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Recent advances have attracted attention to nonstandard Josephson junctions in which a supercurrent can
flow despite zero phase difference between the constituent superconducting leads. Here, we propose a zero-
phase-difference nanoelectromechanical junction which, in contrast to other considered systems, exhibits
symmetry between leftward and rightward tunneling through the junction. We show that a supercurrent is,
nevertheless, possible as a result of spontaneous symmetry breaking. In the suggested junction, the
supercurrent is mediated by tunneling via a superconducting Cooper-pair box on a mechanical resonator.
An alternating electric potential parametrically excites mechanical oscillations which are synchronized
with charge oscillations of the box. This leads to coherent transfer of Cooper pairs through the junction.
The direction of the supercurrent is a result of spontaneous symmetry breaking and thus it can be reversed
without changing the parameters.
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Josephson junctions exhibit well controllable quantum
features and are therefore of interest to fundamental
research [1]. Josephson junctions have enabled state of
the art sensor applications [2] and are promising as
components in quantum information processing [3]. An
ordinary Josephson junction consists of two superconduc-
tors separated by a thin potential barrier [4]. If the super-
conductors are held at a nonzero superconducting phase
difference Δφ, tunneling through the barrier gives rise to a
ground-state supercurrent. For the case of zero phase
difference Δφ ¼ 0, the tunneling has no preferred direction
and the supercurrent is zero. However, a finite current can
still exist if the symmetry between leftward and rightward
tunneling is broken by other means. The junction then
behaves as if it had an effective phase difference Δφþ φ0.
Many theoretical possibilities of such so-called “φ0 junc-
tions” have been proposed, such as ferromagnetic struc-
tures [5,6], quantum point contacts [7], topological
insulators [8,9], quantum dots [10–12], and quantum wires
[13–15]. However, only very recently has one been realized
experimentally by combining an external magnetic field
and spin-orbit coupling [16]. Concurrently, researchers
have coupled mechanical resonators to superconducting
qubits, achieving precise mechanical read-out [17] and
single-phonon manipulation [18–20].
Gorelik et al. [21,22] made use of a mechanical degree of

freedom in an early suggestion for how to achieve a
supercurrent between two superconductors with zero phase
difference. They considered coherent transfer of Cooper
pairs via a movable Cooper-pair box (CPB), a super-
conducting quantum dot [23]. The CPB was modeled as
a two-level system with a charge neutral state and a state
with one excess Cooper pair. In their work, the CPB is
artificially moved between two remote superconducting
leads in a periodic manner. When the CPB is close to a lead,

it can exchange Cooper pairs with it through tunneling.
This puts the CPB in a superposition of being charged and
uncharged. While the CPB is moved towards the other lead,
an electrostatic potential is applied. As a result, there is a
change in the relative phase in the superposition of the
charged and uncharged state. The applied potential thereby
influences the future interaction of the CPB with the other
lead. By reversing the electrostatic potential after each
contact with a lead, the mirror symmetry is broken and an
average Josephson supercurrent is established. In contrast
to the supercurrent in a ground-state φ0 junction, the
supercurrent suggested by Gorelik et al. is a nonequili-
brium phenomenon since it requires an explicitly time-
dependent system.
In this Letter, we propose a nonequilibrium nanoelectro-

mechanical mechanism which coherently transfers Cooper
pairs between two superconductors with zero phase differ-
ence. Our proposal is similar to the system considered by
Gorelik et al. However, in contrast to their work, the mirror
symmetry in our system is not broken explicitly. Instead, we
utilize spontaneous symmetry breaking via parametric exci-
tation of the mechanical motion [24]. The supercurrent is
established by the automatic synchronizationof themechani-
cal oscillations and the effective charging and decharging of
the CPB. Such synchronization has previously been studied
in normal conducting systems [25].
In our nanomechanical junction, a CPB resides on a

