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Transformation optics has revolutionized our approach to material design in several scientific disciplines
by determining the material properties that implement the desired effects of a coordinate transformation.
Unfortunately, the performance of several coordinate-based devices, such as beam splitters and invisibility
cloaks, suffers from the necessary implementation of singularities with extreme material parameters. Here, we
make use of transformation optics to eliminate these singularities in an isotropic way for the improvement of
coordinate-based metamaterial waveguides. In particular, singularities that lead to vanishing material properties
are softened with a global rescaling of the coordinates, while singular terms that lead to infinite material
properties are strategically replaced by well-behaved curve factors. Detailed full-wave simulations confirm that
the resulting waveguide devices are as efficient as their singular counterparts despite the fact that they consist
of materials with much more moderate optical properties.
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I. INTRODUCTION

In the past decade, coordinate transformations [1–5] have
been a driving force for the design of various extraordinary
metamaterial devices [6–11]. These devices are engineered
at the subwavelength level to materialize the desired effects
of a coordinate transformation on simple material systems,
reproducing the transformed physical equations with tailored
macroscopic properties. In particular, the reproduction of
the transformed Maxwell equations with permittivity and
permeability distributions following from the framework of
transformation optics [3,4,12] has resulted in an impressive
control of free-space light propagation [13,14], light emission
[15–17], diffuse light propagation [18], nonreciprocal devices
[19], nonlocal electromagnetic effects [20,21], and temporal
phenomena [22–26].

Unfortunately, several interesting coordinate-based designs
of beam splitters [13,14,27] and invisibility cloaks [3,4,28]
rely on singularities to achieve their functionality. These sin-
gularities result in extremely high or low material properties,
which must be implemented with resonant metamaterials
that are often lossy and have low bandwidth [11,29–31].
Several research groups have tried to reduce these undesired
effects by developing low-loss dielectric, active, and/or lay-
ered metamaterials [11,30–36] and by developing optimized
quasiconformal coordinate transformations [14,37–39] or
polarization-specific transformations [27,40,41]. Excitingly,
transformation optics itself has also provided a valuable
contribution [42–44]. By making use of an additional coor-
dinate transformation, harmful material singularities may be
transmuted into harmless geometrical singularities that can
be implemented with anisotropic metamaterials with finite
material parameters. This technique is very successful as long
as the initial refractive index profile behaves as a power law
rp with p > −1 close to the singularity and has been used to
improve the implementation of an Eaton lens [45].

In this paper, we make use of transformation optics to
enhance the performance of metamaterial slab waveguides
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that are based on coordinate transformation with singularities,
avoiding waveguide designs with vanishing thickness or
infinite anisotropies in the core. In recent years, the concepts
of transformation optics have been used to manipulate light
that is confined to metal-dielectric interfaces [41,46–49],
graphene-dielectric interfaces [50,51], and dielectric waveg-
uides [27,52,53]. In particular, the efficient reproduction
of transformed graphene-dielectric interfaces and dielectric
waveguides requires an alternative materialization of the
coordinate transformation, based on coordinate-dependent
surface conductivities of graphene sheets [50] or thickness
variations of waveguide cores [27].

Unfortunately, the aforementioned transmutation of singu-
larities with anisotropic materials [42] cannot be used for
the improvement of metamaterial waveguides, as it would
invalidate the coordinate-based thickness variation [27] (see
Supplemental Material, Sec. SII [54]). Instead, our main
strategy is to eliminate singular contributions to the coordinate
transformation by strategically replacing them with well-
behaved curve factors. We will do so for the important case
of Schwarz-Christoffel transformations [55–57] that map a
straight line onto a polygon with singular power maps at the
vertices (Fig. 2). The replacement of these singular power
maps with curve factors works very well for singularities
that lead to infinite anisotropies inside the waveguide core.
However, this approach does not always prevent the thickness
of the waveguide from vanishing. Therefore, after a brief
introduction to the design of Schwarz-Christoffel waveguides
(Sec. II), this paper deals with singularities in a binary way.
Singularities that lead to vanishing waveguide thickness will
be softened by appropriate global rescalings (Sec. III). We
will refer to these singularities as singularities of the first kind.
Singularities that lead to infinite anisotropies of the core will
be eliminated with curve factors (Sec. IV). We refer to these
singularities as singularities of the second kind. In this way,
the detrimental effects of singularities are alleviated without
affecting the degree of isotropy of the design. The combination
of both techniques will lead to designs with much more
moderate material properties and allows guiding the waves
along boundaries of any shape.

