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Multiscale modeling of ductile fracture in solids
Thesis for the degree of Doctor of Philosophy in Solid and Structural Mechanics
ERIK SVENNING
Department of Applied Mechanics
Chalmers University of Technology

Abstract

Ductile fracture occurs in many situations of engineering relevance, for example metal
cutting and crashworthiness applications, where the fracture process is important to
understand and predict. Increased understanding can be gained by using multiscale
modeling, where the effective response of the material is computed from microscale
simulations on Statistical Volume Elements (SVEs)1 containing explicit models for the
nucleation and propagation of microscopic cracks. However, development of accurate
and numerically stable models for failure is challenging already on a single scale. In
a multiscale setting, the modeling of propagating cracks leads to additional difficulties.
Choosing suitable boundary conditions on the SVE is particularly challenging, because
conventional boundary conditions (Dirichlet, Neumann and strong periodic) are inaccurate
when cracks are present in the SVE. Furthermore, the scale transition relations, i.e. the
coupling between the macroscale and the microscale, need to account for the effect of
strain localization due to the formation of macroscopic cracks. Even though several
approaches to overcome these difficulties have been proposed in the literature, previously
proposed models frequently involve explicit assumptions on the constitutive models
adopted on the microscale, and require explicit tracking of an effective discontinuity inside
the SVE. For the general situation, such explicit discontinuity tracking is cumbersome.
Therefore, a multiscale scheme that employs less restrictive assumptions on the microscale
constitutive model would be very valuable. To this end, a two-scale model for fracturing
solids is developed, whereby macroscale discontinuities are modeled by the eXtended
Finite Element Method (XFEM). The model has two key ingredients: i) boundary
conditions on the SVE that are accurate also when crack propagation occurs in the
microstructure, and ii) suitable scale transition relations when cracks are present on
both scales. Starting from a previously proposed mixed formulation for weakly periodic
boundary conditions, effective boundary conditions are developed to obtain accurate
results also in the presence of cracks. The modified boundary conditions are combined
with smeared macro-to-micro discontinuity transitions, leading to a multiscale modeling
scheme capable of handling cracks on both scales. Several numerical examples are
given, demonstrating that the proposed scheme is accurate in terms of convergence with
increasing SVE size. Furthermore, the good performance of the proposed scheme is
demonstrated by comparisons with Direct Numerical Simulations (DNS).

Keywords: XFEM, Computational Homogenization, Weak periodicity, Crack propagation,
Fracture, Inf-sup

1Sometimes also called Representative Volume Element (RVE) or Microstructural Volume Element
(MVE).
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Part I

Extended Summary

1 Introduction

Ductile fracture occurs in many engineering applications, for example in metal cutting
or when structures are subjected to crash loading. In such applications, good control
of the fracture process is often needed to ensure safe and efficient operation. Hence, a
good prediction of the entire fracture process, including the post peak-load behavior,
is important and a good understanding of the underlying mechanisms is needed. Since
fracture starts with nucleation of voids and microcracks that grow and coalesce to
eventually form macroscopic cracks, increased understanding may be gained by studying
the microstructure of the material using suitable modeling techniques. In principle, this
could be done by explicitly resolving the microstructure of the material everywhere in
the specimen, i.e. Direct Numerical Simulation (DNS). Unfortunately, this approach
often leads to unacceptable computational cost. Therefore, the effective behavior of
the microstructure is often predicted by means of computational homogenization, see
e.g. Zohdi and Wriggers [1], Fish et al. [2], Ostoja-Starzewski [3], Kouznetsova et al.
[4], Talebi et al. [5], the reviews by Geers et al. [6] and Nguyen et al. [7], or the text
book by Zohdi and Wriggers [8]. In computational homogenization, a key step is the
computation of the homogenized microscale response in a Statistical Volume Element
(SVE)1 with suitable Boundary Conditions (BCs). However, modeling of fracture in a
computational homogenization setting turns out to be very challenging and several issues
need to be addressed, including i) pathological SVE size and mesh size dependence of
first order homogenization in the presence of macroscale strain localization, ii) the choice
of suitable BCs on the SVE and iii) the choice of robust and accurate fracture models on
the microscale.

Regarding the pathological SVE size and mesh size dependence, it is well known that
this follows from standard first order homogenization when strain localization occurs inside
the SVE. More precisely, first order homogenization in the presence of microscale damage
evolution corresponds to a local continuum damage model on the macroscale and therefore
suffers from the well documented pathological mesh size sensitivity characteristic for such
damage models, see e.g. [10, 11]. To circumvent these problems, a suitable model that
incorporates a length scale is needed for the macroscopic representation of the localization
zone. A popular choice is to inject a macroscopic discontinuity into the model when some
localization criterion is fulfilled [7], whereby the failure can be represented by means of
cohesive zone elements [12, 13], the eXtended Finite Element Method (XFEM) [14, 5, 15,
16] or embedded discontinuities [17, 18, 19]. Alternatively, the localized crack may be
resolved explicitly on the macroscale using a suitable adaptive scheme along the lines in

1In the literature, both Representative Volume Element (RVE) and Microstructural Volume Element
(MVE), cf. [9], are also used to denote a sample of the microstructure. To stress the fact that a sample of
finite size will, in general, not be truly representative, we prefer the notion Statistical Volume Element
(SVE), cf. Ostoja-Starzewski [3].
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[20], or second order homogenization [4] may be employed. Even though much research
effort has been devoted to the development of multiscale localization schemes, there
are still challenges remaining. Previously proposed schemes generally involve restrictive
assumptions on the models adopted on the microscale and require explicit tracking of a
damaged zone inside the SVE. However, such explicit tracking may be cumbersome or
impossible when complex fracture models are employed on the microscale. Therefore, a
scheme that does not require explicit tracking of the localized zone inside the SVE would
be very valuable.

Regarding the choice of suitable boundary conditions on the SVE, this turns out to be
critical when crack nucleation and propagation occurs inside the SVE. This observation
holds also prior to localization, i.e. at the early stage of damage progression. More
precisely, it is well known that conventional BCs (Neumann, Dirichlet and strong periodic)
are inaccurate if cracks intersect the SVE boundary, see the illustration in Paper A and
the discussion in [5, 9]. Even though efforts have been made to develop BCs that perform
better than conventional BCs [9, 17], there is potential for improved performance by
developing BCs that are adapted to the geometry at hand.

