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Abstract—We investigate the maximum coding rate achievable
on a two-user broadcast channel for the case where a common-
message is transmitted using fixed-blocklength codes with feed-
back. Specifically, we focus on a family of broadcast channels com-
posed of two antisymmetric Z-channels. For this setup, we obtain
matching upper and lower bounds on the dispersion term in the
asymptotic expansion of the maximum coding rate. These bounds
reveal that the dispersion is halved compared to the no-feedback
case.

I. INTRODUCTION

We consider a two-user common-message discrete-time mem-
oryless broadcast channel (CM-BC) with full feedback. As for
the point-to-point setup, it is well known that feedback does not
improve capacity, which is given by

C = sup
P

min
k∈{1,2}

I(P,Wk). (1)

Here, W1 and W2 denote the component channels from the
encoder to the two decoders and the supremum is over all input
distributions P .

In this paper, we show that there exist CM-BCs for which
feedback improves the speed at which the maximum coding rate
achievable with fixed-blocklength codes approaches capacity as
the blocklength increases. Specifically, we shall focus (for sim-
plicity) on the class of CM-BCs consisting of two antisymmetric
Z-channels W1 and W2 defined as follows:

W1(0|0) = 1−W1(1|0) = W2(1|1) = 1−W2(0|1) = 1 (2)
W1(0|1) = 1−W1(1|1) = W2(1|0) = 1−W2(0|0) = δ. (3)

Here, δ ∈ (0, 1). Note that for this class of CM-BCs, which
we shall refer to as AZ-CM-BCs (AZ stands for antisymmetric
Z), the capacity-achieving input distribution (CAID) P ∗ is the
uniform distribution.

For the no-feedback case, a CM-BC is equivalent to a com-
pound channel, whose second-order coding rates (i.e., the second-
order expansion of the maximum coding rate in the limit of
large blocklength) were investigated in [1]. There, it was proven
that the second-order term in the expansion of the logarithm
of maximum number of codewords M∗(n, ε) as a function of
the blocklength n and the average error probability ε ∈ (0, 1)
is in general a function of both the dispersions [2, Eq. (222)]
of the individual component channels and of the directional
derivatives of their mutual informations computed at the CAID.

The particular structure of the antisymmetric Z-channel setup
considered in this paper yields, however, the following drastic
simplification to the second-order expansion of logM∗(n, ε) for
the no-feedback case:

logM∗(n, ε) = nC −
√
nV Q−1(ε) + o

(√
n
)
. (4)

Here, V is the conditional information variance (see [2,
Eq. (242)]) evaluated at P ∗ which is the same for W1 and W2.

When variable-length codes are used, feedback is known to
improve the speed at which the maximum coding rate converges
to capacity. Specifically, it was shown in [3] that the square-root
term in the asymptotic expansion of the maximum coding rate
(cf. (4)) vanishes for point-to-point discrete memoryless chan-
nels (DMCs), a result known as zero-dispersion. Furthermore,
this fast convergence to capacity can be achieved using only
stop feedback (also known as decision feedback). Namely, the
feedback channel is used only to stop transmissions. For CM-
BCs, however, stop feedback is not sufficient to achieve zero-
dispersion. Specifically, we recently showed that the asymptotic
expansion of the maximum coding rate with variable-length
codes and stop feedback contains a square-root penalty term,
provided that some mild technical conditions are satisfied [4].

In the fixed-blocklength-code setup, it is known that feedback
does not improve the second-order term for point-to-point DMCs
under certain symmetry conditions. Specifically, it was shown
in [3] that feedback does not improve the second-order term for
weakly input-symmetric DMCs. This result was extended to a
broader class of DMCs in [5], where it was shown that the same
holds when the conditional information variance is constant for
all input symbols.