2469-9950/2017/95(15)/155412(8) 155412-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.155412


VIAENE, GINIS, DANCKAERT, AND TASSIN PHYSICAL REVIEW B 95, 155412 (2017)

(a)

(d)

ε
out

ε
out

ε
core

2a

ε

β
~

(b) (c)

(e) (f)

out

core, ┴

β

ε outεcore, ||
~ε

ε
~

2 a~

x

y
z

rr-w

A
ni

so
tro

py

1.98

1

(x, y)

a~

(u, v)

kcore kcore
koutkout kout

~ kout

~

δE γ(x,y)

FIG. 1. Materialization of coordinate-transformed guided waves with a uniaxial waveguide core (ε̃||,ε̃⊥) and a thickness variation ã based
on Ref. [27]. (a)–(c) A two-dimensional conformal transformation transforms (a) straight light flows (orange lines) along a trivial dielectric
slab waveguide into (c) curved ones by inducing a geometry component γ (x,y) on the waveguide plane. (d) The initial guided mode along
a slab waveguide with thickness 2a and permittivities εcore (εout) in the core (outer regions) is fully characterized by an in-plane propagation
constant β (green line) parallel to the waveguide plane at a particular angular frequency ω. Indeed, it determines the characteristic variations
of the transverse profile, i.e., the sinusoidal variations inside the core [cos(kcorez)] correspond to the intersection of the green line with the blue
ellipse, while the exponentially decaying fields outside of the core [exp(−|koutz|)] correspond to the intersection of the green line with the red
hyperbola. (e) The coordinate transformation stretches the in-plane propagation constant β̃ along the waveguide plane, which is implemented
by a uniaxial material inside the core (ε̃||,ε̃⊥). To ensure that boundary conditions are compatible with β̃, the thickness ã has to change according
to Eq. (1). (f) A visualization of the beam bender design in Ref. [27] shows that the anisotropy of the core is modest and highest at the inner
radius of the bend (surface coloring on the waveguide symmetry plane). The thickness variation ã is visualized by the gray floating surface,
representing the upper interface of the waveguide. Subsets of this figure have been reproduced from Ref. [27].

II. SINGULARITIES IN METAMATERIAL WAVEGUIDES

In recent work [27], we have reproduced desired coordinate-
transformed flows of guided modes with specific meta-
material waveguides based on conformal transformations
[Figs. 1(a)–1(c)]. Conformal transformations have the par-
ticular property that they preserve the angles between any
two coordinate lines before and after the transformation
[14,56–58]. As a result, the effect of a conformal coordinate
transformation is represented by a single scalar geometry
component γ (x,y), which can be interpreted as a local
stretching of the propagation constant along the waveguide
β → β̃ = γ (x,y)β [Figs. 1(d) and 1(e)].

To implement the coordinate stretching, we have emulated
the effects of γ (x,y) on the characteristic equations of a
guided mode: The Helmholtz wave equation—describing
the propagation along the waveguide—and the dispersion
relation—imposing continuous fields along the interfaces z =
±ã of the waveguide. In Fig. 1(d), we consider an incident
guided mode with angular frequency ω and a propagation
constant β parallel to the waveguide, whose transverse profile
varies sinusoidally inside the core [cos(kcorez)] and decays
exponentially outside of the core [exp(−|koutz|)]. The use
of uniaxial metamaterials inside that waveguide core, with
principal components ε̃|| = εcore, ε̃⊥ = γ (x,y)εcore parallel
and perpendicular to the waveguide plane, reproduces the
transformed Helmholtz wave equation exactly. However, the
initial thickness a is now incompatible with the new extinction

coefficient of the fields outside the core, k̃2
out = γ (x,y)β2 −

εout
ω2

c2 . A thickness variation ã(x,y) restores the continuity of
the electromagnetic fields,

ã(x,y) = 1

kcore
atan

⎛
⎝εcore

εout

√
γ (x,y)β2 − εout

ω2

c2

kcore

⎞
⎠. (1)

In other words, the thickness variation ensures that the
exponential tails of the mode are allowed to move at the same
phase velocity as the fields inside the waveguide. Note that
it is only valid in the adiabatic approximation, i.e., when the
electromagnetic field resembles a local plane wave at each
point (x,y) and when the interfaces are approximately parallel
[Fig. 1(e)] [27]. It is also important to point out (see also
Supplemental Material, Sec. SII [54]) that a unique thickness
variation does not exist when the in-plane components of the
permittivity tensor are anisotropic. For this reason, optical
singularities cannot be transmuted as proposed in Ref. [42].

