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Abstract 

An improved state-space analysis of the CMOS 

static RAM cell is presented. Introducing the concept 

of the dividing line, the critical charge for heavy-ion-

induced upset of memory cells can be calculated 

considering symmetrical as well as asymmetrical 

capacitive loads. From the critical charge, the upset-

rate per bit-day for static RAMs can be estimated.  

Introduction  

To predict the heavy-ion-induced upset rate of static 

random access memory (SRAM) cells, Buehler and 

Allen [1] developed an analytical method based on 

state-space analysis [2]. Cell upsets are eventually 

caused if the hole-electron pairs generated along the 

track of an alpha particle hitting the memory cell, are 

collected by the reverse-biased pn-junction of an 

output node. A 5 MeV alpha particle generates, 

approximately, an estimated one million hole-

electron pairs corresponding to a charge of 0.16 pC. 

If this charge is collected by the reverse-biased pn-

junction of an output node, this node will be charged 

or discharged depending on its state. If the current 

pulse during the alpha hit is short compared to the 

response time of the cell, the node set and release 

approach [1] can be used. In this approach, the 

output node voltage is set by the alpha hit, 

whereafter the released cell is analyzed to see if the 

alpha hit causes an upset or not. For 5-MeV alpha 

particles, the node set and release approach is 

justified by the fact that, even if the current pulse is 

best approximated by a decaying exponential with a 

time constant of 1 ns [3], most of the charges are 

collected within 200 ps [4].  

In this paper, an improved analysis of the static 

RAM-cell in the release mode is presented which 

yields better understanding of the RAM cell 

behavior and more accurate expressions of the 

critical upset charge. The analysis is based on the 

cell behavior close to the meta-stable state rather 

than on empirical observations of the initial slopes of 

the node voltage curves. 

State-space analysis  

The core of a CMOS static RAM cell is the bistable 

latch, or flip-flop, consisting of two cross-coupled 

inverters as shown in Fig. 1. The two coupling 

nodes, N1 and N2, have effective capacitances to 

ground, C1 and C2, respectively, and a mutual 

capacitance Cm. The state of the flip-flop is described 

by the two node voltages, V1 and V2. The bistable 

flip-flop has three steady states: the one-state (0, 

VDD), the zero-state (VDD), 0) and the unstable state 

(VM1,VM2), ususally known as the metastable state. 

  

The dynamic behaviour of the flip-flop is described 

by the current equations of the two nodes, i.e.: 

 
1 1 2

1 1 m

dV dV dV
i C C

dt dt dt

 
   

 
. (1)

 
2 2 1

2 2 m

dV dV dV
i C C

dt dt dt

 
   

 
. (2) 

where i1 and i2 are the currents flowing into the two 

nodes N1 and N2 . 

The two equations closing the system are governed 

by Kirchhoffs current law and gives 

 1 1 1  p ni i i  . (3)  

 2 2 2  p ni i i  . (4)  

 

Fig. 1. Two cross-coupled inverters are used to design a 

bistable flip-flop. 
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where ip1(V2,V1) and ip2(V1,V2) are the currents 

through the two P-channel transistors and in1(V2,V1) 

and in2(V1,V2) are the currents through the two N-

channel transistors, respectively.  

The three steady state solutions of the system are 

given by  

 1 1 1  0 p ni i i   , (5)  

 2 2 2  0p ni i i   . (6)  

where the two equations represent the transfer curves 

of the two inverters as shown in Fig. 2.  

If the flip-flop, for any reason such as an alpha 

particle hit, is upset from its steady states, the 

“return-trajectory” from any given state, (V10,V20), to 

one of the steady states has to be derived 

numerically. This is because of the complicated non-

linear voltage dependence of the transistor and 

capacitor models, which results in non-linear 

differential equations, and which generally cannot be 

solved analytically. The most convenient way to 

solve the problem is to use a circuit simulator such 

as SPICE. A typical example of the results of such 

simulations is shown in Fig. 3.  

Equations (1) and (2) give directly the velocity in 

state space,  

 
1 2,

dV dV
v

dt dt

 
  
 

.  

if the dc current-voltage characteristic of the latch, 

i1(V2,V1), i2(V1,V2), and the node capacitances are 

known. In Fig. 4 the two velocity components are 

shown plotted in the V1,V2-state plane, while Fig. 5 

shows the corresponding vector field representation. 

