝ (v1[R]|, (D12c)

where N0[R] = (N |v0[R]) is the frozen-parameter stationary-
state charge. Since (1|ρ i[R]) = 0 the R dependence responsi-
ble for charge pumping enters only through the first nonzero
eigenvalue of Wr

λr
1[R] = − 1

2

[
Wr

1,0[R] + Wr
1,2[R]

]
(D13)

and the eigenvalue λ1 =∑r λr
1 of W . The reason that the

other eigenvalues λ2 and λr
2 of W and Wr , respectively, do not

contribute is that the eigenvector |v2) ∝ |vr
2) ∝ (−1)N is the

fermion-parity operator which plays a special role [156].
Pumping connection and curvature. Combining Eq. (D8a)

with Eq. (D12) we obtain for the charge-pumping connec-
tion (73a)

A0[R] = (�Nr |∇Rρ i) (D14a)

= λr
1[R]

2λ3
1[R]

[W1,0[R]∇RW1,2[R]−W1,2[R]∇RW1,0[R]],

(D14b)

and for the pumping curvature (85)

B[R] = (∇R�Nr | × |∇Rρ i) (D15)

= λr
1[R]

λ3
1[R]

∇RW1,0[R] × ∇RW1,2[R] + ∇R

[
λr

1[R]

2λ3
1[R]

]
× [W1,0[R]∇RW1,2[R] − W1,2[R]∇RW1,0[R]].

(D16)
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This result illustrates the geometric spectroscopy of Sec. IV:
when driving the system energies H relative to the reservoirs
μr for fixed coupling parameters 
r , both (∇R�Nr | and
|∇Rρ i) show sharp changes. Due to the different func-
tional dependence of covector and vector, their gradients
are nonparallel, i.e., Eq. (80) is violated and a pumping
response can be expected at sharply defined parameter points.
Similar considerations hold for, e.g., the gradients ∇RW1,N for
N = 0,2 in Eq. (D15).

In the present case, this pumping effect is induced by the
interaction [68,69,135] U if the tunnel rates are not driven.
That the curvature vanishes in this case can be seen from both
formulas. First, setting U = 0 in the pumping curvature (D16)
we find

∇RW1,0[R] + ∇RW1,2[R] = ∇R
[R], (D17)

λr
1[R] = −
r [R], λ1[R] = −
[R], (D18)

where we used f +
r + f −

r = 1 in Eq. (D5). For constant tunnel
strengths, the gradients ∇RW1,0 and ∇RW1,2 are (anti)parallel
vectors, making the first term vanish, even though the param-
eter dependence of rates for electron and hole processes is
different. In the second term in Eq. (D16) the first gradient is
zero.

If one only wants to see that the curvature vanishes it is
easier to use Eq. (D15) and first set U = 0. In this case, the
form (D12b) of the response covector is simple because the
N0 part drops out in the connection

A0[R] = λr
1[R]

2λ3
1[R]

(N |∇Rρ i[R]) (D19)

by probability conservation (1|∇Rρi[R]) = 0. Thus the only
relevant part of the response covector is parameter independent
if the tunnel strengths are constant and hence the pumping cur-
vature vanishes [Eq. (79) ff.]. This advantage of this derivation
allows to avoid the evaluation of ∇Rρ i in Eq. (D12c). We
note that to compute nonzero curvature values for U 	= 0 the
explicit form (D16) is more convenient.

We therefore find that pumping without driving the tunnel
rates is interaction induced, i.e., there is no pumping effect
in the absence of interaction, i.e., if U = 0 during the whole
driving cycle. This does not depend on the driving protocol
or the choice of parameters, as long as the tunnel rates and
interaction stay constant. We note that when driving the
interaction U itself, a pumping contribution can still arise as
parameter regions with nonzero interaction are visited during
the driving cycle.

The second curvature contribution in Eq. (D16) was not
given in [68,69,135] since the tunnel rates were assumed to be
constant from the start. If this is not the case, driving of tunnel
rates may result in pumping even without interaction. Similar
interaction-induced pumping effects have been discussed in
different contexts [40,93].

