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Abstract

We present a microwave measurement system that is intended for the estimation of the dispersive dielectric properties for densely
packed pellets. In particular, we estimate the Debye parameters for the effective permittivity of a mixture of air and densely packed
moist microcrystalline cellulose pellets for the frequency band 2.7 GHz to 5.1 GHz. The Debye parameters are estimated by means
of minimizing the misfit between the measured scattering parameters and the corresponding computed response given a model
of the measurement system. This minimization is performed by means of a nonlinear iterative optimization procedure, which is
supported by continuum sensitivities, and the optimum is found in 10-60 iterations for the cases presented in this article. We find
that increasing moisture content yield an increase in the static permittivity and a decrease in the relaxation time.

Keywords: microwave measurement, dispersive media, permittivity, microcrystalline cellulose, gradient-based optimization,
sensitivities, finite element method

1. Introduction

Fluidized beds are used in pharmaceutical industry for rapid
drying, granulation, air-suspension coating among other things
and the monitoring [1] of fluidized-bed processes is important
in order to achieve high-quality pharmaceutical products at a
low production-cost. In particular, the moisture content of the
pellets [2, 3] in the bed influences the product quality and, con-
sequently, it is important to be able to monitor and control the
moisture content during the evolution of the fluidized-bed pro-
cess. Another problematic aspect is the formation of so-called
stagnation zones, where pellets do not fluidize and therefore are
excluded from the circulation of material in the pharmaceutical
process. Stagnation zones have a negative impact on the prod-
uct quality and, consequently, it is desirable to monitor the bed
and its distribution of pellets.

Near infrared (NIR) spectroscopy has been exploited for the
measurement of moisture content, particle size and other quan-
tities in pharmaceutical processes [4, 5, 6]. However, NIR spec-
troscopy performs the measurement on a rather small region of
the process vessel and, therefore, it only provides local informa-
tion on the process state. In addition, the NIR probe requires a
free line of sight to the measurement region and, consequently,
it is sensitive to material in the process that may attach to the
probe and obstruct its field of view. Electric capacitance tomog-
raphy (ECT) can be used to measure the effective permittivity
in the bed region [7, 8, 9, 10]. Although ECT provides infor-
mation on the spatial variation of the effective permittivity, it
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suffers from an intrinsically limited spatial resolution that is a
consequence of the low frequency of operation [7]. An alterna-
tive technique that exploits stray fields of a microwave resonator
is presented by Buschmüller et al. [11]. However, their method
does not yield spatial resolution.

In this article, we present a first prototype of a microwave
measurement system that is intended for the estimation of the
effective permittivity of microcrystalline cellulose (MCC) pel-
lets. The prototype can be modified as described by Cerullo
et al. [12] in order to be used in a fluidized bed of Wurster
type [13]. Our measurement equipment is non-intrusive in the
sense that it does not need to be in physical contact with MCC
pellets in order to perform the measurement and, in addition,
it is possible to use the method in an on-line fashion for a
fluidized-bed process. It can also provide information on spa-
tial material distribution [12], which could potentially be used
to identify stagnation zones. Our microwave measurement sys-
tem features six rectangular waveguides that surround the mea-
surement region and acts as antennas. The complete scattering
matrix associated with the antenna ports is measured for a fre-
quency band of nearly one octave. Given a numerical model of
the measurement system, we minimize the misfit between the
measured scattering parameters and the scattering parameters
computed from our model, which depends on the parameters
that describe the unknown dielectric medium. We also present
a simple and accurate technique that makes it possible to reduce
the residual between the measured response and the computa-
tional model of the system to a level of about -30 dB. Com-
parative tests for acrylic glass demonstrates that our proposed
measurement technique yield estimated permittivities that are
in good agreement with more conventional measurement pro-
cedures for cavity resonators. Finally, we demonstrate that it
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is feasible to estimate Debye parameters associated with MCC
pellets and relate the values of the static permittivity and the
relaxation time to the moisture content of the MCC.

2. Measurement equipment

Figure 1 shows the microwave measurement system, where
Fig. 1(b) shows the equipment partially disassembled to dis-
play the interior of the measurement system. It consists of a
metal cavity that features a measurement region at the center,
which is formed by the intersection of six rectangular waveg-
uides. The waveguides are of the type WR229 and we exploit
the measurement system for the frequency band from 2.7 GHz
to 5.1 GHz. (This choice of frequency band yields a computa-
tionally manageable measurement problem with some possibil-
ities to exploit the dispersive characteristics of moist materials
used in pharmaceutical industry.) The rectangular waveguides
are terminated by adapters connected to coaxial cables, where
the coaxial cables are connected to a switch that allows for au-
tomatic measurement of the full 6 × 6 scattering matrix with
the aid of a two-port network analyzer. This arrangement al-
lows for the determination of the material distribution together
with the material parameters and, in this article, we focus on
the characterization of dispersive media.

(a) Measurement system. (b) Measurement region.

Figure 1: Microwave measurement system: (a) the assembled measurement
system; and (b) the system when the lid is removed in order to display the
measurement region at the intersection of six rectangular waveguides.