As illustrated in Fig. 4 each velocity component is 

zero along the corresponding transfer curve (as long 

as the mutual capacitance can be neglected). For the 

steady state solutions both velocity components are 

zero. From the velocity vector field the slope, 

dV2/dV1, is known analytically in any point along 

each of the return trajectories as shown in Fig. 3. The 

velocity vector field also allows a graphical 

construction of the return trajectories by following 

the directions given by the vectors as illustrated in 

Fig. 5. Note that the return trajectories will always 

cross the static transfer curve characterized by i2=0 

horizontally, and the other static transfer curve 

(characterized by i1=0) vertically [5]. Of particular 

interest with respect to single event upsets are the 

two trajectories leading to the metastable point. 

These two trajectories divide the state-plane into two 

halves and will serve as a “separatrix” [6] or 

“dividing line” during the alpha particle hit. If this 

dividing line is crossed during the hit, the cell will be 

upset and change its state during the following 

“release” mode, otherwise it will return to the same 

state as before. The next section will give an 

analytical expression for the dividing line as a guide 

for the RAM designer. 

 

 

Fig. 3. SPICE-simulated “return- trajcetories” to one of 

thte stable states from an arbitrary point (V10,V20), in the 

(V1,V2) state plane. 

 

Fig. 2. The static transfer curves of the two inverters in 

a flip-flop are illustrated in the (V1,V2) state plane. 
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Fig. 5. The velocity vector field in the (V1,V2) state plane 

for C1/C2=0.5 and n/p=3.3. Also shown is one of the 

possible return trajectories and the two halves of the 

separatrice ending in the metastable point. 

Analytical Description of the Dividing Line 

To derive analytical expressions for the dividing 

line, simplified transistor models must be used. 

Simulations using different transistor models suggest 

that the trajectories leading to the metastable state, 

i.e. the dividing line, can be approximated by a 

straight line with very good accuracy. To derive an 

expression for the slope of this line, transistor 

currents i1 and i2 are linearized around the meta-

stable point. Assuming identical inverters (except for 

their capacitive loads), and neglecting the mutual 

capacitance Cm, and the output conductances of the 

transistors, we obtain from Eqs (1) and (2), 

 

  
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

 
. (7)  

where gmn and gmp are the transconductances in the 

metastable point (Vm,Vm) of the n- and p-channel 

transistors, respectively. Assuming a linear 

relationship between V2 and V1 along the dividing 

line,  

 2 1 )  (M MV V K V V   . (8)  

where K = dV2/dV1 , we obtain  

 
1

2

C
K

C
  . (9)  

This result suggests that the RAM cell enters the 

metastable state along a straight line with slope 

√C1/C2, and leaves it along another straight line with 

slope -√C1/C2. The dividing line is therefore given 

by 

 
1

2 1

2

) (  M M

C
V V V V

C
   . (10)  

Simulations show that this equation for the dividing 

line is a very good approximation of the simulated 

behavior. To examine closer the tification of 

assuming a constant transconductance in the 

saturation region, let us use a modified Shockley 

transistor model  
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Fig. 4. Phase-space diagrams for the velocities dV1/dt (left) and dV2/dt (right). 
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where kn is the transistor gain factor, VTN the 

threshold voltage and n the Taylor series expansion 

coefficient of the bulk charge (in standard textbook 

equations, usually n=0). In this model, the transistor 

is saturated for VDS>VDSAT=(VGS-VTN)/(1+n). The 

linear region drain current is given by 

 
 

2

( ) 1
2

 DS
n n GS TN DS nV

V
i k V V 

 
   

 
. (12)  

Using similar equations for the p-channel tmnsistor, 

we can write the two node currents as 

  2 2

1 2 2 2 ( ( )
2 2

 )
p n

DD TP TNV V V Vi V V
 

    , (13)  

and 

  2 2

2 1 1 1 ( ( )
2 2

 )
p n

DD TP TNV V V Vi V V
 

    . (14)  

where for a p-type transistor p=kp/(1+p).  

For the special case when n=p=, we obtain a 

constant transconductance,  

   ( )m mn mp DD TP TNVg g g V V      , (15)  

for the region where all four transistors are saturated. 

Hence, for this region
1
 shown shaded in Fig. 6 the 

linear equation given by Eq. (10) is an exact solution 

for the dividing line. 

For the more general case when n≠p, we obtain 

from Eqs (1) and (2) neglecting Cm  

 

 

 
2 12 1

1 2 1 2

i VdV C

dV C i V
 . (16)  

Separating variables, we obtain after integration 

 
Fig. 6. All four transistors are saturated in the shadowed 

area. n=p=0.3, VTN=-VTN=VDD/5. 

