
 
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

 

 

Heterogeneity of Human Metabolism in Health and 
Disease: a Modeling Perspective 

 

 

Pouyan Ghaffari Nouran 

 

 

 

 

 

 

Department of Biology and Biological Engineering 
CHALMERS UNIVERSITY OF TECHNOLOGY 

Gothenburg, Sweden 2017 

  



II 
 

Heterogeneity of Human Metabolism in Health and Disease: a Modeling Perspective 

Pouyan Ghaffari Nouran  

ISBN 978-91-7597-586-3 

 

@ Pouyan Ghaffari Nouran, 2017 

 

Doktorsavhandlingar vid Chalmers tekniska högskola 

Ny serie Nr 4267 

ISSN 0346-718X  

 

Department of Biology and Biological Engineering 

Chalmers University of Technology 

SE-412 96 Gothenburg 

Sweden 

Telephone + 46 (0)31-772 1000  

 

 

 

 

 

 

 

 

Cover: Illustration of the systems biology approach from genes to community.  

 

 

Printed by Chalmers Reproservice 

Gothenburg, Sweden 2017  



III 
 

 
Heterogeneity of human metabolism in health and disease: a modeling 

perspective 
 

Pouyan G. Nouran 

Department of Biology and Biological Engineering 
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Abstract 

Metabolism is broadly defined as the sum of biochemical reactions within cells that are involved in 
maintaining the living state of the organism. Profound importance of metabolism comes from the fact that 
it is the sole source of energy that allows life to resist to be degraded into entropy. Human metabolism is a 
complex interactive network consisting of highly regulated functional pathways, impacting or been 
impacted by many other cellular process. Internal or external perturbations may cause dysfunction of some 
of these functional or regulatory pathways and may lead to the rise of abnormal phenotypes. Many human 
diseases associated with irregular metabolic transformations that perturb normal physiology and lead to 
phenotype dysfunction. Discovering how biological systems reorganize their activities to force specific 
phenotypic transformation, e.g., normal to cancer/diabetes/obesity, is a main challenge in life science. This 
thesis is dedicated to investigating genome-scale metabolic transformations from health to disease states, 
with specific focus on non-symmetric reprogramming in cancer metabolism. 

The human gut microbiome has been associated with a variety of human diseases, but to go beyond 
association studies and elucidate causalities is a major challenge. We developed a comprehensive 
computational platform, CASINO (Community and Systems-level Interactive Optimization), for simulation 
of the microbial communities using genome-scale metabolic modeling. We demonstrated the power of the 
toolbox in predicting metabolic interactions between gut microbiota and host, through a diet-intervention 
study of obese and overweight individuals. Our modeling platform could provide a quantitative description 
of the altered plasma and fecal amino acid levels in response to dietary intervention.  

Next, we proceed to investigate heterogeneity of cancer related metabolic transformations at the genome-
scale. First, we reconstructed genome scale metabolic models (GEMs) for eleven human cancer cell lines 
based on RNA-Seq data. We used the generated models to investigate inter-cell line heterogeneity of 
metabolic reprogramming and also to identify potential anti-growth factors. This was followed by two 
consecutive studies on two main subtypes of the non-small cell lung cancer, lung adenocarcinoma (LAC) 
and lung squamous cell carcinoma (SCC), by generating RNA sequencing (RNAseq) data for cancer 
biopsies and for normal tissue samples. We followed a systemic approach to investigate the heterogeneity 
and direction of the metabolic transformation in lung cancer at three levels of biochemical organization: 
global metabolic network level, individual biochemical pathways level and at the level of specific enzymatic 
reactions. We observed large heterogeneity in the expression of enzymes involved in the majority of the 
metabolic pathways, and identified significant association between some of these variations and patient 
prognosis. Our findings provide mechanistic insights into complex metabolic behavior of tumors and may 
be used to develop more effective diagnostic and prognostic methods. 

Keywords: cancer metabolism; genome-scale metabolic models; heterogeneity; community modeling; gut 
microbiome; lung cancer; amino acids metabolism; fatty acid metabolism 

 



IV 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 
 

List of publications 

 

This thesis is based on the work contained in the following publications: 

I. Shoaie, S., Ghaffari, P., Kovatcheva-Datchary, P., Mardinoglu, A., Sen, P., Pujos-Guillot 
… & Nielsen J. (2015). Quantifying Diet-Induced Metabolic Changes of the Human Gut 
Microbiome. Cell Metabolism, 22(2), 320-331. 

II. Ghaffari, P., Mardinoglu, A., Asplund, A., Shoaie, S., Kampf, C., Uhlen, M., & Nielsen, 
J. (2015). Identifying anti-growth factors for human cancer cell lines through genome-scale 
metabolic modeling. Scientific reports, 5, 8183. 

III. Ghaffari, P., Djureinovic. D., Mattsson. J., Babaei, P., Fredrik Pontén, Mardinoglu, A., 
Micke, P., Uhlen, M., & Nielsen, J. Heterogeneity of amino acids metabolism affects lung 
cancer prognosis. Submitted for publication. 

IV. Ghaffari, P., Mattsson, J., Mardinoglu, A., Micke, P., Uhlen, M., & Nielsen, J. 
Stratification of lung cancer patients based on heterogeneous expression of FABP5. 
Submitted for publication 

V. Ghaffari, P., Mardinoglu, A., & Nielsen, J. (2015). Cancer metabolism: a modeling 
perspective. Frontiers in physiology 6 (2015): 382 

 
 

Additional publications not included in this thesis: 

VI. Mardinoglu, A., Shoaie, S., Bergentall M., Ghaffari, P., Zhang C., Bäckhed F., Nielsen J., 
(2015) The gut microbiota modulates host amino acid and glutathione metabolism in mice. 
Molecular systems biology, 11.10 (2015): 834. 

VII. P. Ghaffari, A. Mardinoglu, and J. Nielsen, Comparative analysis of metabolic 
reprograming across human cancer cell lines at genome-scale. Manuscript in preparation 
(2017). 

  



VI 
 

Contribution Summary 

 

I. Formulated, implemented and developed software. Participated in analysis of data and writing 
the paper.  

II. Reconstructed the models, performed the analysis, prepared and wrote the paper. 

III. Designed the study, reconstructed the models, performed the analysis, prepared and wrote the 
paper. 

IV. Designed the study, performed the analysis, prepared and wrote the paper. 

V. Carried out the literature review, prepared and wrote the paper. 

VI. Assisted in analysis of data and preparation and writing of the paper. 

VII. Designed the study, reconstructed the models, performed the analysis, and wrote the paper. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



VII 
 

Preface 

 

This dissertation is submitted for the partial fulfillment of the degree of doctor of philosophy. It is 
based on work carried out between 2013 and 2017 in the Systems and Synthetic Biology group, 
Department of Biology and Biological Engineering, Chalmers University of Technology under the 
supervision of Professor Jens Nielsen. The research was funded by the Knut and Alice Wallenberg 
Foundation, the Chalmers Foundation, and the Novo Nordisk Foundation. 

 

Pouyan G. Nouran 
May 2017 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VIII 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IX 
 

Table of contents 

 
Introduction .................................................................................................................................... 1 

Background ..................................................................................................................................... 3 

Complex systems science ............................................................................................................. 3 

Figure 1 complex systems vs simple systems .............................................................................. 4 

Systems biology: a tool to study complex biological systems ..................................................... 4 

Network analysis: a tool to represent complex biological systems .............................................. 5 

Genome-scale metabolic modeling .............................................................................................. 6 

Human gut microbiota .................................................................................................................. 7 

Modeling ecosystems ................................................................................................................... 8 

Genome scale modeling of ecosystems ........................................................................................ 9 

Cancer metabolism: the fundamentals ........................................................................................ 10 

Tumor bioenergetics ............................................................................................................................ 11 

Macromolecules biosynthesis and redox balance ................................................................................ 12 

Therapeutic potentials of cancer metabolism ...................................................................................... 14 

Heterogeneity of cancer metabolism ................................................................................................... 15 

Results ........................................................................................................................................... 17 

Modeling metabolic interactions between species in human gut ecosystem .............................. 17 

CASINO toolbox: multi-objective and multi-dimensional optimization ............................................ 17 

Analyzing diet-induced changes in composition and metabolism of the gut microbiota .................... 19 

Modeling cancer metabolism at genome-scale ........................................................................... 21 

Identifying anti-growth factors for human cancer cell lines ................................................................ 21 

Heterogeneity of amino acids metabolism affects lung adenocarcinoma prognosis ........................... 25 

Stratification of lung cancer patients based on heterogeneous expression of FABP5 ......................... 31 

Conclusion ..................................................................................................................................... 37 

Perspective .................................................................................................................................... 39 

Acknowledgments ......................................................................................................................... 41 

References ..................................................................................................................................... 42 

 

 

 



X 
 

Abbreviations 

 

ATP: Adenosine triphosphate 
BCAA: Branched-chain amino acid 
CASINO: Community and Systems-level Interactive Optimization 
CBM: Constraint-based modeling 
CL-GEM: Cell line specific GEM 
Corr-Corr: Correlation-Correlation 
DNA: Deoxyribonucleic acid 
ER: Endoplasmic reticulum 
ETC: Electron transport chain 
FADH: Flavin adenine dinucleotide 
FBA: Flux balance analysis 
FDG-PET: Fluorodeoxyglucose positron emission tomography 
GEM: Genome scale metabolic models  
HGC: High gene count 
HMR: Human Metabolic Reaction 
HPA: Human protein atlas 
KEGG: Kyoto Encyclopedia of Genes and Genomes 
LAC: lung adenocarcinoma 
LGC: Low gene count 
MVG: Maximum variant genes 
NADP: Nicotinamide adenine dinucleotide phosphate 
NADPH: Nicotinamide adenine dinucleotide phosphate 
NGS: Next generation sequencing 
ODE: Ordinary differential equation 
OXPHOS: Oxidative phosphorylation 
PPI: Protein-protein interaction 
PPP: Pentose phosphate pathway 
QCD: Quartile coefficient of dispersion 
RNA: Ribonucleic acid 
RNAseq: RNA sequencing 
ROS: Reactive oxygen species 
RQCD: Relative quartile coefficient of dispersion 
SCC: lung squamous carcinoma 
SCFA: Short-chain fatty acid               
TCA cycle: tricarboxylic cycle 
TCGA: The cancer genome atlas 
TNBC: Triple negative breast cancer 
 
 
 



XI 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

To Dilara, 

For being by my side through it all  

 

 

 

 

 

 

 

 

  

 

 

 

 

 



XII 
 

 

 



Introduction 

1 
 

Introduction 
 

The world comprises diverse types of complex systems, such as biological, ecological and socio-
economic systems. Complex systems are described by several common properties, including being 
thermodynamically open, containing diverse types of components with nonlinear interactions, 
exhibiting high degree of spatiotemporal heterogeneity and having feedback loops. These common 
characteristics come together to bring up two new properties, emergence and self-organization, 
which discriminate complex systems from non-complex ones. There are different types of the 
complexity with diverse implications across many fields of science and technology. Structural 
complexity refers to configurational and compositional sophistication of a system, functional 
complexity denotes nonlinear and heterogeneous dynamics of a system, and self-organizing 
complexity described based on emergence property of a system evolving from internal and external 
interactions at different special and temporal scales. Systems with self-organizing complexity have 
often been called complex adaptive systems. Majority of biological, ecological and social systems 
can be considered as complex adaptive systems with different degree of self-organizing complexity 
(Freeman et al., 2001). Herbert A. Simon in his seminal book ‘The Sciences of the Artificial’ 
(Simon, 1980) identified three waves of studies interested in science of complexity. The post-World 
War I wave, which was characterized by creative evolution and holism. The post-World War II 
wave which was shaped by information theory, cybernetics and general systems theory, and mainly 
focused on understanding parameters impacting system stability. The post- 80s wave which 
signified understanding causes and mechanisms underlying complex behaviors of natural systems. 
The diversity of the approaches in this period can be identified by concepts such as catastrophe, 
chaos, fractals, neural networks, genetic networks, cellular automata and self-organizations. It 
seems that, development of the theoretical and practical modeling of biological and ecological 
systems follows this historic line of approaches to describe the complexity.  

