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Multi-electrode arrays (MEA) are increasingly used to investigate spontaneous neuronal

network activity. The recorded signals comprise several distinct components: Apart

from artifacts without biological significance, one can distinguish between spikes (action

potentials) and subthreshold fluctuations (local fields potentials). Here we aim to develop

a theoretical model that allows for a compact and robust characterization of subthreshold

fluctuations in terms of a Gaussian statistical field theory in two spatial and one temporal

dimension. What is usually referred to as the driving noise in the context of statistical

physics is here interpreted as a representation of the neural activity. Spatial and temporal

correlations of this activity give valuable information about the connectivity in the neural

tissue. We apply our methods on a dataset obtained from MEA-measurements in an

acute hippocampal brain slice from a rat. Our main finding is that the empirical correlation

functions indeed obey the logarithmic behavior that is a general feature of theoretical

models of this kind. We also find a clear correlation between the activity and the

occurrence of spikes. Another important insight is the importance of correctly separating

out certain artifacts from the data before proceeding with the analysis.

Keywords: multi-electrode-array, statistical field theory, subthreshold oscillations, hippocampus, slice

preparation

1. INTRODUCTION

The multi-electrode arrays (MEA) system is becoming an increasingly important tool for
investigations of neural activity, both in ex vivo brain tissue (e.g., a hippocampal slice preparation
from rat or mouse Egert et al., 2002) and in in vitro neuronal cultures (e.g., from embryonic rodent
brain tissue Illes et al., 2014 or human stem cells Heikkilä et al., 2009). This technology permits
simultaneous long-term recordings from a fairly large number of extra-cellular electrodes. See e.g.,
Nam and Wheeler (2011) and Spira and Hai (2013) for general reviews of multi-electrode array
technology.

Each electrode records alterations of the field potential elicited by spike activity of one or a
few neurons in close vicinity of it. Extracellular spikes have an amplitude of 10–500 µV , and
are considered as a manifestation of the intracellular action potential which has a much higher
amplitude of 100 mV. Many methods have been developed for the detection and sorting of spike
events (see e.g., Cotterill et al., 2016, for a recent review), and analysis of the statistical properties
of spike trains is one of the major modes of investigating neural activity (see e.g., Rieke et al., 1997,
for a pedagogical introduction to this field).
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The focus of the present paper will however not be on the
spikes, but rather on the subthreshold behavior of the potential
during interspike intervals. This is often referred to as the
local field potential (LFP). The extraction of these subthreshold
fluctuations out of MEA-data streams which are contaminated
with artifacts and spiking activity (see e.g., Waldert et al., 2013),
as well as to develop the appropriate mathematical approaches
applicable to describe their properties, are challenging issues in
the research field of neuroscience.

The LFP is usually assumed to be a superposition of
contributions from the neural activity in a fairly large
neighborhood of an electrode and also gets modified by other
types of cells than neurons. Typically it has an amplitude of a
few µV , i.e., much less than the spikes. In contrast to the rather
stereotyped spike waveforms from individual neurons, the LFP
has a much more stochastic appearance, reflecting its origins
from a large and rather heterogenous ensemble of neurons
(Illes et al., 2014). Furthermore, spikes can only be recorded
in relatively close vicinity to the recording electrode while the
distance between recording electrode and LFP source can be
several micrometers and millimeters (Destexhe and Bedard,
2013). Thereby, the LFP recorded in isolated brain structures
actually carries important information about the transport
properties of the intra-cellular medium (Bedard and Destexhe,
2015), the spatial and temporal structure of the neural activity
(Destexhe and Bedard, 2013; Linden et al., 2014), and also the
connectivity of neurons within brain tissues (Reichinnek et al.,
2010). There are different functional aspects of neuronal circuits
which can be revealed by modeling and analyzing LFP. Current-
source density analysis is used to reveal the neural source of
recorded LFP (Ness et al., 2015) which is still controversial (Riera
et al., 2012). Since the pioneering work of Berger in the 1920s,
LFP band-separations techniques has been devoted to analyzing
the LFP in the frequency domain (see e.g., Buzsaki, 2011) with
the aim of identifying physiologically and pathophysiologically
relevant frequency bands. In addition, decomposing LFP into
different frequency bands are used to correlate them to cognitive
or motoric function as well as neuronal spiking activity.
The aim here is to decipher brain activity in controlling
perception, cognitive, motoric function and, in particular for the
hippocampus, memory and learning abilities. Thus, the analysis
of spike-LFP relationship represents another approach. Huge
efforts are currently being done by model inversion approaches
by creating artificial neuronal networks which produce realistic
LFPs. In this approach, models of neural networks are combined
with experimental data to identify the best-fit model. However,
studies in which the applicability of mathematical or physical
theories is evaluated by comparing the result of the model with
experimental data are still rare but needed (Ness et al., 2015).