2.1. Modeling in 2D

Figure 2 shows the part of the measurement system that can
be modeled accurately in two dimensions (2D) given that the
dielectric samples subject to measurements also are 2D in the
same manner, cf. the rectangular waveguides and their inter-
section shown in Fig. 1(b). Here, the computational domain Ω

incorporates a portion of the rectangular waveguides together
with the measurement region, which is enclosed by the dashed
circle in Fig. 2.

Below, we give the main results for the modeling of the 2D
problem in terms of the magnetic field H, which is perpendicu-
lar to the z-axis. This problem can also be treated by means of
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Figure 2: Geometry of the computational model of the microwave measurement
system. Here, (u(p), v(p)) is the local coordinate system used for the Robin
boundary condition at Γ

(p)
2 for port p = 1, ...,Np. The dashed circle indicates

the measurement region.

solving for the z-component of the electric field and, for further
information on such formulations, the reader is referred to the
book by Jin [14].

2.1.1. Boundary value problem
We seek the magnetic field H that satisfies the vector

Helmholtz equation in the domain Ω, i.e.

∇ × (ε−1
c ∇ × H) − ω2µ0H = 0. (1)

Here, the magnetic field H is transverse to the cylinder axis, εc
is the complex permittivity subject to reconstruction, ω is the
angular frequency and µ0 is the vacuum permeability.

We approximate the metal parts ΓPEC of the boundary by
means of a perfect electric conductor (PEC), which is modeled
by the Neumann boundary condition

n̂× (ε−1
c ∇ × H) = 0. (2)

The microwave system is operated in a frequency band that
only allows for propagation of the fundamental TE10 mode in
the rectangular waveguides, which are assumed to be of equal
width w. The permittivity is ε0 in the waveguides and, in par-
ticular, close to the waveguide ports. Thus, inward and outward
propagating waves can be modeled by a Robin boundary con-
dition at the waveguide ports Γ

(p)
2 for p = 1, 2, ...,Np, where

Np = 6 in this article. At waveguide port p, we then have the
boundary condition

n̂× (ε−1
c ∇ × H) + γ n̂× n̂× H = Q(p), (3)

where γ = jωZTE10 and Q(p) = 2 jωZTE10 n̂ × n̂ × H+
p . Here,

ZTE10 = ωµ0/kv is the wave impedance and k2
v = k2

0 − (π/w)2 is
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the wave number for the fundamental TE10 mode, where k2
0 =

ω2ε0µ0. Further, n̂ denotes the unit normal that points away
from Ω. We express the incident field H+

p at port p in terms of
the mode

m(u) = û cos
(
πu
w

)
+ v̂

jπ
kvw

sin
(
πu
w

)
(4)

such that H+
p = H+

0pm(u) exp[− jkvv]. The amplitude H+
0p for

the incident magnetic field can be related to the corresponding
electric field amplitude by E+

0p = ZTE10 H+
0p. Similar expressions

apply to the magnetic field associated with the reflected wave,
where suitable sign-changes also must be addressed.

2.1.2. Numerical solution
The field problem is solved by means of the finite ele-

ment method (FEM) and it is formulated in terms of the weak
form [14]: Seek H ∈ H(curl; Ω) such that

a(w,H) = b(w) (5)

for every test function w ∈ H(curl; Ω). Here, the function space
H(curl; Ω) is given by {w : w ∈ L2(Ω) and ∇ × w ∈ L2(Ω)} and
we have

a(w,H) =

∫
Ω

ε−1
c (∇ × w) · (∇ × H)dΩ (6)

−

∫
Ω

ω2µ0 w · H dΩ

+ γ

Np∑
p = 1

∫
Γ

(p)
2

(n̂× w) · (n̂× H)dΓ,

b(w) =

Np∑
p = 1

bp(w) = −

Np∑
p = 1

∫
Γ

(p)
2

w · Q(p) dΓ. (7)

2.1.3. Scattering parameters
The scattering parameters [15] at waveguide ports Γ

(p)
2 can be

expressed as follows

S r
pq =

V−0p

V+
0q

=
E−0p

E+
0q

=
E+

0p

E+
0q

e−2 jkvv(p)
− ζbp(H), (8)

where ζ = µ0/(2 jkvE+
0pE+

0q

∫
Γ

(p)
2
|n̂× m|2dΓ) and bp(·) is defined

in Eq. (7). Here, the magnetic field H is the computed mag-
netic field for a non-zero incident wave associated with port q,
with amplitude E+

0q for the electric field and V+
0q for the corre-

sponding voltage. Also, the incident wave amplitude is zero for
all the other ports and the amplitude E−0p is associated with the
electric field of the outward propagating wave for port p, where
V−0p is the corresponding voltage amplitude.

2.2. System model
The scattering parameters are measured at the coaxial cable

ports of the adapters and, consequently, the adapters influence
the measured signal. Below, we present a technique to estimate
the scattering matrix Sa of the adapters that connect the rect-
angular waveguides to the coaxial cables. Also, we provide a

formula that transforms the scattering matrix Sc measured at the
coaxial cable ports of the adapters to the corresponding scatter-
ing matrix Sr associated with the rectangular waveguide ports.