The beam bender design in Fig. 1(f) does not suffer from
the presence of singularities and has core anisotropies ε̃⊥

ε̃||
=

γ (x,y) and waveguide thicknesses that are nonzero and well
behaved. On the other hand, the efficient implementation of
Schwarz-Christoffel waveguides will provide quite a challenge
due to the appearance of isolated singularities at the vertex
of a polygon [56]. As shown in Fig. 2, Schwarz-Christoffel
transformations map polygonal boundaries in the z plane
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FIG. 2. A Schwarz-Christoffel transformation generates (a) vertices or (b) polygonal boundaries with a series of power maps between the
complex w and z plane. This is achieved by making use of local power maps with exponents 1 − α/π (right-hand side).

onto straight boundaries in the w plane by making use of a
sequence of local power maps (Fig. 2). Each local power map
generates a particular corner of the boundary in the z plane. For

example, a power map z(w) = (w − uP )
α′
π in the vicinity of a

prevertex uP generates a sector with outer angle α = π − α′.
As a result, a particular polygonal boundary with outer angles
αi at N isolated prevertices ui is generated by the following
transformation rule:

dz = C1	
N
i=1

1

(w − ui)
αi
π

dw. (2)

The integral z(w) = ∫ w

w0

dz
dw

dw + C2 is determined by the
prevertex locations ui for i from 1 to N and the integration
constants C1 and C2 that lead to a desired shape and orientation
of the boundary with respect to an arbitrary reference point
w0 (see Supplemental Material, Sec. SI [54]). It is clear that
the geometry component obtains singular values at locations
corresponding to the prevertices ui ,

γ (x[u,v],y[u,v]) =
∣∣∣∣∣∣

1

C1	
N
i=1

1

(w−ui )
αi
π

∣∣∣∣∣∣
2

. (3)

These singularities lead either to vanishing thickness of the
waveguide, i.e., singularities of the first kind with γ (x,y) → 0,
or to singularities of the second kind associated to infinitely
high anisotropy, ε̃⊥

ε̃||
= γ (x,y) → ∞.

III. A SINGLE POWER MAP

We consider how a single power map w = R z2 with a
singularity of the first kind at the origin of the z plane splits a
guided wave [Fig. 3(a)],

u = R(x2 − y2)

v = R2xy, (4)

in a way that depends on a normalization parameter R. The
thickness of the waveguide [Eq. (1)] vanishes when the in-
plane geometry,

γ (x,y) = 4R2(x2 + y2), (5)

reaches the critical value γc = εoutω
2/β2c2 on a circle sur-

rounding the singularity. Close to and within the circle, the
transformation must be implemented in an approximate way.
For example, one might truncate the transformation inside
a disk of larger radius rL = √

γL/2R so that the waveguide
thickness obtains a small value amin and the anisotropy of the
core γL is finite. As long as the truncated region lies sufficiently
close to the singularity, it is not expected to have a profound
impact on the performance of the device. Indeed, close to the
singularity, the local wavelength becomes very large and the
wave becomes insensitive to small perturbations. Note that
a truncation would not resolve the issue for a singularity of
the second kind for which the local wavelength becomes very
small and the waves would be very sensitive to implementation
errors.

The black circles in Fig. 3(a) represent several truncation
disks, each corresponding to a particular combination of a min-
imal thickness amin ∈ {1.3 · · · 6.7}10−2λ0 and a normalization
parameter R ∈ {1,2,3,4} for guided waves with an incident
free-space wavelength of 1.5 μm and an initial waveguide
thickness of 2a = 0.4 μm. As shown in Fig. 3(a), the radii of
the truncation disks barely depend on amin—which is deeply
subwavelength—and vary strongly with R. Therefore, it is
expected that the performance of the waveguide splitter will
mainly improve with R. As R increases, the truncations disks
become smaller, so the transformation is more accurately
represented close to the singularity.