APPENDIX E: PUMPING OF SYSTEM OBSERVABLES:
AR APPROACH OF AVRON et al. [43]

In this Appendix we show how the AR approach of Avron,
Fraas, and Graf in [43] fits into our considerations of gauge

freedom of observables in Sec. III when we replace nonsystem
observable X̂r by a system observable X̂[R]. We extend
their considerations by allowing for possible parametric time
dependence of the observable including that introduced by a
gauge transformation.

The Heisenberg current superoperator for a gauged system
observable X̂g(t) := X̂[R(t)] + g[R(t)]1 reads as when writ-
ten under the trace (1| = Tr

(1|WÎXg
[R(t)] = (X|W [R(t)] + d

dt
g[R(t)](1|. (E1)

In this simpler situation of a system observable, this can be
directly seen: following [43], the right-hand side of Eq. (E1) is
calculated by inserting d

dt
ρ(t) = W (t)ρ(t) into the expectation

value d
dt

〈X̂g〉(t) = d
dt

(X̂g|ρ(t)) = (1|WÎXg
|ρ(t)). This is the

system-observable analog to the Heisenberg equation of mo-
tion (41) for nonsystem observables where W [R] is effectively
replaced by Wr [R]. Here, it is not necessary to start from the
total system current (55) as we did in deriving the current
kernel (41). Note, in particular, that in the above we did not
assume that [H,X] = 0, as we did in Eq. (82).

As in [43], we now solve the master equation for the
adiabatic response ρa = 1

W
∇Rρ i and obtain for the transported

observable �X = �Xi + �Xa

�Xi =
∫ T

0
dt(1|WÎX

[R(t)]|ρ i[R(t)]), (E2)

�Xa =
∫
C
dR Ag[R] =

∫
S

dS B[R], (E3)

where we recognize the Landsberg connection Ag[R] =
A0[R] + ∇Rg[R] with

A0[R] = (X[R]|Q[R]|∇Rρ i[R]). (E4)

As in [43] the result is expressed in the non-Hermitian projector
on the Liouville subspace complementary to the unique
stationary-state zero eigenvalue on which the pseudoinverse
W−1 is computed:

Q[R] := W [R]
1

W [R]
= I − |ρ i[R])(1|. (E5)

Our derivation emphasizes that the projector Q has two factors:
W comes from the system observable [Eq. (E1)], whereas
W−1 accounts of the “lag” time of the evolution [Eq. (79)
ff.]. The pumping connection (E4) corresponds to Theorem 9
of [43]. We refer to this work for a detailed discussion, as well
as additional interesting results which find no parallel in the
present paper, e.g., the case of nonunique stationary states. The
corresponding curvature

B[R] = (X[R]|[∇RQ[R]] × |∇Rρ i[R]) (E6a)

+ (∇RX[R]| Q[R] × |∇Rρ i[R]) (E6b)

shows that the R dependence of projector Q in the term (E6a)
generates pumping as shown in [43] [cf. our discussion in
Sec. IV of conserved nonsystem observables Eq. (84)]. The
term (E6b) does not appear in [43] since there X̂ is explicitly
assumed to be R independent, but it is related to our discussion
following Eq. (82).
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The geometric pumping response of [43], there formulated
elegantly in terms Liouville-space Kato projections, can thus
also be considered as another instance of Landsberg’s nonadi-
abatic geometric phase. The gauge freedom responsible for the
geometric effect lies in the observable and the relevant fiber
bundle is the same as that discussed in Figs. 1–4 with X̂r → X̂.
Our discussion of [43] thus underscores a number of key points
of of the main text in a simpler setting: (i) Pumping involves
a geometric nonadiabatic response of the quantum state
relative to the instantaneous solution of the Berry-Robbins type
(“geometric magnetism”) [60]. (ii) Although geometric, the
pumping effect is not a “Berry-Simon” phase, i.e., associated
with adiabatic state evolution: the gauge freedom responsible
for the result (E4) lies in the observable, not in the state.
(iii) The connection (E4) relies critically on the decay to
a unique frozen-parameter stationary state, a key feature
distinguishing Landsberg’s phase in dissipative systems from
the Berry-Simon phase. (iv) From Sec. V it is now also clear
that the results of an FCS approach for pumping of the first
moment of system observables will reduce to those obtained
by the simpler AR approach of [43].