For the choice of microscale fracture model, it should be noted that modeling of ductile
fracture is challenging also on a single scale, and a wide range of modeling approaches
have been developed, see e.g. Miehe et al. [21], Ortiz and Pandolfi [22], Belytschko and
Black [23], the XFEM review by Fries and Belytschko [24], the lecture notes by Jirasek
[10], or the text book by Lemaitre [25]. For the representation of the damaged zone, one
option is to model it in a smeared sense, using local2 or nonlocal continuum damage
models, or phase field models. Using such models allows for modeling of complex damage
patterns without additional geometrical difficulties, but a very fine mesh is needed to
accurately represent a discrete crack. An alternative frequently used in commercial codes
is element removal techniques, where finite elements are removed from the numerical
simulation when a predefined damage threshold is exceeded. Such models are appealingly
simple, but require scaling of the damage evolution model to avoid pathological mesh
dependence. To overcome these difficulties, a discrete crack model may be used instead,
such as element embedded discontinuities, interface elements or XFEM. These discrete
models introduce additional geometrical difficulties (explicit representation and tracking
of the crack front), but allow for modeling of sharp cracks. Regardless of the approach
chosen for representation of the damaged zone, the progression of damage needs to be
modeled in a suitable way. For example, damage progression may be modeled as a function
of the stress or the plastic strain in the material. In particular, several authors have
explored the possibilities of combining element embedded discontinuities or XFEM with
fracture criteria based on stress intensity factors [26, 27], material crack driving force [28],
stress [29, 30], plastic strain [31] or loss of ellipticity [32].

To summarize, successful multiscale modeling of ductile fracture requires accurate
BCs on the SVE and consistent scale transition relations as well as robust and accurate
models for propagating cracks. In the present work, we adopt the concept of Variationally
Consistent Homogenization (VCH) [20, 33] to derive scale transition relations and develop
weakly periodic boundary conditions that can be applied on SVEs containing cracks. For
the representation of propagating cracks, we mainly use XFEM.

2With suitable regularization, typically element size scaling.
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2 Aim of research

The aim of the present work is to develop a multiscale model suitable for ductile fracture.
As indicated above, such models need to include the following components:

1. A suitable scale bridging scheme capable of handling macroscale localization.

2. Suitable boundary conditions on the Statistical Volume Element (SVE) in the
presence of cracks in the SVE.

3. Suitable fracture models on the microscale.

In the present work, models proposed in the literature are adopted for 3), whereas novel
techniques are developed for 1 ) and 2).

3 A fracturing continuum

3.1 Model problem

Before developing the multiscale modeling scheme, we first establish the weak form of the
resolved problem (i.e. prior to the introduction of computational homogenization) for a
continuum containing propagating cracks. To this end, consider a domain Ω with external
boundary Γext and internal boundaries Γint, where Γint may for example represent cracks
as indicated in Figure 3.1a or grain boundaries as indicated in Figure 3.1b. The internal
boundaries Γint have a predefined normal nint and consist of two-sided surfaces, with a
positive side Γ+

int and a negative side Γ−int as also indicated in Figure 3.1. The external
boundary consists of a part Γext,D with Dirichlet boundary conditions and a part Γext,N
with Neumann boundary conditions. The boundary of Ω is therefore decomposed as
∂Ω = Γext,D ∪ Γext,N ∪ Γint. Letting superscripts + and − denote quantities on Γ+

int

and Γ−int, respectively, we define the normal nint to be the outward unit normal on Γ−int,

i.e. nint
def
= n−int. As indicated in Figure 3.1, the internal boundaries may branch and

intersect and, hence, nint is not necessarily continuous along an arbitrary part of Γint,
not even prior to introducing a finite element discretization.

Considering small strains and quasistatic loading, the strong form of the equilibrium
equations is given by

− σ ·∇ = 0 in Ω,

t+ + t− = 0 on Γint,

t
def
= σ · n = t̂ on Γext,N ,

u = û on Γext,D,

(3.1)

where σ is the Cauchy stress, ∇ is the gradient operator, n is a unit normal vector,
t̂ is a prescribed traction and û is a prescribed displacement. Furthermore, letting

ε
def
= (u⊗∇)

sym
and JuK def

= u+ − u−, constitutive models are given for the stress-strain
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relation σ = σ{ε} and the traction-separation law t = t{JuK}, where the dependence of
σ and t on internal variables has been omitted for brevity.

nint

Γ−
int

Γ+
int

Ω

Γext

(a) Cracks.

nint

Γ−
int

Γ+
int

Ω

Γext

(b) Grain boundaries.

Figure 3.1: Specimen with internal boundaries.

The (one field) weak solution corresponding to Equation (3.1) is obtained by finding
u ∈ U such that
∫

Ω

σ{ε} : [δu⊗∇] dΩ−
∫

Γint

t{JuK} · JδuK dΓ =

∫

Γext,N

t̂ · δudΓ ∀δu ∈ U0

U =
{
v : v ∈

[
H1(Ω)

]d
, v = û on Γext,D

}
,

U0 =
{
v : v ∈

[
H1(Ω)

]d
, v = 0 on Γext,D

}
,

(3.2)

where H1(Ω) is the space of square integrable functions with square integrable derivatives
in Ω, and d is the number of spatial dimensions. We note that the cohesive zone law
t {JuK} is given on stiffness format, thereby allowing softening to be included in the
cohesive zone law in a straightforward manner.

3.2 Representation of internal boundaries

General remarks

The internal boundaries Γint in Equation (3.2) can be represented in different ways, either
by means of interface elements in a mesh that is adapted to the internal boundaries,
by means of embedded discontinuities, or by using XFEM. In principle, any of these
three interface models could have been used in the present study. In the following, a few
comments are given on XFEM and interface elements, two methods that have both been
used in the present work.
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Interface elements

A simple way to represent interfaces in a material is to use interface elements, see for
example the pioneering work in [34], or [35] for a textbook. This approach has the
advantage of easy implementation, and can be readily applied if the crack propagation
direction can be determined a-priori, for example when considering debonding between
material phases. If the crack path is not known in advance, interface elements may
be inserted between all bulk elements [36], or remeshing may be applied [37]. Even
though interface elements can be used to treat arbitrary crack propagation, there are
serious drawbacks due to increased computational cost and potentially cumbersome
remeshing. Furthermore, interface elements between all bulk elements introduce artificial
compliance in the structure. An additional concern is that interface elements may lead
to overestimation of the energy dissipation due to incorrect crack length. Nevertheless,
the use of interface elements to model fracture is an active field of research, and recent
developments include, for example, self adaptive elements [38] in order to allow a coarser
discretization.