mechanical resonator in the middle of the gap between two
superconducting leads (Fig. 1). The mechanical resonator
allows the CPB to perform small oscillations between the
leads. We will assume the leads to be bulk superconductors
with zero phase difference Δφ ¼ 0. The exchange of
Cooper pairs between the superconducting leads is possible
by tunneling via the CPB. The tunneling of Cooper pairs is
assumed to not affect the superconducting bulk states.
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Further, the overlap integral between the CPB and a lead
are assumed to decay exponentially with distance. As a
consequence, the tunneling coupling generates attractive
forces between the CPB and the leads. The system is
assumed to possess mirror symmetry (symmetry under the
parity transformation x → −x). In this case, the forces
toward the leads cancel each other in the middle of the gap,
at the resting position of the mechanical resonator.
However, if the CPB moves slightly closer to either of
the leads, the force toward that lead will dominate and
soften the resonator stiffness, i.e., decrease its spring
constant. We will treat the electronic subsystem of the
CPB as a two-level system with a charge neutral state j0i
and a state with one excess Cooper pair j1i. The charging
energy of the charged state is compensated by a static
electrical field from a back gate. Therefore the electronic
ground state will be a superposition of the charged (j1i) and
uncharged (j0i) state. Further, we apply a weak periodic
electrical field with frequency Ω from the back gate which
modulates the energy of the charged state j1i.
Before giving a mathematical framework for the phe-

nomenon, we will briefly give a physical picture of the
dynamics. The periodic field applied to the electronic
subsystem will be relayed through the tunneling coupling
and modulate the resonator stiffness. As we will show,
the periodic modulation of the effective spring constant is
able to parametrically excite the mechanical motion if
the driving is strong enough to overcome the intrinsic

mechanical damping [26]. The strongest parametric exci-
tation is achieved when the modulation frequency of the
spring constant is close to two times the natural frequency
ωm of the mechanical oscillations [26]. Interestingly, in the
suggested system, the strongest parametric excitation is
achieved when the driving of the electronic subsystem is in
resonance with the mechanical frequency Ω ¼ ωm. Hence,
the resonator oscillates with the same frequency Ω as the
charging and decharging of the CPB. As a consequence,
the driving field gives rise to synchronized oscillations of
the mechanical position and the charge of the CPB (Fig. 2).
The CPB will effectively be charging at one lead and
decharging at the other lead, generating a supercurrent. The
direction of the supercurrent is given by the relative phase
between the charge and position oscillations. The charge
oscillations simply follow the driving field. On the other
hand, the parametric excitation leads to two oscillatory
mechanical states with phase difference π. The time
evolution of the combined states is clockwise or counter-
clockwise in charge-position space (Fig. 2), and we will
refer to these two electromechanical states as the “chiral
states” of the system. The two chiral states are a result of
spontaneous symmetry breaking and carry current in
different directions. In an experimental situation, even
weak interaction with the environment will occasionally
induce transitions between the chiral states and thereby
reverse the direction of the supercurrent.
In the mathematical framework of the nanoelectrome-

chanical system, we will model the mechanical resonator
as a quantum mechanical anharmonic oscillator with
frequency ωm, effective mass m, and small Duffing non-
linearity η. The electronic subsystem of the CPB will be
modeled as a charge qubit, as mentioned above. The
Hamiltonian of the system takes the form

FIG. 1. (a) Schematic illustration of the system. A super-
conducting quantum dot (gray sphere) can mechanically oscillate
in the gap between two superconducting leads (gray blocks).
Cooper pairs can tunnel to and from the quantum dot from both
sides of the gap. An alternating voltage applied to the gate
(yellow) modulates the charge on the dot, leading to a parametric
excitation of mechanical vibrations. The mechanical oscillator
can be realized by, e.g., (b) a bendable nanowire with a super-
conducting seed (gray sphere), or (c) a superconducting quantum
dot (gray rectangle) on a suspended nanobeam which can
oscillate laterally. (Brown components are insulating.)
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FIG. 2. The dynamics in charge (q) and position (x) space are
automatically synchronized by the parametric excitation. The
charge oscillations follow the driving field. The position has two
possible oscillatory solutions which are out of phase with the
driving field by approximately �π=2. Therefore, the time
evolution in charge-position space is (a) clockwise or (b)
counterclockwise. These “chiral states” coherently transfer
Cooper pairs across the junction, leading to a supercurrent (a)
to the right (Jþ) or (b) to the left (J−).
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Ĥ ¼
�
p̂2