APPENDIX F: RESPONSE COVECTOR:
GENERALIZED BROUWER FORMULA

In [69] pumping-response coefficients were introduced
that are closely related to our response covector (79) (see
also [43]). These allow to bring the Landsberg curvature (78)
into a form similar to the well-known Brouwer formula [53]
valid in the noninteracting/mean-field picture of transport.
Additional terms arise for conserved parameter-dependent
system observables. In the presence of interactions, model-
specific calculations [55,68–70,133] have been shown to take
such a form. Here, we briefly describe how the considerations
of [69] extend to our more general setting.

To obtain the Brouwer-type form, one expands the
instantaneous stationary state ρ i in any complete or-
thonormal basis of observables Ŷ [R] = Ŷ †[R], i.e., for
which

∑
Y |Y [R])(Y [R]| = I with |Y [R]) = Ŷ [R], (Y [R]| =

Tr Ŷ [R]•. For example, for an interacting, single-orbital
quantum dot coupled to normal-metal electrodes, one possible
set of such observables is {Ŷ } = {1,N̂,Ŝz,(−1)N̂ }. In the
expansion

|ρ i[R]) =
∑
Y

|Y [R]) 〈Y 〉i[R], (F1)

the coefficients are the stationary-state averages of
these observables, 〈Ŷ 〉i[R] = (Y [R]|ρ i[R]) = Tr Ŷ [R]ρ i[R].
In Brouwers formula, the pumping response of reservoir
observable X̂r is expressed in terms of the responses of
the averages of these system observables. In our case, using
Eq. (78) the pumping curvature with the expansion (F1) is

BXr [R] =
∑
Y

(∇R�Xr [R]|Y [R]) × ∇R〈Ŷ 〉i[R]

+ (∇R�Xr [R]) × |∇RY [R]) 〈Ŷ 〉i[R]. (F2)

The first term in Eq. (F2) is similar to Brouwer’s formula.
It contains the parameter gradient of the average system
observables, whereas in the second term these averages appear

by themselves. Moreover, in the first term the role of response
vector (79) is to assign to each system observable Ŷ [R] its
response coefficient (�Xr [R]|Y [R]) = Tr �

†
Xr [R]Ŷ [R] under

the ∇R in Eq. (F2). Although similar to Brouwer’s formula,
Eq. (F2) holds for strongly interacting, weakly coupled open
quantum systems, with (possibly nonconserved) nonsystem
observable X̂r .

Without further assumptions, there is no natural choice for
the {Ŷ [R]}: unitary transformations of this basis of operators
leave (F2) invariant. This nonuniqueness may seem a disad-
vantage that Eq. (F2) as compared to the basis-independent re-
sponse covector (79). However, when X̂r + X̂[R] is conserved
at junction r [Eq. (81)], we can exploit the simplification (84)
by including the corresponding system observable X̂[R] in the
expansion set {Ŷ [R]}. The pumping response of the conserved
observable X̂r can then be written as a “self-response” plus
cross responses of other, linearly independent observables
Ŷ [R]:

BXr [R] = −
[
∇R(X[R]|Wr [R]

1

W [R]

]
|X) × ∇R〈X̂[R]〉i

−
[
∇R(X[R]|Wr [R]

1

W [R]

]
×|∇RX[R]) 〈X̂[R]〉i

−
∑
Y 	=X

{[
∇R(X[R]|Wr [R]

1

W [R]

]
|Y )

×∇R〈Ŷ [R]〉i −
[
∇R(X[R]|Wr [R]

1

W [R]

]
×|∇RY [R]) 〈Ŷ [R]〉i. (F3)

For example, for charge pumping, with parameter independent
X and Y , in [55] only the first term played a role (X̂ = N̂ ) due
to spin symmetry, whereas in [68] the crosstalk with the spin
(Ŷ = Ŝz) in the third term is relevant as well. In [69,135]
spin pumping also involved two terms (X̂ = Ŝz and Ŷ = N̂ ).38

Importantly, Eq. (F3) also applies to discrete many-particle
systems whose stationary state is specified by a larger set of
observables.