We aim to describe the spatiotemporal properties of
subthreshold fluctuations in the rat hippocampal circuit by
applying amathematical description based onGaussian statistical
field theory to MEA data. Our study puts more emphasis on the
spatio-temporal structure of correlations and less on oscillations.
A generic feature of theoretical models in two spatial and one
temporal dimension is a logarithmic behavior at short scales;
as we will see this prediction is convincingly confirmed by our

empirical material and is in a sense our main conceptual finding.
From a perspective of practical electrophysiology, we would also
like to emphasize the importance of correctly separating out
the effects of certain artifacts without biological relevance before
proceeding with the analysis.

2. METHODS

2.1. Multi-Electrode Array Setup
Our dataset was acquired with a multi-electrode array
system from Multi Channel Systems GmbH comprising
60 titanium/titanium nitride electrodes of 30 µm diameter
arranged in a square grid pattern with 200 µm spacing on a
non-conducting glass support. One of the electrodes served
as a reference, and another one was not used, leaving 58
active electrodes. The voltage resolution, reflecting the binary
representation of the data, was 2−16 × 10mV ≃ 0.15µV. An
0.3 mm thick acute hippocampal slice from a 44 days old rat was
fixed to the array field with a platina-nylon grid. See Figure 1

for a microscope image showing the positions of the electrodes
and some of the relevant anatomical structures. Perfusion
with a defined artificial cerebrospinal fluid (aCSF) provided
the slice with glucose, a physiological salt concentration and
osmolality. The layer of fluid above the slice had a thickness
of several mm. The electrode potentials were sampled at 25
kHz during 600 s, yielding a total dataset of 870 × 106 voltage
measurements.

Conventionally, various filters are applied to the measured
signals, but several studies demonstrate that such procedures do
not remove spike components in LFPs (subthreshold activity)
(Ray et al., 2008; Quilichini et al., 2010; Ray and Maunsell, 2011),
and we will not use this approach. See however Figure 2 for the
high and low pass filtered (above or below 50 Hz respectively)
raw data recorded on the 59 electrodes (including the reference
electrode just below the middle of the leftmost column).

FIGURE 1 | Microscope image of a hippocampal slice on the

multi-electrode array. The inter-electrode distance is 200 µm. The reference

electrode (just below the middle of the leftmost column) and the unused

electrode (just to the left of the upper right corner) are indicated. We also give

the approximate positions of the regions CA1, CA3, and the Dentate Gyrus as

can be determined by usual anatomical considerations.
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FIGURE 2 | Left: The high-pass (> 50 Hz) filtered signals on the 59 electrodes (including the reference electrode). Right: The low-pass (< 50 Hz) filtered signals.

These figures are produced with a 2nd order Butterworth IIR filter. Each square comprises the entire 10 min registration and a ±50µV voltage interval.

2.2. Spikes
Since the spikes are not our primary interest, but rather obscure
the analysis of the much smaller subthreshold fluctuations, they
must be detected and removed from the dataset. We do this by
a rather simple algorithm, which certainly leaves much room
for improvements but is sufficient for our purposes: To detect
spike events on an electrode at spatial point r, we consider the
difference d(r, t) between the potential p(r, t) at time t and its
average during a preceding time interval of some length1taverage.
We consider a spike to be fired at time t if the magnitude
|d(r, t)| of this deviation then attains its maximum in the time
window of length 21twindow centered at t and exceeds a threshold
value dthreshold. In view of the typical ms timescale of the action
potential dynamics, we used 1taverage = 10 ms and 1twindow =
2 ms. Concerning the threshold value, the value dthreshold =
20µV certainly misses many true but smaller spike events, but
since our goal here is merely to remove large events that would
interfere with the subsequent analysis, this is not a matter of
great concern to us. On the other hand, picking a too low
threshold value would give many false positives, and would lead
us to remove large time intervals of intense neural activity,
i.e., precisely the data that is our prime interest. In any case,
the precise values of these parameters are not critical for our
discussion.

A spike at time t can now be removed by replacing the true
potential p(r, t′) in the interval t − 1tspike < t′ < t + 1tspike for
some time 1tspike by the linear interpolating function:

plinear(r, t
′) =

t′ − t + 1tspike

21tspike
p(r, t + 1tspike)

−
t′ − t − 1tspike

21tspike
p(r, t − 1tspike). (1)

We used 1tspike = 2 ms, which in view of the observed spiking
frequency leads to an almost negligible loss of subthreshold data,
while still cutting out all large potential deviations. Henceforth,
p(r, t) will always refer to the potential with all the spikes removed
in this way.