Complex biological systems do not exist in stable conditions, but in temporal and spatial varying 
environments. They are always subjected to and respond to internal and external stimulus, such as 
chemical or physical perturbations or changes in composition of their environment. In order to 
maintain homeostasis, these systems activate several feedback loops to sense the environment and 
adapt their behavior fast enough to new structures of the environment. To understand biological 
systems, even at the basic level of cells and tissues, it is not enough to characterize individual 
molecules, and obtaining a broad view of the interactions between constituent molecules and 
compartments of the cell is required. This is more important when we want to investigate 
mechanisms underlying complex disease such as cancer, Alzheimer and diabetes. Systems biology 
has been developed to understand the complexity of biological systems at all levels of organization 
(from ecosystems to cells and molecules) in normal and disturbed conditions. It collects, integrates 
and analyse the mass of multidimensional and multi-omics data generated by high-throughput 
technologies, in order to develop descriptive and predictive models of biological systems. Systems 
biology synthesis the bottom-up (data-driven) and the top-down (model-driven) approaches into a 
hypothesis-driven approach in quest for basic biological principles and mechanisms (Auffray et al., 
2009; Wang et al., 2015; Werner et al., 2014).  
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In the first line of studies we focused on modeling metabolic interactions between species in the 
human gut ecosystem. The human gut ecosystem contains a diversity of species outnumbering the 
number of human cells by a factor of 10, and the composition of this community is host-specific 
which dynamically evolve through life, subject to both endogenous and exogenous alterations 
(Huttenhower et al., 2012). The human gut microbiota provides essential health benefits to its host 
by contributing to digestion and secretion of nutrients, by providing resistance to pathogens, and 
especially by regulating immune homeostasis. The overall structural balance in the gut ecosystem, 
especially the presence or absence of key species, is important in insuring the normal host 
physiological states. However, the underlying mechanisms of gut microbiota influences on health 
through a complex network of interactions between host, microbiota and diets remain largely 
undefined (Nicholson et al., 2012). Integrating multi-dimensional high-throughput omics data 
using proper mathematical modeling techniques can help in this hurdle. Here, we developed a 
comprehensive computational platform, CASINO (Community And Systems-level Interactive 
Optimization) toolbox, to model interactions between species within microbial communities 
through genome-scale metabolic modeling. After validating the predictive power of the toolbox, 
we used it to simulate the diet-induced changes in composition and metabolism of the human gut 
microbiota.  

In the second line of studies, we concentrated on understanding heterogeneity of cancer-related 
metabolic reprogramming at genome-scale. Metabolic reprogramming in tumors is closely related 
to malignant transformation by supporting growth and survival of the cancer cells through elevated 
supply of the energy and biosynthetic precursors, activation/deactivation of oncogenes/growth 
suppressors, and maintaining proliferative signaling (Hanahan and Weinberg, 2011). Genetic 
diversity which partly define the effect of tissue-of-origin, inconstant patterns of clonal architecture 
and environmental factors, such as gradients of nutrients and oxygen availability and tumor-host 
interactions, can give rise to a heterogeneous metabolic signature of cancer cells (Hensley et al., 
2016b; Meacham and Morrison, 2013; Yuneva et al., 2012). In this line of study, we used mRNA 
expression profiles of the protein coding genes, generated from human cancer cell lines and biopsy 
samples of human lung cancer sub-types, to assess cancer-related metabolic transformations. We 
followed a systemic approach to investigate the scale and direction of heterogeneity of metabolic 
reprogramming in cancer cell lines and lung cancer patients, at three levels of: metabolic network, 
biochemical pathways and individual enzymatic reactions. 

Generally speaking, this thesis describes application of systems biology approach to advance our 
understanding on different patterns of metabolic transformations in health and disease. Findings in 
this thesis, can gain insight into underlying mechanisms of cancer plasticity and support the 
development of future personalized therapeutic strategies. 
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Background 

 
Complex systems science 
If we pay attention to most of the events that occur around us, from those affecting our own health 
condition to those changing the environment where we live in and even those influencing our social 
status, we realize that they are the consequence of the evolving dynamical organization of systems 
that, on their turn, consist of layers of subsystems and basic components with complex patterns of 
interaction. One of the main efforts of modern science, defined as complex systems science, is to 
provide proper and descriptive images of theses observed phenomena to understand rules that are 
lying behind, and to manipulate and control them in desired direction. The clear recognition of 
complex systems concepts and principles and its widespread application in science, which provides 
new ways of understanding mechanisms in physical, biological, engineering and social systems, is 
a very recent phenomenon. In a simplest way, we can define a complex system as an ensemble of 
the multiple constituents which are interacting in a disordered way to form and maintain a new 
organization. Main properties of the complex systems that establish our natural world have been 
manifested as:  (Kwapien and Drozdz, 2012; Lansing, 2003; Segel, 1986).  

• Nonlinearity of interactions. An interaction is linear in some variable x, if the interaction 
force f vary proportionately to x (linearity: f(kx) = kf(x), where k is a constant). Linear 
systems are characterized by additivity and nonlinear systems characterized by non-
additivity. 

• Sensitivity to initial conditions. Complex systems response to perturbations are mainly 
difficult to predict, as their nonlinear nature permits small change in initial state of the 
system to be intensified into large differences in following system trajectories. This 
property of complex systems highlights the importance of errors in system analysis and how 
our interpretations could be biased under effect of errors.  

• Symmetry breaking. In general term symmetry means invariance under an operation such 
as scaling, reflection, relocating and rotation. For example, molecular structure of a crystal 
is invariant under spatial transformations. Complexity of the systems increase by each 
symmetry breaking. 

• Self-organization. Self-organization happens when a system bifurcates, through local 
interactions between constituents and under its own dynamics, to a form exhibiting new 
overall order. The process is spontaneous without any external regulation. Chemical 
oscillation, protein folding, formation of the lipid membranes, crystallization, neural 
networks and animals swarming are examples of self-organization. 

• Emergence. We can define emergence in simplest form as: the rising of a new perceivable 
coherent macro property or structure during the dynamic process of the self-organization 
within complex systems. The emergent property cannot be reduced to sum of the micro 
properties of the constituents. For example, life as an emergent property cannot be reduced 
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to underlying laws of chemistry and physics. In fact, one can claim where emergence 
appears, causation declines.  

Figure 1 demonstrates a fundamental difference between simple and complex systems in sensing 
of environment and hierarchy of internal interactions to produce response. 

Figure 1 complex systems vs simple systems 

 

Systems biology: a tool to study complex biological systems 
The divide and conquer approach (reductionism) has dominated biological research, similar to 
other scientific disciplines, for many years. This strategy made great progresses in understanding 
basic mechanisms shaping living cells and in identifying many essential components accounting 
for specific cellular phenotypes in health and disease. However, the complexity of biological 
systems makes it a challenging effort to analyze and understand structure and dynamics of cellular 
and organismal functions, and many critical questions cannot be answered just by focusing on 
individual molecular components in isolation. Repeatedly, critics have emerged to challenge the 
reductionist approach in biology, but opponents lacked applicable research tools and techniques 
and just indicate the idea to escape reductionism and mechanistic explanation. The recent 
advancements of complex systems science and implementation of mathematical tools to investigate 
structure and dynamics of complex biological networks, has begun to take root as an important 
sub-discipline of biological science defined as systems biology and computational biology. Kitano, 
in his seminal paper in Science 2002, recommended four key properties to be considered to derive 
a system level understanding of the biological systems: system structures, system dynamics, the 
control method and the design method. He also proposed an idealized cycle of systems biology 
research in a hope for gradual transformation of the biological research to fit this cycle towards 
systematic hypothesis-driven life science (Kitano, 2002). 

In medical science, the ultimate goal of systems biology is understanding factors that influence 
human health and cause diseases across the multiple levels of organization, from molecular 
interactions to networks of biochemical pathways, from the cell–cell interactions to tissue level, 
and from organs to the physiological functioning of the whole organism. Systems biology body of 
science covers the experimental methods for generation of high-throughput datasets (omics data), 
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and development and application of the computationally derived methods and network approaches 
to integrated and analyze generated multi-dimensional datasets. High-throughput datasets derived 
from transcriptomics (mRNA transcripts), proteomics (protein levels), metabolomics (small 
molecule metabolites) and fluxomics (rates of metabolic reactions) can provide global information 
of the temporal and special dynamics in the cell and tissue levels. Integration of the omics datasets 
with each other and other data types have been used to reconstruct models of cell metabolism, cell 
signaling and disease networks to understand the mechanisms of interactions and to identify new 
therapeutic targets (Berg, 2014; Wang et al., 2015). 

Network analysis: a tool to represent complex biological systems 
Large high-throughput omics datasets highlight the challenge of how to reduce the complexity of 
data, integrate multiple sources of data and connect findings to external information to develop 
robust models and testable hypothesis from this huge amount of data. Biological systems, similar 
to most complex systems, do not function in isolation, rather dynamic interactions of the elements 
determines the function and behavior of these systems. These interactions shape different types of 
biological networks with characteristic topology, such as protein-protein interaction (PPI) 
networks, gene regulatory networks, signal transduction networks and metabolic networks 
(Barabasi et al., 2011). Network representation of multi-dimensional omics data provides a 
simplified portrait of the complex biological systems by reducing the dimension of the data, and 
enables using tools from graph theory and network science to analyze data. At an abstract level, 
the system components can be reduced to nodes that are connected to each other by edges that 
represent the interactions between components. The nodes and specific pattern of edges together 
form a characteristic network topology. Networks can be undirected or directed depending on the 
nature of the interactions. When interactions between nodes have well-defined direction, it is called 
a directed network, and otherwise called undirected network. Metabolic networks with defined 
direction of material flow from substrate to product are an example of directed network and PPI 
networks are example of undirected network. Despite remarkable diversity of the natural complex 
networks, realizing that their topology are shaped by couple of simple common principles was 
probably the most important discoveries of graph theory (Barabasi and Oltvai, 2004). One of these 
simple principles is that topological properties of the real networks cannot be explained by random 
network model and they mainly characterized by power-law degree distributions. It means that, for 
many real networks the number of the nodes with a given degree follows power law distribution 
not Poisson degree distribution, and the probability of connectivity for each node follows: 

 P(k) ~ k-γ 

 where k is the degree and γ is the degree exponent with value between 2 and 3 for most networks 
(Barabasi and Albert, 1999). Networks with power degree distribution are called scale-free or scale-
rich networks. It has been shown that cellular metabolism follows a scale-free topology by 
analyzing metabolic networks of 43 different organisms (Jeong et al., 2000). Another common 
feature of the complex networks is called small-world effect, which means any two nodes within 
these networks are connected with a small number of the nodes. Small-world effect is stronger in 
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scale-free networks, making them ultra-small and consequently any local perturbation propagates 
very quickly in these networks. Investigations increasingly revealed that functions of the biological 
networks are closely related to their topological structure, meaning that global and local structural 
features of these networks can disclose essential properties of the biological systems. Differential 
network analysis, which compares the topological alterations of complex networks under different 
conditions, may help to discover disease biomarkers (Wang et al., 2015).  

Genome-scale metabolic modeling 
One of the fundamental objective of systems biology is to reconstruct a predictive model of a living 
cell encompassing all its components in a quest for manipulating biological systems in desired 
direction. But, insufficient broad knowledge on biological processes and related kinetics is an 
important hurdle. However, cell metabolism is the only domain we have been able to make first 
steps towards realizing this visionary model, thanks to hundred years of biochemistry research and 
the continued progression of high-throughput omics techniques and next generation sequencing 
(NGS) methods in the past decade, which transformed biology into a data-rich scientific discipline 
by simultaneous measurement of a large number of cellular components. By now, metabolism is 
most probably the best studied cellular process and recent advances in the computational study of 
cellular metabolism have accelerated its computational investigation on a genome scale. Despite 
this significant progress, we have been able to measure reaction flux rates in eukaryote cells just 
for limited number of reactions in central metabolism (Niklas et al., 2010). Reconstructing and 
analyzing genome-scale metabolic models (GEMs) can bridge this gap and characterize the large 
scale metabolic state of the cells/tissues/organisms by facilitating the prediction of the inner and 
outer flux rates of the metabolic networks. Furthermore, GEMs are capable of providing context-
specific metabolic descriptions by integrating multi-layer omics data, and simulation of the 
metabolic interactions within multi-species ecosystem under dynamic environmental perturbations 
(Mardinoglul and Nielsen, 2015; Nielsen, 2017; Robinson and Nielsen, 2016).  