The eXtended Finite Element Method (XFEM)

A drawback of crack modeling by means of interface elements is that the cracks are
restricted by the bulk mesh. To circumvent this restriction, and allow arbitrary crack
propagation independent of the underlying mesh, XFEM can be used [23, 24]. The key
feature of XFEM is that the approximation space for the primary variable is enriched
locally in some parts of the domain. For crack propagation problems, the displacement
approximation is enriched according to

uh =
∑

i∈I
Ni(x)ai +

∑

j∈J

∑

i∈I∗j

N∗i (x)
[
Ψj(x)−Ψj(xi)

]
bji , (3.3)

where Ni are the standard basis functions, ai are the standard nodal degrees of freedom
(dofs), N∗i are the enriched basis functions, bji are the enriched nodal dofs, and the
functions Ψj describe the enrichments. Furthermore, I is the set of all nodes, J denotes a
set of enrichments, and I∗j is the set of enriched nodes for enrichment j. We note that

the XFEM contribution contains the term
[
Ψj(x)−Ψj(xi)

]
rather than only Ψj(x), i.e.

the enrichment is shifted by the nodal level set value. In this way, the Kronecker-delta
property of the discretization is preserved [39].

Regarding the explicit expressions for the enrichment functions Ψj , it is convenient
to formulate these functions in terms of level set fields. To this end, we define Φ(x) as
the normal signed distance to the crack and γ(x) as the tangential signed distance to
the crack. For elements completely cut by a crack, a suitable choice is to use sign (or,
equivalently, Heaviside) enrichment, whereby Ψ is given by

Ψ = sgn (Φ(x)). (3.4)

Even though sign enrichment can be used also in elements containing crack tips, it leads
to poor accuracy in the predicted stress field if the mesh is not extremely fine, especially
for elastic problems. Improved accuracy can be obtained by enriching with asymptotic
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functions in elements containing crack tips as illustrated in Figure 3.2, cf. [40]. For
elasticity problems, the analytic solution for linear elastic fracture mechanics can be used,
whereby the crack tip enrichments take the form

Ψ1 =
√
r sin (θ/2),

Ψ2 =
√
r sin (θ/2) sin (θ),

Ψ3 =
√
r cos (θ/2),

Ψ4 =
√
r cos (θ/2) sin (θ).

(3.5)

For cohesive cracks (i.e. cracks that are not traction free), asymptotic functions that
differ slightly from Equation (3.5) can be used, see e.g. [26]. Furthermore, if branching or
intersecting cracks are considered, it is not sufficient to add enrichments for each crack
separately. The crack intersections need special treatment, e.g. by using so called junction
functions [41].

So far, the practical computation of the level set functions Φ and γ has not been
specified. Here, three options are possible. We may

1. compute the level set functions directly from an explicit crack representation (e.g. a
polygon in 2D or a triangulation in 3D),

2. use an explicit crack representation to evaluate the level set functions in the nodes,
and then use the standard basis functions to interpolate Φ and γ, or

3. use only level set functions stored in nodes.

In this thesis, alternative 2 has been considered, i.e. a hybrid representation, where a
polygon representation is used to compute the necessary level set fields [42]. This choice
is convenient and computationally efficient.

To summarize, the present work employs a crack model based on XFEM with a hybrid
geometry representation as stated above. Crack intersections are handled using junction
functions [41]. A shifted enrichment is employed to preserve the Kronecker-delta property
and elements containing a crack tip are enriched with asymptotic functions.

Sign enrichment

Tip enrichment

Crack

Figure 3.2: XFEM enrichment around a crack: sign enrichment is used in elements
completely cut by the crack, whereas special tip enrichments are used in elements containing
crack tips.
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Stability of interface models

When modeling fracture by means of discrete crack models such as interface elements or
XFEM, it is common to model the damage process by means of an initially elastic cohesive
zone with progressing damage. However, for such cohesive zone models with high initial
stiffness, it is well known that traction oscillations may occur along the interface [43, 44,
45]. A frequently used strategy to alleviate this problem is to employ reduced Lobatto
integration of the cohesive traction along the interface. Even though this strategy has
been shown to work well for straight cracks [43], it is shown in Paper C that severe traction
oscillations may occur for curved and/or intersecting cracks. Interestingly, it turns out
that these traction oscillations can be explained by analyzing the stability properties of a
corresponding mixed formulation. In particular, reduced Lobatto integration corresponds
to a traction approximation that violates the inf-sup (LBB) condition, and this explains
the occurrence of traction oscillations. Furthermore, both full (Gauss) integration and one-
point integration correspond to traction approximations violating the inf-sup condition,
thereby leading to traction oscillations. As shown in Paper C, it is possible overcome this
issue by instead using a weak penalty formulation, where the cohesive zone contribution
is projected onto a stable reduced approximation space. This reduced space can, for
example, be a piecewise constant traction approximation in combination with a piecewise
quadratic displacement approximation. See Paper C for further details.

Crack initiation and propagation

Crack initiation and propagation can be modeled by combining a suitable representation
of the crack geometry (XFEM, interface elements, remeshing) with criteria for the onset
and direction of crack growth. Without attempting to list all developments in the field,
we first note that models describing crack propagation are not fundamentally tied to the
chosen crack representation. For example, crack propagation based on stress intensity
factors was studied by Zi and Belytschko [27] using XFEM, whereas Khoei et al. [46]
employed a remeshing technique. Other examples of crack propagation based on stress
intensity factors or material forces can be found in [47, 48, 49] as well as the comparison
between different approaches in [26]. Furthermore, crack propagation in combination
with plasticity and damage in the bulk material has been studied by many authors, using
propagation models based on the stress [29, 50] or the plastic strain [31] around the crack
tip. When damage in the bulk material is considered, crack initiation models may also be
based on the loss of ellipticity of the material tangent stiffness, see e.g. [15, 35, 51]. In
the latter case, crack initiation is predicted when the tangent stiffness is singular (strict
ellipticity condition) or when the so-called acoustic tensor is singular. These two criteria
both allow the direction of the discontinuity to be identified.