Contributions: We show that, in the fixed-blocklength-code
setup, the availability of feedback yields an improvement to the
second-order term of the asymptotic expansion of logM∗(n, ε)
for CM-BCs composed of two antisymmetric Z-channels. Specif-
ically, we demonstrate that, when ε ∈ (0, 1/2), the second-order
term in (4) can be improved to

√
nV/2Q−1(2ε) if feedback is

available, and that this value is optimal.
The intuition behind our result is as follows: feedback allows

the encoder to compute the accumulated information density at
both decoders and to adapt the input distribution accordingly.
Specifically, the encoder makes small adjustments to the input
distribution in order to favor the decoder with the smallest
information density and to drive both information densities



close to their arithmetic mean. The problem of computing the
maximum coding rate then becomes roughly equivalent to the
one of computing the ε-quantile of the arithmetic mean of the
two information densities. The desired result follows because the
arithmetic mean of the two information densities has variance
V/2. Hence, the dispersion is halved. Furthermore, the improve-
ment from Q−1(ε) to Q−1(2ε) is achieved as follows: if the
arithmetic mean of the information densities is below a suitably
chosen threshold shortly before the end of the transmission, the
encoder can change the input distribution to either the CAID of
W1 or the one of W2. In this way, it can ensure that at least one
of the two decoders is successful.

Extensions: Our results can be extended to a broader class
of CM-BCs. In particular, a feedback scheme similar to the one
considered in this paper yields an improved second-order term
for all CM-BC for which P ∗ is the unique maximizer in (1), it
satisfies P ∗(x) > 0 for all inputs x, and it is neither the CAID
of W1 nor of W2. Our converse result requires certain additional
symmetry conditions.

II. SYSTEM MODEL

We consider the family of AZ-CM-BCs described in Section I.
We also assume that the channel outputs at any given time i are
conditionally independent given the input, namely

PY1,i,Y2,i|Xi
(y1,i, y2,i|xi) ,W1(y1,i|xi)W2(y2,i|xi). (5)

An (n,M, ε)-feedback code for this channel consists of:
1) n encoding functions fi : {1, . . . ,M} × {0, 1}i−1 ×
{0, 1}i−1 7→ {0, 1}, i = 1, . . . , n, mapping the message J ,
drawn uniformly from {1, . . . ,M}, and the past channel
outputs to the channel input Xi = fi(J, Y

i−1
1 , Y i−1

2 ).
2) Two decoders gk : {0, 1}n 7→ {1, . . . ,M} satisfying1

max
j∈{1,...,M}

P
[
gk(Y nk ) 6= j|J = j

]
≤ ε, k ∈ {1, 2}. (6)

The maximum number of codewords with blocklength n and
maximum error probability not exceeding ε is denoted by

M∗f (n, ε) , max{M : ∃(n,M, ε)-feedback code} . (7)

Let PWk(·) and P ×Wk(·) be the marginal output distribution
and the joint probability distribution of (X,Yk), respectively,
induced by the input distribution P . For every input distribu-
tion P and n ∈ N, we denote the information density between
the vectors xn and ynk as

ıP,Wk
(xn; ynk ) ,

n∑
i=1

log
Wk(yk,i|xi)
PWk(yk,i)

. (8)

We let Ik(P ) , EP×Wk
[ıP,Wk

(X;Yk)] be the mutual informa-
tion and Vk(P ) , EP [VarWk

[ıP,Wk
(X;Yk)|X]] be the condi-

tional information variance. The capacity of the AZ-CM-BC is
given in (1) and is achieved by the uniform distribution P ∗. We
denote by C1 = C2 = C̃ the capacities of the two component
channels. Finally, we let V , V1(P ∗) = V2(P ∗) and let I ′k

1Throughout the paper, the index k belongs always to the set {1, 2}, although
this is sometimes not explicitly mentioned.

be the derivative of Ik([p, 1 − p]) with respect to p evaluated
at p = 1/2. The following two properties, which are satisfied
for the AZ-CM-BC because of antisymmetry, are crucial for
establishing our asymptotic result:

I ′1 + I ′2 = 0 (9)

and, for x ∈ {0, 1},

Var
[
ıP∗,W1(x;Y1) + ıP∗,W2(x;Y2)

∣∣∣X = x
]

= 2V. (10)

III. NONASYMPTOTIC BOUNDS

We first state a Verdú-Han-type converse bound for feedback
codes. Its proof (which is omitted) relies on the meta-converse
theorem [2, Th. 27] and on the inequality [2, Eq. (106)].