We represent the measurement system as illustrated in Fig. 3.
The model involves the scattering matrix Sr at the rectangular
waveguide ports, as shown in Fig. 2, and it represents the rect-
angular waveguides and their intersection that yield the mea-
surement region. Thus, Sr can be directly computed by the 2D
FEM as described above. Next, the measurement equipment
shown in Fig. 1(a) allows for direct measurement of the scat-
tering matrix Sc associated with the coaxial cable ports of the
adapters. (Before the measurement is performed, the network
analyzer is calibrated up to the ports where the coaxial cables
are connected to the adapters, where we use the standard SOLT-
calibration – short, open, load and thru.) In order to relate Sr to
Sc, we need to characterize the adapters that connect each in-
dividual rectangular waveguide to its coaxial cable and we do
that by means of a 2 × 2 scattering matrix

Sa =

 S a
11 S a

12

S a
21 S a

22

 , (9)

where we assume that all adapters are identical. The (general-
ized) scattering parameters [16] in Eq. (9) are defined as S a

pq =√
Zq/Zp(V−0p/V

+
0q), where Zp is the characteristic impedance of

the waveguide connected to port p and the factor
√

Zq/Zp pre-
serves symmetry and makes the scattering matrix unitary for
the lossless case.
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Figure 3: Model of the measurement equipment that is used for the calibration
procedure.

Thus, the scattering matrix Sc at the coaxial cable ports of the
adapters may be expressed in terms of its constituents Sr and
Sa, which is illustrated in Fig. 3. At the rectangular waveguide
ports, we have uro = Sruri, where uro is voltage vector for the
outward propagating waves and uri is the voltage vector for the
inward propagating waves in the rectangular waveguides shown
in Fig. 2. In the corresponding manner, we define uco as the
outward propagating waves and uci as the inward propagating
waves on the coaxial-cable waveguides. According to Eq. (9)
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with {uci,uro} incident on the adapters and {uco,uri} scattered
from the adapters, we have

uro = (uco − S a
11uci)/S a

12

uri = S a
21uci + S a

22uro

= S a
21uci + S a

22(uco − S a
11uci)/S a

12

and these relations allows us to express uro = Sruri in terms of
uco and uci. Thus, we have

uco = [I − S a
22Sr]−1[S a

11I + (S a
12S a

21 − S a
11S a

22)Sr]uci

where I is the identity matrix of the same size as Sr. Conse-
quently, we have the relation uco = Scuci with Sc expressed in
terms of Sr and Sa and this gives the matrix relation

ξ1I + ξ2SrSc + ξ3Sr = Sc. (10)

where we have the coefficients ξ1 = S a
11, ξ2 = S a

22 and ξ3 =

S a
12S a

21 − S a
11S a

22.
Next, we measure Sc = Sc

0 and compute Sr = Sr
0, where

the sub-index naught indicates that the measurement region is
empty in the sense that it only contains air. Then, we determine
the parameters (ξ1, ξ2, ξ3) by solving the over-determined sys-
tem of linear equations (10) in the least-squares sense, which
is repeated on a frequency-by-frequency basis from 2.7 GHz to
5.1 GHz.

For a measured scattering matrix Sc with a sample placed in
the measurement equipment, we can compute the correspond-
ing scattering matrix Sr at the ports of the rectangular waveg-
uides, i.e. after compensation for the adapters, by means of the
relation

Sr =
[
Sc − ξ1I

] [
ξ2Sc + ξ3I

]−1
, (11)

which can be used in order to determine the permittivity of a
sample placed in the measurement region.

3. Reconstruction algorithm

The inverse scattering problem deals with the estimation of
the complex permittivity in the measurement region. In detail,
the reconstruction of the complex permittivity εc = εc(r, ω; p) is
performed by minimizing a goal function g(εc) with respect to
the parameter vector p, that describes the space r and frequency
ω variation of the permittivity in the measurement region. Thus,
we solve the optimization problem

min
p

g(εc(r, ω; p)) (12)

s.t. Im{ωεc(r, ω; p)} < 0. (13)

This is a nonlinear constrained optimization problem and we
solve it by means of the sparse nonlinear solver (SNOPT) im-
plemented in TOMLAB [17].

The goal function g(εc) is expressed as the root-mean-square
(RMS) value of the misfit between the computed Sr(ω; εc) and
the measured Sr(ω) scattering parameters, averaged over the

number of ports Np and the frequency points in the range
(ωL, ωU). Thus, we have

g(εc) = ||Sr(ω; εc) − Sr(ω)||, (14)

where

||S|| =
[

1
N2

p

Np∑
p = 1

Np∑
q = 1

1
ωU − ωL

∫ ωU

ωL

|S pq|
2dω

]1/2

(15)

and the indices p and q correspond to rows and columns, re-
spectively, in the scattering matrix. It should be noticed that
this norm also incorporates the diagonal elements of the scat-
tering matrix and, consequently, our measurement procedure
combines transmission measurements with reflection measure-
ments.

The minimization is performed subject to the constraint
Im{ωεc(r, ω; p)} < 0, which enforces a passive material. Here,
this constraint is applied for all frequencies and spatial locations
that are involved in the estimation of εc.