In the numerical examples presented in this thesis, propagation of XFEM cracks on
the microscale is mainly modeled using the concept of material forces. Branch enrichment
is used in elements containing crack tips in order to make the material force evaluation
sufficiently insensitive to the mesh size and to the radius used in the domain integral
evaluation. We note, however, that the framework developed here is not restricted to a
particular choice of crack propagation model. The crack propagation model based on
material forces can easily be replaced by a criterion based on e.g. plastic deformation
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around the crack tip. For macroscale discontinuity insertion (Paper F), we consider loss
of ellipticity of the material tangent stiffness, see Section 4.4 for further comments.

4 Macroscale problem

4.1 Preliminaries

As stated previously, the main objective of the present work is to develop a scheme for
multiscale localization, including suitable BCs on the SVE and a consistent scale bridging
scheme. To this end, we employ the concept of VCH [52, 33] and use weakly periodic BCs
[53] that are tailored to the problem at hand by adapting the traction discretization to
the topology of the SVE problem (Paper A and Paper B). For the later stage of damage
progression, it turns out that weakly periodic BCs can be conveniently aligned to an
identified localization direction (Paper D).

When localization occurs inside the SVE, it is necessary to account for the corresponding
macroscale discontinuity by developing a suitable scale bridging scheme (Paper E and
Paper F). In the present work, we employ a strong discontinuity on the macroscale and
consider the macroscale displacement jump as smeared over the SVE, thereby avoiding the
need to explicitly split the SVE response into a continuous part and a discontinuous part.
In the following, VCH for standard first order homogenization is described. Next, the
proposed multiscale localization scheme is outlined and a few comments on the method
are given.

4.2 Variationally Consistent Homogenization (VCH)

To develop VCH for standard first order homogenization, consider a macroscopically homo-
geneous solid with domain Ω̄ as shown in Figure 4.1. Studying the solid in greater detail
reveals the heterogeneous microstructure of the material, here illustrated as microcracks,
as also shown in Figure 4.1. Even though the material is heterogeneous on the microscale,
we wish to solve for the smooth (macroscale) displacement ū without explicitly resolving
the microstructure on the macroscale. To take advantage of the different scales present in
the problem, we may split the displacement u into a macroscale part uM, which explicitly
depends on ū, and a microscale part us, according to u = uM + us. Assuming the same
split for the test functions, we can state the original problem in Equation (3.2) as the
macro problem

∫

Ω

σ :
[
δuM ⊗∇]dΩ−

∫

Γ+
int

t · JδuMK dΓ =

∫

Γext,N

t̂ · δuM dΓ ∀δuM ∈ UM,0, (4.1)

and the micro problem

∫

Ω

σ : [δus ⊗∇] dΩ−
∫

Γ+
int

t · JδusK dΓ =

∫

Γext,N

t̂ · δus dΓ ∀δus ∈ Us, (4.2)
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respectively. Here, UM,0 and Us represent suitable test spaces. So far, we have introduced
a split of the displacement field, but we have not yet introduced computational homoge-
nization based on SVEs: Equations (4.1) and (4.2) pertain to the Variational MultiScale
method (VMS) introduced by Hughes et al. [54].

The second step of VCH is to restate the integrals in Equation (4.1) using running
averages in order to obtain a homogenized problem. To this end, we consider the
macroscopically homogeneous domain Ω̄ = Ω ∪ Γint and introduce the approximation

∫

Ω

f dΩ +

∫

Γint

g dΓ ≈
∫

Ω̄

f� dΩ,

f�
def
=

1

|Ω�|

[∫

Ω�

f dΩ +

∫

Γint∩Ω�

g dΓ

]
,

(4.3)

where Ω� denotes an SVE.

Finally, prolongation conditions defining uM in terms of ū need to be specified. The
standard approach is to employ first order homogenization, whereby uM varies linearly
over the SVE according to

uM = ε̄ · [x− x̄] inside Ω�(x̄), ∀x̄ ∈ Ω̄, (4.4)

where x̄ = 1
|Ω�|

∫
Ω�
x dΩ and ε̄ = (ū⊗∇)

sym|x=x̄ is the symmetric part of the displace-

ment gradient evaluated at x̄. See Figure 4.2 for a schematic illustration. For first order

Ω�

Ω̄

ū

u

uM

σ̄, C̄

Figure 4.1: Macroscopically homogeneous solid with heterogeneous microstructure. Using
computational homogenization implies solving for the smooth displacement field ū on the
macroscale. The macroscopic part uM(ū) of the displacement in the SVE is imposed via
suitable boundary conditions and the SVE solution provides the effective macroscale stress
σ̄ and the tangent C̄ = ∂σ̄

∂ε̄ .

homogenization, we may now restate Equation (4.1) as the macroscale problem of finding
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uM

u

Figure 4.2: First order homogenization: uM varies linearly within the SVE.

ū ∈ Ū such that
∫

Ω̄

σ̄{ε̄} : δε̄ dΩ =

∫

Γext,N

t̂ · δūdΓ ∀δū ∈ Ū0, (4.5)

where Ū and Ū0 are the trial and test spaces for the homogenized problem, and where
the effective macroscale stress σ̄ is obtained from the microscale solution according to

σ̄
def
=

1

|Ω�|

∫

Ω�

σ dΩ. (4.6)

More precisely, in each macroscale point, we first evaluate ε̄ from the current guess for ū.
ε̄ is imposed on the SVE using suitable boundary conditions, and the macroscale stress σ̄
is computed from Equation (4.6), cf. Figure 4.1. For brevity, we again use the algorithmic
notation σ̄{ε̄} omitting the possible dependence on internal variables.

4.3 Smeared macro-to-micro transitions

When strain localization occurs, first order homogenization as given by Equation (4.5) is
inappropriate. More precisely, first order homogenization corresponds to a local continuum
damage model with pathological dependence on the macroscale mesh size and the SVE size.
To overcome this problem, we consider the split of the domain Ω̄ = Ω̄r ∪ Ω̄d as indicated
in Figure 4.3. Here, Ω̄r denotes the regular domain where macroscopic localization does
not occur, and Ω̄d denotes the discontinuity region where macroscopic localization needs
to be accounted for. In particular, we will assume that Ω̄d can be described by a mean
interface Γ̄d and a thickness ld. For the regular domain Ω̄r, we still use the approximation
given by Equation (4.3). However, for the discontinuity region Ω̄d, we state the integrals
based on the interface Γ̄d according to

∫

Ω̄d

f dΩ +

∫

Γ+
int∩Ω̄d

g dΓ ≈
∫

Ω̄d

f� dΩ ≈
∫

Γ̄d

ldf� dΓ, (4.7)
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where the last approximation is based on the assumption of a narrow region Ω̄d, i.e. we
assume that ld is sufficiently small so that the integral over Ω̄d may be replaced by an
integral over Γ̄d.