2.3. The Stochastic Field Theory
Once the spikes have been removed, our aim is to describe
the dynamics of the remaining subthreshold fluctuations. Our
approach is to construct a simple model of this as a stochastic
process which reproduces the main features of our dataset.
Viewing the potential as the sum of a very large number of
independent small contributions from different sources indicates
(by the central limit theorem of statistics) that it should be
normally distributed. This agrees well with the properties of our
dataset, and it is thus a reasonable first approximation to limit
ourselves to Gaussian models. We choose the reference potential
so that the expectation value of the potential p(r, t) vanishes at all
spatial points r and times t:

〈p(r, t)〉 = 0. (2)

All information is now contained in the two-point function
〈p(r1, t1)p(r2, t2)〉, and the higher-point functions can be
expressed in terms of this by the Isserlis’ theorem (in statistical
physics mostly known as Wick’s theorem), e.g.,

〈p(r1, t1)p(r2, t2)p(r3, t3)〉 = 0 (3)

and

〈p(r1, t1)p(r2, t2)p(r3, t3)p(r4, t4)〉
= 〈p(r1, t1)p(r2, t2)〉〈p(r3, t3)p(r4, t4)〉

+ 〈p(r1, t1)p(r3, t3)〉〈p(r2, t2)p(r4, t4)〉
+ 〈p(r1, t1)p(r4, t4)〉〈p(r2, t2)p(r3, t3)〉. (4)

Clearly, average neural activity depends both on the spatial
location (related to different anatomical structures) and on time
(reflecting the appearance of specific events during the course
of the registration). However, in particular in view of the finite
amount of data available, a natural first step of the analysis is
to disregard these aspects. To begin with, we will thus make the
assumption that the stochastic process is stationary in time as well
as homogeneous and isotropic in space. We then have:

〈p(r1, t1)p(r2, t2)〉 = S(|r2 − r1|, |t2 − t2|) (5)
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for some covariance function S(ρ, τ ) which will be our primary
object of study. Both of these assumptions certainly represent
important oversimplifications, and later in the paper we will
consider more general models.

On short time-scales (up to about 100 ms or so), the potential
p(r, t) fluctuates around a slowly varying equilibrium potential
µ(t) that is more or less independent of the spatial position r.
We propose to describe this by a local, Gaussian, Markovian
stochastic model of the form:

∂p(r, t)

∂t
= −γ

(

p(r, t)− µ(t)
)

+ α∇2p(r, t)+ ξ (r, t). (6)

Here ∇2 =
∑2

i= 1 ∂i∂i is the Laplacian operator in two spatial
dimensions. The relaxation constant γ represents the tendency
of the potential to return to its equilibrium value µ(t), and
the diffusion constant α represents the tendency of spatial
inhomogeneities to be smoothed out. The last term, which in
stochastic modeling is usually referred to as “noise,” represents
the contributions from the neural activity of a large number
of neurons in the vicinity, much as molecular impacts drive
Brownian motion. The usefulness of this description is related to
the time scale of changes in the equilibrium potential µ(t) being
larger than about 100ms. Formore background on statistical field
theory (see e.g., Itzykson and Drouffe, 1991).

With initial data given in the far past so that its influence can
be neglected, the solution to this equation is:

p(r, t) =
∫ t

−∞
dt′

∫

d2r′G(r− r′, t − t′)(γµ(t′)

+ ξ (r′, t′)), (7)

where the Green’s function

G(r− r′, t − t′) =
exp

(

−γ(t − t′)− (r−r′)2

4α(t−t′)

)

4πα(t − t′)
(8)

obeys the differential Equation

∂

∂t
G(r− r′, t − t′) =

(

−γ + α∇2
)

G(r− r′, t − t′) (9)

and the initial condition

G(r− r′, 0) = δ(2)(r− r′). (10)

Here and in the sequel, spatial integrals
∫

d2r are always taken
over the infinitely extended plane. Boundary conditions at
infinity (provided by the decay of the Green’s function) are
such that partial integrations do not generate any boundary
contributions. The idea of Equation (7) and similar equations
below is that because of the linearity of the model (6), there is
a linear relationship between the driving input (represented by
the last factor of the integrand) and the potential. The properties
of the Green function ensure that this is indeed a solution
to Equation (6). (For a further discussion on Green’s function
techniques for solving linear partial differential Equations, see
e.g., Arfken et al., 2012).