3.1. Sensitivity analysis
The first-order variation of the goal function g(εc) with re-

spect to a perturbation δεc in the material permittivity εc is com-
puted using the first-order variation of the scattering parameters
δS r

pq.
Let the original permittivity εc be perturbed by δεc. This

yields a perturbation δH in the original magnetic field H and,
thus, a variation in the scattering parameters (8). This corre-
sponds to the first-order variation of the scattering parameters
of δS r

pq = −ζbp(δH) = ζδa(Hadj,Horig) [18] and it yields

δS r
pq = −

µ0

jwkvE+
0p,adjE

+
0q,orig

(16)∫
Ω

δεc

ε2
c

(∇ × Hadj) · (∇ × Horig)dΩ,

where w is the waveguide width, E+
0p,adj represents the ampli-

tude of the excitation for the adjoint field problem Hadj at port
p and E+

0q,orig is the amplitude of the excitation for the original
field problem Horig at port q.

3.2. Material models
Commonly, the formulation of an inverse scattering problem

involves one or more material parameters associated with each
computational cell as described in [19], [20] and [21]. This im-
plies that the number of degrees of freedom in the reconstruc-
tion is related to the number of elements exploited to discretize
the field problem. Consequently, refinements in the discretiza-
tion, in order to improve the accuracy of the field solution,
yields an increase in the number of unknowns in the reconstruc-
tion. Thus, the reconstruction problem tends to become more
ill-conditioned, which prompts for regularization.

Here, we choose an alternative route, where we represent the
permittivity distribution by means of a parameterization. The
parameterization is independent of the computational mesh, so
the number of degrees of freedom in the reconstruction problem
is not influenced by refinements in the computational mesh.
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3.2.1. Spatial representation
The spatial variation of the permittivity is represented by a

set of local basis functions ϕk(r) and, in this article, we use
piecewise constant basis functions. However, it is easy to make
other choices such as piecewise linear or quadratic polynomials,
should it be beneficial for the application at hand. Thus, the
complex permittivity is parameterized as

εc(r, ω; p) = ε0

K∑
k=1

ak(ω; pk)ϕk(r), (17)

where ε0 is the permittivity of vacuum and p is the global pa-
rameter vector. Here, the coefficients ak(ω; pk) describe the
frequency dependence of the permittivity associated with the
k-th basis function. Moreover, these coefficients also depend
on a set of unknown local parameters pk that influence the fre-
quency variation of the permittivity. The global parameter vec-
tor p = [p1,p2, . . . ,pK] is composed by these local parameter
vectors pk.

3.2.2. Frequency response
We consider media that may be described by the Havriliak-

Negami response [22], which can expressed mathematically as

εc(r, ω) = ε0

[
ε∞(r) +

εs(r) − ε∞(r)
[1 + ( jωτ(r))α]β

]
, (18)

where εs is the static permittivity, ε∞ is the optical permittivity
and τ is the relaxation time. Thus, the coefficients ak(ω; pk) in
the parameterization are given by

ak(ω; pk) = pk,2 +
pk,1 − pk,2

[1 + ( jωpk,3)pk,4 ]pk,5
, (19)

where pk,1, pk,2, pk,3, pk,4 and pk,5 correspond to εs, ε∞, τ, α and
β, respectively.

We identify three special cases

• Debye media: α = β = 1

• Cole-Cole media: 0 < α < 1 and β = 1

• Cole-Davidson media: α = 1 and 0 < β < 1

It is easy to prove that the Debye and the Cole-Cole media ful-
fills the constraint (13), where the frequency is assumed to be
non-zero. In addition, we note that the Maxwell-Garnett mix-
ing formula [23] yields an effective permittivity that can be ex-
pressed as a Debye medium if the mixture consists of (i) air and
(ii) inclusion particles that have a permittivity described by a
Debye model.

3.3. Estimation of uncertainties

Given a dielectric sample that is placed in the measurement
region, we attempt to measure, e.g., its size and position by
means of other (conventional) techniques such as calipers and
rulers. These measurement results are described by a parame-
ter vector p̃ and it is used as input for the optimization prob-
lem (12)-(13), which features an underlying field problem with

the dielectric sample described in terms of its (known) size and
position. Thus, uncertainties δp̃ in the a priori measured pa-
rameters p̃ yield uncertainties δp in the estimated permittivity
model described by p. Now, we wish to exploit the sensitivities
presented above to establish a relation between δp̃ and δp. (In
the following, we assume that the uncertainties δp̃ are uncorre-
lated.) The sensitivity with respect to the permittivity is shown
in Eq. (16) and the corresponding results for shape perturba-
tions (or displacements) of the sample can be derived with the
approach presented in Ref. [24].

First, we introduce the vectorized scattering matrix s =

vec(S). The model of the system is linearized around a lin-
earization point {p0, p̃0}, which yields

s = s0 + (∇ps)δp + (∇p̃s)δp̃ + . . . (20)

Here, s0 is the model evaluated at the linearization point
{p0, p̃0}. Similarly, (∇ps) and (∇p̃s) are the sensitivities with
respect to p and p̃, respectively, evaluated at the linearization
point {p0, p̃0}. Also, we express the measurement result as
s̄ = s0 + δs̄, where δs̄ describes the deviation between the mea-
surement and the model evaluated at the linearization point. We
use δs̄ in an attempt to quantify discrepancies that can not be
described by the model as p and p̃ are varied.