Theorem 1: Every (n,M, ε)-feedback code for the AZ-CM-
BC satisfies

ε ≥ max
k

P
[ n∑
i=1

ıP∗,Wk
(Yk,i; fi(J, Y

i−1
1 , Y i−1

2 ))

≤ logM − η
]
− e−η, ∀η > 0. (11)

Before stating our achievability bound, we need to introduce
some notation. Throughout this section, we let S ≥ 2, L,
m, and nB denote arbitrary positive integers. We also let
S , {1, . . . , S} and L , {1, . . . , L}. Furthermore, we set
A , {0, 1}SLm and index an element x of A as follows

x = (x1(1), . . . , x1(S), . . . . . . , xL(1), . . . , xL(S)). (12)

Here, x`(s) = (x`,1(s), . . . , x`,m(s)) ∈ {0, 1}m. For a given
vector b` ∈ S`, we let x`(b`) , (x1(b1), . . . , x`(b`)). Finally,
we let ε∗(nB , SL) denote the minimum error probability achiev-
able on an AZ-CM-BC using fixed-blocklength codes with no
feedback of blocklength nB and with SL codewords.

Next, we state our achievability bound.
Theorem 2: LetP1, . . . , PS be types of sequences in {0, 1}m,

let τ ∈ (0, ε) and ζ > 0 be arbitrary, and let {h`}L−1
`=0 be arbitrary

mappings from {0, 1}`m × {0, 1}`m × {0, 1}`m to S. Then,

logM∗f (Lm+ nB , ε+ ε∗(nB , S
L))

≥ sup
{
γ : min

k
P
[
ık(xL(BL); YLk (BL)) ≤ γ

]
<

ε− τ − e−ζ
}

+ log τ − SL log(1 +m)− (L+ 1) logS − ζ. (13)

Here, x ∈ A is an arbitrary element of

F ,
{

x ∈ A : x`(b) has type Pb, ∀b ∈ S, ` ∈ L} (14)

and P[·] denotes the probability distribution of (Y1,Y2, B
L) on

A× A× SL defined by

P(y1, y2, b
L) ,

(
L∏
`=1

S∏
s=1

∏
k

Wm
k (yk,`(s)|x`(s))

)

×
L−1∏
`=0

1
{
h`

(
x`(b`), y`1(b`), y`2(b`)

)
= b`+1

}
(15)



for yk,`(b) ∈ {0, 1}m. Finally, we have defined

ık(x`(b`); yk,`(b`)) ,
m∑
i=1

ıPb`
,Wk

(x`,i(b`); yk,`,i(b`)) (16)

and

ık(xL(bL); yLk (bL)) ,
L∑
`=1

ık(x`(b`); yk,`(b`)). (17)

Sketch of the proof: Each codeword of lengthLm is divided
into L blocks of length m. Within each block `, feedback is
used to compute the index b`, which selects one out of the S
available subcodewords (the vectors x`(b`), b` = 1, . . . , S). We
then communicate the sequence bL to the decoders using a code
withSL codewords of lengthnB . The desired bound then follows
by applying the achievability bound [1, Th. 3] for compound
DMCs without feedback.

IV. ASYMPTOTIC ANALYSIS

By analyzing Theorem 1 and Theorem 2 in the large-
blocklength limit, we obtain the following asymptotic expansion
for logM∗f (n, ε).

Theorem 3: For every ε ∈ (0, 1/2), we have

logM∗f (n, ε) = nC −
√
nV

2
Q−1(2ε) +O(n1/3 log n). (18)

Remark 1: The assumption ε ∈ (0, 1/2) is crucial for (18) to
hold. Indeed, when ε > 1/2, one can achieve logM∗f (n, ε) =
nC̃ + o(n) by using a standard point-to-point fixed blocklength
code of rate C̃ and input distribution P ∗1 (the CAID of W1) with
probability 1/2 and another code of rate C̃ but input distribution
P ∗2 (the CAID of W2) with probability 1/2. This implies that
the strong converse does not hold.

Remark 2: If the error probability constraint (6) is replaced
with P[(g1(Y n1 ), g2(Y n2 )) 6= (J, J)] ≤ ε, then the asymptotic
expansion in (18) continues to hold except that Q−1(2ε) is
replaced with Q−1(ε).