The equilibrium potential µ(t) and the driving term ξ (r, t) are
both assumed to have vanishing expectations values

〈

µ(t)
〉

= 0
〈

ξ (r, t)
〉

= 0 (11)

leading indeed to a vanishing expectation value for the potential
p(r, t). We furthermore assume the covariance function of µ(t)
to be given by some slowly varying function Sµ2 (τ ), whereas the
driving term is assumed to be white both in space and time and
uncorrelated with µ(t):

〈µ(t)µ(t′)〉 = Sµ2 (|t − t′|)
〈

ξ (r, t)ξ (r′, t′)
〉

= σ 2δ(2)(r− r′)δ(t − t′)
〈

ξ (r, t)µ(t′)
〉

= 0. (12)

Here the constant σ 2 represents the intensity of the neural
activity. Accordingly, we can now decompose the covariance
function appearing in Equation (5) as:

S(ρ, τ ) = Sslow(τ )+ Sfast(ρ, τ ). (13)

The first term in Equation (13) represents the contributions
from the slow oscillations and can be expressed in terms of the
covariance function Sµ2 (τ ) of the equilibrium potential. More
precisely:

Sslow(τ ) = γ
2

∫ 0

−∞
dt′

∫

d2r′
∫ τ

−∞
dt′′

∫

d2r′′

G(−r′,−t′)G(−r′′, τ − t′′)Sµ2 (|t′ − t′′|)

= γ
2

∫ 0

−∞
dt′

∫ τ

−∞
dt′′ exp

(

−γ(τ − t′ − t′′)
)

Sµ2 (|t′ − t′′|)

= γ exp(−γτ )

∫ τ

0
dτ ′ cosh(−γτ ′)Sµ2 (τ ′)

+ γ cosh(−γτ )

∫ ∞

τ

dτ ′ exp(−γτ ′)Sµ2 (τ ′). (14)

In principle, this may be inverted to express Sµ2 (τ ) in terms of
Sslow(τ ):

Sµ2 (τ ) =
(

1−
1

γ2

∂2

∂τ 2

)

Sslow(τ ). (15)

Because of the second derivative, it is however difficult to achieve
an accurate estimate of Sµ2 (τ ) with the available data, and we will
not develop this approach further.

The second term in Equation (13) represents the contributions
from the driving term and can be expressed in terms of the
intensity σ 2. A short computation gives

Sfast(ρ, τ ) =
∫ 0

−∞
dt′

∫

d2r′
∫ τ

−∞
dt′′

∫

d2r′′

G(−r′,−t′)G(ρ − r′′, τ − t′′)σ 2δ(2)(r′ − r′′)
δ(t′ − t′′)
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= σ 2

∫ 0

−∞
dt′

∫

d2r′

exp
(

−γ(τ − 2t′)− (−r′)2

4α(−t′) −
(ρ − r′)2

4α(τ−t′)

)

(4πα)2(−t′)(τ − t′)

= σ 2

∫ 0

−∞
dt′

∫

d2r′

exp
(

−γ(τ − 2t′)− τ−2t′

4α(−t′)(τ−t′)
(

r′ − (−t′)ρ
τ−2t′

)2
− ρ2

4α(τ−2t′)

)

(4πα)2(−t′)(τ − t′)

= σ 2

∫ 0

−∞
dt′

exp
(

−γ(τ − 2t′)− ρ2

4α(τ−2t′)

)

4πα(τ − 2t′)
. (16)

For fixed ρ or τ , this is a monotonously decreasing function of
τ or ρ respectively. In general it cannot be expressed in terms
of any well-known elementary or special functions. However, for
vanishing spatial separation, i.e., ρ = 0, it is given by:

Sfast(0, τ ) = σ 2

∫ 0

−∞
dt′

exp
(

−γ(τ − 2t′)
)

4πα(τ − 2t′)

=
σ 2

8πα
Ŵ(0, γτ )

=
σ 2

8πα

(

− log(γτ )− γEM +O(γτ )
)

, (17)

where Ŵ is the (upper) incomplete Gamma-function and
γEM = 0.5772 . . . is the Euler-Mascheroni constant. Similarly,
for vanishing temporal separation, i.e., τ = 0, we instead have:

Sfast(ρ, 0) = σ 2

∫ 0

−∞
dt′

exp
(

−γ(−2t′)− ρ2

4α(−2t′)

)

4πα(−2t′)

=
σ 2

4πα
K0

(

√

γ/α ρ
)

=
σ 2

4πα

(

− log
(

√

γ/α ρ
)

− γEM

+ log 2+O

(

√

γ/α ρ
))

, (18)

where K0 is a modified Bessel-function.
The most important aspects of the results Equations (17) and

(18) are that they exhibit the logarithmic dependence of the
covariance function for short temporal and spatial separations
respectively with coefficients that are directly related to the
parameters of the model. Such logarithmic behavior is a generic
feature of field theories in two spatial dimensions regardless of
the details of the model, but does not hold in other dimensions.

3. RESULTS

3.1. Spikes
With our choices 1taverage = 10 ms, 1trefractory = 2ms,
and dthreshold = 20µV, the dataset had a total spike firing
frequency of:

νtotal ≃ 9.5Hz. (19)

The spikes were rather unevenly distributed, both in time over
the 600 s registration and over the 58 electrodes: About 49%
of all spikes were fired in the Dentate Gyrus, where they were
mostly negative and tended to occur in short burst of less
than 1 s, and 48% were fired the CA3 region, where they were
mostly positive and the spiking frequency fluctuated on times
scales of about 100 s. (The remaining 3% tended to occur in
the DG/CA-3 intermediate area.) Although the total number of
spikes in these two areas were very nearly equal, their temporal
distributions were quite different and give no evidence for any
causal connection. See Figures 3, 4 for the spatial and temporal
distribution of the spikes. See Figure 5 for examples of negative
and positive spikes and their removal by linear interpolation.