This hypothesis is confirmed by full-wave numerical sim-
ulations of waveguides that implement truncated power maps
for the aforementioned combinations of R and amin. From these
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FIG. 3. The effects of a singularity of the first kind on the performance of a metamaterial waveguide, based on a power map w = Rz2, for
a guided mode corresponding to a free-space wavelength of 1.5 μm and initial waveguide thickness of 2a = 0.4 μm. (a) Light-ray trajectories,
obtained from transformation optics, split when approaching the singularity. Truncations impose constant minimal anisotropies within the black
circles corresponding to different scaling parameters R and minimal thicknesses amin. (b) The efficiency, defined in terms of the power Psplit

that is split and the total power Ptot that comes out of the waveguide, largely depends on the scaling parameter R, while it is almost insensitive
to the minimal thickness. (c) When R is equal to one, the norm of the magnetic field coming from the left does not change direction as the
embedded transformation in the white circle is almost entirely truncated (disk within the gray-dashed circle). (d) With a large scaling (R = 4),
the magnetic norm splits efficiently because the transformation is implemented in regions closer to the singularity. It is only truncated inside
the gray-dashed circle with a reduced radius. The power flow, which is proportional to the square of the magnetic norm, is highlighted by the
white arrows.

simulations, we may evaluate the performance of the device in
terms of its splitting efficiency Psplit/Pout, i.e., the ratio between
the power that is split Psplit, both upwards and downwards,
and the total power Pout that emerges from the waveguide
[Fig. 3(b)]. Qualitatively, the magnetic norm in Figs. 3(c) and
3(d) confirms that high normalization parameters R reduce the
adverse effects due to the singularity. For small normalization
parameters (R = 1 with splitting efficiency of 14%), the
guided waves barely split, while for high renormalization
parameters (R = 4 with splitting efficiency of 48%), the
guided waves split efficiently. Figure 3(b) shows that the
splitting efficiency increases considerably with R and stays
approximately constant with the truncation thickness amin,
thereby confirming the previous observations. Therefore, the
detrimental effect of singularities of the first kind is reduced by
inserting a sufficiently high normalization parameter R inside
the transformation.

We want to comment further on two observations. First, we
note that the performance of the waveguide saturates as R is

increased to about 50% (see Supplemental Material, Sec. SIIIA
[54]). This performance is far from its optimal value of 100%,
being degraded both by the limited validity of the thickness
variation in small simulation domains (reducing the efficiency
by 35%; Fig. S2(a) [54]) and by the truncation itself (reducing
the efficiency by 15%; Fig. S2(b) [54]). Realistic coordinate-
based designs inside larger simulation domains do not strain
the validity of the thickness variation because the local plane-
wave approximation is valid there (see Sec. IV). Effects due to
truncations reduce as the normalization parameter is increased.

As a second observation, we are aware that larger values
for R also increase reflections at the input of the device.
Indeed, for high values of R, the geometry no longer connects
continuously to the untransformed region γ = 1, so that waves
refract [13]. This explains why the energy flows in Figs. 3(c)
and 3(d) deviate slightly from the analytical ray trajectories
in Fig. 3(a). Here, we focus on the actual performance close
to the singularities inside the device. Problems related to the
coupling of light into the waveguide may be addressed with
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appropriate couplers, e.g., adiabatic couplers that continuously
increase the anisotropy of the core, which may also be designed
with our technique [27].

We now generalize the above results for power maps
w = R zp with an exponent p �= 2. Close to a singularity,
an arbitrary power map generates a radially dependent geom-
etry component γ (x,y) = p2R2(x2 + y2)p−1. This geometry
component leads to singularities of the first kind when p >

1. As shown before, the effects due to these singularities
may be softened by an appropriate normalization. From the

dependence of the critical radius rc ≈ ( γc

p2R2 )
1

2(p−1) on the
normalization parameter R, we infer that the truncation will
have more impact for p values smaller than 3

2 . In the following
section, we will consider the effects of singularities of the
second kind (p < 1), which induce infinite anisotropies.