A. Proof of Theorem 3: Converse

Let

Ak(j, yn1 , y
n
2 ) ,

n∑
i=1

ıP∗,Wk
(fi(j, y

i−1
1 , yi−1

2 ); yk,i) (19)

and

A(j, yn1 , y
n
2 ) ,

1

2

(
A1(j, yn1 , y

n
2 ) +A2(j, yn1 , y

n
2 )
)
. (20)

By Theorem 1, every (n,M, ε)-feedback code satisfies

ε+ e−η ≥ max
k

P[Ak(j, yn1 , y
n
2 ) ≤ logM − η] (21)

≥ 1

2

∑
k

P[Ak(j, yn1 , y
n
2 ) ≤ logM − η] (22)

≥ 1

2
P

[⋃
k

{
Ak(j, yn1 , y

n
2 ) ≤ logM − η

}]
(23)

≥ 1

2
P[A(J, Y n1 , Y

n
2 ) ≤ logM − η] . (24)

We observe now that, by symmetry, the probability distribution of
ıP∗,W1

(x;Y1) + ıP∗,W2
(x;Y2) does not depend on x ∈ {0, 1}.

This implies that the probability distribution of A(j, Y n1 , Y
n
2 )

does not depend on j and coincides with the one of a sum of
bounded i.i.d. random variables (RVs) with meanC and variance
V/2 (see (10)). Thus, by the Berry-Esseen central limit theorem
[6, Th. V.4], we conclude that

P[A(J, Y n1 , Y
n
2 ) ≤ logM − η]

≥ Q
(
nC − logM + η√

nV/2

)
− c√

n
. (25)

Here, c denotes a nonnegative constant, which depends only on
the channels {Wk}. We obtain the desired result by substitut-
ing (25) in (24), by solving for logM , by setting η = log n, and
by performing a Taylor expansion of Q−1(·) around 2ε.

B. Proof of Theorem 3: Achievability

To establish the achievability part, we start by setting in
Theorem 2 the parameter S (which controls the number of
subcodewords available per block) to 5. Let κ , bC−1 log 5c+1
and set the number of blocks and the number of channel uses
per block in Theorem 2 to

L = Ln , bn1/3c and m = mn , bn/Lnc − κ. (26)

We use the remaining κLn channel uses to communicate the
sequence BLn ∈ {1, . . . , 5}Ln to the decoders. Since κ >
C−1 log 5, the rate of the code, log 5/κ, is smaller thanC. Hence,
its error probability can be made to decay exponentially in Ln

ε∗(κLn, 5
Ln) ≤ exp(−ωLn) (27)

for some positive constant ω.
Next, we specify the types {Pb}5b=1. Let ρ > 0 (a constant

we shall specify later) and define the following 5 sequences:

p1,n ,
1

2
+
ρn−1/3

I ′1
, p2,n , 1− p1,n =

1

2
+
ρn−1/3

I ′2
(28)

p3,n , 1/2, p4,n , p∗1, and p5,n , p∗2. Here, p∗1 and p∗2
parameterize the CAIDs of W1 and W2, respectively. Note that
p1,n and p2,n are in the interval (0, 1) for sufficiently large
n. We now let pb,n (b ∈ {1, 3, 4, 5}) be the element of the
set {i/mn : i ∈ {0, . . . ,mn}} that minimizes |pb,n − pb,n|.
Furthermore, we set pb,2 = 1− pb,1. We then choose the types
in Theorem 2 as Pb = P b,n , [pb,n, 1− pb,n].

Some observations are in order. Let Pb,n = [pb,n, 1 − pb,n];
then

∥∥P b,n − Pb,n∥∥1
= O(1/n). Hence, since Ik(·) is differen-

tiable,

Ik(P b,n) = Ik(Pb,n) +O(1/n), b ∈ {1, . . . , 5}. (29)

In Theorem 2, we also set τ = 1/
√
n, ζ = n1/3, and take x as

an arbitrary element of F in (14) satisfying

x`,i(1) = 1− x`,i(2) (30)

for all ` ∈ {1, . . . , Ln} and i ∈ {1, . . . ,mn}. This choice is
possible because p1,n = 1− p2,n.