2m
þmω2

mx̂2

2
þ η

4
x̂4
�
− 2eV0 cosðΩtÞj1ih1j

−
ℏωJ

2
ðe−x̂=λj1ih0j þ ex̂=λj1ih0j þ H:c:Þ: ð1Þ

The first term describes the mechanical anharmonic oscil-
lator with position (momentum) operator x̂ (p̂). The second
term accounts for the alternating driving field with strength
eV0 ≪ ℏωJ which modulates the energy of the charged
state. The second line originates from the tunneling of
Cooper pairs where ℏωJ is the Josephson energy and λ is
the effective tunneling length. The two tunneling contri-
butions describe Cooper-pair tunneling to the CPB from the
left and right lead, respectively.
An expression for the superconducting current can be

obtained by considering the difference between rightward
and leftward tunneling of Cooper pairs. The steady-state
expectation value of the current will be an oscillatory
function with period T ¼ 2π=Ω. In order to investigate
whether or not the system exhibits a direct current through
the junction we average over one period. The time-
averaged supercurrent is given by

J̄ ¼ eωJ

T

Z
T=2

−T=2
dtTr

�
iðj0ih1j − j1ih0jÞ sinh

�
x̂
λ

�
ρ̂

�
; ð2Þ

which we will refer to as the direct supercurrent. A more
intuitive expression for the supercurrent is obtained by
introducing the charge operator of the CPB q̂ ¼ −2ej1ih1j,
using the Liouville–von Neumann equation iℏ∂tρ̂ ¼ ½Ĥ; ρ̂�
for the density operator ρ̂, and integrating by parts.
For small mechanical deflections, Trðx̂2ρ̂Þ ≪ λ2, we find
(see Supplemental Material [27]),

J̄ ≈ −
1

T

Z
T=2

−T=2
dtTr

�
p̂

2mλ
q̂ ρ̂

�
: ð3Þ

From this expression it is evident that a direct supercurrent
can flow only if the charge and motion of the CPB are
correlated in time.
As wewill show, the chiral states exhibit such correlation

which results in a direct supercurrent through the junction
although the phase difference is zero. To see this, it
is convenient to use the Josephson representation
h0j ¼ ð1;−1Þ= ffiffiffi

2
p

and h1j ¼ ð1; 1Þ= ffiffiffi
2

p
and write the

Hamiltonian with Pauli matrices σi,

Ĥ ¼
�
p̂2

2m
þmω2

mx̂2

2
þ η

4
x̂4
�
− ℏωJσ̂z

− ℏωJϵ cosðΩtÞðÎ þ σ̂xÞ − 2ℏωJsinh2
�
x̂
2λ

�
σ̂z; ð4Þ

where we have introduced the small driving-strength param-
eter ϵ ¼ eV0=ℏωJ ≪ 1. The large energy separation∼2ℏωJ

of the Josephson ground state ðj0i þ j1iÞ= ffiffiffi
2

p
and excited

state ðj0i − j1iÞ= ffiffiffi
2

p
is slightly modulated by the weak

driving field and the electromechanical coupling described
by the last term in Eq. (4). Note that there are no resonant
transitions in the electronic subsystem since we assume
Ω ∼ ωm ≪ ωJ. In order to calculate the supercurrent when
the system is in one of the chiral states, we utilize the
smallness of the driving ϵ and the mechanical deflection
and calculate the effects of these perturbatively. As a first
approximation, we disregard the electromechanical cou-
pling. Hence, the density operator of the full system ρ̂ is a
product of the electronic and mechanical density operators:
ρ̂ ≈ ρ̂e ⊗ ρ̂m. In this approximation, the supercurrent corre-
lation separates to Trðp̂ q̂ ρ̂Þ ¼ Trðp̂ρ̂mÞTrðq̂ρ̂eÞ. The prob-
lem is then reduced to calculating the independent
expectation values for the momentum and charge. We can
perturbatively calculate the stationary oscillatory state ρ̂ste of
the electronic subsystem under the influence of the driving
field alone (see Supplemental Material [27]). A small damp-
ing in the electronic system towards the unperturbed ground
state removes the memory of the initial conditions and the
average charge on the CPB is

Trðq̂ρ̂ste Þ ≈ −e½1þ 2ϵ cosðΩtÞ�: ð5Þ

The oscillatory electronic state influences the mechanical
dynamics via the tunneling coupling. The influence is taken
into account by tracing the Liouville–von Neumann equa-
tion iℏ∂tρ̂ ¼ ½Ĥ; ρ̂� over the known state ρ̂ste of the
electronic subsystem. We thereby obtain an effective
equation for the mechanical density operator ρ̂m ¼
Treðρ̂Þ under the influence of the electromechanical cou-
pling. To lowest order in the driving parameter ϵ, the
effective mechanical equation becomes (see Supplemental
Material [27])

iℏ∂tρ̂m ¼ ½Ĥeff ; ρ̂m�;