GEMs are mathematical portrait of the complex biochemical transformations occurring within a 
specific cell or tissue through a compartmented assembling of the metabolites, reactions and 
enzymes into the complex metabolic network (Figure 2). The constructed stoichiometry matrix 
incorporates stoichiometric coefficients of the metabolic reactions complemented by detailed 
mapping of the enzymes into their associated reactions. In general, metabolic networks are modeled 
under quasi-steady state assumption and constraint-based modeling (CBM) approach is used to 
analyze reconstructed GEMs. CBM imposes physico-chemical constraints such as mass balance, 
thermodynamics and min/max flux capacity boundaries to shape the feasible solution space, and 
the reconstructed model usually is under-determined with range of potential alternative flux 
distributions satisfying the constraints. Flux balance analysis (FBA) is mainly used to select 
optimum flux distribution by optimizing the formulated model for pre-defined objective function 
such as biomass yield, substrate consumption, ATP production and redox potential (Figure 2). 

Since the first GEM reconstructed for Haemophilus influenza in 1999, increasing number of the 
metabolic models have been generated for diverse range of species spanning from bacteria to 
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humans. Human models, in contrast to GEMs generated for microorganisms, are reconstructed as 
generic forms including all metabolites and reactions have been documented to be present in human 
metabolism integrated with known catalyzing enzymes. First generic human metabolic models, 
Edinburgh Human Metabolic Network (EHMN) and Recon 1, were manually reconstructed from 
accumulated high quality genetic and biochemical data, followed by more comprehensive Recon2 
and Human Metabolic Reaction 2.0 (HMR2) models encompassing current advances in human 
biochemical knowledge (Ghaffari Nouran et al., 2015; Mardinoglu et al., 2013; Robinson and 
Nielsen, 2016). In recent years, accumulation of the disease related high-throughput omics data 
made it possible to project this data into the generic human GEMs and to reconstruct context-
specific models of human metabolism in health and disease. An extensive body of work has showed 
successful applications of the generated GEM to investigate metabolic foundations of the non-
healthy phenotypes and to identify new selective biomarkers and therapeutic targets (Ghaffari et 
al., 2015; Jerby and Ruppin, 2012; Nielsen, 2017; Oberhardt et al., 2009; Shoaie et al., 2015).   

 

Figure 2 constraint-based modeling (CBM) and flux balance analysis (FBA). Conceptual illustration of modeling 
a simple metabolic network. The stoichiometric matrix is reconstructed under steady-state condition and model is 
formulated by introducing physico-chemical constraints and defining a relevant objective function. Formulated model 
is solved through FBA providing optimal and feasible flux distribution. 

 

Human gut microbiota 
Since the first observations related to the presence of microbes in the human mouth and faces, it 
has been discovered that our body contains a massive number of microorganisms, including 
bacteria, eukaryotes and viruses, colonizing in different sites of the body from skin to the 
gastrointestinal tract. These microorganism, collectively is called microbiota and their collective 
genome is referred to as metagenome (Huttenhower et al., 2012). Human microbiota outnumbers 
the total number somatic cells in the body by a factor of 10, and the human gut metagenome is 
twofold greater than the human genome. The gastrointestinal tract hosts a large portion of the 
human microbiota with an overall weight of 1.5 kg, comparable to the weight of the adult human 
brain (Zhao, 2013). The density of cells changes in different sites of the gut, from 103 to 108 cells 
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per gram of luminal content in the small intestine to 1011-1012 cells per gram of luminal content in 
the distal colon, with varying diversity and composition of the gut microbiota along the 
gastrointestinal tract. In humans, the gut microbiota shows high inter-subject variation of diversity, 
reflecting the maternal hand-over of the species at birth, and subsequent evolution of the microbial 
landscape through life driven by the complex and dynamic interplay between factors such as 
geography, age, life-style, diet, diseases and drug usage (Backhed et al., 2005; Claesson et al., 
2012; Dethlefsen and Relman, 2011). Metabolic phenotype of the host, and consequently 
biochemistry and susceptibility to disease, is highly influenced and modulated by evolving 
trajectory of the gut microbiota. Despite high inter-subject variation of the gut microbiota, some 
recent studies have shown similarity of changes in the composition of the microbiota between two 
time points across subjects (Faith et al., 2013). However, there are biologically and metabolically 
flexible components that represent dynamic behavior in response to dietary perturbations or 
environmental stresses, by altering the diversity and composition of the species (Clemente et al., 
2012).  

The cross-talk between gut microbiota and host immune system, shapes the composition of the 
microbiota as well as the development of the immune system, through vast array of signaling and 
metabolic pathways. Immune-mediated signaling processes act upon several organs such as brain, 
gut, muscle and liver, together with complex biochemical interactions between host and microbiota 
involving chains of microbe-host multidirectional metabolic axes. Within these metabolic axes, 
host and microbiota co-metabolize large array of dietary and xenobiotic compounds, including 
short-chain fatty acids (SCFAs), bile acids, lipids and choline, many of which are essential for host 
health and microbial symbiosis. For each region of the human gastrointestinal tract there exists 
distinctive composition of the microbiota with specific inter-species and host-species metabolic 
dialogues (Li et al., 2008). 

Modeling ecosystems 
Models are mathematical abstraction of the reality, comprising essential and necessary features of 
the real system, to make predictions of dynamics and behavior of the system which is under study. 
Ecological systems, composed of large number of biotic and abiotic components that interact with 
each other through chemical, physical and biological processes going on in multiple layers, are of 
overwhelming complexity. Due to this complexity, ecosystem models are mainly simplified to 
limited number of the well-understood parameters relevant to solve the problem in the intended 
direction and in accepted level of difficulty. The simplification process usually reduces the 
dynamics of complex ecosystem to a reasonable number of parameters, called state variables, and 
mathematical functions which describe the interaction between these variables. Along with 
parameters and interactions, most of the models developed for ecosystems have to incorporate 
spatial and temporal dynamics as inevitable part of the problem (Auger and Roussarie, 1994; 
Costanza et al., 1993). One of the most well-known ecosystems models is Lotka-Volterra predator 
and prey model which originally developed to explain observed fluctuations in fish populations. 



Background: Systems Biology 

9 
 

This model uses pairs of ordinary differential equations (ODEs), representing predator and prey 
species. ௗ௒ௗ௧ = .ߛ	 .ߚ ܺ. ܻ − .ߜ	 ܻ  ௗ௑ௗ௧ 	= .ߙ	 ܺ − .ߚ	 ܺ. ܻ  

Where, Y is the number/concentration of the predator species, X is the number/concentration of 
the prey species, ߙ is the prey species' growth rate, ߚ is the predation rate of Y upon X, ߛ is the 
assimilation efficiency of Y and ߜ is the mortality rate of the predator species. Although, the model 
illustrates some features of the modelled biological ecosystem like growth and mortality, later 
studies revealed that real interactions in nature is far from Lotka-Volterra’s model (Peterson, 2013).  

Microbial communities comprise nearly 50% of the earth’s biomass and their functions and 
interactions play a key role in the ecosystem of the planet and human life by driving most of the 
biogeochemical cycles. They also have been used widely in food fermentations, for example in the 
production of yogurt, cheeses, vinegar and soy sauce (Hanemaaijer et al., 2015; Kallmeyer et al., 
2012; Lin et al., 2000). Despite major impact of the microbial communities on human health and 
sustainability, we still have little insight into the design principles that regulate their ecosystems 
evolution, functionality, robustness, and consequently limited opportunities to control and optimize 
the performance of these communities in desired direction.  

Genome scale modeling of ecosystems 
Recent advances in high-throughput technologies enabled us to study metagenomics, meta-
transcriptomics and metabolomics of the microbial communities. This high resolution omics data 
made it possible to identify specific molecules such as DNA, mRNA, proteins and metabolites, 
which provided information on the identities of the occurring species, their relative abundances and 
their metabolic potentials (Segata et al., 2013). However, information acquired from meta-omics 
studies, including 16S rRNA gene sequencing, only provide indirect view into the biological 
activities of the microbes within the ecosystem, and almost no insight into how genetic features 
and the interaction between species and with their  environment give rise to the community 
structure and community state, i.e., the concentrations and fluxes of nutrients within ecosystem. 
Inference of the community structure and state, requires mathematical modeling methodologies 
that can integrate heterogeneous physiochemical, physiological information with omics and meta-
omics data in context of a unified model with optimum level of information content and predictive 
power. Constrain-based genome-scale metabolic modeling of the community metabolism, capable 
of integrating high-throughput multi-dimensional data, is promising for this purpose. 

One way to use GEMs for studying ecosystems is network-based analysis, which uses topology of 
the network to gain insight into the structure and state of the community, regardless of 
stoichiometric parameters.  This approach has been applied to develop a computational framework, 
by integrating GEMs with metagenomics data, to predict levels of the complementarity and 
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competition between the 154 species of the gut microbiota and to study the rules behind the 
community-level assembly of microorganism within ecosystem (Levy and Borenstein, 2013). 
Following successful applications of the CBM and FBA to predict metabolic fluxes and the 
phenotype of the individual species, taking into account the stoichiometry information and 
constraining for the metabolic fluxes, couple of researchers have been interested in using the 
analogue path to study communities. Stolyar et al. reported the first implementation of the 
multispecies CBM to model interactions between sulphate-reducing bacteria and methanogenic 
archaea, assuming each model as a discreet compartment and using one extra compartment for 
metabolic exchanges between species (Stolyar et al., 2007). Freilich et al. used stoichiometry-based 
metabolic models of 118 species to study the cooperative and competitive potential between 
bacterial pairs, and identified correlations between bacterial interactions and their coexistence 
pattern (Freilich et al., 2011). Zomorrodi et al. proposed a bi-level optimization approach to model 
community of species, including lower-level objective functions for species and an upper-level 
objective function for community to simultaneously optimize for species-level and community 
level (Zomorrodi and Maranas, 2012).  

Cancer metabolism: the fundamentals 
According to the World Health Organization (Lunt et al.) cancer is a major public health problem 
worldwide, with more than 14 million new cases and more than 8 million deaths in 2012 (Ferlay et 
al., 2015). One of the oldest areas of research in cancer biology, dating back to early 20 century, is 
cancer metabolism. This is founded on the principle that metabolic activities are transformed in 
tumor cells in a direction that supports the acquisition and maintenance of malignant properties. 
The past decade has experienced a fast increase in investigations on mechanisms underlying 
cancer-related metabolic alterations, resulting in accumulated evidences on association between 
malignant transformation and several pathways in human metabolism (Heiden et al., 2009; Schulze 
and Harris, 2013). These studies revealed that some altered metabolic properties are happening 
quite frequently during neoplastic transformation across different types of the cancer cells, which 
resulted in considering deregulated cellular metabolism as one of the hallmarks of cancer (Hanahan 
and Weinberg, 2011). Accordingly, several selective metabolic targets have been identified and 
started to enter clinical studies (Galluzzi et al., 2013). Cancer-mediated altered metabolic activity 
supports catabolic cells survival during nutrient limitation, anabolic cells proliferation during 
nutrient-replete periods, and maintained redox homeostasis under stressed conditions (Boroughs 
and DeBerardinis, 2015). Characterization of these reprogrammed metabolic activities may provide 
opportunities to diagnose cancer in early stages by imaging malignant tissues noninvasively and 
predicting tumor behavior, and to inhibit cancer progression by blocking critical pathways for 
tumor growth and survival (Ward and Thompson, 2012). 