IV. A SCHWARZ-CHRISTOFFEL BEAM SPLITTER

We now consider a Schwarz-Christoffel design of a beam
splitter based on a sequence of power maps to demonstrate
how we deal with singularities of the second kind (Fig. 4).
The upper half of the w plane is mapped onto a 6-polygon
closing at infinity, with symmetric prevertices a = ±1/2 and
b = ±1 and two outer prevertices at infinity [Fig. 4(a)]. For
an arbitrary splitting angle α, the Schwarz-Christoffel beam
splitter is described by the following coordinate transformation
(see Supplemental Material, Sec. SI [54]):

R z(w) = C1

∫ w

w0

(w2 − a2)α/π

(w2 − b2)α/π
dw + C2. (6)

Note that we have again inserted a normalization parameter
R to deal with singularities of the first kind. We further chose
the reference point w0 to correspond to the initial prevertex
−b, whose physical position is now exactly determined in the
simulation domain by the integration constant C2.

The beam-splitter design contains both kinds of singular-
ities. Close to the prevertex −b, the transformation locally
resembles a power map with p = 1 + α

π
, leading to a vanishing

waveguide thickness (first kind), while close to the prevertex
−a, the transformation resembles a power map with p = 1 −
α
π

, leading to infinite anisotropies (second kind). The resulting
geometry (surface coloring) and thickness variation (floating
surface) in Fig. 4(b) clearly contain singular signatures at the
vertices −b and −a, varying rapidly close to and reaching
extremal values at the vertices.

We again use full-wave finite-element simulations to
obtain the splitting efficiency, now for the Scharz-Christoffel
beam splitter with an anisotropic core ε⊥/ε|| = γ (x,y) and
a thickness variation as in Eq. (1). These are determined
by the integration of Eq. (6) (see Supplemental Material,
Sec. SI [54]). Figure 4(d) shows the case of a beam splitter
with a 30-degree splitting angle, having a very high efficiency
(96%). When the splitting angle increases from 30 to 60
degrees as in Fig. 4(c), however, the efficiency decreases from
96% to 86% (Figs. S3(a)–S3(c) [54]). Indeed, the singularity
has more impact for higher angles α because the local power
map deviates more strongly from 1.

The previous simulations have already been optimized in
terms of the normalization parameter R, so that singularities
of the first kind could be truncated. For more information
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FIG. 4. A beam-splitter design based on a Schwarz-Christoffel transformation: (a) Sketch of the polygonal boundary corresponding to a
beam splitter and/or interferometer. The coordinate transformation in the lower part of the beam splitter is obtained through symmetry. (b) The
extremal values of the in-plane components of the geometry (surface coloring on the waveguide’s symmetry plane) and the symmetric thickness
variation (floating surface) clearly allow identification of the locations of the vertices corresponding to −b and −a. (c) Identical separations
may be obtained with different splitting angles α = 30◦ (purple), α = 45◦ (red), and α = 60◦ (blue) and splitting lengths. (d) The magnetic
norm (surface coloring) and the power flow (white lines) behave as expected, splitting after the initial vertex with an efficiency Psplit/Ptot of
96% for a splitting angle of 30 degrees.
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on the performance of the splitter in terms of R, we refer
to Sec. SIIIA of the Supplemental Material [54]. Here, we
want to emphasize that normalizations cannot simultaneously
soften singularities of the first and second kind. Indeed, the
normalization parameters R have to be larger than one to
reduce the truncation disk of singularities of the first kind,
whereas they have to be smaller than one to decrease the
anisotropy at singularities of the second kind. Moreover, if
the singularities at −a are truncated, the guided waves do
not feel the polygon vertex at −a and go straight through
(Figs. S3(e) and S3(f) [54]). Intuitively, the local wavelength
at the singularity becomes very small so minor deviations from
the initial coordinate-based design lead to severe deviations
in the ray trajectories. Luckily, singularities of the second
kind can be eliminated by inserting curve factors into the
transformation.