The previously obtained straight line solution for the 

case of n=p given by Eq. (10) is simply a special 

case
2
 of the general solution in Eq. (17). 

A plot of the dividing line for the case of n/p=3.3 

is shown in Fig. 7 using C1/C2 as the parameter 

(C1/C2=1, 0.7, 0.5, 0.25 and 0.1). As indicated by 

Fig. 7, the dividing line is very close to a straight 

line also for n≠p. As an example, the second order 

deviation in V2 for V1=VDD) is less than 5% for 

n/p=3.3 and C1/C2>0.1. For C1=C2 it is exactly a 

straight line. 

Comparisons to SPICE simulations show that the 

solution of Eq. (17) can be extended with small 

errors also into regions of the state plane where one 

transistor is linear if the current through this 

transistor is small compared to the current through 

the other transistor of the same inverter. 
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 (17)

where the metastable point (VM,VM) is given by 

  with / .
1

DD TP TN
M n p

V V xV
V x

x
 

 
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
 (18)  

In Fig. 6 the region when Eq. (17) is valid is shaded. 

 

 6. 

For the example shown in Fig. 7, where n/p = 3.3, 

transistor P1 becomes linear along the dividing line 

when C1/C2≤0.39. However, the error is negligible 

For the 

For the example shown in Fig. 7 where n/p=3.3, 

transistor P1 becomes linear along the dividing line 

when C1/C2≤0.39. However, the error is negligible as 

long as as ip1 is less than one tenth of in1 (which is 

true for C1/C2≥0.07).   

1 This region is defined by the following border line equations 

 1 21 2
2 2 1 2,  ,  ,  

1 1 1 1

TN TNDD TP DD TP
DD DD TN DD TP TN DD TP

n p n p

V VVV VV V
V V V

V V
V V V

V
V VV VVV

   

    
           

   
 

2 For n=p, Eq. (17) yields C1(V1- VM)2= C2(V2- VM)2, an equation from which Eq. (10) was obtained. In regions outside the shaded 

area where one of the transistors (for instance P2) is turned OFF, the dividing line only slightly deviates from a straight line as shown 

by the following equation obtained from Eq. (17)  

      
3 3 3 2

1 1 2 2( ) 3 ( )TN DD TP M M TN DD TP TN MV V V V V VC V V V V VC V        
 

  . 
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For the limiting case of very small C1/C2 capacitance 

ratios, the dividing line becomes a horizontal line 

through the metastable state. The return track from 

the metastable state to one of the stable states then 

coincides with the static transfer curve (obtained for 

i1=0). For very large C1/C2 capacitance ratios the 

limiting dividing line is a vertical line through the 

metastable state. The return track from the 

metastable state to one of the stable states now 

coincides with the other static transfer curve (i2=0). 

See Appendix. 

 

Fig. 7. The dividing line for n/p=3.3 with parameter 

C1/C2=1, 0.7, 0.5, 0.25 and 0.1. 

Critical Charge Expressions  

To calculate the upset-rate of a static RAM in space, 

Buehler and Allen used the Petersen equation [7] 

which assumes a 10-percent worst case differential 

cosmic-ray spectrum. According to the Petersen 

equation, the upset rate (in upsets per bit-day) for a 

heavy-ion hit on a q-type reverse-biased pn-junction 

of node i is given by equation 

 

2

105 10
qi

i qi

qi

X
R AJ

QC


 

   
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 

. (16)  

 where AJqi is the area of the reverse-biased pn-

junction of node i (in m
2
), Xqi is the carrier 

collection depth of the same junction (in m), and 

QCqi is the critical charge (in pC).  

The critical charge for a heavy-ion-induced upset 

can be calculated for each reverse-biased pn-junction 

of the RAM cell using the results from the previous 

analysis.  

For C1/C2 the critical charges for a hit of inverter 2 is 

calculated as follows. With the RAM cell being in 

the zero-state, V2=0 and the drain of transistor P2 is 

reverse-biased. The critical voltage, VCp2, for a P2 

heavy-ion hit is obtained from the dividing line at 

V1=VDD, [1]. In the one-state, V2=VDD and the drain 

of transistor N2 is reverse-biased. The critical 

voltage, VCn2, for an N2 heavy-ion hit is obtained 

from the dividing line at V1=0 [1]. Therefore, the 

critical voltages can he obtained from the straight 

line equation (10) as  
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p M DD M

C
VC V V V

C
   . (20) 

and  

 
1

2
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n M M

C
VC V V

C
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respectively.  