APPENDIX G: ADIABATIC GEOMETRIC PHASE
FOR MIXED STATES: ASE APPROACH

OF SARANDY AND LIDAR

In the main text, we make repeated use of insights offered
by the ASE approach of [37,38], an approach not related
to pumping. Here, we summarize the required key points,
but also discuss some relevant issues that can not be found
in [37,38].

38The explicit pumping curvature result (F3) corresponds to ex-
pressing in the intermediate calculation, for example, the AR charge
current as I a

Nr (t) = (�Nr |N ) · d

dt
〈N̂〉i [55] and I a

Nr (t) = (�Nr |N ) ·
d

dt
〈N̂〉i + (�Nr |Sz) · d

dt
〈Ŝz〉i [68].
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Adiabatic approximation. Sarandy and Lidar consider a
time-local master equation for the density operator

d

dt
|ρ(t)) = W (t)|ρ(t)). (G1)

Since this approach can deal with non-steady-state evolution,
it is convenient to start the evolution from state ρ(0) at t0 = 0
(instead of t0 → −∞ as in the main text). In our setting, we
assume the kernel decomposes as

W (t) =
∑

n

λn(t)|vn(t))(vn(t)| (G2)

with the right and left eigenvectors |vn(t)) and (vn(t)| to
the possibly complex eigenvalues λn(t). The eigenvalues are
assumed to be nondegenerate for simplicity and to have
nonpositive real parts. The density operator is expanded in
the right eigenvectors

|ρ)(t) =
∑

n

e�n(t)ρn(t)|vn(t)), (G3)

where the anticipated dynamical “phase” �n(t) = ∫ t

0 dt ′λn(t ′)
is split off right away. Inserting this ansatz into Eq. (G1) yields
coupled equations for the coefficients:

∂tρn(t) = − (vn(t)|∂tvn(t))ρn(t)

−
∑
m	=n

(vn(t)|∂tvm(t))ρm(t)e�m(t)−�n(t). (G4)

At this point, we apply the adiabatic approximation for
open quantum systems, discussed carefully by Sarandy and
Lidar [37], which amounts to neglecting the second line in
Eq. (G4). The condition under which this is valid is described in
Eq. (G10). The adiabatic approximation, here labeled by “i” for
“instantaneous”39 as in the main text, for the non-steady-state
solution of the master equation (G1) is given by

|ρ i(t)) =
∑

n

e�n(t)eγn(t)ρn(0)|vn(t)). (G5)

Thus, in the adiabatic evolution the components of the
mixed state |ρ(t)) in the various different instantaneous
eigenspaces of W (t) evolve independently of each other. Each
eigenvector |vn(t)) evolves with its own geometric phase factor
determined by a separate connection for each eigenspace n:

γn(T ) = −
∮
C
dR An[R] (G6)

An[R] := (vn[R]|∇Rvn[R]). (G7)

This is the most direct generalization of the Berry-Simon phase
for adiabatic time evolution to open systems evolving with
Eq. (G1).

Adiabatic-response correction. In [37] the first nonadi-
abatic correction to the result (G5), here labeled “a” for

39The adiabatic solution is the instantaneous solution with the right
“phase” factors.

“adiabatic response” as in the main text, is shown to be

|ρa(t)) =
∑

n

|vn(t))

⎧⎨
⎩
∑
m	=n

e�m(t)eγm(t) (vn(t)|∂tvm(t))

λn(t) − λm(t)
ρm(0)

−
∑
m	=n

e�n(t)eγn(t) (vn(0)|∂tvm(0))

λn(0) − λm(0)
ρm(0)

+
∑
m	=n

e�n(t)eγn(t)

×
∫ t

0
dτ

(vn(τ )|∂τ vm(τ ))(vm(τ )|∂τ vn(τ ))

λn(τ ) − λm(τ )
ρn(0)

⎫⎬
⎭.

(G8)

Both lines of (G8) each can be understood in an intuitive
picture. The first line describes processes where an initial state
m “leaks” into state n via the coupling term

(vn(τ )|∂τ vm(τ ))

λn(τ ) − λm(τ )
(G9)

either at final time τ = t or initial time τ = 0. The “phase”
factors (exponentials) correspond to the dynamics after and
before the transition. The second term can be understood as
a leakage from the state n into itself: it contains the coupling
terms for a transition from n to m and back. Although this
seems to be a higher-order contribution, it is in fact not since
one integrates such processes over all possible times.