In the presence of localization, f� in Equation (4.7) will not be representative if
evaluated on an arbitrarily sized SVE Ω�. In Ω̄d, we therefore consider homogenization
only along Γ̄d, whereas the direction perpendicular to Γ̄d is fully resolved. In practice,
this is achieved by choosing ld such that it matches the SVE size (see Paper E for explicit
expressions).

For the prolongation conditions, different expressions will be employed for Ω̄r and Ω̄d.

We assume that the homogenized displacement ansatz ū ∈ Ū is smooth on Ω̂
def
= Ω̄r∪Ω̄d\Γ̄d,

but may be discontinuous across Γ̄d. For SVEs in Ω̄r, we use the ansatz from conventional
first order homogenization given by Equation (4.4). However, for SVEs located on Γ̄d, we
adopt a smeared approach, whereby the strain contribution from the displacement jump
is smeared over ld. Hence, we define

uM = ε̄d|x̄ · [x− x̄] inside Ω�(x̄), ∀x̄ ∈ Γ̄d, (4.8)

where

ε̄d
def
= ε̄0 +

1

2ld
(JūK⊗ n+ n⊗ JūK) , (4.9)

and ε̄0 denotes the bulk strain on Γ̄d
1.

Using the integral transformations in Equations (4.3) and (4.7), together with the
prolongation expressions in Equations (4.4) and (4.8), we may now restate Equation (4.1)
as the macroscale problem of finding ū ∈ Ū such that

∫

Ω̄r

σ̄{ε̄} : δε̄dΩ +

∫

Γ̄d

ldσ̄{ε̄d} : δε̄d dΓ =

∫

Γext,N

t̂ · δūdΓ ∀δū ∈ Ū0, (4.10)

where the effective macroscale stress σ̄ is (still) obtained from the microscale solution
according to Equation (4.6).

Considering Equation (4.10) and recalling the definition of Ω̄r in Figure 4.3, we note
that the macroscale finite element mesh will typically be a discretization of Ω̂ rather than
Ω̄r. Hence, the integral over Ω̄r in Equation (4.10) is inconvenient to evaluate from a

computational perspective. To overcome this issue, recall the definition Ω̂
def
= Ω̄r ∪ Ω̄d \ Γ̄d

and let Ω̂d
def
= Ω̄d \ Γ̄d. Elaborating the left hand side of Equation (4.10) using the

expression
∫

Ω̄r
• dΩ =

∫
Ω̂
• dΩ−

∫
Γ̄d
ld • dΓ yields (cf. Paper E)

∫

Ω̄r

σ̄{ε̄} : δε̄ dΩ +

∫

Γ̄d

ldσ̄{ε̄d} : δε̄d dΓ =

∫

Ω̂

σ̄{ε̄} : δε̄ dΩ +

∫

Γ̄d

ld (σ̄{ε̄d} − σ̄{ε̄0}) : δε̄ dΓ +

∫

Γ̄d

σ̄{ε̄d} : (JδūK⊗ n)
sym

dΓ,

(4.11)

1The bulk strain on Γ̄d is defined as the average of the limit values on each side of the interface.
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Γ̄d

Ω̄

Ω̄r

Ω̄d

Γext

Ω�

Γ�
Γint
�

Γ̄d,�
n

ld

Figure 4.3: Macroscopic domain Ω̄ divided into a part Ω̄d containing an effective macro-
scopic discontinuity Γ̄d, and a part Ω̄r that is free from macroscopic discontinuities.

where we also used that δε̄d = δε̄0 + 1
ld

(JδūK⊗ n)
sym

. Inserting the result from Equation

(4.11) in Equation (4.10), the macroscale problem is then to find ū ∈ Ū such that

ā (ū, δū) = l (δū) ∀δū ∈ Ū0, (4.12)

where

ā (ū, δū) =

∫

Ω̂

σ̄{ε̄} : δε̄dΩ

︸ ︷︷ ︸
def
= I1

+

∫

Γ̄d

ld (σ̄{ε̄d} − σ̄{ε̄0}) : δε̄dΓ

︸ ︷︷ ︸
def
= I2

+

∫

Γ̄d

σ̄{ε̄d} : (JδūK⊗ n)
sym

dΓ

︸ ︷︷ ︸
def
= I3

.

(4.13)

We note that the term I2 is scaled by ld, and therefore will be negligible for sufficiently
small ld. See Paper E for further details.

4.4 Macroscale crack initiation

When softening of the effective SVE response occurs due to damage evolution, a macro-
scopic crack needs to be initiated. To facilitate macroscale crack initiation, we need
to i) detect the onset of macroscopic softening and ii) determine the orientation of the
macroscopic discontinuity surface.

One way to detect macroscopic softening is to monitor the homogenized microscale
tangent. In particular, two popular criteria exist for detection of strain localization:
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singularity of the acoustic tensor and the strict ellipticity condition. These criteria can
both be applied directly to the tangent stiffness, without further knowledge of the model
that the tangent was computed from. Hence, the criteria can be applied in a multiscale
setting as well as in single scale problems, as long as the bulk response exhibits softening.
In the present work, we use the strict ellipticity condition to detect macroscopic softening
and to identify the discontinuity surface orientation. See Paper F for explicit mathematical
expressions.

From a practical point of view, we remark that both localization criteria work well
if the damage evolution is implicitly updated (i.e. if damage evolution is updated at
the new time step), whereas additional modeling would be needed for explicitly updated
damage evolution (i.e. if the damage is taken from the old time step and updated in a
staggered fashion). A typical example of the latter situation is when microscale damage
is represented entirely by propagation of traction free XFEM cracks, whereby a popular
approach is to propagate the XFEM cracks at the end of each time step. In this case, the
tangent stiffness will remain elliptic during any time step and loss of ellipticity based on
the tangent stiffness can therefore not be used to detect strain localization.

Finally, we remark that the initiation of a macroscopic discontinuity only facilitates
the development of a possible crack. The framework presented in Section 4.3 is valid even
if no fracture develops along Γ̄d.