At the optimum, we have the necessary condition ∇pg(p) =

0. Now, we let the linearization point {p0, p̃0} coincide with the
optimum and this gives the approximate relation

δp = − [(∇ps)H(∇ps)]−1Re{(∇ps)H(∇p̃s)}δp̃

− [(∇ps)H(∇ps)]−1Re{(∇ps)Hδs̄}, (21)

where higher-order terms in Eq. (20) have been neglected.

4. Results

First, we present the characteristic features of our estimation
of the scattering matrix for the adapters. Then, we estimate the
dielectric constant for a set of acrylic-glass rods, which is com-
pared to a conventional cavity resonance measurement. Next,
we estimate the permittivity of a plastic holder, which is used
in the final measurements applied to a mixture of air and moist
microcrystalline cellulose (MCC) pellets.

4.1. Empty cavity

The first series of measurements is performed for the empty
cavity with only air in the measurement region, which is in-
dicated by the dashed circle in Fig. 2. Given the measured re-
sponse of the empty measurement system, we estimate the scat-
tering parameters in Eq. (9) based on Eq. (10). The scattering
parameters are shown in Fig. 4 in terms of their magnitude.

Next, we assess the agreement between the model and the
measurements based on the residual

r =

[
1

N2
p

Np∑
p = 1

Np∑
q = 1

|S r
pq − S r

pq|
2
]1/2

, (22)
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Figure 4: Estimated magnitude of the scattering parameters for the adapters as
a function of frequency: solid curve – |S a

12 | = |S
a
21 |; dashed curve – |S a

11 |; and
dash-dotted curve – |S a

22 |.

which is formed by comparing the model Sr in Fig. 3 with the
measured response Sr of the system. In Fig. 5, the solid curve
shows the residual as a function of the frequency and we find
that the residual r is less than -30 dB for basically the entire fre-
quency band from 2.7 GHz to 5.1 GHz. This demonstrates that
Sr computed from Eq. (11) is in good agreement with the model
Sr. Next, we perform a sequence of measurements that involves
disassembling and reassembling the measurement equipment,
where each measurement is performed for the empty system.
Thus, this operation corresponds to the procedure necessary for
placing a dielectric sample subject to measurement inside the
measurement system. In Fig. 5, the dashed curve shows the
residual as a function of the frequency for the empty measure-
ment region (after opening and closing the measurement equip-
ment) and we note that the residual is maintained at the same
low level of about -30 dB for the frequency band of interest.
Thus, we conclude that the measurement equipment is stable
in the sense that the measurements for the empty measurement
system are reproducible.

4.2. Dielectric cylinder
For testing purposes, we use a measurement on a dielectric

cylinder of acrylic glass, where the diameter of the cylinder is
10.4 mm and its height equals the height of the measurement
region. The dielectric constant for the acrylic glass is measured
in a circular cylinder cavity [12, 25] and the relative permittivity
is 2.62 ± 0.09 based on the TM010 mode with the resonance
frequency at 918 MHz. (It should be noted that this value is
measured at a substantially lower frequency as compared to the
measurement system presented in this article, which operates
in the frequency band from 2.7 GHz to 5.1 GHz.) In addition,
for acrylic-glass sheets, Afzalzadeh reports in [26] a relative
permittivity of 2.55 ± 0.13 at 8 GHz and Dudeck et al. reports
in [27] a value of 2.62 ± 0.04 at 20 GHz.
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Figure 5: Residual between the computational model Sr and the measured re-
sponse Sr for the empty measurement system: solid curve – residual for the
measurement used to determine Sa; and dashed curve – measurement after dis-
assembling and reassembling of the measurement equipment.

We placed one, three and seven samples of the acrylic-glass
cylinder at the center of the measurement domain as shown
in Fig. 6. Given the measured scattering parameters, the goal
function (14) between the computational model and the mea-
surement is shown in Fig. 7 as a function of the permittivity εr
(= εs = ε∞ in Eq. (18)), where the geometry of the acrylic-glass
samples is considered known in the computational model. We
notice a clear minimum with respect to the permittivity at 2.54
for all three configurations of the acrylic-glass cylinders.

Figure 6: Three configurations with one, three and seven acrylic-glass cylin-
ders.

We estimate that the positioning uncertainty is δx̃c = δỹc =

±1 mm and that the uncertainty in the radius of the dielectric
cylinder is δã = ±0.1 mm. Next, we use the procedure de-
scribed in Sec. 3.3 to estimate the uncertainty in the permittiv-
ity of the sample given estimates on the uncertainties in its size
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Figure 7: Misfit between the computational model and the measurement for
three configurations with acrylic-glass cylinder: solid curve – one acrylic-glass
cylinder; dashed curve – three acrylic-glass cylinders; and dash-dotted curve –
seven acrylic-glass cylinders.