Ĥeff ¼
p̂2

2m
þm ~ω2

mx̂2

2
þ η

4
x̂4 þ ϵ2

ℏωJ

8

x̂2

λ2
cosð2ΩtÞ; ð6Þ

where we have introduced the renormalized mechanical
frequency ~ω2

m ¼ ω2
m½1 − ℏωJ=ðmλ2Þ�. The effective

mechanical equation (6) describes the well known para-
metrically driven anharmonic quantum oscillator. The effec-
tive drivingmodulates the spring constant and pumps energy
into the mechanical system. The pumping is most efficient at
the resonanceΩ ¼ ~ωm. As themechanicalmotion is pumped
to higher amplitude, the effective separation of the mechani-
cal energy levels will be modified by the anharmonic
potential. As a consequence, the system is pushed out of
resonance with the driving field and the mechanical ampli-
tude will saturate. To calculate the stationary state of the
mechanical system, it is convenient to transform to the
rotating frame of the driving field. In the rotating wave
approximation (RWA), the effective Hamiltonian is time
independent, ĤRWA ¼ ERWAĝðP̂; X̂Þ, where the energy scale
is ERWA ¼ ℏ2ω2

Jϵ
4=ð96ηλ4Þ and [28]
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ĝðP̂; X̂Þ ¼ 1

4
ðP̂2 þ X̂2Þ2 þ 1

2
ð1 − μÞP̂2 −

1

2
ð1þ μÞX̂2:

ð7Þ
The new quantum variables P̂ and X̂ are defined by

Û†
RðtÞx̂ÛRðtÞ ¼ C½P̂ cosðΩtÞ − X̂ sinðΩtÞ�; ð8Þ

Û†
RðtÞp̂ÛRðtÞ ¼ CmΩ½P̂ sinðΩtÞ þ X̂ cosðΩtÞ�; ð9Þ

where ÛRðtÞ ¼ exp ½−iðp̂2 þm2Ω2x̂2Þt=ð2mℏÞ�, C ¼
ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωJ=ð6λ2ηÞ

p
, and ½X̂; P̂� ¼ iℏ=ðC2mΩÞ. The shape of

the energy landscape is controlled by the parameter μ ¼
16mλ2ΩΔ=ðℏωJϵ

2Þ whereΔ ¼ ðΩ − ~ωmÞ= ~ωm is the detun-
ing from resonance. When the system is close to the
resonance −1 < μ < 1, the energy landscape has two min-
ima (Fig. 3). Even very small damping of the mechanical
motionwill drag the system down to theminima correspond-
ing to the states ρ̂�m. These points correspond to the classical
oscillatory states

Trðp̂ρ̂�mÞ ¼ mΩA cos

�
Ωt� π

2

�
; A ¼ ϵ

ffiffiffiffiffiffiffiffiffiffiffi
1þ μ

p ffiffiffiffiffiffiffiffiffi
ℏωJ

6λ2η

s

ð10Þ
with mechanical amplitude A and phase difference π.
The direct supercurrent in the chiral states is obtained by

combining the stationary electronic state ρ̂ste with the
mechanical states ρ�m calculated above. The two chiral
states will carry supercurrent in opposite directions due to
the flipped phase in the mechanical states. To lowest order
in the small parameters we find the direct supercurrent (3)
in the chiral states ρ̂� ¼ ρ̂ste ⊗ ρ̂�m as