Aerobic glycolysis or the Warburg effect is the classical example of metabolic reprogramming in 
cancer cells. Normal cells employ glycolysis as a physiological response to hypoxic condition, but 
in early 1920s Otto Warburg observed that tumor cells increase glucose uptake regardless of 
oxygen availability, a phenomena that has been observed in many tumor types (Koppenol et al., 
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2011). Glycolysis produces energy faster but far less efficient than oxidative phosphorylation, 
making cancer cell dependent on increased influx of the glucose. Elevated glycolytic flux also 
provides glycolytic intermediates required by the subsidiary metabolic pathways to support cell 
proliferation (Lunt and Vander Heiden, 2011). Like glycolysis, intermediates derived from 
tricarboxylic cycle (TCA cycle) are also use as precursors for biosynthetic pathways. To maintain 
intermediate pools, carbon needs to be resupplied into the TCA cycle by anaplerotic pathways at 
sites other than acetyl-CoA. Anaplerotic fluxes in tumor cells can be provided by glutaminolysis, 
pyruvate carboxylation, and in some tissues oxidation of the branched-chain amino acids (BCAAs), 
valine and isoleucine (Owen et al., 2002). The general induction of some metabolic pathways by 
malignancy to support core functions like catabolism, anabolism and redox homeostasis may reflect 
their regulation by a finite set of signaling pathways. Tumor cells frequently activate 
phosphatidylinositol 3-kinase (PI3K) and its downstream pathways AKT and mammalian target of 
rapamycin (mTOR) to promote anabolic growth through elevated glycolytic flux and fatty acid 
synthesis, with minimum dependence on external stimulation by growth factors (Yuan and Cantley, 
2008). Another commonly detected deregulated signaling pathway in cancer cells is gain of 
function by MYC that overexpresses several effective genes in anabolic growth, including enzymes 
involved in glycolysis, glutaminolysis, serine metabolism, fatty acid biosynthesis and 
mitochondrial metabolism (Stine et al., 2015). The tumor suppressor gene p53 transcription factor 
is deleted or mutated in nearly half of the human cancers. Some recent studies indicated that tumor-
suppressive function of the p53 might be independent of its canonical activities, such as cell cycle 
arrest, DNA repair and apoptosis, but rather dependent on regulation of the metabolism under 
oxidative stress (Kruiswijk et al., 2015). Tumor cells usually proliferate faster than the rate of new 
blood vessel formation and reside in hypoxic environment, ranging from 0 to 2% of oxygen 
concentration. Hypoxia-inducible factor–1 (HIF-1), which induces upregulation of the enzymes 
involved in elevated glycolytic flux, coordinates metabolic adaptation to hypoxia (Semenza, 2012). 

Tumor bioenergetics 
Otto Warburg’s hypothesis that impaired mitochondrial function, makes tumor cells depend on 
glycolysis as major source of energy, even in the presence of oxygen, was widely accepted for 
decades. Warburg’s observation that cancer cells consume glucose in much higher rate than normal 
cell has been validated extensively in many tumor types and has been employed in clinic for cancer 
diagnosis by fluorodeoxyglucose positron emission tomography (FDG-PET) technique, which uses 
2-deoxy-2-[fluorine-18] fluoro-D-glucose, a radioactive analogue of glucose, to visualize glucose 
uptake in cancer cells and adjacent normal tissue (Kelloff et al., 2005). However, recent studies 
reveled that most of the tumor cells generate the majority of the required energy through 
mitochondrial metabolism, except the ones experience mutations in genes involved in 
mitochondrial respiration, such as Succinate Dehydrogenase (SDH) and Fumarate Hydratase (FH) 
(Zu and Guppy, 2004). Yet, cancer cells bearing mutations in SDH or FH still rewire their 
metabolism to replenish necessary intermediates for TCA cycle and for proliferation (Cardaci et 
al., 2015; Mullen et al., 2012). Todays, there is an overall consensus around the idea that Warburg’s 
effect is mainly caused by loss of tumor suppressor genes, activation of the oncogenes and 
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overexpression of the PI3K signaling pathway, and one of the key advantages of the upregulated 
glycolysis in cancer cells is to provide biosynthetic precursors for proliferating cells (Pavlova and 
Thompson, 2016). 

In addition to glucose, amino acids and fatty acids can replenish the TCA cycle and maintain 
mitochondrial ATP production in cancer cells. Fatty acids oxidation in the mitochondria produces 
acetyl-CoA which enters the TCA cycle, and NADH and FADH which are used by electron 
transport chain (ETC) to generate ATP (Carracedo et al., 2013). Glutaminolysis generates α-
ketoglutarate from glutamine to fuel TCA cycle (Hensley et al., 2013). Amino acids leucine, 
isoleucine and valine, which are found in elevated amounts in plasma of pancreatic cancer patients, 
can be converted to acetyl-CoA and enter the TCA cycle (Mayers et al., 2014). In conditions of 
nutrient deprivation and metabolic stress, some cancer cells scavenge external fatty acids to fuel 
mitochondrial oxidation of fatty acids and to produce ATP (Nieman et al., 2011). This metabolic 
flexibility of the TCA cycle increases tumor cells plasticity and makes them resistant to metabolic 
perturbations caused by fluctuating fuels availability during the evolution of the cancer.  

Macromolecules biosynthesis and redox balance 
Tumor are characterized by uncontrolled high rate of cellular proliferation and consequently 
biosynthetic pathways are of critical importance for cancer cells to maintain macromolecules 
production rate required for cell division and tumor growth. Nucleic acids, proteins and lipids, 
comprising up to 80% of the dry mass of mammalian cells, are the macromolecules that contribute 
to tumor cell metabolism in large extent. Generally speaking, cellular biosynthesis involves three 
main phases: acquiring simple nutrients such as hydrocarbons, fatty acids and amino acids from 
extracellular matrix, employing central metabolism like glycolysis, TCA cycle, amino acid 
biosynthesis and pentose phosphate pathway (PPP) to convert imported compounds into the 
biosynthetic intermediates, and finally assembling large and complex macromolecules through 
energy consuming processes (DeBerardinis and Chandel, 2016).  

Protein synthesis is a highly regulated process that requires access to a full set of essential and 
nonessential amino acids to function. Proliferating cancer cells overexpress surface transporters to 
import amino acids from the environment, convert glutamine to glutamate through deamidation 
and transamidation reactions, and activate transamination reactions to synthesis most of the 
nonessential amino acids from glutamate (Hensley et al., 2013). Under conditions of nutrient 
depletion, cells can activate some catabolic pathways to degrade macromolecules from internal and 
external sources and replenish pool of required intracellular intermediates. Autophagy is an 
important survival pathway capable of recycling intracellular proteins and organelles through a 
highly regulated process and delivering them to the lysosome (Galluzzi et al., 2014). When 
nutrients are scarce, cells can internalize other components from the extracellular milieu through 
macropinocytosis, and supply the central metabolism with necessary flux of carbon and nitrogen 
(Commisso et al., 2013). Some evidences indicate that intracellular and extracellular protein 
degradation can be suppressed by activity of mTORC1 signaling which may help cells to maximize 
net rate of protein synthesis when amino acids are available (Palm et al., 2015).  
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Cancer cells need extra sources of acetyl-CoA and cytosolic NADPH as reducing power to elevate 
fatty acids synthesis required for membrane biosynthesis and cellular signaling. Glycolysis is the 
prominent source of the acetyl-CoA for fatty acid synthesis, along with glutamine and acetate as 
alternative carbon sources when access to glycolysis-derived acetyl-CoA is diminished by 
mitochondrial dysfunction or hypoxia (Metallo et al., 2012; Schug et al., 2015). Membrane 
biosynthesis can also be supplied by acquiring fatty acids from the extracellular space, in particular 
when ability to satisfy biosynthetic demands of highly proliferative cancer cells is compromised 
by metabolic stress under hypoxia (Nieman et al., 2011). 

As mentioned earlier, the majority of cancer cells employ mitochondrial oxidation of glucose, lipids 
and glutamine coupled with ETC and oxygen as the final electron acceptor, to satisfy an important 
portion of their energy demand. Mitochondrial oxidative metabolism is connected to the production 
of reaction oxygen species (ROS), which at high levels, can damage nucleotide and consequently 
impair cell viability (Sabharwal and Schumacker, 2014). ROS are chemically reactive intracellular 
species that contain oxygen and include the superoxides (O2

-), hydrogen peroxide (H2O2), hydroxyl 
radicals (OH·) and singlet oxygen (Murphy, 2009). The reduction of the oxygen in the 
mitochondria and through cytosolic NADPH oxidases (NOXs) produces superoxide, and 
enzymatic activity of superoxide dismutase 1 or 2 converts superoxide to hydrogen peroxide, 
followed by partial reduction of the hydrogen peroxide to hydroxyl radical or its full detoxification 
to water (Brand, 2010). ROS regulate key cellular processes, such as metabolism, apoptosis and 
cancer cells invasiveness. Cancer cells mainly use reduced glutathione together with high ratio of 
NADPH/NADP+ to detoxify ROS. GHS is synthesized from glycine, glutamate and cysteine, and 
its oxidation by GSH peroxidase is coupled with hydrogen peroxide turnover rate. NADPH is an 
electron carrier cofactor and its constant regeneration from NADP+ is necessary to maintain cellular 
redox homeostasis. In the mitochondria, NADPH production is partially controlled by one-carbon 
metabolism and isocitrate dehydrogenase 2 (IDH2), and cytosol uses multiple source to produce 
NADPH including PPP, one-carbon metabolism, malic enzyme 1 and isocitrate dehydrogenase 1 
(IDH1) (Martinez-Outschoorn et al., 2017). 

Redox balance is required during tumorigenesis and metastasis. It seems that moderate levels of 
ROS can support cancer progression, but when ROS concentration exceeds antioxidant capacity of 
the cells, a lethal oxidative stress can occurs (Gorrini et al., 2013). A rising model of cancer redox 
homeostasis is that during tumor initiation, which is characterized by high proliferation rate and 
increased metabolic activity of cancer cells and subsequently increased level of ROS, tumor cells 
increase their antioxidant capacity to detoxify ROS. Under hypoxic and nutrient-deprived 
conditions, which characterized by limited fluxes through glycolysis and PPP and consequently 
reduced NADPH levels, tumor cells activate adenosine5-monophosphate kinase (AMPK) to 
stimulate PPP dependent NADPH production and downregulate anabolic pathways with high 
demand of NADPH, such as lipid biosynthesis. When cancer cells detached from the matrix, they 
encounter high concentrations of ROS and their ability to upregulate NADPH production and 
antioxidant capacity is required for distant metastasis (Jiang et al., 2016; Piskounova et al., 2015).   
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Therapeutic potentials of cancer metabolism 
Cancers reprogram their metabolism to meet the biosynthetic, bioenergetic, and redox requirements 
of malignant cells during tumorigenesis and metastasis. Cancer-related metabolic alterations 
supports cancer cells proliferation and survival, but at the same time make them vulnerable to 
perturbations. However, these metabolic transformations are not homogeneous and shows 
remarkable intra-cancer and inter-cancer plasticity. Understanding how and why metabolic 
alterations occurs and the mechanism behind, progressively opens insights into the development of 
new therapeutic strategies for human cancer. Antimetabolites, such as antifolates, that target 
specific part of the cancer cell metabolism, were among the first developed cancer therapies and 
still remain as important group of chemotherapy agents in the clinic. Glycolysis was an early 
attractive therapeutic target following experimental and clinical observations that revealed majority 
of tumors experience a remarkable elevation in glucose uptake (Vander Heiden, 2011). Lactate 
dehydrogenase A (Felson et al.), that catalysis conversion of the pyruvate to lactate, was the first 
target identified in glycolysis pathway. Hexokinase 2 (HK2), which phosphorylate glucose to 
glucose-6-phosphate, experience overexpression in many type of the cancer and preclinical mouse 
studies demonstrated that inhibition of the HK2 suppresses lung and breast cancer cells progression 
(Patra et al., 2013). Other potential glycolysis-related targets are D-3-phosphoglycerate 
dehydrogenase (PHGDH) and Serine Hydroxymethyltransferase 2 (SHMT2), enzymes involved in 
de novo serine and glycine synthesis pathway. Currently, it is not known that targeting enzymes 
within one-carbon metabolism, such as PHGDH and SHMT2, would be effective in suppressing 
tumor growth without causing systemic toxicity (Nilsson et al., 2014; Possemato et al., 2011).  