The expression for VCp2 of Eq. (20) can be 

compared to the expression derived by Buehler and 

Allen. They based their analysis on the empirical 

observation that  

 

22

1

p

DD

VCdV

dV V
 . (22)  

at (VDD,VCp2) in the state-plane. After some 

approximations their derivation yielded 

 
 1

2

2

p TN DD TN

C
VC V V V

C
   . (23)  

Here, it can be seen that while their expression for 

VCp2 only depends on the threshold voltage of the n-

channel transistors, the new expression in Eq. (20) 

depends on the switching voltage of the inverter. 

Thereby, the influences of both the p- and n-channel 

transistors are considered.  

From the critical voltages, VCp2 and VCn2, Buehler 

and Allen [1] defined the corresponding critical 

charges for memory upset by a P2- and N2-hit as 

 2 2 2p pQC C VC  . (24) 

and  

 
 2 2 2n DD nQC C V VC   . (25) 

respectively. 

The critical charge is the minimum charge needed 

for memory upset, assuming that the charge is 

collected so rapidly that the voltage on the other 

node does not change. This is true for most memory 
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cells since they, typically, have a slow response time 

(>500 ps) and most of the charge is collected within 

200 ps as shown by [4]. However, if charge is lost 

during the alpha hit more charge must be collected to 

upset the cell. To simulate the cell during the alpha 

hit, one must be concerned with the detailed nature 

of the current pulse. For 5 MeV alpha particles, the 

current pulse can be approximated by a decaying 

exponential with a time constant of 1 ns [3]. 

However, in most cases, as in the simulated cases 

shown in Fig. 8, a simple square-wave current pulse 

is a good enough first-order approximation [8]. The 

corresponding set and release trajectories simulated 

for five different current sources are shown in Fig. 9.  

 
Fig. 8. The relative critical charge for memory upset 

versus the relative current pulse (normalized to the 

transistor saturation current). 

  
Fig. 9. The set and release trajectories for five different 

current pulses during the alpha hit. The current pulse is 

normalized to the transistor saturation current. 

The critical charges for a hit of inverter 1 can be 

calculated similarly, at least for capacitively 

symmetric RAM cells or when C1/C2>l. In order to 

estimate the critical charges for N1 or P1 hits when 

C1/C2<l, one has to know how the dividing line 

continues into the regions where V1<0 and V1>VDD. 

Due to the forward biasing of the drain diodes N1 or 

P1, respectively, large restoring currents i1 develop, 

bending the dividing line almost horizontal outside 

the frame of Fig. 7. Consequently, the dividing line 

will be impossible to reach by N1 or P1 hits, i. e. 

QCn1 and QCp1 become very large and the 

corresponding upset rates can be neglected.  
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APPENDIX 

Generally, Eqs (1) and (2) can be rewritten as 

 
1 1 2

11 12

dV i i

dt C C
  . (A1)
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21 22
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. (A5)  

Using the following linear approximation of the 

transistor currents, 

 21 10( ) (  ) m m mi g V gV V V   . (A6)  

 12 0 2( ) (  ) m m mi g V gV V V   . (A7)  

where gm=gmn+gmp is the sum of the n- and p-channel 

transconductances in the metastable point (VM,VM) 

and go= gon + gop is the the sum of the output 

conductances, we obtain 
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where 
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Assuming a linear relationship between V2 and V1 

along the dividing line, i.e.  

 
 2 1  m mV V K V V   , (A11)  

we obtain the slope 
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If the mutual capacitance can be neglected compared 

to the load capacitances, the expression for the slope 

reduces to 
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where 
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.  

As expected, this expression reduces further to 

K=±√C1/C2 while assuming go=0. Assuming go≠0 

and letting C2→∞, we obtain from Eq. (A13)  

 

0

o

m

g

g

K




 



. (A14)  

which confirms an incoming horizontal line to the 

metastable state and an outgoing line with a slope 

given by the reciprocal gain of the inverter. 

Similarly, letting C1→∞, we obtain  

 m

o

g

g

K




 



. (A15)  

which confirms an incoming vertical line to the 

metastable state and an outgoing line with a slope 

given by the gain of the inverter.  

Finally, if the mutual capacitances cannot be 

neglected, we obtain assuming go=0.  
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