J̄� ≈ −
Z

T=2

−T=2
dt

Trðp̂ρ̂∓mÞTrðq̂ρ̂ste Þ
2mλT

¼ �eΩ
A
λ

eV0

2ℏωJ
ð11Þ

according to Eqs. (5) and (10). Hence, the direct supercurrent
is proportional to the driving frequency Ω, the driving field
strength eV0, and the amplitude of themechanical oscillation
A. To estimate the magnitude of the generated current, we
assume that the CPB gets actuated to an amplitudeA=λ ∼ 0.1
by a driving field with eV0=ℏωJ ∼ 0.1 and Ω ∼ 100 MHz.
Then J̄ ∼ 0.1 pA, a moderate current since currents down to
the fA scale can be measured in superconducting tunnel-
junction structures [29].
A real system will inevitably be subject to damping

toward and fluctuations around the chiral states. We will
assume that the fluctuations are weak, so that their effect on
the time-averaged direct supercurrent in a chiral state,
Eq. (11), can be neglected. However, even at low noise
levels, the fluctuations may at rare instances lead to
outbursts away from the double-well minima (Fig. 3).
These outbursts may cause transitions between the chiral
states and thereby reverse the direction of the supercurrent
(Fig. 2). The fluctuations can have either a quantum or a
classical origin. However, we assume a high temperature of
the environment, Tenv ≫ ℏωm=kB ∼ 1 mK, so that classical
noise dominates [30,31], which is typically the case in
experiments. We also assume that the temperature is
smaller than the critical temperature Tc of the super-
conducting leads, Tenv ≪ Tc ∼ 1 K. Further, we assume
that the most important noise source is the coupling of the
mechanical degree of freedom to its environment.
To investigate the effect of mechanical damping and

thermal fluctuations, we adopt the semiclassical model

ẍþ γ _xþ ω2
mxþ ηx3 ¼ ξðtÞ − 1

m
∂
∂xTr½ĤJðxÞρ̂e�; ð12Þ

where x is the classical position variable of the CPB, γ is a
small damping coefficient, ξðtÞ is a weak stochastic force,
and the last term describes an effective force from the
electronic subsystem due to the semiclassical Josephson
coupling ĤJðxÞ ¼ ℏωJ coshðx=λÞσ̂z. The semiclassical
model reproduces the expression for the time-averaged
supercurrent, Eq. (11), as well as provides a criterion for
mechanical excitation (see Supplemental Material [27]),

δ2 > 4

�
γ2

~ω2
m
þ Δ2

�
; δ ¼ 1

2

�
eV0

ℏ ~ωJ

�
2 ~ωJ

~ωm

�
a0
λ

�
2

; ð13Þ

where we have introduced the zero-point amplitude of
vibrations a0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mωmÞ

p
and neglected the weak

stochastic force.
Next, we will estimate the average rate of transitions

between the chiral states induced by the weak stochastic
force ξðtÞ. We assume that ξðtÞ is Gaussian noise with

hξðtÞi ¼ 0; hξðtÞξðt0Þi ¼ 2γkBTenv

m
δðt − t0Þ: ð14Þ

Wewill consider the casewhen the excitation criterion (13) is
met and the driving is in resonance with the mechanical
system Δ ¼ 0. Following Dykman et al. [28], the transition

FIG. 3. The effective mechanical-energy landscape in the frame
rotating with the electric driving field. Small damping will drag
the system down to one of the two stable states ρ�. In these states,
the system performs synchronized electronic and mechanical
oscillations which generate a supercurrent. The direction of the
supercurrent is opposite for ρþ and ρ−. Stochastic fluctuations
may therefore reverse the supercurrent by inducing transitions
between the two states. The landscape is plotted for μ ¼ 0.2. Note
that gðP; XÞ ¼ gð−P;XÞ.
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rate ν between the chiral states is given by ν ¼
ωt exp½−EA=ðkBTenvÞ�, where ωt is the attempt rate of
transitions and the exponential factor is the success proba-
bility of each attempt. The activation energy of the transition
is EA ≈ ½ð4=πÞ − 1�ε2mω2

mℏωJ=ð2λ2ηÞ. The attempt rate
ωt ∼ ωmϵ

2ð1 − ~ω2
m=ω2

mÞ=8 is estimated from the effective
parabolic potential at the bottom of each valley in the double
well in Fig. 3. Sinceωt ≪ ωm, transitions between the chiral
states are rare events. Thus the dynamics resembles a
telegraph process where the supercurrent switches between
the values corresponding to the chiral states [Eq. (11), Fig. 2].
The possibility for a supercurrent in either direction for the
same system parameters, with no phase difference between
the leads, is in contrast to other nonstandard Josephson
junctions [32,33].
Ongoing advances in nanostructure fabrication are