and position, which yields

δεr = sx̃cδx̃c + sỹcδỹc + sãδã + δs̄, (23)

sx̃c = −
Re{(∂s/∂εr)H(∂s/∂x̃c)}

(∂s/∂εr)H(∂s/∂εr)
,

sỹc = −
Re{(∂s/∂εr)H(∂s/∂ỹc)}

(∂s/∂εr)H(∂s/∂εr)
,

sã = −
Re{(∂s/∂εr)H(∂s/∂ã)}

(∂s/∂εr)H(∂s/∂εr)
,

δs̄ = −
Re{(∂s/∂εr)H(δs̄)}
(∂s/∂εr)H(∂s/∂εr)

,

where the coefficients sx̃c , sỹc and sã are evaluated by means
of the FEM and the values are given in Tab. 1. According
to Tab. 1, it is clear that the sensitivity sã associated with the
acrylic-glass cylinder radius is many orders of magnitude larger
than the sensitivities (sx̃c , sỹc ) associated with the position of the
cylinder. This is a consequence of the derivation of Eq. (23),
the symmetry of the experiment and that the sample is placed
at the center of the measurement region. A more careful in-
vestigation based on direct computation with an exhaustive pa-
rameter study (that incorporates the higher-order terms not in-
cluded in Eq. (23)) reveals that a positioning uncertainty of
δx̃c = δỹc = ±1 mm yields a corresponding uncertainty in
the permittivity of δεr = ±0.008. This yields an uncertainty
δεr = ±0.06 for the permittivity, where we also included an
estimate of the unpredictable deviations δs̄ ' 0.03 in the scat-
tering parameters based on the disassembling and reassembling
of the empty measurement cavity shown in Fig. 5. Thus, we
conclude that εr = 2.54 ± 0.06, which corresponds to a mea-
surement accuracy of better than 3% given that the uncertainty
contributions are added in the root-mean-square sense.

Table 1: Sensitivity of the permittivity with respect to different parameters p̃,
where the parameters are the position (x̃c, ỹc) and radius ã for a circular dielec-
tric cylinder.

p̃ sp̃ [m−1] δ p̃ [m] |s p̃δp̃| [-]

x̃c −9 · 10−4 10−3 9 · 10−7

ỹc +6 · 10−7 10−3 6 · 10−10

ã +5 · 10+2 10−4 5 · 10−2

4.2.1. Replicability with respect to noise level
Figure 8 shows the estimated permittivity of the single

acrylic-glass cylinder as a function of the signal-to-noise ra-
tio (SNR). Here, we have added numerically generated white
Gaussian noise to the measurement data and performed 100 dif-
ferent realizations for each SNR to generate the statistics. It is
clear that the reconstruction algorithm produces replicable esti-
mates of the relative permittivity within the measurement accu-
racy for an SNR of 20 dB or greater.

10 15 20 30
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ǫ
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Figure 8: Boxplot showing the statistics of the estimated relative permittivity
for a single acrylic-glass cylinder versus SNR. The median, 25th and 75th per-
centile are indicated by the box and the whiskers extend to cover approximately
99.3% of the data points. The horizontal dashed-dotted curves show the mea-
surement accuracy estimated from the uncertainty in the sample radius, position
and the disassembling and reassembling of the measurement system.

4.3. Microcrystalline cellulose
The results for the acrylic-glass cylinder are encouraging

and, next, we wish to measure the effective permittivity of
densely packed moist pellets of MCC, where air is the medium
between the spherical pellets. In order to keep the pellets in
place, we use the plastic holder shown in Fig. 9(a) together
with a sealing plastic film. First, we incorporate the holder in
our model of the measurement system for the frequency band
of interest.

4.3.1. Characterization of holder
Despite the fact that the holder is a 3D object, we attempt

to model it with our FEM program that is intended for 2D
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(a) Empty holder. (b) Holder with MCC.

Figure 9: Plastic holder with the sealing plastic film: (a) empty holder used for
calibration; and (b) holder with MCC pellets.

problems, which would preserve the computational advantages
that we experienced for the acrylic-glass cylinders. The plastic
holder is placed in the measurement region without the plastic
film as shown in Fig. 9(a). The height of the holder’s wall is
equal to the height of the measurement cavity. In the compu-
tational model for 2D problems, the annular region (19.8 mm
< r < 20.7 mm in polar coordinates) is occupied by the wall
of the holder and it is assigned the permittivity ε0εh and the
surrounding air has the permittivity ε0. For the circular re-
gion (r < 19.8 mm in polar coordinates) that resides inside
the holder’s wall, we have the plastic bottom part of the holder
in combination with the air above the bottom. For a vertical
electric field, the effective permittivity ε0εeff obeys the relation
<Dz>= ε0εeff <Ez> , where we have the average displacement
field <Dz> and the average electric field <Ez> . This relation
yields the effective permittivity

εeff =
d0 + dh

d0 + dh/εh
, (24)

where d0 = 28 mm is the height occupied by the air and dh =

1 mm is the thickness of the bottom part of the plastic holder.
Given the physical dimensions and position of the holder (mea-
sured by calipers and rulers) and the measured scattering pa-
rameters, our gradient-based optimization method yields εh =

2.3 ± 0.3. Here, we use the procedure described in Sec. 3.3 to
estimate the uncertainty in the permittivity.