5 Localization aligned weakly periodic bound-

ary conditions

5.1 Preliminaries

To solve the microscale problem obtained from Equation (4.2) on an SVE Ω�, the
macroscopic part of the displacement given by Equation (4.4) or Equation (4.8) is imposed
on the SVE boundary through suitable boundary conditions (BCs). To this end, it would
(in principle) be possible to use Dirichlet BCs or strong periodic BCs, but an extremely
large SVE would be required due to the artificial crack closure on the boundaries arising
with these BCs (cf. Paper B). Using Neumann BCs would, however, not give reliable
results, because such BCs may lead to spurious softening (see Paper B or [9]). To obtain
accurate results with smaller SVEs than required by Dirichlet or strong periodic BCs, we
have developed weakly periodic boundary conditions that are aligned to the dominating
localization direction in the SVE (Paper A, B and D).

5.2 Microscale problem

To impose the effective strain ε̄ on the SVE by means of weakly periodic boundary
conditions, we divide the SVE boundary into an image part Γ+

� and a mirror part Γ−� as
shown in Figure 5.1. Furthermore, we introduce a mapping1 ϕper : Γ+

� → Γ−� such that

1The actual construction of ϕper is discussed later.
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points on Γ+
� and Γ−� are associated to each other according to x− = ϕper(x

+) as also

shown in Figure 5.1. We define the jump between a point x+ on Γ+
� and the associated

point x− = ϕper(x
+) on Γ−� as

JuK�
def
= u

(
x+
)
− u

(
x−
)

= u
(
x+
)
− u

(
ϕper

(
x+
))
.

Next, we impose weakly periodic boundary conditions on the SVE by introducing an
independent discretization for the boundary traction tλ and requiring JuK� = ε̄ · Jx− x̄K�
to hold in a weak sense. The SVE problem is then to find u ∈ U� and tλ ∈ T� such that

a� (u, δu)− d� (tλ, δu) = 0 ∀δu ∈ U�,

−d� (δtλ,u) = −d� (δtλ, ε̄ · [x− x̄]) ∀δtλ ∈ T�,
(5.1)

U� = {v : v ∈
[
H1(Ω�)

]d
,

∫

Γ�

v dΓ = 0}, (5.2)

T� = {t : t ∈
[
L2

(
Γ+
�
)](d)}, (5.3)

where we introduced the expressions

a� (u, δu)
def
=

1

|Ω�|

[∫

Ω�

σ : ε [δu] dΩ−
∫

Γ+

�,int

t · JδuK dΓ

]
, (5.4)

d� (tλ, δu)
def
=

1

|Ω�|

∫

Γ+

�

tλ · JδuK� dΓ. (5.5)

Here, L2

(
Γ+
�
)

denotes the space of square integrable functions on Γ+
�, H1(Ω�) denotes

the space of square integrable functions with square integrable derivatives in Ω�, and d is
the number of spatial dimensions.

Solving Equation (5.1) and employing Equation (4.6) allows σ̄ = σ̄{ε̄} to be computed.
We remark that, in Ω̄d , the weakly periodic boundary conditions are employed to impose
the macroscopic strain ε̄d = ε̄0 + 1

ld
(JūK⊗ n)

sym
in a weak sense on the whole SVE

boundary. Hence, there is no need to explicitly identify the location or width of the
damaged zone in the SVE, only the localization direction needs to be determined in order
to define the normal n of the effective discontinuity.

So far, we have not discussed the actual expression for the mirror function ϕper. The
standard choice for ϕper, which is used in Paper A and Paper B as well as by [53] among
many others, is to map points along horizontal or vertical lines as shown in Figure 5.1a.
However, as pointed out by several researchers [5, 9, 55], this choice leads to inaccurate
results in some situations. In particular, it works well if cracks or localization bands are
aligned with the periodicity directions, whereas artificial crack closure occurs on the SVE
boundary for cracks that are not aligned with these directions. The standard mirror
function is shown in Figure 5.1a and corresponds to stacking SVEs as shown in Figure
5.2b. For the 2D case, the standard mirror function can be explicitly expressed as

ϕper (l�, y) = (0, y),

ϕper (x, l�) = (x, 0),
(5.6)
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pϕper(p)

q

ϕper(q)

Image Γ+
�

Mirror Γ−
�

(a) Standard mirror function.

pϕper(p)

q

ϕper(q)

α

s

(b) Shifted mirror function. The shifting distance
s is given by s = l�/ tanα.

Figure 5.1: SVE with boundary divided into an image part Γ+
� and a mirror part

Γ−�, with standard mirror function (a) and shifted mirror function (b), where
the shifting distance is given by s = l�/ tanα. The symbols denote related points
on Γ+

� and Γ−�.

α

(a) SVE with crack. (b) Standard stacking. (c) Shifted stacking.

Figure 5.2: An SVE with a crack (a), subjected to standard stacking (b) and shifted
stacking (c).

where l� denotes the side length of the SVE.

An alternative to the standard mirror function given by Equation (5.6) can be developed
by assuming that a dominating crack or localization band direction exists as indicated in
Figure 5.1b and Figure 5.2a. By considering a shifted stacking as shown in Figure 5.2c,
the crack pattern is compatible over SVE boundaries, and this compatibility prevents
artificial crack closure. To obtain the shifted stacking shown in Figure 5.2c, the mirror
function is modified as shown in Figure 5.1b, where some points on Γ+

� are no longer
mapped along vertical or horizontal lines. For the 2D case, the explicit expression for
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ϕper as shown in Figure 5.1b is given by

ϕper (l�, y) = (0, y),

ϕper (x, l�) = (l� − s+ x, 0) if 0 ≤ x < s,

ϕper (x, l�) = (x− s, 0) if s ≤ x ≤ l�,
(5.7)

where the shifting distance is given by s = l�/ tanα. Clearly, we may carry out the same
procedure also for cracks with α < 45◦, whereby the SVEs would be shifted in the vertical
direction rather than in the horizontal direction.

Using the expression given by Equation (5.7), we may obtain aligned periodic boundary
conditions on weak form by only modifying the mirror function ϕper. Note that the
shifting distance s depends only on α and l�. Hence, the shifting is valid also for cracks
that do not pass through the center of the SVE. See Paper D for further details.

Remark: The shifted stacking proposed here can be applied also in 3D, whereby
shifting in two directions is necessary as compared to the 2D case, where shifting in one
direction is sufficient. See Figure 5.3 for a schematic illustration.