Emerging evidences have begun to show that mitochondrial metabolism is potentially a key target 
for cancer therapy, partially, due to identification of the anticancer effect of metformin, an 
antidiabetic drug to control patients’ blood glucose levels, through several epidemiological studies 
(Weinberg et al., 2015). Laboratory based studies also indicated that metformin inhibits 
mitochondrial ETC complex I, hampers mitochondrial ATP production and constraints the 
biosynthetic capacity of the mitochondria in cancer cells (Griss et al., 2015). Mitochondrial 
metabolism potentially can be targeted by inhibiting autophagy or glutaminase. Autophagy refuel 
TCA cycle by supply amino acids and its short term inhibition has decreased tumor progress in 
mouse models of lung cancer without inducing systemic toxicity (Karsli-Uzunbas et al., 2014). 
Glutamine is an important component to support TCA cycle metabolism in several types of the 
cancer, even in the absence of autophagy, and consequently inhibition of glutaminase can diminish 
tumorigenesis (Xiang et al., 2015). During metabolic stress, tumors can use acetate to support 
cancer cells proliferation and survival which makes acetate metabolism an alternative therapeutic 
target (Comerford et al., 2014).  

Cancer cells elevate their antioxidant capacity to maintain redox balance during growth and 
metastasis, thus selectively targeting of tumors redox metabolism is a potential therapeutic 
approach (Gorrini et al., 2013). The reducing equivalent HADPH plays a key role in cancer cells 
antioxidant defense system but most of the cytosolic and mitochondrial NADPH-generating 
pathways and enzymes, such as PPP, one-carbon metabolism, malic enzyme1, IDH1 and IDH2, 
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are critical for normal cell function, which make them difficult to target. But, there are two potential 
strategies to target NADPH-generating systems with minimal side effects, namely inhibiting 
glucose-6-phosphate dehydrogenase (G6PDH) and administering high doses of vitamin C. G6PDH 
is a catabolic enzyme that participates in oxidative PPP and catalyzes the conversion of NADP+ to 
NADPH. Approximately 400 million people worldwide are estimated to be G6PDH deficient, 
however some cancer types are dependent on this pathway for NADPH generation and maintain 
redox homeostasis, making it potential therapeutic target. In colorectal cancer cells that harbor 
KRAS mutations, administering high doses of vitamin C can induce cancer cell death by depleting 
NADPH and glutathione pools and elevating ROS levels (Yun et al., 2015). 

Most of the metabolic inhibitors are unlikely to be an efficient therapeutic target as a single agent, 
so it would be more effective approach to consider combination of agents to target a malignant 
function through multiple pathways. For example, to impair ATP sources within cancer cells, 
metformin, which inhibits mitochondrial ATP production, can be combined with current clinical 
PI3K inhibitors, which reduces glycolysis. It is necessary to consider that normal proliferating cells, 
such as stem cells and immune cells, mainly reprogram their metabolism similar to cancer cells, 
and adaptive immune system is very sensitive to metabolic perturbations, so inhibition of some 
metabolic processes and associated enzymes may cause systemic toxicity (Erez and DeBerardinis, 
2015; Ito and Suda, 2014; Pearce et al., 2013). Feasibility of metabolic targets for cancer therapy 
depends on whether they can be tolerated by normal tissues as well as whole body metabolism. 

 

Heterogeneity of cancer metabolism 
Cancer is a complex disease that emerges through an iterative process of genetic alteration, clonal 
extension and selection within adaptive and dynamic landscape of host tissue ecosystem, over a 
changing time frame from 1 to 50 years. The intricate cross-talk between cancer cells and 
environment may induce selective pressure in favor of clones that are more capable to adapt for 
and to survive under temporally and specially changing environmental conditions, regardless of 
growth promoting mutations (Greaves and Maley, 2012). Despite tumors general tendency towards 
uniformity of metabolic transformations to support growth stimulating adaptations, heterogeneous 
patterns of cancer mediated metabolic reprograming occurs due to genetic diversity, diverse 
patterns of clonal architecture, dynamic tumor microenvironment and patient-specific whole body 
metabolism (Meacham and Morrison, 2013). Apparently, a common metabolic reprograming 
model cannot describe diverse metabolic alterations happen during tumorigenesis. Cancers like 
colorectal, liver, pancreas, and leukemia rely on glycolysis, while glioblastoma, melanoma and 
lymphoma have been categorized as oxidative cancers (Lehuede et al., 2016; Obre and Rossignol, 
2015). Molecular profiling of 176 diffuse large B-cell lymphoma uncovered the existence of robust 
subtypes of cancer cells characterized by expression pattern of enzymes associated with OXPHOS 
(Monti et al., 2005). Later studies revealed that expression level of TCA cycle and ETC enzymes 
stratify lymphoma into two subtypes with active or non-active OXPHOS metabolism. Analyzing 
expression profiles of metabolic genes from 22 different cancer types, Hu et al. showed general 
similarity between expression profiles of tumors and corresponding normal tissues (Hu et al., 
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2013). Tumors demonstrate distinctive metabolic features characterized by tissue of origin, e.g., 
Myc-driven live and lung cancer cells display different phenotypes related to glutamine metabolism 
(Yuneva et al., 2012). Cancer cell subpopulations depending on spatiotemporal factors such as 
nutrient availability, oxygenation, pH, growth factors and other cellular populations, may adapt 
different metabolic profiles to maintain tumorigenesis. For example estrogen receptor positive 
breast cancer may prefer oxidative phosphorylation (OXPHOS) for energy production but triple 
negative breast cancer (TNBC) usually shows a classical Warburg effect (Choi et al., 2013). 
Prostate cancer uses both OXPHOS and glycolysis for energy production and exhibits switches in 
energy metabolic during different stages of tumor progression (Elia and Fendt, 2016). Also, 
association between proliferating and non-proliferating sub populations of breast cancer and 
different activity states of pyruvate kinase suggested impact of glucose metabolism in 
tumorigenesis (Israelsen et al., 2013). Using intraoperative 13C-glucose infusions to investigate 
metabolism in lung cancer patients, Hensley et al. identified metabolically heterogeneous areas 
within and between tumors, also showed evidence for contributions of non-glucose nutrients in 
different regions, including lactate as alternative source of carbon (Hensley et al., 2016a). 
Metabolic cooperation of the intra-tumor sub-populations can help cancer cells to tolerate spatial 
and temporal fluctuations of the tumor microenvironment. A two-compartment metabolic cross-
talk has been proposed to model the relationship between cells present in hypoxic zone with those 
exist in oxygenated microenvironment. In this model, oxidative cancer cell subpopulations uptake 
lactate released by glycolytic cells within hypoxic area, as extra fuel to elevate mitochondrial 
oxidative metabolism. Hypoxic subpopulations that secretes lactate are mainly characterized by 
high expression of the lactate exporter enzyme monocarboxylate transporters 4 (MCT4) and 
aerobic subpopulations that uptake lactate are characterized by high expression of the lactate 
importer enzyme monocarboxylate transporters 1 (MCT1) (Baenke et al., 2015; Yoshida, 2015). 
Cancer cells are closely interacting with the tumor microenvironment, including endothelial cells, 
macrophages, T cells and fibroblasts, and this interaction has an important role in shaping the 
characteristics of tumor cells. Tumor-microenvironment interactions can influence cancer cells 
metabolic reprogramming to a large extent and induce positive or negative effect on tumor growth 
and survival. Cancer cells may attempt to actively manipulate the microenvironment, by secreting 
diverse repertoire of soluble and vesicle-associated factors, to support tumor progression and 
metastasis, and to resist to therapeutic interventions (Quail and Joyce, 2013). 
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Results 
 

The result section can be divided into two main sub-sections: modeling metabolic interactions 
between species in human gut ecosystem and modeling cancer metabolism at genome-scale.  

 

Modeling metabolic interactions between species in human 
gut ecosystem 
 

CASINO toolbox: multi-objective and multi-dimensional optimization 
A collaborative multi-dimensional optimization approach has been employed to design CASINO 
toolbox. GEMs are based on single-objective linear optimization model, but presence of multiple 
GEMs capable of interacting within the network of the community systems results in a multi-
objective problem with a nonlinear community objective function. Along with nonlinearity of 
objective function, emerged topology of community network enhances the complexity of the 
model. The linearity of variables and the convexity of the solution space are conserved by defining 
three classes of variables: input, output and connecting, distributed into two independent levels of 
optimization: species-level and community level. The initial topology profile of the community 
and interaction between species identified through initialization process in species-level, and 
followed by an iterative multi-dimensional optimization to find final optimum solution. At both 
levels, maximum biomass production has been used as objective function. At species level, each 
model tries to independently maximize its biomass yield, while community tries to synchronize 
competition between individuals to maintain a balanced optimum state (Figure 3).  

 

Figure 3 CASINO toolbox. The problem solving starts with initialization process to find an initial feasible solution 
and topology of community network. Using outputs from initialization, optimization process enters an iterative and 
multi-dimensional loop of community-level and species-level optimization till converging to an optimal solution. 
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Initialization process defines a network structure for the community and tries to reconstruct a 
feasible profile of the network topology and interactions through a cascade of activation. The 
activation cascade starts with classifying species into two classes: primary species which can grow 
independently using available sources, and non-primary species which are partially dependent on 
compounds secreted by other species to grow. Initially identified primary species within the 
community are activated by supplying them available resource to grow.  The community resource 
pool is updated by adding the compounds produced initially by activated species, and the 
community is rescreened to find subset of the non-primary species that can grow using the updated 
resource pool. The updated set of primary species are activated and produce compounds are added 
to the community resource pool. This cascade of activations continues until the whole network has 
been activated. The initialization process finalizes by reconstructing the topology of the 
community, identification of the interactions between species, defining the community object 
function and generating community constraint matrix. At this stage, the defined model is locally 
optimum (species grow on maximum biomass yield rate using resource allocated to them), but 
feasible and non-optimum at community-level (resources distributed between species under 
feasibility conditions but do not satisfy community-level optimality conditions).  

Community-level optimization, is a multi-level iterative optimization process which is based on 
solution space, topology of the community network, constraints and objective function that defined 
at the end of initialization process. In each intermediate stage, community-level optimization finds 
the optimum distribution of resources and distributes them to individual models. At species-level, 
individual models consume allocated resources and secrete compounds at optimum condition, and 
reshape the boundaries of the intermediate feasible solution space to find a new set of community-
level optimal solutions. This iterative process continues till converging to an optimum solution, 
satisfying a defined threshold. 

Objective function is defined at two levels: at upper level maximizing community-level biomass 
together with connection between species, and at species-level maximizing biomass yield of each 
individual model. These two objective functions induce two forces, community force and species 
force, and the summation of these forces defines the direction of optimization within feasible 
solution space. Power centrality degrees of species calculated based on topology of the 
reconstructed community network and used to tune the community force.  Maximize 			 ܵ = 				 [߮	 .[ᇱߠ	× .ாܥ ఓ߱.  																																			ߜ
Subject to ݏ	 = .ߙ	 ܺ + .ߚ ܼ௜௡ + .ߛ ܻ + .ߜ ܼ௢௨௧  ωஜ =	 ߮ 				min(μ୔୐)(i)ߤ =	 ,ߙ] ,ߚ ,ߛ [ߜ 		 ∶ ߠ  									ݔ݅ݎݐܽ݉	ݏݐ݂݂݊݁݅ܿ݅݁݋ܥ = 	 [ܺ, ܻ, ܼ] 		 ∶ ,ݏݐݑ݌݊ܫ 																					ܮܲ  									ݏݎ݁ݐ݁݉ܽݎܽ݌	݃݊݅ݐܿ݁݊݊݋ܿ	݀݊ܽ	ݏݐݑ݌ݐݑ݋ ∶  					ݐݏ݈݅	ݏ݁݅ܿ݁݌ݏ	ݕݎܽ݉݅ݎܲ			
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 is a binary vector that activates certain parameter in the objective equation. The relative centrality ߜ
scores of species (ܥா) is used to adjust binary vector. μ(i) is the biomass yield of individuals and 
μ୔୐ is biomass yield of species belong to PL. 