The main purpose of the holder is to act as a container for the
MCC pellets. However, we also would like to perform the mea-
surements on the MCC pellets for different amounts of moisture
content and, consequently, it is desirable that the holder also
maintains the moisture content of the pellets during the mea-
surement. In an attempt to achieve this objective, we seal the
opening of the holder with a plastic film. The plastic film is
indeed very thin and, as a consequence of its very low mass, it
does not influence the scattering parameters in any substantial
manner.

Given the estimated permittivity for the holder, the solid
curve in Fig. 10 shows the residual as a function of frequency,

which is again about -30 dB for the frequency band of interest.
We conclude that the computational model with the (homoge-
nized) holder together with the thin plastic film agrees well with
the measured response. For comparative purposes, the dashed
curve in Fig. 10 shows the residual of the measurement with
the holder as compared to the computational model without
the holder being present, i.e. the measurement region is empty.
Clearly, the incorporation of the holder in the 2D FEM is suc-
cessful and the residual is maintained at about as low levels as
previously demonstrated in Fig. 5.
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Figure 10: Residual for plastic holder with the sealing plastic film: solid curve –
FEM model that incorporates the holder with the permittivity ε0εh; and dashed
curve – FEM model without the holder.

4.3.2. Microcrystalline cellulose
Finally, we measure the effective permittivity of densely

packed MCC pellets with different amounts of moisture con-
tent. The pellets are moisturized and stored in sealed bags for
about one week in order to allow the moisture to distribute uni-
formly among and fully diffuse into the pellets. Four sample
sets of MCC pellets with different levels of moisture content
are prepared. The moisture content is measured for the differ-
ent sample sets by means of a loss-on-drying instrument and
the results are shown in Tab. 2.

Table 2: Sample set labels for MCC pellets and measured value for the moisture
content, where the values are given in weight percent.

Set A B C D

Moisture [% (w/w)] 9.2 12.2 16.8 22.8

Next, we place 31±0.8 g of the pellets from a particular sam-
ple set in the plastic holder and the plastic film is used to seal
the holder. The holder with the MCC pellets is placed at the
center of the measurement region and the scattering parame-
ters are measured from 2.7 GHz to 5.1 GHz. The sample and

8



the measurement equipment are in thermal equilibrium with the
room, where the temperature is measured to be 23◦C.

Table 3 shows the estimated parameters εs, ε∞ and τ that de-
scribe a Debye model of the effective permittivity for the mix-
ture of moist pellets and air. Here, we use the procedure de-
scribed in Sec. 3.3 to estimate the uncertainty in the Debye pa-
rameters given uncertainties in the position, size and permittiv-
ity of the holder. The permittivity εs in the static limit increases
with moisture content, whereas the relaxation time τ decreases.
Also, it is noticed that the parameter ε∞ does not depend mono-
tonically on the moisture content. It is interesting to notice that
the frequency ω0 = 1/τ increases as the moisture content in-
creases. This implies that the effective permittivity tends to-
wards εs in the frequency band exploited for the measurement
and, consequently, the parameters ε∞ becomes difficult to de-
termine, which is reflected by the uncertainties in Tab. 3.

Table 3: Debye parameters for MCC with different moisture content.

Set εs [-] ε∞ [-] τ [ps]

A 3.62 ± 0.02 2.63 ± 0.03 32.0 ± 0.9
B 4.27 ± 0.04 2.85 ± 0.05 24.2 ± 0.8
C 4.88 ± 0.05 2.79 ± 0.12 15.5 ± 0.8
D 5.49 ± 0.07 2.36 ± 0.26 10.3 ± 0.8

It should be emphasized that the measurement is performed
in the frequency band from 2.7 GHz to 5.1 GHz and, conse-
quently, the permittivity outside this frequency band may de-
viate substantially from extrapolated values derived from the
estimated parameters in Tab. 3. Gradinarsky et al. [3] used
an open-ended coaxial probe for local in situ measurements of
moisturized MCC pellets in the frequency band from 1 GHz to
19 GHz. Their study indicates that the dispersion characteris-
tics of MCC does not follow a Debye model for such a large fre-
quency band and, therefore, it may be tempting to exploit more
elaborate models such as the Havriliak-Negami response (18).
Thus, we attempted to fit more elaborate the Cole-Cole and
Cole-Davidson models to the measured data. The additional
degree of freedom, i.e. α for the Cole-Cole model and β for the
Cole-Davidson model, reduces the residual and, unfortunately,
it also introduces very large uncertainties in the values for ε∞
and τ, where the exponent β is also very uncertain for the Cole-
Davidson model.

We conclude that for the estimation of moisture content of
MCC with the measurement equipment (and frequency band
2.7-5.1 GHz) used in this article, it is sufficient to use a (basic)
Debye model where both εs and τ depend monotonically on the
moisture content in a reliable manner. The optical response ε∞
may be used for moisture contents below 15% (w/w).

