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Abstract—This paper concerns the maximal achievable rate
at which data can be transmitted over a non-coherent, single-
antenna, Rayleigh block-fading channel using an error-correcting
code of a given blocklength with a block-error probability not
exceeding a given value. In particular, a high-SNR normal
approximation of the maximal achievable rate is presented that
becomes accurate as the signal-to-noise ratio (SNR) and the
number of coherence intervals L over which we code tend to
infinity. Numerical analyses suggest that the approximation is
accurate already at SNR values of 15dB.

I. INTRODUCTION

There exists an increasing interest in the problem of
transmitting short packets in wireless communications. For
example, the vast majority of wireless connections in the
fifth generation of cellular systems (5G) will most likely
be originated by autonomous machines and devices, which
predominantly exchange short packets. It is also expected that
enhanced mobile-broadband services will be complemented
by new services that target systems requiring reliable real-
time communication with stringent requirements on latency
and reliability. For more details see [1] and references therein.
While in the absence of latency constraints, capacity and
outage capacity provide accurate benchmarks for the through-
put achievable in wireless communication systems, for low-
latency wireless communications a more refined analysis of
the maximal achievable rate as a function of the blocklength
is needed. Such an analysis is provided in this paper.

Let R∗(n, ε) denote the maximal achievable rate at which
data can be transmitted using an error-correcting code of a
determined length n with a block-error probability not larger
than ε. Building upon Dobrushin’s and Strassen’s asymptotic
results, Polyanskiy, Poor and Verdú showed that for various
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channels with a positive capacity C, the maximal achievable
rate can be tightly approximated by [2]

R∗(n, ε) = C −
√
V

n
Q−1(ε) +O (log n/n) (1)

where V denotes the channel dispersion, Q−1(·) denotes the
inverse Q-function, and O (log n/n) comprises terms that
decay no slower than log n/n. The approximation that follows
from (1) by ignoring the O (log n/n) terms is sometimes
referred to as normal approximation.

The work by Polyanskiy et al. [2] has been generalized
to some wireless communication channels; see, e.g., [3]–[10].
However, the channel dispersion in the non-coherent setting—
where neither transmitter nor receiver have a priori knowledge
of the realizations of the fading coefficients—is only known
in the quasi-static case [5], where it is zero. For general non-
coherent block-fading channels, non-asymptotic bounds on the
maximal achievable rate that can be evaluated numerically
were presented, e.g., in [3], [7]. Obtaining an expression for
the channel dispersion of non-coherent block-fading channels
is difficult because for such channels the capacity-achieving
input distribution is in general unknown. Thus, the standard
approach, which consists of first evaluating non-asymptotic
upper and lower bounds on R∗(n, ε) for the capacity-achieving
input distribution and then analyzing these bounds in the limit
as n→∞, cannot be followed.

In this paper, we present an expression similar to (1) of the
maximal rate R∗(L, ε, ρ) achievable over non-coherent, single-
antenna, Rayleigh block-fading channels using error-correcting
codes that span L coherence intervals, have a block-error
probability not larger than ε, and satisfy the power constraint
ρ. By replacing in (1) the capacity and channel dispersion by
asymptotically tight approximations, we obtain a high-SNR
normal approximation of R∗(L, ε, ρ).

II. SYSTEM MODEL

We consider a single-antenna Rayleigh block-fading channel
with coherence interval T . For this channel model, the input-
output relation within the `-th coherence interval is given by

Y` = H`X` + W` (2)

where X` and Y` are T -dimensional, complex-valued, random
vectors containing the input and output signals, respectively;



W` is a random vector with independent and identically dis-
tributed (i.i.d.) zero-mean, unit-variance, circularly-symmetric,
complex Gaussian entries; and H` is Rayleigh fading, i.e., it
is a zero-mean, unit-variance, circularly-symmetric, complex
Gaussian random variable. We assume that H` and W` are
independent and take on independent realizations over suc-
cessive coherence intervals. We further assume that the joint
law of (H`,W`) does not depend on the channel inputs. We
consider a non-coherent setting where transmitter and receiver
are aware of the distribution of H` but not of its realization.