 

Analyzing diet-induced changes in composition and metabolism of the 
gut microbiota 
To evaluate the predictive power of the toolbox, we used CASINO to predict abundances of species 
and the interactions between them in two in-silico microbial communities including FBBR 
(Faecalibacterium prausnitzii, Bifidobacterium adolescentis, Bacteroides thetaiotaomicron and 
Ruminococcus bromii) and EBBR (Eubacterium rectale, Bifidobacterium adolescentis, 
Bacteroides thetaiotaomicron and Ruminococcus bromii). The model was able to predict the 
contribution of individual species to overall phenotype of each community as well as consumption 
and release profile of the metabolites within communities. Next, we simulated the effect of diet 
intervention on 45 overweight and obese subjects that have been stratified into two groups based 
on their gut microbial gene richness, high gene count (HGC; n = 27) and low gene count (LGC; n 
= 18), with threshold of 480,000 genes (Le Chatelier et al., 2013). Previously, it was shown that 
microbial gene richness of subjects influences the phenotypic response to dietary interventions 
(Cotillard et al., 2013). Individuals in this study subjected to 6 weeks of the energy restricted high 
protein diet, and we used reconstructed GEMs for abundant bacteria B. adolescentis, B. 
thetaiotaomicron, E. rectale, F. prausnitzi and Lactobacillus reuteri to model the changes in human 
gut microbiota at baseline and after dietary intervention. To translate foods to metabolites, the 
dietary macronutrients of diets were calculated and used as inputs for GEMs and CASINO toolbox. 
Our simulations predicted the profiles of the 14 amino acids and three short chain fatty acids 
(SCFAs) secreted by gut ecosystems and contribution of the each species to the overall phenotype, 
before and after dietary intervention. We observed a general reduction in levels of amino acids and 
SCFAs after 6 weeks of energy restricted diet, with higher rate of decrease within LGC group 
compared to HGC group. (Figure 4).  
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Figure 4. Predicting the effect of the dietary intervention on fecal metabolomics of LGC and HGC individuals. 
Summary of average phenotypic predictions for baseline and after 6 weeks. Metabolites clustered at top left shows 
prediction at baseline and the group gathered at bottom right represents predictions after six weeks of dietary 
intervention. The x axis shows the ratio of predicted level of metabolites between HGC and LGC, and the y axis shows 
the sum of predicted level of metabolites in the two groups. The colors show the metabolites’ distance from zero on 
the y axis (from dark blue at the top to dark red at the bottom). 

 

Next, we performed simulations to design a diet required to change gut metabolism for LGC 
individual, assuming as non-optimal phenotype, to improved gut phenotype of HGC individuals. 
Using the abundance of five species F. prausnitzi, E. rectale, thetaiotaomicron, B. adolescentis and 
L.reuteri , the relative consumption of the eight essential amino acids were predicted for LGC 

subjects at baseline and for HGC subjects after 6 weeks of dietary intervention. We observed that 
improved phenotypic state is associated with increased consumption of essential amino acids 
(Figure 5A). The emerged pattern of amino acids consumption rates was correlated with amino 
acids content of different food types, and the direction of the correlation was used to find the 
contribution of dietary consumptions to improve phenotype. The results showed that intake of 
vegetables, dairy products and white meat have positive effect on improving the phenotype, while 
rice, bread and pastries have inverse effect (Figure 5B).
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Figure 5. Modeling dietary composition to improve phenotype. A. Simulated consumption of eight essential amino 
acids by gut microbiome of LGC individuals at baseline (yellow line) and by HGC at week six (green line). B. 
Correlation between amino acids contents of different food categories and baseline/improved phenotypes. The 
direction of CorrImproved - CorrBase points to positive or negative effect of each food to improve phenotype. 

 

Modeling cancer metabolism at genome-scale 
 

Identifying anti-growth factors for human cancer cell lines 
Established human cancer cell lines are routinely used as model systems to study human cancers 
in simplified laboratory conditions. Cell lines derived from original human tumors of different 
tissue of origin, at one time in the history of tumorigenesis, and adapted for in vitro growth in 
extended periods of time. Human cell lines are preferred because they are pure, easily proliferate 
and can be genetically manipulated, when same experimental protocols are used provide 
reproducible results, and identified mechanisms by analyzing their perturbation-response patterns 
can often be extrapolated to behavior of human tumors in vivo. The acquired knowledge from in 
vitro analysis of human cancer cell lines can be used to identify biomarkers, drug targets and 
therapeutic agents’ mechanisms of actions (Jain et al., 2012; Moghaddas Gholami et al., 2013).  
In this study, we used mRNA expression profiles of the 20,314 protein coding genes from eleven 
human cancer cell lines to reconstruct functional cell line specific GEMs (CL-GEMs). Human 
Metabolic Reaction database 2 (HMR2) and 56 metabolic functions are known to occur in all 
human cell types have been used to reconstruct the models. The functionality of the generated 
models have been validated by using consumption and release (CORE) profiles the cancer cell lines 
(Jain et al., 2012). The resulting CL-GEMs contained 4,209 to 4,432 metabolites and 5,297 to 5,584 

A B 
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reactions associated with 2,193 to 2,328 genes. Pair wise comparison of the models showed each 
cell line has an average of 272 metabolites, 353 genes and 517 reactions different from other cell 
lines, and the glioblastoma cell line (U-251 MG) and hepatocellular carcinoma cell line (Hep-G2) 
are the ones with highest degree of difference based on reactions and genes, respectively (Figure 
6). 

 

 
Figure 6. Pair wise comparison of CL-GEMs. Ratios of pair wise difference between CL-GEMS compared to 
maximum observed difference across all models has been presented for reactions on the lower triangular part of matrix 
and for genes on the upper triangular part of matrix. 

 
We defined a heterogeneity degree based on average hamming distance of the constituent 
parameters in reconstructed models and used it to investigate the divergence between CL-GEMs 
as well as to compare CL-GEMs with previously reconstructed GEMs for healthy cell types. For 
each model, heterogeneity degree formulated as: 

                         d୦୧୨	 = 	 ୪୭୥మ൫୦ഥ౟ౠ൯୪୭୥మ൫ୌ౟ౠ൯         i = 1… n, j = 1… m 

Where ݀ ௛௜௝	is the heterogeneity degree of model i based on parameter j, ℎത௜௝ is the average Hamming 

distance of model i to all other models based on parameter j, ܪ௜௝ is maximum Hamming distance 

of model i based on parameter j in comparison to integrated vector of parameter j (ݒܫ௝). In this 

formulation, n is the number of models, m is the number of the constituent parameters (here 
parameter are genes, reaction and metabolites, m = 3), and ݒܫ௝ is a unique union of corresponding 

parameter across all models. For example,ܫ.  ଵ represent a union vector of all genes present at leastݒ
in one of the models.  
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Cell lines experienced a fall in divergence of metabolic networks comparing to healthy cell types 
based on reactions and genes, revealing a tendency towards uniformity of metabolism. However, 
the observed loss of heterogeneity was not significant, and interestingly models preserved their 
heterogeneity based on metabolites indicating capability of cancer cells to metabolize diverse types 
of the metabolites (Figure 6). This analysis highlight the importance of developing cancer specific 
models rather than a generic cancer model, to investigate cancer related metabolic alterations and 
the mechanism behind. 

 
Figure 7. The heterogeneity of CL-GEMs and healthy cell-types. Heterogeneity degrees of CL-GEMs and GEMs 
reconstructed for 83 healthy cell-types are presented by dots and projected on the left hand side axis, and the hamming 
distance between models are demonstrated by lines and projected on the right hand side axis.  There is a slight tendency 
towards loss of heterogeneity in CL-GEMs comparing to normal tissue models, based on genes and reactions, but 
models preserve their heterogeneity degree based on metabolites.  

 
We used the concept of antimetabolites to identify antigrowth factors, by inducing growth 
inhibiting perturbations into the reconstructed CL-GEMs. Antimetabolites are structural analogue 
of endogenous metabolites that can disrupt the cellular process by tricking and inhibiting all 
associated enzymes. Antimetabolites, such as antipyrimidines (e.g. Cytarabine, 5-Fluorouracil), 
antifolates (e.g. Methotrexate) and antipurines (e.g. 6-Mercaptopurine), are among the earliest and 
most commonly used chemotherapeutic agents since their discovery (Hebar et al., 2013; Lazar and 
Birnbaum, 2012). Perturbing metabolic network by testing essentiality of all metabolites, we 
identified 138 antimetabolites that can inhibit the growth of any of eleven CL-GEMs. Next, we 
performed in silico toxicity test by checking the essentiality of detected antimetabolites for energy 
process in GEMs reconstructed for healthy cell types, and ended up with 85 potential antigrowth 
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factors. From 85 identified antimetabolites, 60 were effective on all CL-GEMs and remaining 25 
were effective one maximum two cell lines.  
Analogue of L-carnitine, one of the 60 antimetabolites predicted to be effective on all eleven cell 
lines, was selected for further valuation. L-carnitine plays an essential role in fatty acids 
biosynthesis and mitochondrial energy metabolism. Carnitine-shuttle system transfers long chain 
fatty acids across the mitochondrial membrane to be oxidized through β-oxidation which results in 
cyclical shortening of fatty acids and production of acetyl CoA, NADH and FADH (Carracedo et 
al., 2013). Two cell lines with distinct phenotypic origins, prostate carcinoma cell line (PC-3) and 
epidermoid carcinoma cell line (A-431), were selected for in vitro evaluation using perhexiline 
malate salt (perhexiline) to mimic the effect of L-carnitine analogue. Perhexiline inhibits carnitine 
palmitoyltransferase 1 (CPT1) which form conjugated fatty acids-carnitine to be translocated from 
cytosol to the mitochondria (Figure 8).  

 
 
We evaluated growth inhibitory effect of perhexiline on cell lines by implementing four 
concentrations (2, 4, 8 and 24 μM) at two time points, 24 and 48 hours, with eight replicates. Both 
cell lines experienced significant decrease (t-test, p-value = 0.05) in cells viability in presence of 
perhexiline with concentrations more than 4 μM, validating the relevancy of predicted 
antimetabolite (Figure 9).

Figure 8. The predicted mechanism of 
action of an L-carnitine analogue.  

 L-carnitine was predicted as an essential 
metabolite, and the use of its analogue was 
proposed for inhibiting the growth in all 
eleven human cancer cell lines. L-carnitine 
antimetabolite may inhibit mitochondrial β-
oxidation of fatty acids and reduce de novo 
fatty acids biosynthesis, which are required 
for energy production and synthesis of the 
cell membrane.  
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Heterogeneity of amino acids metabolism affects lung adenocarcinoma 
prognosis 
In this study, we assessed cancer-related metabolic transformations by analyzing mRNA 
expression profile of 108 lung adenocarcinoma (LAC) tumors and 10 matched control samples. 
Using generated RNAseq data, we reconstructed one generic metabolic model, two gender-specific 
models (male and female), four stage based models (stage1 to 4) and 3 smoking-based models 
(smokers, ex-smokers and never smokers) for LAC, and one generic model for normal tissue 
samples (Figure 10A). Reconstructed GEMs have been used to identify potential growth inhibiting 
factors, and after performing in silico toxicity test, we predicted 58 potential non-toxic 
antimetabolites for lung cancer and classified them based on presence in associated metabolic 
pathways (Figure 10B). 

 

 

 

 

 

Figure 9. Inhibitory effect of Perhexiline 
on PC3 and A-431 cell lines.  

 Inhibitory Effect of Perhexiline on 
viability of epidermoid carcinoma cell line, 
A-431 and prostate carcinoma cell line, PC-
3, were evaluated by 2, 4, 8 and 20 µM of 
Perhexiline at 24 and 48 hours. Results for 
analyzing eight replicates of all 
concentrations and corresponding controls 
were demonstrated by bar plots, mean ± 
standard deviation. Significance of 
difference indicated by star symbol * 
(Student’s t-test, p-value = 0.05).  
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Figure 10. Reconstructed GEMs for lung cancer and predicted antimetabolites.  

A. Distribution of genes, reactions and metabolites in generic models reconstructed for cancer and normal samples, as 
well as, GEMs reconstructed based on different clinical parameters. Cancer and normal GEMs are compared based on 
similarity and difference of genes, reactions and metabolites, and expression level of genes associated to reactions 
classified in four levels: not-expressed (FPKM < 1), low (1=< FPKM<10), medium (10=<FPKM<40) and high 
(40=<FPKM). B. distribution of predicted 58 antimetabolites based on their presence in metabolic pathways. X-axis 
represents number of anti-metabolites and y-axis specifies corresponding metabolic pathway.  