The mappings {h`}Ln−1
`=0 , which use the feedback to determine

which subcodeword to transmit in each block, are chosen as
follows: in the first Ln − 1 blocks, we let the transmitter choose
between subcodewords of type P 1,n and of type P 2,n depending
on which decoder has the largest accumulated information den-
sity. This balances the information densities at the two decoders
and makes the difference tightly concentrated around zero (as
we shall see later). In the last block, the transmitter chooses a
subcodeword of type P 3,n (which approximates the CAID P ∗)
if the arithmetic average of the information densities is above a
suitably chosen threshold γ1, specified later in (45). Otherwise it
chooses randomly between the subcodeword of typeP 4,n (which
approximates the CAID of W1) and the one of type P 5,n (which
approximates the CAID of W2).

Specifically, we choose the mappings {h`}Ln−1
`=0 as follows:

h0 = 2 and for ` = 1, . . . , Ln − 2,

h`(x
`(B`),Y`1(B`),Y`2(B`))

= 1 + 1
{
ı1(x`(B`); Y`1(B`)) ≥ ı2(x`(B`); Y`2(B`))

}
. (31)

For ` = Ln − 1, we let T be a uniformly distributed RV on
{1, 2} and set

h`(x
`(B`),Y`1(B`),Y`2(B`)) ,

3, if ı1(x`(B`); Y`1(B`)) + ı2(x`(B`); Y`2(B`)) ≥ 2γ1

4, if ı1(x`(B`); Y`1(B`)) + ı2(x`(B`); Y`2(B`)) < 2γ1

and T = 1

5, if ı1(x`(B`); Y`1(B`)) + ı2(x`(B`); Y`2(B`)) < 2γ1

and T = 2.

(32)

Roughly speaking, the threshold γ1 is chosen so that P 3,n, P 4,n,
and P 5,n are used with probability (1−2ε), ε, and ε, respectively.

Using Theorem 2 with the parameters listed above, we obtain

logM∗f (n, ε) ≥ logM∗f (Lnmn + κLn, ε)

≥ sup
{
γ : min

k
P
[
ık(x(BLn); Yk(BLn)) < γ

]
≤

ε− c1n−1/2
}

+O(n1/3 log n) (33)

for some c1 > 0. In the last step, we used that (ε∗(κLn, S
Ln) +

1/
√
n+ e−n

1/3

) ≤ (e−ωLn + 1/
√
n+ e−n

1/3

) ≤ c1n−1/2 for
sufficiently large n. Now set

γ , LnmnC −
√

(Ln − 1)mnV/2

×Q−1
(

2ε− 2
√

2(c1 + c2)n−1/2
)
. (34)

The constant c2 > 0 will be defined shortly. The final step of
the proof is to show that the following upper bound holds for
sufficiently large n

P
[
ık(x(BLn); Yk(BLn)) < γ

]
≤ ε− c1n−1/2. (35)

The desired result (18) then follows by using (34) and (35)
in (33), by observing that (Ln − 1)mn = n + O(n2/3) and
by performing a Taylor expansion of Q−1(·) in (34) around 2ε.

Proof of (35): To simplify the notation, we set

Z
(b)
k,`,i , ıP b,n,Wk

(x`,i(b); Yk,`,i(b)) (36)

Zk,`1,`2 ,
`2∑
`=`1

mn∑
i=1

Z
(B`)
k,`,i . (37)

The RVs Z(b)
k,`,i are independent for all k, b, `, and i. Note also

thatZk,1,Ln
= ık(x(BLn); Yk(BLn)). Hence, the left-hand side

of (35) can be rewritten as P
[
Zk,1,Ln

< γ
]
.