Figure 5.3: Shifted stacking in 3D. SVEs colored in gray and cracks colored in blue.

5.3 Traction discretization

Equation (5.1) defines the microscale problem with weakly periodic BCs. A main advantage
of weakly periodic BCs compared to standard periodic BCs, in addition to not requiring
a periodic mesh, is the possibility to choose the traction discretization Th� ⊂ T�. In
particular, the traction discretization can be adapted to the problem at hand in order to
gain improved convergence with increasing SVE size.

To exploit the advantages of weakly periodic BCs, the construction of Th� deserves
further attention. Possible options for Th� is to use a global polynomial basis [56] or a
traction mesh on the SVE boundary [53]. To facilitate adaption of the traction mesh
to the topology of cracks in the SVE, we choose the latter option. We now restrict the
discussion to problems in 2D. Hence, we construct a (one-dimensional) traction mesh
on Γ+

�, defined by traction nodes and two-node traction elements. The traction is then
assumed to be piecewise constant or piecewise linear on each traction element.
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To construct the traction mesh, we start from the approach in [53], where the first
step is to project all (displacement) nodes on the image boundary as well as the mirror
boundary onto the image boundary, as shown in Figure 5.4. Points where cracks or other
possible discontinuities (such as e.g. grain boundaries of a poly crystal) intersect the
boundary are projected in the same way. Next, points that are closer to each other than
a given tolerance are merged, in order to prevent that traction elements become too small.
If voids intersect the boundary, traction elements over the voids are removed. Performing
these steps results in a dense traction mesh that can be used as it is, or coarsened as
indicated to the right in Figure 5.4.

A particular choice for the traction mesh, that has shown promising results in the
present work, is a coarse piecewise constant traction approximation. More precisely,
the traction mesh is coarsened so much that only traction nodes at SVE corners and
crack-boundary intersections are retained as shown in Figure 5.5. This approximation
often performs very well, as shown in Paper A and Paper B, and the approximation
can be combined with the modified mirror function discussed in Paper D. Since a mixed
formulation is employed, the inf-sup (LBB) condition needs to be fulfilled. In Paper A, we
show analytically that this particular choice of piecewise constant traction approximation
indeed fulfills the inf-sup condition.

Mesh

Traction node candidates

Cracks

Crack-boundary intersections

Projected nodes

Figure 5.4: Traction discretization: unprocessed (left) and processed (right) traction
meshes. Addition of traction nodes where cracks intersect the boundary is indicated to the
left.

t
1

t
2

t
3

t
4

Figure 5.5: Piecewise constant traction approximation with traction discontinuities at
SVE boundaries and crack-boundary intersections.
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5.4 Effective stiffness

To solve the macroscale problem given by Equation (4.12), where σ̄{ε̄} is obtained on-
the-fly from SVE solutions, we also need to compute the effective stiffness C̄ = ∂σ̄

∂ε̄ from
a given SVE solution. One option for computing C̄ is to perform condensation of the
tangent from the SVE problem. To derive this condensation, note that in the last Newton
iteration, where we have obtained convergence of the SVE problem, we solve

S∆au − C∆at = 0,

−CT∆au = −∆f,
(5.8)

where ∆au and ∆at denote the increments in the SVE displacement and traction, respec-
tively. Equation (5.8) is thus the discrete and linearized counterpart of Equation (5.1).
More specifically, S is the “bulk stiffness” contribution pertaining to a� (uh, δuh), C is the
boundary traction contribution pertaining to d�(tλ,h, δuh), and ∆f is the linearization
of the right hand side.

Now, consider the linearization of the effective stress σ̄ expressed (on Voigt format) in
terms of the FE approximation according to

∆







σ̄xx
σ̄yy
σ̄xy
σ̄yx





 = ∆




1

|Ω�|

∫

Γ�




x 0
0 y
0 x
y 0



[
tx
ty

]
dΓ


 =

1

|Ω�|

∫

Γ+

�




JxK� 0
0 JyK�
0 JxK�

JyK� 0


N t dΓ

︸ ︷︷ ︸
def
=DT

∆at,

(5.9)

where the matrix N t contains the basis functions for the traction approximation. From
Equation (5.8), we have

∆at =
(
CTS−1C

)−1
∆f, (5.10)

which, combined with Equation (5.9), gives




∆σ̄xx
∆σ̄yy
∆σ̄xy
∆σ̄yx


 = DT

(
CTS−1C

)−1
∆f. (5.11)

Taking the variation of the contribution from ε̄ gives

∆f =
1

|Ω�|

∫

Γ+

�

NT
t

[JxK� 0 0 JyK�
0 JyK� JxK� 0

]
dΓ

︸ ︷︷ ︸
=D




∆ε̄xx
∆ε̄yy
∆ε̄xy
∆ε̄yx


 . (5.12)

18



Combining Equations (5.11) and (5.12) now gives the effective stiffness as




∆σ̄xx
∆σ̄yy
∆σ̄xy
∆σ̄yx


 =

(
DT

(
CTS−1C

)−1
D
)

︸ ︷︷ ︸
C̄




∆ε̄xx
∆ε̄yy
∆ε̄xy
∆ε̄yx


 . (5.13)

6 Numerical implementation

In the present work, the following open source software packages have been used exten-
sively:

• The models developed in the present work have been implemented in OOFEM [57,
58] and can be downloaded from https://github.com/erisve/oofem. OOFEM is
object oriented and written in C++. It comes with an automatic test suite (roughly
250 tests) and version control using Git. Apart from the present work, OOFEM has
also been used for computational homogenization in [56, 59, 60, 61, 62, 63].

• The grain structures considered in paper B were prepared using Neper [64, 65] and
Phon [66]. Neper can be downloaded from http://neper.sourceforge.net/ and
Phon is available at https://github.com/KristofferC/Phon. Neper is written in
C and Phon is written in Python.

• Salome [67] was used for mesh generation and can be downloaded from http://www.

salome-platform.org/. It allows automated meshing using a Python interface.

• The post-processing was done with Paraview (http://www.paraview.org/) [68]
and Gnuplot (http://www.gnuplot.info/) [69].