Gap condition. Reference [37] derives the gap condition
ensuring the validity of the adiabatic decoupling, i.e., neglect-
ing the correction (G8) relative to the adiabatic solution (G5),
similar to the closed system case, as

max
0<t<T

∣∣∣∣ (vn(t)|∂tvm(t))

λn(t) − λm(t)

∣∣∣∣ � ||v̄n|| ||vm|| (G10)

for all n,m.40 For a system driven at frequency � with
dimensionless amplitudes δR and eigenvalues with relevant
scale 
 the condition (G10) gives∣∣∣δR�




∣∣∣� 1. (G11)

This is identical to Eq. (51) of the main text. It is crucial to
note the distinct ways in which this gap condition is used: (a)
In both the ASE and the FCS approaches, this is the condition
to neglect the adiabatic response |ρa) or |ρχ,a). (b) In the
AR approach, at the focus of the main text, this condition is
used to justify (Appendix H) keeping the adiabatic response,
yet neglecting higher adiabatic corrections (nonlinear in �),
which scale with (δR�/
)2.

We stress this point here and in in the main text since it
easily leads to confusion. For example, in Sec. V C 4 we show
that in the FCS the kept adiabatic/instantaneous contribution,

40Indeed, condition (G10) for the contribution (G8) to be negligible
is sufficient but not necessary. Due to the decay in an open system,
some contributions are exponentially suppressed even without the
condition (G10). This condition is thus only required for the
nondecaying terms.
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through the “χ -bookkeeping device” of the FCS, in fact leads
back to case (b): one effectively uses Eq. (G11) to motivate
keeping a physically nonadiabatic (!) part.

Gauge freedom in adiabatic mixed-state evolution. Similar
to the closed-system case, the nondegenerate instantaneous
eigenvectors of the kernel W (t) are only determined up to a
nonzero complex time-dependent factor, which is, however,
complex: a gauge transformation with cn(t) ∈ C/{0}, preserv-
ing the biorthonormality,

|vn(t)) → cn(t) |vn(t)), (G12a)

(vn(t)| → c−1
n (t)(vn(t)|, (G12b)

clearly leaves the kernel W (t) invariant and thus also the
solution of the master equation (G1) remains unchanged. In
agreement with this, the density operator contributions (G5)
and (G8) are invariant under gauge transformations: although,
the connections (G7) are gauge dependent, transforming as
An → An + c−1

n ∇Rcn, these enter only through the invariant
geometric phases (G6).

In our discussion of the Landsberg (Sec. III) and the
FCS (Sec. V) approaches, we made use of the following
important result which was not discussed in [37,38]: the
gauge freedom (G12) still contains a mathematical redundancy
which can be eliminated by taking into account two physical
restrictions on the evolution of the mixed state ρ(t). (a) First,
the preservation of the trace normalization of ρ(t), i.e., 0 =
∂tTrρ = (1|W |ρ), requires that (v0| = (1| = Tr is always a
left eigenvector of W to eigenvalue λ0 = 0. The corresponding
right eigenvector |v0(t)) is by our nondegeneracy assumption
the only eigenvector corresponding to a nonzero trace operator:
by biorthonormality it has (1|v0(t)) = Trv0(t) = 1 for all t .
This fixes left and right eigenvectors of the λ0 = 0 eigenspace
and no (nonzero) geometric phase can appear here.41 Thus,
the gauge freedom for the stationary eigenspace (λ0 = 0) is
effectively quenched. This was mentioned in Sec. III A of
the main text. (b) Similarly, preservation of Hermiticity of
ρ(t) can be used to reduce the gauge freedom to real-valued,
nonzero eigenvalues positive numbers, i.e., cn(t) ∈ R+ for
each eigenspace n 	= 0. This corresponds to working with an
eigenbasis of Hermitian operators.