3.2. Artifacts
After the spikes had been removed, we computed the covariance
function S(ρ, τ ) by using the entire dataset sampled at 25 kHz.
The magnitude of the covariance function S(0, 0) at vanishing
spatial and temporal separation, i.e., the variance of the signal,
had a magnitude of about 15µV2. Two features of the covariance
function S(ρ, τ ) appeared to be artifacts without biological
significance:

• There was an almost perfectly periodic component with a
period of about 145 ms (corresponding to 6.9 Hz with some
overtones) and a maximal amplitude of about 0.12 µV2 that
persisted essentially undamped until τ = 10 s or more. The
extreme and persistent regularity of this phenomenon makes
it clear that it originated within the electronics of the multi-
electrode array system. Although the magnitude was quite
modest, we still found it advantageous (and straightforward)
to subtract this component from the covariance function, since
its time scale was so close to those of biological relevance.

• For ρ = 0, i.e., at vanishing spatial separation, there
was a component with a pronounced peak in the interval
0 < τ < 0.2 ms (i.e., during 5 sampling intervals) with
a maximal amplitude of about 4 µV2. The short spatial
range (less than the electrode spacing) and the short time-
scale involved strongly suggested that this phenomenon

FIGURE 3 | Individual spiking frequencies detected on the different

electrodes represented by the radii of the dots. The most spiking

electrode (in the Dentate gyrus) had a spiking frequency of about 1.7 Hz.
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FIGURE 4 | Left: Histogram of the temporal distribution of spikes during the 600 s registration in the Dentate Gyrus in 10 s bins. Right: Histogram of the temporal

distribution of spikes during the 600 s registration in the CA3 region in 10 s bins.

FIGURE 5 | Left: Example of a negative spike (potential as a function of time) in the Dentate Gyrus and its removal by linear interpolation. Right: Example of a positive

spike in the CA3 region and its removal by linear interpolation.

was due to essentially independent errors in the individual
voltage measurements (about 2 µV) with an extremely
short correlation time (about 0.2 ms). Because of the large
magnitude, it was necessary to take this component properly
taken into account, although its time scale of course was much
shorter than those of biological phenomena.

See Figure 6 for the appearance of these two artifact components
in the covariance function. Henceforth S(ρ, τ ) will always refer to
the covariance function after these artifacts had been removed by
subtracting the two temporal profiles exhibited in the figure from
the raw-data covariance function.

3.3. Slow Dynamics
For large values of τ (> 100 ms), the main feature of the
covariance function S(ρ, τ ) was a damped oscillatory behavior
mainly in the 0 - 2 Hz frequency range, which was largely
independent of the spatial separation ρ. This slow oscillation is
possibly of biological relevance, but we will not attempt to analyze
or model it in the present paper. (See e.g., Buzsáki and Draguhn,
2004, for a review of LFPs with different frequency bands.) See
Figure 7 for this long-time behavior of the covariance function.

We took Sslow(τ ) in Equation (13) to be given by S(ρlarge, τ ) for
ρlarge = 1.7 mm, i.e., the largest spatial separation available to
us. As can be seen from Figure 8 (lowest curve in the left panel),
for such a large spatial separation the covariance was essentially
independent of the time lag up to about 100 ms, so Sfast(ρlarge, τ )
is negligible.

3.4. Fast Dynamics
For small values of τ (< 100 ms), the covariance function S(0, τ )
at vanishing spatial separation indeed increased logarithmically
as τ approaches zero. For ρ > 0, this increase was cut off
so that the equal time covariance S(ρ, 0) has a finite value that
increases logarithmically as ρ approaches zero. See Figure 8 for
the temporal and spatial dependence of the short-time covariance
function. Note the logarithmic abscissa axis in these figures!

The measured values of Sfast(ρ, τ ) = S(ρ, τ ) − S(ρlarge, τ )
were fitted to the the theoretical prediction Equation (16). This
is shown in Figure 9 with the parameter values

α ≃ 0.0025mm2ms−1

γ ≃ 0.0030ms−1

σ 2 ≃ 0.035µV2mm2ms−1. (20)
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FIGURE 6 | Left: Two periods of the long-term artifact with 145 ms periodicity. This was obtained by subtracting a 145 ms moving average from the raw-data

covariance function. For time lags exceeding about 1 s, the difference had an almost perfectly periodic appearance, which was then extend down to zero time lag.