promising for an experimental realization of the proposed
phenomenon. Recently, superconducting materials have
been incorporated in freestanding nanowire heterostruc-
tures [34]. Furthermore, a suspended CPB [35], a super-
conducting mechanical resonator embedded in a SQUID
[36], as well as mechanical resonators coupled to super-
conducting qubits [17–20] have already been realized.
To conclude, we have proposed a nanoelectromechanical

system in which Cooper pairs are coherently transferred
through a Josephson junction despite zero phase difference
between the constituent superconducting leads. The phe-
nomenon utilizes spontaneous symmetry breaking via
parametric excitation of a movable superconducting quan-
tum dot. The parametric excitation results in synchronized
mechanical and electrical oscillations corresponding to two
symmetry-breaking chiral states. The two chiral states carry
supercurrent in opposite directions. Controlled switching
between the states may be used to reverse the direction of
the supercurrent without changing the system parameters.
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discussions and the Swedish Research Council (VR) for
funding.

*Corresponding author.
marer@chalmers.se

[1] J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E.
Lukens, Nature (London) 406, 43 (2000).

[2] R. L. Fagaly, Rev. Sci. Instrum. 77, 101101 (2006).
[3] M. H. Devoret and R. J. Schoelkopf, Science 339, 1169

(2013).
[4] B. D. Josephson, Phys. Lett. 1, 251 (1962).
[5] A. Buzdin, Phys. Rev. Lett. 101, 107005 (2008).
[6] J.-F. Liu and K. S. Chan, Phys. Rev. B 82, 184533 (2010).
[7] H. Zhang, J. Wang, and J.-F. Liu, Appl. Phys. Lett. 108,

102601 (2016).
[8] F. Dolcini, M. Houzet, and J. S. Meyer, Phys. Rev. B 92,

035428 (2015).
[9] Y. Tanaka, T. Yokoyama, and N. Nagaosa, Phys. Rev. Lett.

103, 107002 (2009).
[10] A. Zazunov, R. Egger, T. Jonckheere, and T. Martin, Phys.

Rev. Lett. 103, 147004 (2009).

[11] L. Dell’Anna, A. Zazunov, R. Egger, and T. Martin, Phys.
Rev. B 75, 085305 (2007).

[12] C. Schrade, S. Hoffman, and D. Loss, arXiv:1607.07794.
[13] F. Dolcini and F. Giazotto, Phys. Rev. B 75, 140511

(2007).
[14] T. Yokoyama, M. Eto, and Y. V. Nazarov, Phys. Rev. B 89,

195407 (2014).
[15] G. Campagnano, P. Lucignano, D. Giuliano, and A.

Tagliacozzo, J. Phys. Condens. Matter 27, 205301 (2015).
[16] D. B. Szombati, S. Nadj-Perge, D. Car, S. R. Plissard, E. P.

A. M. Bakkers, and L. P. Kouwenhoven, Nat. Phys. 12, 568
(2016).

[17] M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and
M. L. Roukes, Nature (London) 459, 960 (2009).

[18] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C.
Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank,
H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N.
Cleland, Nature (London) 464, 697 (2010).

[19] J.-M. Pirkkalainen, S. U. Cho, J. Li, G. S. Paraoanu, P. J.
Hakonen, and M. A. Sillanpaa, Nature (London) 494, 211
(2013).

[20] A. P. Reed, K. H. Mayer, J. D. Teufel, L. D. Burkhart, W.
Pfaff, M. Reagor, L. Sletten, X. Ma, R. J. Schoelkopf, E.
Knill, and K.W. Lehnert, arXiv:1703.02548.

[21] L. Y. Gorelik, A. Isacsson, Y. M. Galperin, R. I. Shekhter,
and M. Jonson, Nature (London) 411, 454 (2001).

[22] A. Isacsson, L. Y. Gorelik, R. I. Shekhter, Y. M. Galperin,
and M. Jonson, Phys. Rev. Lett. 89, 277002 (2002).

[23] V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. H.
Devoret, Phys. Scr. T76, 165 (1998).

[24] K.-H. Ahn, H. C. Park, J. Wiersig, and H. Jongbae, Phys.
Rev. Lett. 97, 216804 (2006).

[25] M. E. Peña-Aza, A. Scorrano, and L. Y. Gorelik, Phys. Rev.
B 88, 035412 (2013).