Quenching of adiabatic Berry phase in the steady state.
Finally, we discuss how the above ASE results simplify in
the steady-state limit relevant for pumping. This was also not
part of [37,38]. In the steady-state limit, i.e., for times42 t �
minn	=0,R∈C{λ−1

n } ∼ 
−1 all non-steady-state exponentials in
Eqs. (G5) and (G8) have decayed to zero and reduce to,
respectively,

|ρ i(t)) = |v0(t)), (G13a)

|ρa(t)) =
∑
n	=0

|vn(t))
(vn(t)|∂t |v0(t))

λn(t)
= 1

W
∂t |ρ i(t)) (G13b)

41See [44] (p. 8) for a related observation in the FCS approach.
42This is consistent with the adiabatic limit: to describe at least

one driving cycle one needs t � �−1 to be compatible with the gap
condition (G11) �δR � 
 which is fine for t � 
−1.

with the pseudoinverse of W [cf. Eq. (G2)]. These are exactly
Eqs. (43a) and (43b) that we obtained in a much simpler
way in the “naive” AR approach in Sec. II D. However, this
comparison shows that in the adiabatic evolution (G13a) only
the zero eigenvector (λ0 = 0) remains, whose geometric phase
is always zero

γ0 = 0 (G14)

due to the quenching of the gauge freedom.
For the nonadiabatic correction (G8), leading to

(G13b), [37,38] do not discuss a possible geometric-phase.
In Appendix H, we show that “iterative” geometric phases
are associated with correction (G8) and even higher ones,
respectively, which however are all quenched in the steady-
state limit.

APPENDIX H: NONADIABATIC GEOMETRIC
PHASE FOR MIXED STATES: EXTENDING

BERRY’S ADIABATIC ITERATION

Equation (54) in Sec. III A expressed the key point that the
steady-state mixed state is continuous even when accounting
for higher orders of the driving frequency, assuming the Born-
Markov equation (25) with nondegenerate states eigenvectors
as in Appendix G. In the adiabatic limit this statement follows
from taking the steady-state limit of the result of Sarandy and
Lidar [37] as described in Eq. (G14). Here, we show that the
nonadiabatic corrections do not break this result and explain in
which sense these corrections relate to nonadiabatic geometric
phases.

As pointed out by Berry [144] for unitary closed-system
evolution, nonadiabatic corrections can be obtained as a
geometric phase effect relative to an adiabatic solution by
performing an iterative adiabatic approximation. Here, we
extend this to the nonunitary open-system evolution given
by the Born-Markov equation (25): In Appendix G, we have
seen by the ASE approach that the adiabatic time-evolution
superoperator, defined by |ρ i(t)) = �0(t)|ρ i(0)), reads as
[Eq. (G5)]

�0(t) =
∑

n

eφn(t)|vn(t))(vn(0)|, (H1)

where φn(t) = �n(t) + γn(t), �n(t) = ∫ t

0 λn(τ )dτ , and
γn(t) := − ∫ t

0 (v̄n(τ )|∂τ vn(τ ))dτ . The exact Born-Markov

time evolution �(t) = T e
∫ t

0 W (τ )dτ can now be expressed as a
product of the adiabatic time evolution and a correction factor
�1(t):

�(t) = �0(t)�1(t), (H2)

where �1(t) corresponds to the time evolution in the rotating
frame of the adiabatic decoupling. (This is similar to going
to an interaction picture, but note that the evolutions �1 and
�0 are nonunitary.) Its evolution is generated by a new kernel
W 1(t):

d

dt
�1(t) = W 1(t)�1(t), (H3)

W 1(t) = �0(t)−1[W (t) − ∂t ]�
0(t). (H4)
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We again solve Eq. (H3) by an adiabatic decoupling:

�1(t) ≈
∑

n

eφ1
n(t)
∣∣v1

n(t)
)(

v1
n(t)
∣∣, (H5)

where now φ1
n(t) = �1

n(t) + γ 1
n (t) with �1

n(t) = ∫ t

0 λ1
n(τ )dτ

and γ 1
n (t) := − ∫ t

0 (v̄1
n(τ )|∂τ v

1
n(τ ))dτ are given in terms of the

left and right eigenvectors (v1
n(t)| and |v1

n(t)) to eigenvalues
λ1

n(t) of the new kernel W 1(t) given by Eq. (H4).
Like the adiabatic phase in �0, also this relative geometric

phase is quenched when we take the steady-state limit: in
the rotating frame |ρ ′(t)) = �1(t)|ρ(0)) also remains trace
normalized:

1 = (1|�(t)|ρ(0)) = (1|�0(t)�1(t)|ρ(0))

= (1|�1(t)|ρ(0)) = (1|ρ ′(t)). (H6)

In the second line we have used that (1| = Tr is a left
eigenvector of W 0 to eigenvalue zero and therefore (1|�0 =
(1|. Hence, we know that (v1

0(t)| = (1| is a left eigenvector of
W 1 to eigenvalue zero. Thus, the continuity (54) is enforced by
probability normalization, even when including the adiabatic
response ρ(t) ≈ ρ i + ρa.