It will turn out convenient to define the following quantities
as well:

Z
∗
,

1

2

Ln−1∑
`=1

mn∑
i=1

∑
k∈{1,2}

ıP∗,Wk

(
x`,i(B`); Yk,`,i(B`)

)
(38)

A ,
1

2

Ln−1∑
`=1

mn∑
i=1

∑
k∈{1,2}

log
PB`,nWk(Yk,`,i(B`))
P ∗Yk

(Yk,`,i(B`))
(39)

E ,
1

2

(
Z1,1,Ln−1 − Z2,1,Ln−1

)
. (40)

In the remainder of the proof, we shall make use of the following
decomposition:

Zk,1,Ln−1 = Z
∗ −A− (−1)kE. (41)

We next show thatZ
∗

is accurately approximated by a normal dis-
tribution with mean (Ln−1)mnC and variance (Ln−1)mnV/2,
whereas both A and E are of order n1/3. To prove these claims,
we rely on the Berry-Esseen central limit theorem, on Hoeffding
inequality [7], and on the following stabilization lemma, whose
proof (omitted) is by mathematical induction.

Lemma 4 (stabilization lemma): Let {X(1)
` } and {X(2)

` } be
i.i.d. RVs with mean µ1 > 0 > µ2 satisfying

P
[
X

(b)
` ≥ v

]
≤ e−β|v−µb|2+ ,P

[
X

(b)
` ≤ v

]
≤ e−β|µb−v|2+ (42)

for all b ∈ {1, 2}, all ` ∈ N, and some β > 0. Here, | · |+ ,
max{0, ·}. Define the sequence {Y`} as follows: Y0 = 0 and

Y` =

{
Y`−1 +X

(1)
` for Y`−1 < 0

Y`−1 +X
(2)
` for Y`−1 ≥ 0.

(43)

Let c ≥ 1 satisfy min{µ1,−µ2} ≥
√
π/β exp

(
c2/4

)
. Then

P[|Y`| ≥ v] ≤ 2e−c
√
β(v−µ1+µ2). (44)

Let now c4 > 0 be arbitrary and define the thresholds

γ1 , γ −mnC + n1/3 log n (45)
γ2 , (Ln − 1)mnC − c4

√
n log n. (46)

Here, γ was defined in (34). Intuitively, γ1 is chosen so as to be
the 2ε-quantile of Z

∗ −A for large n, whereas γ2 is needed to
upper-bound the probability of the (rare) event that Z

∗ − A is
far smaller than its mean. Note also that γ1 > γ2 for sufficiently
large n. Define the four disjoint events

E1,m ,
{
Z
∗ −A ∈ [γ2, γ1), T = m

}
, m ∈ {1, 2} (47)

E2 ,
{
Z
∗ −A ≥ γ1

}
, E3 ,

{
Z
∗ −A < γ2

}
. (48)



Let k̄ = 1 when k = 2 and k̄ = 2 when k = 1. Using the events
defined above, we readily obtain the following upper bound

P
[
Zk,1,Ln

< γ
]
≤ P

[
E1,k̄

]
+ P

[
E1,k ∩

{
Zk,1,Ln

< γ
}]

+ P
[
E2 ∩

{
Zk,1,Ln

< γ
}]

+ P[E3] . (49)

In the following, we upper-bound each of these four probabilities.
It turns out that only P

[
E1,k̄

]
yields a nonvanishing contribution.

Bound on P
[
E1,k̄

]
: We first establish a bound on the tail

probability of A in (47). Since P 1,n = 1− P 2,n, we can find a
sequence {ζn} such that

I1(P b,n) + I2(P b,n) = 2(C − ζnn−2/3), b ∈ {1, 2}. (50)

It follows from the concavity of mutual information, from (28)–
(29), from Taylor’s theorem, and from (9) that the sequence
ζn is positive and convergent. Since D(W1(·|x)||P ∗Y1

) +
D(W2(·|x)||P ∗Y2

) = 2C for every x ∈ {0, 1}, we must also
have that

D(P b,nW1||P ∗Y1
) +D(P b,nW2||P ∗Y2

) = 2ζnn
−2/3 (51)

for all b ∈ {1, 2}. Since
∥∥P b,n−P ∗∥∥1

= O(n−1/3), there exists
a constant c3 > 0 such that |

∑
k logP b,nWk(y)/P ∗Yk

(y)| ≤
c3n
−1/3 for sufficiently large n. Hence, for sufficiently large n,

P
[
A ≥ n1/3 log n

]
≤ exp

(
−cn1/3 log2 n

)
= O(1/n) . (52)

Here, we have used (30), that P 2,n = 1 − P 1,n, Hoeffding
inequality, and that ζn is convergent.