We next introduce the notion of a channel code. For sim-
plicity, we shall restrict ourselves to codes whose blocklength
n satisfies n = LT , where L denotes the number of blocks of
length T needed to transmit the whole code. An (M,L, ε, ρ)
code for the channel (2) consists of the following:

1) An encoder f : {1, . . . ,M} → CLT that maps the
message A ∈ {1, . . . ,M} to a codeword XL =
[X1, . . . ,XL]. The codewords are assumed to satisfy the
power constraint1

‖X`‖2 ≤ Tρ, ` = 1, . . . , L. (3)

Since the variances of H` and W` are normalized, ρ in
(3) can be interpreted as the average SNR at the receiver.

2) A decoder g: CLT → {1, . . . ,M} satisfying a maximum
error probability constraint

max
1≤a≤M

P
[
g(YL) 6= A

∣∣A = a
]
≤ ε (4)

where YL = [Y1, . . . ,YL] is the channel output in-
duced by the transmitted codeword XL = f(a) accord-
ing to (2).

The maximal coding rate is defined as

R∗(L, ε, ρ) , sup

{
logM

LT
: ∃(M,L, ε, ρ) code

}
. (5)

III. PRELIMINARIES AND NOTATION

We shall refer to the distribution P(U)

XL , according to which
XL =

√
TρUL (where UL = [U1, . . . ,UL] are i.i.d. and

uniformly distributed on the unit sphere in CT ) as unitary
space-time modulation (USTM) [11]. This distribution is rel-
evant because it yields a lower bound on capacity that is
asymptotically tight at high SNR [12], [13].

The outputs YL induced by the USTM input distribution
have pdf

q(U)

YL(yL) =

L∏
`=1

q(U)
Y (y`), yL = [y1, . . . ,yL] ∈ CLT (6)

where [3, Eq. (18)]

q(U)
Y (y) =

e−‖y‖
2/(1+Tρ)‖y‖2(1−T )Γ(T )

πT (1 + Tρ)

× γ̃
(
T − 1,

Tρ‖y‖2

1 + Tρ

)(
1 +

1

Tρ

)T−1
, y ∈ CT . (7)

1In contrast to [7], where the power constraint (3) is assumed to hold with
equality, here we consider the more general case where the power constraint
can also be satisfied with strict inequality.

Here, γ̃(·, ·) denotes the regularized lower incomplete gamma
function and Γ(·) denotes the gamma function.

Conditioned on ‖X`‖2 = Tα`, α` ∈ [0, ρ], the distributions
of |YH

` X`|2 and ‖Y`‖2 are as follows:

|YH
` X`|2

L
= Tα`(1 + Tα`)Z1,` (8a)

‖Y`‖2
L
= (1 + Tα`)Z1,` + Z2,` (8b)

where L
= denotes equality in distribution, {Z1,`, ` ∈ Z} is a

sequence of i.i.d. Gamma(1, 1)-distributed random variables,
and {Z2,`, ` ∈ Z} is a sequence of i.i.d. Gamma(T − 1, 1)-
distributed random variables (with Gamma(z, q) denoting the
gamma distribution with parameters z and q). We will omit
the subscript ` when immaterial.