7 Summary of appended papers

7.1 Paper A: Computational homogenization of mi-
crofractured continua using weakly periodic bound-
ary conditions

In Paper A, computational homogenization of an elastic material containing stationary
microcracks is considered. The cracks are modeled using XFEM and weakly periodic BCs
are developed for the SVE problem. The resulting weak formulation of the microscale
problem has displacements and boundary tractions as unknowns, thereby allowing the
boundary traction to be adapted to the geometry of the problem at hand. To exploit this
possibility, we develop a traction approximation that is suitable when cracks intersect
the SVE boundary. The main result of Paper A is the proposition of a stable traction
approximation that is piecewise constant between crack-boundary intersections. We prove
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analytically that the proposed approximation is stable in terms of the inf-sup (LBB)
condition. The numerical examples show that the proposed traction approximation is more
efficient than conventional boundary conditions (Dirichlet, Neumann, strong periodic) in
terms of convergence with increasing SVE size.

7.2 Paper B: On computational homogenization of mi-
croscale crack propagation

The early stage of crack propagation, prior to macroscopic localization, is considered
in Paper B. More precisely, the model developed in Paper A is extended to handle
propagating cracks. For the modeling of crack propagation, we consider i) XFEM in
combination with the concept of material forces to model elastic crack propagation and
ii) conventional interface elements to model crystal grain debonding. The numerical
examples show that weakly periodic boundary conditions, with piecewise constant traction
approximation between crack-boundary intersections, are effective also when damage
progression occurs in the microstructure.

7.3 Paper C: A weak penalty formulation remedying
traction oscillations in interface elements

The spurious traction oscillations sometimes seen in interface elements are studied in Paper
C. The study employs a weak penalty formulation, which shares stability properties with an
equivalent mixed formulation. Based on this equivalence, oscillations in interface elements
are explained by studying the inf-sup stability for the mixed formulation. Interestingly, it
turns out that conventional interface elements (with full or reduced integration) correspond
to approximations violating the inf-sup condition. In contrast, oscillation free results
are obtained by choosing a stable approximation applied in the weak penalty setting, as
shown by the numerical examples.

7.4 Paper D: Localization aligned weakly periodic bound-
ary conditions

In Paper D, the boundary conditions developed in Paper A and Paper B are improved by
aligning the periodicity directions with an effective localization direction. It turns out that
this alignment can be achieved by only modifying the mapping (mirror function) between
the associated parts of the SVE boundary. This modified mirror function leads to more
accurate results than unaligned weakly periodic boundary conditions, as demonstrated by
the numerical examples.
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7.5 Paper E: Two-scale modeling of fracturing solids
using a smeared macro-to-micro discontinuity tran-
sition

In Paper E, Variationally Consistent Homogenization (VCH) is employed to develop
a two-scale scheme accounting for cracks on both scales. A continuous-discontinuous
homogenization approach is adopted, whereby a macroscopic cohesive zone model is
obtained from the response of the localized SVEs. A key feature of the proposed scheme
is that the macroscopic displacement jump is applied in a smeared sense as an additional
strain contribution on the localized SVE. The macroscale weak formulation contains
a conventional cohesive zone contribution as well as a correction term containing the
difference of the stresses in the localizing SVE and the unloading SVE. It turns out that
this correction term, as well as the bulk strain contribution to the localizing SVE, can
be neglected if the SVE is sufficiently small (i.e. if strong scale separation holds). The
derived model is combined with the models developed in Papers A, B and D in order to
obtain a scheme capable of handling macroscopic localization. The response predicted by
the proposed scheme agrees well with DNS as demonstrated by the numerical examples.

7.6 Paper F: A two-scale model for strain localization
in solids: XFEM procedures and computational
aspects

In Paper E, we focused on cases where the position and orientation of macroscale
localization bands could be determined a-priori. The model is therefore extended in
Paper F to also consider the transition to strain localization on the macroscale. To
this end, macroscale discontinuities are inserted based on the strict ellipticity condition.
By combining this condition with the previously developed macro-to-micro transitions,
we obtain a modeling framework capable of handling macroscopic localization. Since
material models exhibiting softening are considered, Newton’s method is generally not
sufficiently robust. Therefore, we improve the robustness of the numerical simulations by
employing trust-region methods on both scales. Furthermore, we discuss computational
aspects of multiscale localization modeling using XFEM. A few numerical examples are
given, demonstrating that the proposed scheme agrees well with the results obtained with
predefined macrocracks.
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8 Conclusions and outlook

The present work is concerned with multiscale modeling in the presence of cracks on the
macroscale as well as on the microscale. In particular, we address the development of
suitable boundary conditions (BCs) on the Statistical Volume Element (SVE) and the
formulation of proper scale transitions for macroscopic cracks. Stability and robustness
issues related to multiscale crack modeling are also discussed.

An interesting conclusion from the present work is that it is possible to outperform
conventional BCs (including strong periodic BCs) in terms of convergence with increasing
SVE size when cracks are present in the microstructure. This can be achieved within the
setting of weakly periodic BCs by i) adapting the traction discretization to the problem
at hand (Papers A, B), and ii) by aligning the periodicity with an identified localization
direction (Paper D).

Regarding stability issues, a significant conclusion from the present work is that the
traction oscillations sometimes seen in interface elements (for both full, two-point Lobatto
and one-point integration) can be alleviated by using a weak penalty formulation (Paper
C). More precisely, oscillation free results can be obtained by projecting the cohesive zone
contribution onto a stable subspace. In the derivation of the weak penalty formulation,
full integration, two-point Lobatto integration and reduced one point integration are
identified as unstable special cases of the weak penalty formulation. This explains the
oscillations occurring in some situations for these integration schemes.

By combining the models proposed in the present work, a two-scale scheme capable
of handling macroscopic localization can be constructed (Papers E, F). The numerical
examples show that the results obtained with the proposed scheme agree well with Direct
Numerical Simulations (DNS). In contrast to previously published work, the scheme does
not require dynamic tracking of an evolving damaged region in the SVE and does not
require restrictive constitutive assumptions on the microscale.

Regarding future work, an interesting extension is to consider material models that
better describe the microscale behavior of metals. A suitable candidate is crystal plasticity
[70, 71] in combination with tailored crack propagation models [72] and models of the
grain microstructure [65]. Furthermore, since the present work is restricted to 2D, a
natural extension is to consider 3D models. For the extension to 3D, it can be noted that
the alignment of weakly periodic BCs (Paper D) is easily extended to 3D, whereas the
construction of an elaborate traction approximation (Papers A, B) is substantially more
involved in the 3D case. We also note that the weak penalty formulation in Paper C can
be trivially extended to 3D.
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