Right: The rapidly decaying artifact due to errors in the individual voltage measurements.

FIGURE 7 | Long-time covariance at vanishing spatial separation as a

function of time lag.

As can be seen from the figure, the agreement between
theory and experiment was excellent, providing a
convincing and a priori falsifiable confirmation of the
validity of our approach and simplifying assumptions.
(In view of our still rather restricted dataset, we refrain
from quoting any specific uncertainty range of these
parameters.)

The definition and determination of the three quantities
α, γ and σ 2 constitute the main results of the present
work. An equivalent, but in many respects more
illuminating presentation of the results is to combine these
parameters into characteristic time, length and voltage
scales:

1/γ ≃ 330ms
√

α/γ ≃ 0.91mm
√

σ 2/α ≃ 3.7µV. (21)

The 330 ms time scale of these “fast” fluctuations may seem
uncomfortably close to the time scale of the “slow” fluctuations of

the equilibrium potential µ(t) (which seems to be around 1 s). In
this context, we remark that the time scale can be generalized to:

T =
1

γ + α(2π/λ)2
(22)

for fluctuations of some finite wavelength λ. In the long wave-
length limit λ → ∞ we recover 1/γ, whereas for the inter-
electrode distance λ = 0.2 mm we instead get T ≃ 0.4 ms. So for
wave-lengths relevant for investigating the local dynamics, there
is no problemwith the time scale.We also remark that the 25 kHz
sampling frequency is clearly high enough.

The length scale 0.91 mm is comparable to the extent
of the entire multi-electrode array. However, the dimensions
of the slice of neural tissue are considerably larger, so
there is no need to worry about finite size effects. More
importantly, the length scale is sufficiently large compared
to the 0.2mm inter-electrode distance to assure the validity
of this experimental approach to the study of subthreshold
fluctuations.

Finally the voltage scale 3.7µV is safely smaller than
the spikes (which we have cut off at 20 µV). However, it
is quite comparable both to the errors in the individual
voltage measurements (about 2 µV) and the amplitude
of the slow fluctuations of the equilibrium potential
µ(t), so it is important to carefully separate these three
phenomena.

3.5. Activity
Sofar we have considered the parameters α and γ as well as the
activity σ 2 to be constants. This is reasonable for α and γ, at
least if we view these constants as reflecting only the passive
electric transport properties of the intracellular medium and not
the propagation of signals along the axons. But the activity should
rather be described by a function σ 2(r, t) of space and time,
reflecting the characteristics of the neuronal populations in the
different anatomical regions as well as the time course of the
neural processing. The value σ 2 ≃ 0.035µV2mm2ms−1 that
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FIGURE 8 | Left: Short-time covariance at spatial separations 0, 0.2, and 1.7 mm (top, middle and lower curve) as a function of time lag. Right: Covariance at

vanishing time lag as a function of spatial separation. In all cases, we exhibit an average over all pairs of electrodes with the indicated spatial separation.

FIGURE 9 | Left: Fitting Sfast(ρ, 0) to Equation (18). (Equal time covariance as a function of spatial separation). Right: Fitting Sfast(0, τ ) to Equation (17). (Covariance

as a function of time lag at vanishing spatial separation.)

we have determined should thus be regarded as a spatial and
temporal average.

Retracing the steps leading to Equation (16), we find that with
a non-constant activity σ 2(r, t), this expression is no longer valid.
However, the leading logarithmic divergence of Equation (17),
which originates from the short distance behavior of the model,
still holds. Since Sslow(t) is regular for small t, we thus have:

〈p(r, t)p(r, t + δt)〉 =
σ 2(r, t)

8πα

(

− log(γδt)+O(1)
)

. (23)

The diffusion constant α is of course already known. The values
of δt can e.g., be chosen in the interval 0.2 to 10 ms. Since we
have only a single measurement of the potential p(r, t) for each
value of r and t, we can only estimate such expectation values by
averaging over a rather large time interval (at least about 100 ms)
around t, which limits the temporal resolution of the method.

Averaging over the entire 600 s registration, we found that the

temporal mean σ 2(r, t) of the activity was concentrated in the
Dentate Gyrus and the CA3 region just like the spikes, but much
more spread out. There was however also substantial activity

in the area intermediate between these two regions (where
essentially no spikes occur), whereas the CA1 region showed very
little activity. See Figure 10 for this spatial distribution of activity.
Comparison can bemade with the spatial distribution of spikes in
Figure 3.

Averaging over time intervals of 1 s instead, we could
investigate the temporal dependance of the activity in the
different regions. We found a clear correlation with the spiking
in the Dentate Gyrus and the CA3 region. In the intermediate
non-spiking area, the pattern was more reminiscent of the
CA3 region than the Dentate Gyrus. The CA1 region showed
a rather constant lower activity. See Figure 11, which should
be compared with the corresponding temporal distributions of
spikes in Figure 4.