We next introduce some notation and preliminary results
that will be helpful in the remainder of the paper. The
information density between XL and YL is denoted by

i(XL;YL) , log

(
pYL|XL

(
YL

∣∣ XL
)

pYL

(
YL
) )

(9)

where pYL is the output distribution induced by the input
distribution. When the input distribution is USTM, the condi-
tional information density, conditioned on ‖X`‖2 = Tρ, can
be expressed as

∑L
`=1 i`(ρ), where

i`(ρ) , (T − 1) log(Tρ)− log Γ(T )− TρZ2,`

1 + Tρ

+ (T − 1) log

(
(1 + Tρ)Z1,` + Z2,`

1 + Tρ

)
− log γ̃

(
T − 1,

Tρ((1 + Tρ)Z1,` + Z2,`)

1 + Tρ

)
. (10)

Since γ̃(T − 1, x) ≤ 1, x ≥ 0 we can lower-bound (10) by

i`(ρ) , (T − 1) log(Tρ)− log Γ(T )− TρZ2,`

1 + Tρ

+ (T − 1) log

(
(1 + Tρ)Z1,` + Z2,`

1 + Tρ

)
. (11)

We define the missmatched information density as

j(XL;YL) , log

(
pYL|XL

(
YL

∣∣ XL
)

q(U)

YL(YL)

)
. (12)

Using this definition together with (2) and (7), conditioned on
‖X`‖2 = Tα`, the missmatched information density can be
expressed as j(XL;YL) =

∑L
`=1 j`(α`), where

j`(α`) = (T − 1) log(Tρ)− log Γ(T ) +
(Tα` − Tρ)Z1,`

1 + Tρ

+ (T − 1) log

(
(1 + Tα`)Z1,` + Z2,`

1 + Tρ

)
− log γ̃

(
T − 1,

Tρ((1 + Tα`)Z1,` + Z2,`)

1 + Tρ

)
− TρZ2,`

1 + Tρ
+ log

(
1 + Tρ

1 + Tα`

)
. (13)

Note that j`(ρ) = i`(ρ) when the input distribution is USTM.



By lower-bounding γ̃(·, ·) using a result by Alzer [14, Th.
1] we obtain that j`(α`) ≤ j̄`(α`), α` ∈ [0, ρ], where

j̄`(α`) , (T − 1) log(Tρ)− log Γ(T ) +
(Tα` − Tρ)Z1,`

1 + Tρ

− TρZ2,`

1 + Tρ
+ log

1 + Tρ

1 + Tα`

+ (T − 1) log

(
(1 + Tα`)Z1,` + Z2,`

1 + Tρ

)
+ (T − 1) log

(
1 +

Γ(T )
1

T−1
1+Tρ
Tρ

(1 + Tα`)Z1,` + Z2,`

)
. (14)

We denote the expected values of j̄`(α) conditioned on
‖X`‖2 = Tα, and of i`(ρ) and i`(ρ), conditioned on ‖X`‖2 =
Tρ, by J̄(α), I(ρ), and I(ρ), respectively. We further define

U(ρ) , E
[(
i`(ρ)− I(ρ)

)2]
(15a)

V̄ρ(α) , E
[(
j̄`(α)− J̄(α)

)2]
(15b)

where the subscript ρ in V̄ρ(α) is introduced to highlight that
V̄ρ(α) depends both on α and ρ, but it is omitted when α = ρ.

In [15] we show that I(ρ), U(ρ), J̄(ρ) and V̄ρ(ρ) can be
approximated as

I(ρ) = I(ρ) + oρ(1) (16a)

U(ρ) = Ũ + oρ(1) (16b)
J̄(ρ) = I(ρ) + oρ(1) (16c)

V̄ (ρ) = Ũ + oρ(1) (16d)

where oρ(1) comprises terms that are independent of L and
that vanish as ρ→∞. The term I(ρ) is given by

I(ρ) = (T − 1) log(Tρ)− log Γ(T )− (T − 1)

[
log(1 + Tρ)

+
Tρ

1 + Tρ
− ψ(T − 1)

]
+ 2F1

(
1, T − 1;T ;

Tρ

1 + Tρ

)
. (17)

where ψ(·) and 2F1(·, ·; ·; ·) denote the digamma function and
the hypergeometric function, respectively. Furthermore,

Ũ , (T − 1)2
π2

6
+ (T − 1). (18)

IV. MAIN RESULTS

The main result of this paper is a high-SNR normal approx-
imation of R∗(L, ε, ρ) presented in Section IV-A. A discussion
of this approximation is provided in Section IV-B.