V. ELIMINATION OF SINGULARITIES
WITH CURVE FACTORS

Instead of introducing boundaries with sharp corners, as
in Fig. 2, desired angular changes of the light trajectory can
be induced by making use of the complex phase of analytic
functions C(w) on the upper w plane,

C(w) = w2 − 1
2 (a2 + b2) +

√
(w2 − a2)(w2 − b2). (7)

Figure 5(c) confirms that the phase of the curve factor C(w)
varies from 0 to π along the edge [−b, − a]. Therefore,

a power map α/π of the curve factor leads to an angular
deviation α which is identical to that due to the singularity. We
therefore modify Eq. (6) as follows:

z(w) =
∫ w

w0

C(w)α/π

(w2 − b2)α/π
dw + C2. (8)

The curve factor does not induce any singularities on the
real axis (it has a constant magnitude), uniquely defines the
boundary (injective on R), and acts locally (the transformation
approaches one at infinity). An extensive list of curve factors
C(w) can be found in Refs. [55,57] and were originally
developed to fit transformed coordinate lines to any boundary.
Note that in order to implement the transformation in a
correct way, the Rieman surfaces of the curve factor should be
accounted for as explained in Sec. SIC of the Supplemental
Material [54].

Because the singularities at the prevertex −a have been
replaced by a smooth curve factor, the resulting anisotropy
and thickness variation of the core are much more modest
[Fig. 5(b)]. In particular, the anisotropy is half the value of the
singular Schwarz-Christoffel design. The current design with
curve factors imposes comparable splitting efficiencies of 96%
for a splitting angle of 30◦ [Fig. 5(d)] and these efficiencies are
maintained for higher angles (Fig. S4 [54]). The price to pay is
an increase in splitting length as the curve factor continuously
redirects guided waves instead of deflecting them at a single
point.
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FIG. 5. A beam-splitter design with curve factors requires much more moderate optical parameters, i.e., the anisotropy is reduced by a
factor of two. (a) The transformation generates a continuous geometry by making use of two Riemann surfaces, separated by the yellow
line, corresponding to different signs of the square root in the curve factor. (b) The geometry (surface coloring on symmetry plane) and
thickness variation of the upper interface (gray floating surface) occur in a more gradual and less extreme way than those of conventional
Schwarz-Christoffel designs [Fig. 4], at the expense of a longer splitting length. (c) The curve factor induces a phase change from 0 to π on the
edge [−b, − a] at a constant magnitude. (d) Full-wave simulations of the magnetic norm (surface coloring) and the power flow (white lines)
demonstrate that the beam splitter splits with an efficiency of 96.4%, comparable to the efficiency of the conventional Schwarz-Christoffel
transformation.
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VI. CONCLUSION

In this paper, we have numerically investigated how meta-
material waveguides based on Schwarz-Christoffel coordinate
transformations perform in the presence of singularities that
locally correspond to power laws w = Rzp for p > 1 and
p < 1. Our strategy for the elimination of optical singularities
complements the approach in Ref. [42]. We soften or eliminate
singularities while preserving the degree of isotropy of the
initial design, whereas Ref. [42] transmutes singularities by
adding anisotropy to the design.

Singularities of the first kind with p > 1 are successfully
softened by a normalization parameter R. For sufficiently
high values of the normalization parameter, the coordinate
transformation is implemented in an accurate way close
to the singularity. This accurate implementation occurs at
the expense of a mismatch between the transformed and
untransformed waveguide at the input interface. Reflections
due to this mismatch may be avoided by making use of suitable
transformation-optical couplers, which can be designed with
the technique in Ref. [27], or by introducing a spatially varying
normalization parameter together with an appropriate bound-
ary condition [43]. Quantitatively, we have demonstrated that
the use of a sufficiently large normalization parameter may
increase the efficiency by as much as 30% [Fig. 4(b)]. The
actual improvement depends on the power of the local power
map and is, therefore, device specific. Overall, the impact of
a normalization parameter is highest when the exponent p of
the local power map is close to 1.

Curve factors provide a second tool to replace singular
power maps inside conformal coordinate transformations. In
particular, curve factors induce the required angular changes
along the wave’s trajectory in a gradual way and do not rely
on singularities. Our improved designs obtain much more
moderate waveguide properties, e.g., the anisotropy of a beam
splitter may be reduced twofold, which comes at the price of
an increase in splitting length.

Because of the widespread use of Schwarz-Christoffel
transformations in several branches of physics for reverse
engineering and material designs, we anticipate that the
removal of singularities in permittivity distributions with curve
factors will prove to be a powerful technique for controlling
waves along boundaries of any shape.
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