One sees that activity and spiking are indeed different
phenomena, although there seems to exist some connection
between them. Again, we take the view that the spiking frequency
registered on the different electrodes reflects not only what is
going at that location in the tissue but also on how a few
individual neurons happen to be in more or less close contact
with the electrodes.
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FIGURE 10 | Temporal mean over the 600 s registration of the activity

on the different electrodes. The most active electrode (in the Dentate gyrus)

has an activity of about 0.11 µV2mm2ms−1.

3.6. Connectivity
In contrast to the potential p(r, t), which is a stochastic variable,
we have considered the activity σ 2(r, t) to be a given function of
space and time. Ultimately, one would of course like to formulate
some (deterministic or stochastical) dynamical model for it,
but we will not pursue this here and instead content ourselves
with a purely descriptive treatment. While the activity directly
influences the variance of the signal p(r, t), it shows essentially
no correlation with the mean of p(r, t). This is another indication
that the equilibrium potential µ(t), while serving as a common
voltage reference for the entire network, may not be of immediate
biological relevance.

A very useful quantity for characterizing the activity σ 2(r, t) is
its covariance function between separate points r1 and r2 at some
time lag 1t:

Cov
(

σ 2(r1, t), σ
2(r2, t + 1t)

)

=
σ 2(r1, t)σ 2(r2, t + 1t)− σ 2(r1, t) σ 2(r2, t). (24)

Here and in the sequel, an overline denotes an average over
the time t. In particular, we have the temporal autocovariance
function

Cov
(

σ 2
mean(t), σ

2
mean(t + 1t)

)

=

σ 2
mean(t)σ

2
mean(t + 1t) − σ 2

mean(t) σ 2
mean(t + 1t), (25)

where

σ 2
mean(t) =

1

Vol�

∫

�

d2r σ 2(r, t) (26)

is the spatial mean of the activity. (We take the domain� to cover
the entire multi-electrode array.) Empirically, we find that

Cov
(

σ 2
mean(t), σ

2
mean(t + 1t)

)

∼ exp (−β1t) , (27)

with decay constant

β ≃ 0.1 s−1. (28)

(In these last formulas, the expressions are in fact independent of
the time t appearing in the left hand sides.)

Similarly, we can investigate the spatial autocovariance
function:

Cov
(

σ 2(r, t), σ 2(r+ 1r, t)
)

=

σ 2(r, t)σ 2(r+ 1r, t)− σ 2(r, t) σ 2(r+ 1r, t). (29)

Taking the spatial mean, we here find

1

Vol�

∫

�

d2rCov
(

σ 2(r, t), σ 2(r+ 1r, t)
)

∼ exp(−κ|1r|),

(30)
with decay constant

κ ≃ 1.4mm−1. (31)

See Figure 12 for the corresponding autocorrelation functions
(normalized to 1 for 1t = 0 and 1r = 0 respectively).
Note the logarithmic scales! The deviations from exponential
decay for small time lags and distances can be attributed to the
measurement errors, which in the temporal case are smoothed
out over 1 s by our data analysis.

The behavior of these covariance functions should be
relevant for the understanding of neural connectivity and
communication. The exponential decay is qualitatively rather
different from the logarithmic behavior characteristic of passive
transport in two spatial dimensions as we have investigated for
the potential p(r, t). This possibly indicates that the activity is
propagated by some more “active” mechanism, for which we
do not have any specific proposal. However, the temporal scale
of about 10 s is long enough that the biological significance
of these slow changes may be questioned, in which case they
should probably be attributed to drifting conditions during
the registration. Indeed, the biologically relevant information
transfer in the neural tissue should be encoded in fluctuations of
the activity at much shorter time-scales, which we are however
unable to probe with our present methods. On the other hand,
the spatial scale of about 0.7 mm is quite similar to the
scale

√
α/γ ≃ 0.91 mm set by the diffusion process, and

again indicates that the multi-electrode array is adequate for
investigating these phenomena.

Finally, we considered the Pearson correlation coefficient
of the activity σ 2(r1, t) and σ 2(r2, t) separately for all pairs
of adjacent electrodes, which gives a way of investigating the
local neural connectivity. A priori, such a correlation can
be weak or strong regardless of the mean and variances of
the two activities under consideration. With |1r| = 0.2
mm the average correlation coefficient was about 0.50, but
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FIGURE 11 | Mean activity in each of the four quadrants of the multi-electrode array (roughly corresponding to the Dentate Gyrus, the

DG/CA3-intermediate area, the CA3 region and the CA1 region clockwise from the lower right corner) as a function of time during the 600 s

registration. The temporal resolution in these graphs is 1 s.