A. High-SNR normal approximation

Theorem 1: Assume that T > 2 and 0 < ε < 1/2. Then,

R∗(L, ε, ρ) =
I(ρ)

T
+ oρ(1)−

√
Ũ + oρ(1)

LT 2
Q−1(ε)

+OL (logL/L) (19)

where OL (logL/L) comprises terms that are independent of
ρ and that decay no slower than logL/L.

Proof: See Section V.
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Fig. 1: Bounds on R∗(L, ε, ρ) for T = 20, ε = 10−3, and SNR values
ρ = 15 dB and ρ = 25 dB.

Ignoring the OL(logL/L) and the oρ(1) terms in (19), we
obtain the following high-SNR normal approximation:

R∗(L, ε, ρ) ≈ I(ρ)

T
−

√
Ũ

LT 2
Q−1(ε). (20)

It is shown in [11, Th. 4] that I(ρ)/T is an asymptotically-
tight lower bound on capacity. According to Theorem 1, Ũ/T 2

can be viewed as a high-SNR approximation of the dispersion.
For comparison, the dispersion of the coherent block-fading
channel is π2/6 + 1/T + oρ(1) [4, Th. 2], and the dispersion
of the (non-fading) complex AWGN channel is 1 + oρ(1) [1,
Eq. (8)]. Observe that Ũ/T 2 corresponds to the dispersion one
obtains by transmitting one pilot symbol per coherence block
to estimate the fading coefficient, and by then transmitting
T − 1 symbols per coherence block over a coherent fading
channel. This suggests that, at high SNR, one pilot symbol per
coherence block suffices to estimate the fading coefficient.

It is perhaps surprising that the dispersion in the non-
coherent case is smaller than the one of the coherent case.
However, the capacity of the coherent fading channel is larger
than I(ρ)/T , so the rate R∗(L, ε, ρ) of the coherent channel
is larger than that of the non-coherent channel.

B. Numerical Examples and Discussion

We illustrate the accuracy of the high-SNR normal approx-
imation (20) by means of numerical examples. In Fig. 1 we
show (20) as a function of L = n/T for a fixed coherence
interval T and for both ρ = 15 dB and ρ = 25 dB. We
further present a non-asymptotic (in ρ and L) lower bound
on R∗(L, ε, ρ) that is based on the Dependence Testing (DT)
bound [2, Th. 22] (see (21) below) as well as a non-asymptotic
(in ρ and L) upper bound on R∗(L, ε, ρ) that is based on
the Meta Converse (MC) bound [2, Th. 31] (see (24) below).
We finally plot I(ρ)/T . Observe that (20) is accurate already
for ρ = 15 dB. Further observe that (20) is pessimistic for
ρ = 15 dB and optimistic for ρ = 25 dB. This suggests that
oρ(1) is negative and that OL (logL/L) is positive.

In Fig. 2, we show the high-SNR normal approximation (20)
as a function of the coherence interval T for a fixed block-
length n (hence L is inversely proportional to T ). For compari-
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son, we also show the DT bound, evaluated for an USTM input
distribution and implemented in the communication toolbox
SPECTRE [16, Sec. 3.1], and the MC bound. Finally, we
present the normal approximation that was given in [5, Eq.
(95)] for quasi-static multiple-input multiple-output (MIMO)
block-fading channels. To adapt the quasi-static MIMO block-
fading channel to our system model, we replace H in [5] by
an L× L diagonal matrix with diagonal entries H1, . . . ,HL.
Observe that the high-SNR normal approximation (20) is
accurate for L ≥ 10 and then becomes less accurate as L
decreases. Further observe that the normal approximation for
the quasi-static case [5, Eq. (95)], which is tailored towards
the case where L is small, becomes accurate only for L ≤ 2.