 

We followed a systemic approach to investigate the scale and direction of heterogeneity of 
metabolic reprogramming in LAC patients, at three levels of: metabolic network, biochemical 
pathways and individual enzymatic reactions. At the level of metabolic networks, we used Kruskal-
Wallis one-way analysis of variance to compare expression profiles of the genes included in the 
models, and calculated p-value = 0.0048 rejected the hypothesis of the similarity of GEMs at 
significance level of α = 0.01. Performing pairwise Ad Hoc analysis using Fisher’s LSD test with 
confidence level of 0.05, we observed that GEMs reconstructed for matched control samples and 
stage IV samples show highest rate of significance difference (Figure 11). 
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Figure 11. Global shifts in mRNA expression patterns of reconstructed GEMs for lung cancer.  Markers represent 
pairwise estimate of difference resulted from multiple comparison analysis and lines show upper and lower bounds. 
Green markers show normal GEM and red borderline around markers shows stage IV model. 

 

At biochemical pathways level, we calculated the divergence in expression patterns of 126 
metabolic pathways define in HMR2 database as: ∆	ܧ௜௝ 	= logଶ ௜ܺ௝ − logଶ)	݁݃ܽݎ݁ݒܣ ௜ܻ	)         i = 1… n, j = 1… m 

Where ௜ܺ௝ is expression vector of genes associated to pathway i in tumor sample j, and Yi is 
expression vector of genes associated to pathway i in normal control samples. n is number of 
pathways and m is the number of samples. Wilcoxon signed ranked test with p-value = 1e-03 has 
been used to determine significant up/downregulation of metabolic pathways using over 
calculated	∆	ܧ. Fraction of significantly upregulated (H) and downregulated (L) samples were 
calculated and the results were transferred to (H+L) and (H-L) coordinates, to observe the patterns 
of up/downregulation within samples. As expected pathways necessary for cell division and 
proliferation, such as nucleotide metabolism, purine and pyrimidine metabolism, were frequently 
upregulated. On the other hand, fatty acids metabolism showed frequent downregulation. Genes 
associated with amino acids metabolism demonstrated heterogeneous patterns of expression with 
slight tendency towards upregulation, except for arginine and proline metabolism which was one 
of the most frequently upregulated metabolic pathways, placing within the upper 96 percentile of 
all 126 metabolic pathways studied here (Figure 12). 

 

 

 



28 
 

 

Figure 12. Cancer related transformations in expressional profiles of metabolic pathways.  Genome scale 
heterogeneity of metabolic pathways across LAC patients are shown in H+L and H-L coordinates. H is fraction of 
patients in which a pathway is significantly upregulated and L is fraction of patients in which a pathway is significantly 
downregulated. Wilcoxon signed ranked test adjusted for multiple hypothesis testing. P-value<0.01 has been used to 
determine the significance of changes.  

 

To get further insight into arginine and proline metabolic pathway, we used the quartile coefficient 
of dispersion (Bonett, 2006) to analyze variation of expression of protein coding genes associated 
with each biochemical reaction within pathway. We found that in contrast to general pattern of 
significant upregulation of pathway in LAC samples, argininosuccinate synthase 1 (ASS1) which 
catalysis the conversion of citrulline to argininosuccinate in arginine biosynthesis, shows high 
variation of expression across the LAC patients.  Therefore, we stratified patients based on ASS1 
expression level into two groups, upper and lower 15 percentile groups. Previously, loss of ASS1 
activity has been reported in prostate cancer, malignant melanoma, hepatocellular carcinoma and 
mesothelioma (Long et al., 2013; Patil et al., 2016; Phillips et al., 2013; Rabinovich et al., 2015). 
Interestingly, here we found that ASS1 shows a dual activity states in LAC patients, samples in 
lower percentile group shows loss of activity compared to control samples but upper percentile 
group shows average of 2.5 fold upregulations compared to control samples (Figure 13A). Next, 
we did survival time analysis using Kaplan-Meier estimator, to investigate association between 
ASS1 variation of expression and life expectancy of LAC patients. From this, we found significant 
decrease (Mann–Whitney U test, p-value = 0.05) in survival time patients placed in lower percentile 
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group compared with upper percentile group, going down from median survival time of 1950 to 
1270 days (figure 3C). We confirmed this findings analyzing RNAseq data form 490 LAC samples 
and 50 matched control samples available in TCGA database. 

 

Figure 13. Expression of ASS1 in LAC and control samples.  A. q-q- plot shows range variation in expression of 
ASS1 within cancer and normal samples, analyzed in this study and from TCGA database. Cancer samples shows 2.5 
fold and 3.5-fold higher expression variation in our study and TCGA data, respectively. B. survival time analysis. 
Survival time of   patients stratified by expression of ASS1 in two groups: upper and lower percentile groups. Dash line 
demonstrated median survival time of each group in days  

 

Following these observations, we continued with analyzing differences in metabolism of patients 
stratified by expression of ASS1 into upper and lower percentile groups. We found significant 
upregulation of carnitine shuttle, β-oxidation of fatty acids, acyl-CoA hydrolysis and TCA cycle in 
upper percentile group compared with lower percentile group. This indicates more active 
mitochondria and elevated oxidative energy metabolism in upper percentile group. Analyzing 
expression pattern of the biochemical reactions within arginine and proline metabolic pathway, we 
found downregulation of the arginine catabolizing enzymes arginase and nitric oxide synthase, 
upregulation of the creatine kinase, which catalysis the reversible conversion of the creatine to 
phosphocreatine, in upper percentile group (Figure 14A). Phosphocreatine is a high energy 
molecule that can diffuse from mitochondria to cytosol and be converted to creatine resulting in 
ATP production. Phosphocreatine can serve as rapidly releasable reserve of energy during short 
term and high energy demanding periods (Schlattner et al., 2006). This findings indicates a possible 
mechanism of energy fluctuations tolerance in tumor cells within upper percentile group, where 
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they activate phosphocreatine shuttle to maintain a buffer for ATP production under effect of 
hypoxic condition (Figure 14B).  

 

 

Figure 14. Differences in metabolism of patients stratified by ASS1.  A. in upper percentile group of patients 
stratified by expression level of ASS1, only the path from arginine to creatine-phosphate was upregulated. Figure 
shows significant upregulation (Mann–Whitney U test, p-value = 0.05) of creatine phosphate shuttle enzymes: 
mitochondrial creatine kinases 1A and cytosolic creatine kinase B (CKB) in our study and mitochondrial creatine 
kinases 1A and 1B (CKMT1A and CKMT1B) in the TCGA database. B. Proposed energy buffer system which activated 
by creatine-phosphate shuttle to tolerate fluctuation in energy supply. Pcr: phosphocreatine; om: outer membrane; im: 
inner membrane.   

 

We proceed with investigating the association between ASS1 expression at mRNA and protein 
levels, using immunohistochemistry to analyze protein expression pattern of the same tissue 
samples from LAC patients. Consistent with RNAseq data, we found significant upregulation 
(Mann–Whitney U test, p-value = 1e-2) of protein level in upper percentile group (Figure 15A). 
Next, we stratified patients based on ASS1 protein expression level into upper and lower 25 
percentile groups, and found significant (Mann–Whitney U test, p-value = 0.05) increase in survival 
time of the patients placed in upper percentile group compared to lower percentile group, rising 
from 1324 to 1970 days (Figure 15B).
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Figure 15. Protein expression profile of ASS1 in LAC samples.  A. Change in protein level related to variation of 
ASS1 transcript level. LAC samples classified into upper and lower 25 percentile groups based on RNA expression 
data to assess the change in protein level between two groups. Protein level was significantly elevated in upper 
percentile compared to lower percentile group (Mann–Whitney U test, p-value = 1e-3). B. Survival time analysis. LAC 
samples stratified into upper and lower 25 percentile groups based on antibody staining score, and Kaplan-Meier 
estimator was used to compare survival time of the two groups. Blue line represents upper percentile group and red 
line represents lower percentile group. Median survival time of each group is depicted in the figure by dash line and 
corresponding value in days. UPG: upper percentile group; LPG: lower percentile group. 

 

Stratification of lung cancer patients based on heterogeneous 
expression of FABP5 
Cancer progresses by a repeated process of genetic diversification and clonal expansion within the 
adaptive microenvironment of tissue-of-origin. Irregular and divers patterns of tumors initiation, 
progress and metastasis result in different responses to similar treatments within pathologically 
defined same subtypes of cancer (Greaves and Maley, 2012). Using distinctive molecular profiles 
of the cancer cells, generated by high-throughput omics technologies, to classify heterogeneous 
populations of cancer cells into meaningful biological and clinical subtypes, is one of the main 
goals of the computational and systems biology. Recent attempts in stratification of tumors based 
on RNAseq data have resulted in discovery of the new subtypes in breast cancer, ovarian cancer 
and glioblastoma (Hofree et al., 2013).  

In this study, we followed a systemic approach to investigate the association between prognosis of 
lung squamous cell carcinoma (SCC) patients and heterogeneous patterns of genes mRNA 
expression, using RNAseq data generated for 67 SCC samples and 7 normal lung tissue samples. 
Three consecutive steps of filtrations have been employed to filter genes based on heterogeneity of 
expression, correlation between heterogeneity and survival time of patients, and consistency of 
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mRNA expression and protein expression levels. We defined relative quartile coefficient of 
dispersion   (RQCD) to measure comparative variation of expression of protein coding genes. 
Comparative expression dispersion for each gene is calculated as: 

௜ܦܥܴܳ =  (௡௜ݍ௖௜ݍ	)ଶ݃݋ܮ	
 Where ݍ௖௜ is quartile coefficient of dispersion (QCD) of gene i through cancer samples and ݍ௡௜ is 
QCD of gene i across normal samples. For each gene, QCD calculated as: 

௜ݍ = 	ܳଷ௜ −	ܳଵ௜ܳଷ௜ +	ܳଵ௜ 
Where ܳଷ௜ is the third quartile and ܳଵ௜ is the first quartile of expression of gene i across samples. 
To find maximum variant genes (MVG), a cut-off threshold of more than 95 percentile of RQCDs 
has been used. Next, we stratified patients into two groups, upper and lower 25 percentile groups, 
based on expression level of MVGs, and used Kaplan-Meier estimator to assess the effect of this 
stratification on survival time of SCC patients. We used the same procedure to investigate RNAseq 
data available in TCGA database for 490 SCC and 50 normal control samples, intersected the 
results and found 26 genes with same properties in both studies. Next, we implement the third 
filtration using reliability score defined in HPA database, and found 14 out 26 genes with 
consistency between mRNA and proteins expression levels. These 14 genes show high 
heterogeneity of expression in cancer samples but relatively homogeneous expression pattern in 
normal samples, their heterogeneity of expression is associated with significant change in survival 
time of SCC patients, and have high reliability score. We classified these 14 genes into anti-cancer 
and pro-cancer groups, based on negative or positive effect of their variation of expression on 
survival time of patients, which resulted in 6 anti-cancer and 8 pro-cancer genes. Next, we 
investigate the effect of pairing genes in each group on survival time of SCC patients and observed 
tendency towards synergetic effect of pairing in pro-cancer group without recognizable pattern in 
anti-cancer group (Figure 16).  

We selected fatty acid binding protein 5 (FABP5), the only metabolic gene within the group of pro-
cancer genes which showed completely different expression pattern compared with other members 
of the lipid binding protein family (Figure 17 ), and stratified SCC patients to upper and lower 25 
percentile groups based on expression of FABP5. We used Mann–Whitney U test (p-value = 0.01) 
combined with minimum fold change = 3 to investigate global expression changes consistent with 
FABP5 variation of expression, and detected pattern of 6 significantly upregulated keratins in upper 
percentile group (Figure 18A). Considering very low expression level of these keratins in normal 
samples, and keeping in mind that keratins have widely been used as diagnostic and prognostic 
markers in tumor pathology, this distinctive pattern of expression has potential to be evaluated as 
prognostic marker for SCC patients stratified by high expression of FABP5. 
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Figure 16. Association between survival time of patients and stratifying by pairs of genes.  Positive or negative 
effect of the pairing genes in each group on survival time of the SCC patients has been investigated. Genes placed in 
pro-cancer or anti-cancer groups paired with other members of the same group, SCC patients stratified by these pairs, 
and p-value for the significance of difference between survival times of the stratified patients has been calculated. 
Rows show genes names with p-values before pairing, and columns represent fold change of p-values after pairing in 
log2 scale. Positive values show more significant stratification of patients after pairing genes and negative values 
represent invers effect. 