Clearly, we can continue this argument to find that in each
iteration step k this is a left eigenvector of the corresponding
generator Wk . One then finds that the geometric and dynamic
phases γ k

0 and �k
0, which remain in the steady-state limit,

are zero assuming43 the steady state at each iteration to be
unique: for the dynamical term this results trivially from the
zero eigenvalue λk

0 = 0. For the geometric part, this follows
from the biorthonormality of (vk

0|vk
0(t)) = 1 for all t with t

independent (vk
0| = Tr:

γ k
0 (t) = −

∫ t

0
dτ
(
vk

0(τ )
∣∣∂τ

∣∣vk
0(τ )

)
(H7a)

=
∫ t

0
dτ
(
∂tv

k
0(τ )

∣∣vk
0(τ )

) = 0. (H7b)

Thus, the geometric phase relative to the previous iteration
is quenched and we can say that the nonadiabatic steady-
state density operator “exhibits no geometric phase.” Hence, a

43If this assumption breaks down at any iteration it would imply that
the solution we seek has no unique steady state, which is our working
assumption.

unique mixed steady state will always return to itself after one
driving period, i.e., it is continuous in the parameters [Eq. (54)].

Reduction to the steady state. Finally, we now show
explicitly that to order O(Ṙ/
) the steady-state solution after
one iteration coincides with the result of the more practical
sum expansion of the AR approach in the main text. The first
iterative approximation amounts to finding the instantaneous
stationary-state equation in the first adiabatic frame, i.e.,
solving W 1|v1

0) = 0. This can be done using the ansatz
|v1

0(t)) = |v0
0(0)) + |δv1

0(t)) using that �0|v0
0(0)) = |v0

0(t)) and
W (t)|v0

0(t)) = 0. Transformed to the original frame, one
obtains the approximate time-dependent steady-state solution:

ρ(t) = �0(t)
∣∣v1

0(t)
)

≈ |v0(t)) + 1

W (t) − [∂t�0(t)]�0(t)−1
∂t |v0(t)). (H8)

Assuming W (t) ∼ 
 � |Ṙ| = |δR|� ∼ [∂t�
0(t)]�0(t)−1

and restoring the notation |v0(t)) = |ρ i(t)) this reduces to the
AR result ρ(t) ≈ ρ i + ρa [Eqs. (42) and (43)] of the main
text:

ρ(t) ≈ |ρ i(t)) + 1

W (t)
∂t |ρ i(t)). (H9)

However, what the above makes clear is that the first
nonadiabatic correction to the dynamics also corresponds to a
geometric phase in the quantum state, the first-iteration phase
γ 1

0 (T ), which is, however, zero in the steady state on general
grounds. This is the starting point for Landsberg’s phase to
emerge from the observable.

APPENDIX I: FULL COUNTING STATISTICS:
EXPLICIT KERNEL

In this Appendix, we illustrate the relation of the FCS kernel
Wχ to the time-evolution kernel W [Eq. (120)] and to the
observable current kernel WÎXr

[Eq. (123)]. In particular, we
show that the redundant  [Eq. (123)], which obscures the
relation of the χ -linear part to the current kernels, is nonzero
even in a simple application.