V. PROOF OF THEOREM 1

The proof is based on a lower bound on R∗(L, ε, ρ), given
in Section V-A, and on an upper bound on R∗(L, ε, ρ), given
in Section V-B. Due to space limitations, some proofs are
deferred to the longer version of our paper [15].

A. DT Lower Bound

To obtain a lower bound on R∗(L, ρ, ε), we evaluate the DT
bound for USTM inputs. Thus, we assume that XL ∼ P(U)

XL ,
which implies YL ∼ q(U)

YL . For this choice, the cumulative
distribution function P[i(xL; ỸL) ≤ α] (where ỸL ∼ q(U)

YL )
does not depend on xL. A lower bound on R∗(L, ε, ρ) follows
therefore from the DT bound (maximum probability of error)
[2, Th. 22], which after a standard change of measure can be
stated as follows: there exists a code with M codewords and
maximal probability of error ε not exceeding

ε ≤ (M − 1)E
[
e−i(X

L;YL)I{i(XL;YL) > log(M − 1)}
]

+ P
[
i
(
XL;YL

)
≤ log(M − 1)

]
(21)

where I{·} denotes the indicator function. To show that (21)
yields the lower bound

R∗(L, ε, ρ) ≥ I(ρ)

T
−
√
U(ρ)

LT 2
Q−1(ε) +OL (1/L) (22)

(where OL(1/L) comprises terms that are independent of ρ
and that are of order 1/L) we follow almost verbatim the steps

[2, Eqs. (258)–(267)] (with γ in [2] replaced by M − 1). The
main difference is that in our case U(ρ) and B(ρ) (cf. [2, Eq.
(254)]), defined as

B(ρ) ,
6E
[
|i`(ρ)− I(ρ)|3

]
U(ρ)3/2

(23)

depend on ρ. To ensure that OL(1/L) is independent of ρ, we
thus need to ensure that both U(ρ) and B(ρ) are bounded in
ρ. We then apply the Berry-Esseen theorem to obtain [2, Eq.
(259)] with B(ρ) replaced by an upper bound B(T ), followed
by [2, Eqs. (261)–(266)]. This yields (22).

The proof that shows that U(ρ) and B(ρ) are bounded in
ρ can be found in [15].

B. Meta Converse (MC) Upper Bound

An upper bound on R∗(L, ε, ρ) follows from the MC bound
[2, Th. 31] computed for the auxiliary pdf q(U)

YL

R∗(L, ε, ρ) ≤ 1

LT
sup

α∈[0,ρ]L
log

(
1

β(α, q(U)

YL)

)
. (24)

Here, α = (α1, . . . , αL) denotes the vector of power allo-
cations, and β(α, q(U)

YL) denotes the minimum probability of
error under hypothesis q(U)

YL if the probability of error under
hypothesis pYL|XL=xL does not exceed ε [2, Eq. (100)]. Note
that β(α, q(U)

YL) depends on xL only via α.
Fix an arbitrary 0 < δ < 1. We show in [15] that for

sufficiently large L and ρ, the supremum in (24) can be
replaced by a supremum over α ∈ Aρ,δ , where

Aρ,δ , {α ∈ [0, ρ]L : Lα(δ) ≥ L/2} (25)

and Lα(δ) denotes the number of α`’s in α that satisfy ρ(1−
δ) ≤ α` ≤ ρ.

In the following we implicitly assume that L ≥ L0 and
ρ ≥ ρ0 for some sufficiently large L0 and ρ0. It follows from
[15], [2, Eq. (106)], and because j`(α`) ≤ j̄`(α`), α` ∈ [0, ρ],
that (24) can be upper-bounded as

R∗(L, ε, ρ) ≤ sup
α∈Aρ,δ

 log ξ(α)

LT

−
log
(

1− ε− P
[∑L

`=1 j̄`(α`) ≥ log ξ(α)
])

LT

 (26)

for an arbitrary ξ : [0, ρ]L → (0,∞).
Let

B̄(α) ,
6
∑L
`=1 E

[∣∣j̄`(α`)− J̄(α`)
∣∣3](∑L

`=1 V̄ρ(α`)
)3/2 . (27)