FIGURE 12 | Left: Fitting the spatial autocorrelation function of the activity at equal time to the exponential expression 30. Right: Fitting the temporal autocorrelation

function of the spatial mean activity to the exponential expression 27.

varied considerably between 0.1 and 0.9 for the different pairs.
With sufficiently strong inhibitory connections, one could in
principle also imagine negative correlation coefficients in the
interval -1 to 0, but these did not occur in our dataset.
Highly correlated pairs indicated a path of information flow

from the Dentate Gyrus to the region CA3 with a hint of a
continuation toward CA1, in agreement with the expectations
from anatomical considerations. (Actually, our methods cannot
determine the direction of this information flow, since the
correlation is invariant under the exchange of two electrodes.)
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FIGURE 13 | Left: Histogram of the distribution of correlation coefficients for the activity on all pairs of adjacent electrodes. Right: The connectivity between adjacent

electrodes. The thickness of the lines is proportional to the fourth power of the correlation coefficient for the corresponding pair of electrodes.

See Figure 13 for an attempt at a graphical rendering of this
connectivity pattern.

4. DISCUSSION

Our main finding is that the LFP can be remarkably well-
described by a Gaussian statistical field theory in two space
and one time dimension. Depending on the electrical properties
of the perfusion liquid above the tissue sample, one may
argue that this should be modeled as a three-dimensional
rather than a two-dimensional system. This would give a
qualitatively rather different model, in which correlations decay
as the inverse of the distance rather than logarithmically in
both space and time. However, our two-dimensional model
fits the data excellently, whereas such a three-dimensional
model would be in clear disagreement. So we have been
able to make a clear and falsifiable theoretical prediction and
verify it experimentally in what we think is a convincing
manner. From a perspective of practical electrophysiology, we
would like to emphasize that this analysis must be preceded
by a correct elimination of certain artifacts of no biological
significance.

Thus, we have provided a proof of concept of a new approach
for studying neural circuit function and applied it to the dataset
described above. By our approach, we have described the mean
activity (Figure 11) and correlation (Figure 13) of subthreshold
fluctuations within specific hippocampal sub-regions. It appears
that the connection between CA3 and CA1 in this particular
isolated hippocampal ex vivo slice preparation is not preserved.
Even though this represents a drawback of our used MEA
data set, the presented connection between DG and CA3
demonstrates that our approach allows for the identification
and visualization of connected sub-regions in isolated brain-slice
preparations.

We also computed specific mean values for the parameters
characterizing the duration, spatial distribution and amplitude
of subthreshold fluctuations in all hippocampal sub-regions.

Since we aim to present a proof-of-concept of our approach
by using data sets collected only in only one hippocampal slice
preparation, we did not perform a hippocampal sub-region
specific classification of subthreshold fluctuations. Of course,
such parametric description of sub-neuronal network properties
within the hippocampus is quite interesting and will be addressed
in future studies.

Our method to extract subthreshold fluctuations out of
MEA data sets can be used to uncover spatial and temporal
correlations of sub-hippocampal neuronal circuits within brain
slice preparations, which can not be achieved by analyzing the
localization of spike activity. Indeed, while the possibility to
detect spikes is largely determined by the accidental proximity
of a neuron to an electrode, the activity as we define it
should be a robust concept. Thus, describing the spatial and
temporal properties of subthreshold fluctuations in ex vivo or
in vitro neuronal circuits may represent a better approach to
uncover functional connectivity within neuronal circuits than
analysis of synchronous bursting. However, of course also the
activity as we have defined it is to a large extent determined
by the population of nearby neurons, so it is not obvious to
separate these aspects from each other. Indeed, although we
have defined the activity without any reference to detected
spike events, it still shows a clear correlation with these,
and its spatial distribution and correlations agree well with
expectations from anatomical considerations. See e.g., Giugliano
et al. (2004) for a discussion of the relationship between
collective network phenomena and the spiking of individual
neurons.

It would be interesting to try to get a better understanding
of the laws underlying the slow dynamics, rather than just
describing the resulting equilibrium potential. This can be done
with a larger dataset, provided that the longterm stability of the
preparation can be assured.

Our model has a small number free parameters, the values of
which can be readily determined by fitting the experimentally
measured correlations. We expect that these parameters
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will provide robust and reproducible quantities suitable for
comparative studies between brain tissue samples from different
anatomical regions and developmental stages under various
physiological and patho-physiological conditions. It can also
be valuable to study patient-specific neuronal circuits obtained
from induced pluripotent stem cell technology. In the future, it
would thus be very interesting to apply these methods to more
datasets.

In a different direction, the understanding of the passive
transport properties of the neural preparation developed
in this article should be useful also for analyzing spiking
events. Indeed, such an analysis is complicated by the fact
that signals spread between the different electrodes, so a
natural approach is to begin by reconstructing the local
sources of these events by inverse methods based on our

model. We plan to return to these issues in forthcoming
publications.
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