The explicit FCS kernel for the generating operator is taken
from taken from [75,98] [Eqs. (68) and (14), respectively] and
describes the example we discussed in Appendix D using the
AR approach:

Wχ = −

⎛
⎜⎜⎜⎜⎜⎝

−W↑,0 − W↓,0 W
−χ

0,↑ W
−χ

0,↓ 0

W
+χ

↑,0 −W0,↑ − W2,↑ 0 W
−χ

↑,2

W
+χ

↓,0 0 −W0,↓ − W2,↓ W
−χ

↓,2

0 W
+χ

2,↑ W
+χ

2,↓ −W↑,2 − W↓,2

⎞
⎟⎟⎟⎟⎟⎠ (I1)

with counting-field-dependent “rates”

W
±χ

i,j = WR
i,j + e±iχWL

i,j . (I2)
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Clearly, Wχ |χ=0 is exactly the quantum-state time-evolution kernel (D3) in agreement with Eq. (120). However, the χ -linear part
of Eq. (I1) reads as

∂iχWχ
∣∣
χ=0 = −

⎛
⎜⎜⎜⎜⎝

0 −WL
0,↑ −WL

0,↓ 0

+WL
↑,0 0 0 −WL

↑,2

+WL
↓,0 0 0 −WL

↓,2

0 +WL
2,↑ +WL

2,↓ 0

⎞
⎟⎟⎟⎟⎠. (I3)

In contrast, computing the current kernel (A16) gives

WÎNr
= −1

2

⎛
⎜⎜⎜⎜⎝

WL
0,↑ + WL

0,↓ −WL
0,↑ −WL

0,↓ 0

+WL
↑,0 WL

2,↑ − WL
0,↑ 0 −WL

↑,2

+WL
↓,0 0 WL

2,↓ − WL
0,↓ −WL

↓,2

0 +WL
2,↑ +WL

2,↓ −WL
↑,2 − WL

↓,2

⎞
⎟⎟⎟⎟⎠ (I4)

in agreement with Eq. (83). The difference between Eqs. (I3) and (I4)

 := ∂iχWχ |χ=0 − WÎNr
= 1

2

⎛
⎜⎜⎜⎜⎝

WL
0,↑ + WL

0,↓ +WL
0,↑ +WL

0,↓ 0

−WL
↑,0 WL

2,↑ − WL
0,↑ 0 +WL

↑,2

−WL
↓,0 0 WL

2,↓ − WL
0,↓ +WL

↓,2

0 −WL
2,↑ −WL

2,↓ −WL
↑,2 − WL

↓,2

⎞
⎟⎟⎟⎟⎠ (I5)

indeed represents a redundant superoperator with Tr• = 0 since the sum of rows is zero [cf. Eq. (D3)]: we stress that the
nonzero redundancy  in this relation enters both through the choice of the current kernel used in the AR approach [Eq. (67) ff.]
as well as in the FCS approach [Eqs. (94) and (123) ff.].
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[125] M. Lee, R. López, M.-S. Choi, T. Jonckheere, and T. Martin,

Phys. Rev. B 83, 201304 (2011).
[126] M. R. Wegewijs, T. Pluecker, and J. Splettstoesser (unpub-

lished).
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[128] M. H. Pedersen and M. Büttiker, Phys. Rev. B 58, 12993

(1998).
[129] F. Battista, F. Haupt, and J. Splettstoesser, Phys. Rev. B 90,

085418 (2014).
[130] M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys.

81, 1665 (2009).
[131] J. König, J. Schmid, H. Schoeller, and G. Schön, Phys. Rev. B

54, 16820 (1996).
[132] H. Schoeller and F. Reininghaus, Phys. Rev. B 80, 045117

(2009).
[133] J. Splettstoesser, M. Governale, and J. König, Phys. Rev. B 77,

195320 (2008).

[134] N. Winkler, M. Governale, and J. König, Phys. Rev. B 79,
235309 (2009).

[135] F. Haupt, M. Leijnse, H. L. Calvo, L. Classen, J. Splettstoesser,
and M. R. Wegewijs, Phys. Status Solidi B 250, 2315 (2013).

[136] N. Winkler, M. Governale, and J. König, Phys. Rev. B 87,
155428 (2013).

[137] S. Rojek, M. Governale, and J. König, Phys. Status Solidi B
251, 1912 (2014).

[138] J. E. Avron, M. Fraas, G. M. Graf, and P. Grech, Commun.
Math. Phys. 314, 163 (2012).

[139] S. Juergens, F. Haupt, M. Moskalets, and J. Splettstoesser,
Phys. Rev. B 87, 245423 (2013).

[140] J. Splettstoesser, M. Governale, J. König, and M. Büttiker,
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