We show in [15] that the expectation E
[
|j̄`(α)− J̄(α)|3

]
can

be upper-bounded by a constant S̄(T ) that only depends on
T . We further show that, for ρ(1− δ) ≤ α ≤ ρ,

V̄ρ(α) ≥ (T − 1) + oρ(1) + oδ(1) (28)



where oδ(1) comprises terms that are independent of L and ρ
and that vanish as δ ↓ 0. It thus follow that, for ρ0 sufficiently
large and δ sufficiently small,

L∑
`=1

V̄ρ(α`) ≥ Lα(δ)
T − 1

2
. (29)

Hence, for every α ∈ Aρ,δ and δ sufficiently small,

B̄(α) ≤ 6LS̄(T )(
(T−1)L

4

)3/2 ,
B̄(T )√
L
. (30)

Let

λ = Q−1
(
ε+

2B̄(T )√
L

)
(31)

and

log ξ(α) =

L∑
`=1

J̄(α`)− λ

√√√√ L∑
`=1

V̄ρ(α`). (32)

With this choice, the Berry-Esseen theorem and (30) imply
that, for every α ∈ Aρ,δ ,

P

[
L∑
`=1

j̄`(α`) ≤ log ξ(α)

]
≥ ε+

B̄(T )√
L
. (33)

Substituting (33) into (26), we obtain

R∗(L, ε, ρ) ≤ 1

2

logL

LT
− log B̄(T )

LT

+ sup
α∈[0,ρ]L

{∑L
`=1 J̄(α`)

LT
− λ

√∑L
`=1 V̄ρ(α`)

L2T 2

}
. (34)

By the assumption 0 < ε < 1/2, we have that λ is positive
for L0 sufficiently large. Thus, by the concavity of x 7→

√
x

and Jensen’s inequality

R∗(L, ε, ρ) ≤ sup
0≤α≤ρ

{
J̄(α)

T
−Q−1(ε)

√
V̄ρ(α)

LT 2

}
+OL (logL/L) (35)

where we performed a Taylor series expansion to approximate
λ by Q−1(ε). Indeed, we show in [15] that V̄ρ(α) is bounded
in ρ and α, so the remainder can be combined with the first
two terms on the RHS of (34) in a OL(logL/L) term.

We next show that

sup
0≤α≤ρ

{
J̄(α)

T
−
√
V̄ρ(α)

LT 2
Q−1(ε)

}

=
J̄(ρ)

T
−
√
V̄ (ρ)

LT 2
Q−1(ε) +OL (1/L) . (36)

It then follows by (16c) and (16d) that this upper bound
coincides with (22) up to oρ(1) terms.

Indeed, we demonstrate in [15] that for T > 2 and ρ0
sufficiently large, we have

sup
0≤α≤ρ

J̄(α) = J̄(ρ). (37)

We further demonstrate that for T > 2, 0 < ε < 1/2, and
sufficiently large L0 and ρ0, the supremum in (36) can be
replaced by a supremum over α ∈ [ρ(1 − K/L), ρ], where K
is some non-negative constant. Together with the lower bound

V̄ρ(α) ≥ V̄ (ρ)−Υ
K

L
, ρ

(
1− K

L

)
≤ α ≤ ρ (38)

for some non-negative constant Υ (see [15]), this yields

sup
0≤α≤ρ

{
J̄(α)

LT
−
√
V̄ρ(α)

LT 2
Q−1(ε)

}

=
J̄(ρ)

T
−
√
V̄ (ρ)−ΥK/L

LT 2
Q−1(ε). (39)

This proves (36) and concludes the proof of the upper bound.
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blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–
2359, May 2010.

[3] W. Yang, G. Durisi, T. Koch, and Y. Polyanskiy, “Diversity versus
channel knowledge at finite block-length,” in Proc. IEEE ITW, Sept.
2012, pp. 572–576.
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