Next, we present the real and imaginary part of the effec-
tive permittivity as a function of frequency: (i) sample set A is
shown in Fig. 11; (ii) sample set B is shown in Fig. 12; (ii) sam-
ple set C is shown in Fig. 13; and (iv) sample set D is shown
in Fig. 14. In Figs. 11-14, the estimated permittivity is rep-
resented by four different parameterizations: (i) solid curve –

piecewise constant permittivity; (ii) dashed curve – Cole-Cole
model; (iii) dash-dotted curve – Cole-Davidson model; and (iv)
dotted curve – Debye model. The piecewise-constant permit-
tivity is described as εc = ε0(ε′ − jε′′) with separate and in-
dependent values for ε′ and ε′′ in each frequency subinterval
fi < f < fi+1. Here, fi = (i − 1)∆ f with ∆ f = ( fU − fL)/N and
i = 1, . . . ,N, where the number of subintervals is N = 16. In
each of the Figs. 11-14, the upper and lower piecewise-constant
solid curves indicate the uncertainty interval around the esti-
mated piecewise-constant values shown by the centered solid
curve. (Only the simple constraints ε′ ≥ 1 and ε′′ ≥ 0 have
been used for the estimation of the piecewise-constant permit-
tivity.)

It is observed that the Debye, Cole-Cole and Cole-Davidson
models reside mainly inside the region described by the the
piecewise constant permittivity and its upper and lower uncer-
tainties. Also, we notice that the uncertainty interval for the
piecewise constant permittivity increases in absolute numbers
as the moisture content increases.

5. Discussion

The measurement technique presented in this article is in-
tended for the monitoring of the fluidized beds that are featured
in process equipment used in pharmaceutical industry. As a
first step towards this goal, we have demonstrated that it is fea-
sible to measure the effective dielectric constant of moisturized
MCC pellets. Moreover, the dielectric constant can be related
to the moisture content, which is an underlying parameter of
interest from the application view-point. For future work, our
measurement system is equipped with six waveguide ports that
may provide useful information on the spatial distribution of the
dielectric material in the measurement region.

The final industrial application requires that the electromag-
netic field problem is treated in 3D and such a formulation re-
quires the usage of vector finite elements to model the electro-
magnetic field [14]. Thus, the finite element model presented in
Sec. 2 and the corresponding sensitivities described in Sec. 3.1
can be used with minor modifications for the corresponding 3D
situation.

For comparative purposes, we have implemented both a con-
ventional node-based FEM for the scalar Helmholtz equation
expressed in terms Ez and a FEM with curl-conforming ele-
ments for the vector Helmholtz equation expressed in terms of
H = x̂Hx + ŷHy. The conventional formulation for Ez exploits
higher-order elements and, consequently, it can achieve highly
accurate scattering parameters and sensitivities. Our formula-
tion for the magnetic field is implemented for linear elements,
which makes it a second-order accurate method, and we con-
clude that it compares well with the higher-order formulation
for Ez. In Sec. 4, we have exploited the higher-order node-
based formulation for Ez and, in conclusion, we find that it is
feasible to achieve similar performance with a 3D formulation
based on vector elements although the computational cost and
the programming efforts are substantially higher.
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(a) Real part of the permittivity.
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(b) Imaginary part of the permittivity.

Figure 11: MCC from sample set A: solid curve – piecewise constant permit-
tivity; dashed curve – Cole-Cole model; dash-dotted curve – Cole-Davidson
model; and dotted curve – Debye model.

6. Conclusions

We present a prototype microwave measurement system in-
tended for the estimation of dielectric properties of moistur-
ized microcrystalline cellulose (MCC) pellets, where we also
demonstrate that the estimated dielectric properties depend on
the moisture content of the MCC pellets. The measurement pro-
cedure is non-intrusive in the sense that the microwave sensors
do not need to be in physical contact with the sample, which is
a major advantage in most situations. Our measurement system
operates in the frequency band from 2.7 GHz to 5.1 GHz.

The measurement system is modeled by the finite element
method in two-dimensions and the computational model com-
pares well with experimental results for well-established test
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(a) Real part of the permittivity.
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(b) Imaginary part of the permittivity.

Figure 12: MCC from sample set B: solid curve – piecewise constant permit-
tivity; dashed curve – Cole-Cole model; dash-dotted curve – Cole-Davidson
model; and dotted curve – Debye model.

cases. The permittivity is estimated by means of minimizing
the deviation between (i) the measured scattering parameters
and (ii) the computed scattering parameters, where the compu-
tational model features the unknown permittivity as an input pa-
rameter. We use gradient-based optimization to determine the
unknown permittivity, where the sensitivities are formulated in
terms of the original field solution and an adjoint field solution.
The sensitivities are also used to estimate uncertainties in the
permittivity based on uncertainties in, e.g., the size of the di-
electric sample under test.

We estimate the effective complex permittivity described by
a Debye model for densely packed MCC pellets that feature
different levels of moisture content with a few samples in the
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(a) Real part of the permittivity.
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(b) Imaginary part of the permittivity.

Figure 13: MCC from sample set C: solid curve – piecewise constant permit-
tivity; dashed curve – Cole-Cole model; dash-dotted curve – Cole-Davidson
model; and dotted curve – Debye model.

interval from 9% to 23% (w/w). It is found that the parameters
in the Debye model can be estimated to an accuracy of 3% for
the lowest moisture content and that the measurement uncer-
tainties increase with moisture content such that the results for
the highest moisture content yields an accuracy of about 13%. It
is found that the static permittivity and the relaxation time asso-
ciated with the Debye model vary monotonically with moisture
content, which makes it feasible to use these parameters for the
estimation of moisture content of the MCC.
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