[26] L. Landau and E. Lifshitz, Mechanics (Butterworth-
Heinemann, Oxford, 1976), pp. 80–83.

[27] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.118.197701 for the di-
rect supercurrent in the limit of small deflections, the time
evolution of the electronic subsystem, the effective
mechanical equation for parametric excitation, and the
semiclassical direct supercurrent.

[28] M. I. Dykman, C. M. Maloney, V. N. Smelyanskiy, and
M. Silverstein, Phys. Rev. E 57, 5202 (1998).

[29] J. Bylander, T. Duty, and P. Delsing, Nature (London) 434,
361 (2005).

[30] M. Marthaler and M. I. Dykman, Phys. Rev. A 73, 042108
(2006).

[31] V. Peano, M. Marthaler, and M. I. Dykman, Phys. Rev. Lett.
109, 090401 (2012).

[32] J. J. A. Baselmans, A. F. Morpurgo, B. J. van Wees, and
T. M. Klapwijk, Nature (London) 397, 43 (1999).

[33] J. Linder, T. Yokoyama, D. Huertas-Hernando, and A.
Sudbø, Phys. Rev. Lett. 100, 187004 (2008).

[34] P. Krogstrup, N. L. B. Ziino, W. Chang, S. M. Albrecht,
M. H. Madsen, E. Johnson, J. Nygård, C. M. Marcus, and
T. S. Jespersen, Nat. Mater. 14, 400 (2015).

[35] G. S. Paraoanu and A. M. Halvari, Appl. Phys. Lett. 86,
093101 (2005).

[36] S. Etaki, M. Poot, I. Mahboob, K. Onomitsu, H. Yamaguchi,
and H. S. J. van der Zant, Nat. Phys. 4, 785 (2008).

PRL 118, 197701 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
12 MAY 2017

197701-5

https://doi.org/10.1038/35017505
https://doi.org/10.1063/1.2354545
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1103/PhysRevLett.101.107005
https://doi.org/10.1103/PhysRevB.82.184533
https://doi.org/10.1063/1.4943637
https://doi.org/10.1063/1.4943637
https://doi.org/10.1103/PhysRevB.92.035428
https://doi.org/10.1103/PhysRevB.92.035428
https://doi.org/10.1103/PhysRevLett.103.107002
https://doi.org/10.1103/PhysRevLett.103.107002
https://doi.org/10.1103/PhysRevLett.103.147004
https://doi.org/10.1103/PhysRevLett.103.147004
https://doi.org/10.1103/PhysRevB.75.085305
https://doi.org/10.1103/PhysRevB.75.085305
http://arXiv.org/abs/1607.07794
https://doi.org/10.1103/PhysRevB.75.140511
https://doi.org/10.1103/PhysRevB.75.140511
https://doi.org/10.1103/PhysRevB.89.195407
https://doi.org/10.1103/PhysRevB.89.195407
https://doi.org/10.1088/0953-8984/27/20/205301
https://doi.org/10.1038/nphys3742
https://doi.org/10.1038/nphys3742
https://doi.org/10.1038/nature08093
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature11821
https://doi.org/10.1038/nature11821
http://arXiv.org/abs/1703.02548
https://doi.org/10.1038/35078027
https://doi.org/10.1103/PhysRevLett.89.277002
https://doi.org/10.1238/Physica.Topical.076a00165
https://doi.org/10.1103/PhysRevLett.97.216804
https://doi.org/10.1103/PhysRevLett.97.216804
https://doi.org/10.1103/PhysRevB.88.035412
https://doi.org/10.1103/PhysRevB.88.035412
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.197701
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.197701
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.197701
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.197701
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.197701
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.197701
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.197701
https://doi.org/10.1103/PhysRevE.57.5202
https://doi.org/10.1038/nature03375
https://doi.org/10.1038/nature03375
https://doi.org/10.1103/PhysRevA.73.042108
https://doi.org/10.1103/PhysRevA.73.042108
https://doi.org/10.1103/PhysRevLett.109.090401
https://doi.org/10.1103/PhysRevLett.109.090401
https://doi.org/10.1038/16204
https://doi.org/10.1103/PhysRevLett.100.187004
https://doi.org/10.1038/nmat4176
https://doi.org/10.1063/1.1870108
https://doi.org/10.1063/1.1870108
https://doi.org/10.1038/nphys1057