We next upper-bound P
[
E1,k̄

]
as follows:

P
[
E1,k̄

]
≤ 1

2
P
[
Z
∗
< γ1 + n1/3 log n

]
+O(1/n) (53)

≤ 1

2
Q
( (Ln − 1)mnC − γ1 − n1/3 log n√

V (Ln − 1)mn/2

)
+

√
2c2√
n

(54)

≤ ε−
√

2c1/
√
n. (55)

Here, (53) follows from (47) and (52), and because T is equiprob-
able on {1, 2} and independent of (Y1,Y2); (54), which holds
for some constant c2 > 0 and sufficiently large n, follows from
the Berry-Esseen central limit theorem [6, Th. V.4]; finally, (55)
follows from (34) and (45).

Bound on P
[
E1,k ∩

{
Zk,1,Ln < γ

}]
: We show that E

in (41) is sufficiently concentrated around 0. To do this, let

F
(b)
` ,

1

2

mn∑
i=1

(Z
(b)
1,`,i − Z

(b)
2,`,i) (56)

for b ∈ {1, 2}. The F (b)
` are independent RVs. Furthermore,

observe that E =
∑Ln−1
`=1 F

(B`)
` . Since P 1,n = 1−P 2,n, there

must exist a convergent sequence {ξn} such that

I1(P b,n)− I2(P b,n) = −2(−1)b(ρn−1/3 + ξnn
−2/3). (57)

Consequently, since {x`,i(b)}mn
i=1 is of constant composition, it

follows that E
[
F

(b)
`

]
= −(−1)bµn, where µn , ρmnn

−1/3 +
ξnmnn

−2/3 = O(n1/3) (recall that ρ > 0 is a constant that
we have not chosen yet). Since F (b)

` can be written as a sum

of independent random variables, we conclude, by applying
Hoeffding inequality, that

P
[
F

(b)
` ≥ v

]
≤ e
− 1

2mnc25
|v+µn(−1)b|2

+ (58)

and

P
[
F

(b)
` ≤ v

]
≤ e
− 1

2mnc25
|µn(−1)b−v|2

+ . (59)

Here, c5 ≥ max{1, |Z1,`,i − Z2,`,i|}. We now choose ρ so that
ρ >

√
4πc25e

c25 . Next, we apply Lemma 4 with X(b)
` = F

(b)
` ,

β = 1/(2mnc
2
5) and c = 2c5 and obtain

P
[
|E| ≥ n1/3 log n

]
≤ 2e

−
√

2
mn

(n1/3 logn−2µn) ≤ 3/n. (60)

In the last step, which holds for sufficiently large n, we used that
ξnmnn

−2/3 = O(1). Consider now

P
[
E1,k ∩

{
Zk,1,Ln < γ

}]
≤ P

[
E1,k ∩

{
|E| ≤ n1/3 log n, Zk,1,Ln

< γ
}]

+ 3/n (61)

≤ P
[
Zk,Ln,Ln

< γ − γ2 + n1/3 log n|BLn
= 3 + k

]
+ 3/n

(62)

≤ exp
(
− c6
mn

(
mn(Ck − C)− 2c4

√
n log n

)2 )
+ 3/n (63)

= O(1/n) (64)

where c6 > 0 is some constant. Here, (61) follows from of (60);
(62) follows because if E1,k occurs then BLn

= 3 + k (see
(32)), because Z

∗−A ≥ γ2, and because Zk,1,Ln
= Z

∗−A−
(−1)kE + Zk,Ln,Ln . Finally, (63) follows from (34), (46), and
Hoeffding inequality applied to Zk,Ln,Ln .

Bound on P
[
E2∩

{
Zk,1,Ln

< γ
}]

and on P[E3]: We show
that P

[
E2 ∩

{
Zk,1,Ln

< γ
}]

= O(1/n) using an argument
similar to the one leading to (64) and that P[E3] = O(1/n) using
(46), (52), and Hoeffding inequality applied to Z

∗
. Substituting

these last two results as well as (55) and (64) into (49), we
establish the desired upper bound (35).
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