 

 

Figure 17. Expression patterns of members of the lipid binding protein family across SCC and normal control 
samples.  Positive or negative effect of the pairing genes in each group on survival time of the SCC patients has been 
investigated. Genes placed in pro-cancer or. 

 

Next we analyzed co-expression pattern of 382 genes, related to cancer pathway in KEGG database, 
with FABP5, using distance and direction of the change in correlation of expression of each gene 
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with FABP5 from normal to cancer. We defined correlative distance for gene i in cancer samples 
from to normal samples as: 

Ri = rci
b – rni

b       i = 1… n 

Where rci
b is the Pearson correlation of expression of gene i with reference gene b in cancer samples, 

rni
b is the Pearson correlation of expression of gene i with reference gene b in normal samples, Ri 

is the correlation distance of gene i, and n is the number of genes analyzed. Positive values of Ri, 
defined here as gain of correlation, shows increased correlation of expression with reference gene 
moving from normal state to cancer, and  negative values of Ri, define here as loss of correlation, 
shows decrease correlation of expression with reference gene moving from normal state to cancer. 
Projecting calculated correlative distances on correlation-correlation (Corr-Corr) plot revealed that 
hypoxia inducible factor 1 alpha subunit (HIF1α), placental growth factor (PGF) and fibroblast 
growth factor 11(FGF11) are among the group with highest gain of correlation, and  epidermal 
growth factor (EGF) and growth factor receptor bound protein 2(GRB2) belong to the group with 
highest loss of correlation (Figure 18B).  

 

 

Figure 18. Patterns of expression change consistent with FABP5.  A. Global expression change consistent with 
FABP5 upper and lower percentile groups. 27 genes were detected to be significantly upregulated and 2 genes were 
detected to be significantly downregulated in upper percentile group, using Mann–Whitney U test with p-value = 0.01 
and applying minimum 3 fold change cut-off. Vertical axis shows fold change of expression in upper percentile group 
compared with normal samples and horizontal axis shows fold change of expression in upper percentile group 
compared with lower percentile group, in Log2 scale. B. Co-expression pattern of cancer related genes with FABP5. 
Changes in expressional correlation of cancer related genes with FABP5, from normal samples to cancer samples, has 
been demonstrated in the plot. Genes with highest gain of correlation in SCC samples clustered in lower-left corner of 
plot, and genes with highest loss of correlation in SCC samples placed in upper-left corner of plot. Red markers: highest 
gain of correlation; green marker: highest loss of correlation.   
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We continued with investigating differences in metabolism of patients stratified by FABP5 into 
two sub-groups. At the level of biochemical pathways, we found upregulation of the glycolysis, 
and fatty acids activation in endoplasmic reticulum (ER), and downregulation of the fatty acid 
biosynthesis and mitochondrial carnitine shuttle in upper percentile group. At the level of 
biochemical reactions and within the central metabolism, Glucose transporter 1 (GLUT1), 
monocarboxylate transporter1 (MCT1) which transports lactate, and the fatty acid translocase 
FAT/CD36 were significantly overexpressed. On the other hand, mitochondrial pyruvate carrier 1 
(MPC1) and Pyruvate Dehydrogenase Kinase 1 (PDK1) were significantly downregulated in upper 
percentile group of patients. Overexpression of GLUT1 and MACT1, and downregulation of the 
MPC1 indicates high glycolytic activity. Consistent with this change, pyruvate Dehydrogenase 
Kinase 1 (PDK1) which regulates metabolic flux through TCA cycle by inhibiting formation of 
acetyl-CoA from pyruvate, and HIF1α which regulates glycolysis flux, were significantly 
overexpressed in upper percentile group. Also, we observed overexpression of Acyl-CoA 
Synthetase 3 (ACSL3) which activates acyl-CoA in ER and diacylglycerol o-acyltransferase 2 
(DGAT2) which catalysis the rate limiting reaction in synthesis of triglycerides, and 
downregulation of monoacylglycerol lipase (MGLL) which regulates intracellular level of fatty 
acids by mobilizing fatty acid from lipid droplets in upper percentile group. 

  

Figure 19. Metabolic switch in SCC patients stratified by FABP5.  Figure depicts main differences in central 
metabolism of SCC patients classified in two upper and lower percentile groups by expression level of FABP5.  

 

All these observations pointed to a bi-state model of fatty acid metabolism in SCC, proliferation 
state and migration state, which is detectable by expression of FABP5. Proliferation state is 
characterized by fatty acid oxidation and de novo biosynthesis under moderate hypoxia. Migration 
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state is characterized by elevated fatty acids uptake and storage under sever hypoxia (Figure 19). 
Possibly, recurrent periods of hypoxia and re-oxygenation induce selective pressure in favor of 
tumor cells to downregulated energy-intensive fatty acid synthesis and accumulate fatty acids in 
lipid droplets that can be used as energy source upon re-oxygenation. Our findings, provide 
mechanistic insights into how different directions of metabolic reprogramming within SCC patients 
can be characterized by heterogeneous expression patterns of particular gene. This property has 
important implications for personalized treatment, and can be used for stratification of new sub-
classes of cancers and identification of potential new drug targets.
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Conclusion 
This thesis aimed to use computational and systems biology approach to get new insights into how 
complex biological systems reprogram their structure and activities to adapt for internal and 
external perturbations.  

In Paper I, we described how genome scale metabolic modeling can be used to explore metabolic 
interactions between the predominant subpopulation of human gut microbiota and its host. We 
developed CASINO toolbox, a computational platform based on multi-objective and multi-
dimensional optimization approach, to simulate gut microbiota composition and interactions 
through a dietary intervention. We identified association between consumption of 8 essential amino 
acids and healthier phenotype of gut microbiota. We also showed that CASINO can be used to 
predict dietary change compatible with specific phenotypic transformation in gut microbiota, e.g. 
from non-healthy to healthy phenotype. CASINO can be improved and extended towards a more 
comprehensive platform capable of designing personalized dietary interventions and/or predicting 
beneficial probiotic supplements for treatment of the specific metabolic disorders which are related 
to gut microbiota. 

In Paper II, we demonstrated potential of genome scale metabolic modeling on predicting effective 
growth inhibiting factors for human cancer cell lines. We used mRNA expression data and 
reconstructed cell line specific genome scale metabolic models (CL-GEMs) for eleven human 
cancer cell lines with different phenotypic origin. We used generated CL-GEMs to predict potential 
antimetabolites, and experimentally validated growth inhibitory effect of the L-carnitine analogue, 
one of the identified targets. The study of human cancer cell lines metabolism using CL-GEMs has 
revealed promising performance of the GEMs in identification of new therapeutic targets, as well 
as gaining more mechanistic insight into cancer-related metabolic reprogramming. This approach 
can be used and be extended to study the effects of combining established and new therapeutic 
agents to design more effective cancer-specific therapeutic strategies.  

In Paper III, we used context-specific genome scale models, reconstructed using mRNA 
expression profiles of lung adenocarcinoma (LAC) and normal lung tissues samples, to study 
genome-scale heterogeneity of the metabolic reprogramming in lung cancer. Investigating direction 
of changes in cancer-related metabolic reprogramming at three levels of whole metabolic network, 
biochemical pathways and reactions, revealed homogeneous behavior of pathways necessary for 
cell division and proliferation, and heterogeneous behavior of glycolysis and majority of amino 
acids metabolism across lung cancer patients. We identified divergent regions within arginine and 
proline metabolism, one of the pathways with high homogeneous pattern of expression, and found 
significant difference between survival times of patients stratified by expression level of the 
argininosuccinate synthetase 1 (ASS1), one of the enzymes with extreme heterogeneity of 
expression. We observed a difference in energy metabolism of patients stratified by ASS1 
expression which can explain significant change in survival rate of patients. 
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Following observing association between heterogeneous expression of an enzyme and survival 
time of the patients in previous study, in Paper IV we proceed with defining a systemic approach 
to investigate correlation between heterogeneity of expression and cancer prognosis. For this study, 
we used generated RNA sequencing (RNAseq) data from lung squamous cell carcinoma (SCC) 
biopsies and control samples and implemented three consecutive filters that resulted in 14 genes 
with desired property. These gene were classified into pro-cancer and anti-cancer groups based on 
association between genes variation of expression and survival time of SCC patients. We found 
significant difference in survival time of the patients stratified in two groups by expression level of 
fatty acid binding protein 5 (FABP5), and observed distinct behavior of fatty acid metabolism in 
these groups which was characterized by expression of FABP5. Our analysis and findings in papers 
II and IV, provide mechanistic insights into how different directions of metabolic reprogramming 
within same sub-types of a specific cancer, can be projected in and be characterized by 
heterogeneous expression patterns of particular genes. This property has important implications for 
personalized treatment, and can be used for stratification of new sub-classes of cancers and 
identification of potential new drug targets.
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Perspective 
Considerable progress has been made in the past two decades to understand the mechanisms 
underlying metabolic reprogramming in cancers and biological and medical consequences and 
liabilities of this transformation. A common theme that has arisen from studies on cancer biology 
is essentiality of metabolic reprogramming for biology of tumors, especially to ensure cancer cells 
ability to proliferate and survive by manipulating metabolic pathways to supply energy, produce 
biosynthetic precursors, and maintain redox homeostasis. Furthermore, comprehensive molecular 
profiling of cancer cells using high-throughput technologies and wide-range studies on cultured 
tumor cells have revealed a remarkable intra-cancer and inter-cancer heterogeneity of metabolic 
transformations. We have passed the era when cancer metabolism was simply considered to be the 
Warburg effect. 

Our knowledge on molecular mechanism of cancer related metabolic reprogramming mainly 
gained by in vitro studies using immortalized cancer cell lines rather than intact tumors. Perhaps, 
modeling an exact tumor microenvironment in culture is impossible, but we need more advanced 
culture conditions to cover the in vivo conditions as much as possible. Developing technologies for 
direct in vivo analysis of metabolic fluxes, along with computational and mathematical modeling 
platforms to understand the distinct metabolic phenotypes of different cell types (cancer cells, 
fibroblasts, lymphocytes, macrophages, and endothelial cells) within solid tumors in context of 
whole microenvironment, will play an important role in detecting metabolic targets and deploying 
them in clinical trials. This can help us to understand metabolic interactions between different 
subpopulations of cancer cells within a tumor, and between tumor and stroma, providing new 
therapeutic opportunities. Studies on cancer metabolism mainly have been focused on metabolic 
transformations that support cancer cell proliferation and we have learned a lot, but much less is 
known about the metabolism of non-proliferating malignant cells with high potential for survival 
under severe tumor microenvironment conditions, and to develop drug resistance. It has been 
hypothesized that tumors metabolic plasticity can contribute to drug resistance and cancer 
metastasis, so developing novel experimental methods and computational approaches can help to 
get more insight into mechanism of plasticity-induced resistance and survival of cancer cells, and 
to design more effective therapeutic strategies. Our approach on characterizing heterogeneity of 
metabolic transformations within the same sub-types of lung cancer can be extended by including 
more molecular profiles and pathophysiological parameters. Developing mathematical models to 
capture and integrate different facets of cancer heterogeneity can provide important clues about 
how cancer cells respond to treatment and develop drug resistance. Now, it is clear that cancer risk 
increases in patients with disease such as obesity and diabetes, but we don’t have enough insight 
into how these diseases interact with cancer and how to break the links. We believe that approach 
we followed in simulating metabolic interactions between host and gut microbiota, has high 
potential to be extended for modeling metabolic interactions between tumor and host in quest for 
more effective personalized treatment strategies.  



40 
 

In brief, why and how metabolism becomes transformed from normal to neoplastic? Which 
functions are activated or deactivated by this transformation? What are the metabolic effects of the 
oncogenes and tumor suppressor genes? What are the main metabolic interactions between cancer 
cell and microenvironment? How to use detected metabolic reprogramming for therapeutic 
interventions? And, what is the impact of whole-body metabolism on cancer progression and drug 
response are among key research-driving questions in the field. These are all key questions going 
forward and I am confident that systems biology approach, by synthesizing model-driven and data-
driven approaches, will assist in answering these questions in the future.
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