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a b s t r a c t

Different perspectives on the diffusion of technologies have suggested that market growth of technol-
ogies in late adopter countries may be either slower (because the technology is adopted later in areas
where the technology has poorer economic performance) or faster (because global experience has
resulted in maturation and improved performance of the technology). We compare the pace of market
growth of wind and PV power in early and late adopters. We use panel data analysis on a database
spanning all countries of the world, and years 1980e2014. We find that late adopters manage to access
the global experience with these technologies, and utilize it to accelerate domestic market growth.
Despite their lower GDP, late adopter countries have managed market growth for wind power that was
up to 4.7 times faster than it was in early adopters, and up to 16 times faster for PV. These results suggest
increased development efforts of novel clean-tech may kick-start rapid global deployment. Beneficial
effects are less for very late adopters and less developed economies, signalling attention is needed for
these in global climate change mitigation efforts.
© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The technological development and deployment of modern re-
newables has long been concentrated in advanced economies [1,2].
Meeting stringent climate change mitigation targets requires that
these technologies are transferred and diffused to emerging and
developing economies [3]. There are indications that global transfer
and diffusion of such modern renewables is taking place. By year
end 2014, 89 countries had wind turbines, and 59 had PV panels
installed, including a growing number of emerging and developing
economies (Fig. 1). Some of the largest emerging economies,
notably China and India, are even amongst the global top ten in
terms of installed capacity, although their ranking in terms of per
capita installations remains much lower [4]. These numbers,
however, do not say much about the pace with which these tech-
nologies are being deployed in these late-adopter countries, or how
this pace compares to that in early adopters.

Historical evidence shows that market shares of (energy)
ens), hedenus@chalmers.se
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technologies follow logistic growth patterns [7,8] (Fig. 2). The slow
growth in early phases is due to a long list of interconnected
problems, including a lengthy phase of technological development,
during which the novel technology has limited competitiveness
versus conventional alternatives [9e11]. As the technology ma-
tures, competitiveness improves, and increasingly rapid market
growth becomes possible.

This logistic growth pattern is repeated in individual countries
(or other geographical units) [7,8,14]. The growth curve in late
adopter markets, however, is not simply the same logistic curve
found in early adopters, shifted right along the time axis (as sce-
nario A in Fig. 3).

Emerging and developing economies tend to be among the later
adopters [14,15], and their relatively lower GDP reduces deploy-
ment speeds [16]. In itself, these effects would be expected to lead
to increasingly flat slopes for late adopter countries (scenario B in
Fig. 3). Such a pattern is consistent with what Griliches, in 1957,
identified for the diffusion of hybrid corn in the US, in one of the
earliest studies using logistic growth curves to compare the diffu-
sion of a technology in different geographies [7]. Griliches identi-
fied that the economic benefits of switching to hybrid corn differed
by state, and that high economic benefits in some states stimulated
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Fig. 1. Global deployment of wind and PV. Countries with any wind or PV installations (top) and countries with at least 100 MW of wind or PV (bottom); status by year end 2014.
Source:[1,5,6].
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both early as well as rapid market uptake [7]. Similarly, Pry [17], as
cited in Marchetti and Nakicenovic [8], identified that the substi-
tution of basic oxygen furnace for open-hearth and Bessemer steel
production techniques was most rapid in early adopters, less rapid
in early followers, and less rapid still in lagging markets.

In contrast, other historical studies of technology have identified
many cases, including a diverse range of energy technologies,
infrastructure, consumer electronics etc., in which late adopter
countries managed more rapid transitions to the new technology
than early adopters did [14,15,18e23] (as scenario C in Fig. 3). The
explanation for this accelerating effect is that late adopter countries
may benefit from the substantial technological and industrial
development that has previously occurred at the global level (ibid).
This notion is also found in the literature on technological experi-
ence curves. These curves represent the reduction in costs of a
technology with increasing production experience, usually
measured as accumulated production output [24,25]. Studies have
found differing experience curves for individual countries, sug-
gesting that the build-up of experience is at least in part a national
matter [26,27]. Concurrently, there is evidence that global experi-
ence build-up matters as well, similarly suggesting that this
experience spills over into domestic development processes
[24,28].

Studies comparing the diffusion of novel technologies in early
versus late adopters have further identified that late adopters tend
to end upwith lower market saturation levels of these technologies
[29e31]. For example, Grübler compared the switch from tradi-
tional biomass to coal in a number of European countries [32].
Countries that started switching to coal in the early 1800's or
before, reached a maximum share of 90% coal in their energy mix,
before switching again from coal to other fuels. Countries that
started to switch to coal several decades later, had a peak share of
50e60% in their energy mix [32]. Ultimate levels of per capita car
ownership has also turned out to be lower in countries where the
technology was first introduced at a later point in time [31].

To correct for these differing levels of saturation, the usual
metric for comparing transitions is the number of years it took to
get from10% to 90% of the ultimate level ofmarket saturation (Dt, in
years, sometimes called turnover time, or diffusion rate)
[8,14,15,18,30e32]. Bento and Fontes [18] compared the develop-
ment of wind power in Denmark and Portugal in this way, by fitting
logistic growth curves to observed data. For less matured wind and



Fig. 2. Market development of maturing (renewable energy) technologies.
Source: adoption from Refs. [12,13].

Fig. 3. Growth of renewables in early versus late adopter countries: 3 simplified scenarios. Scenario A: growth rates depend mostly on domestic experience build-up; countries
manage similar growth rates; slopes are equal.Scenario B: economic development status matters most; poorer countries, which tend to be late adopters, also manage lesser growth
rates. Alternatively, earliest adoption as well as fastest market saturation occurs in countries or areas where the technology offers the best financial performance; slopes are
increasingly flat.Scenario C: global experience build-up matters most; late adopters manage to access this experience, and utilize it to accelerate domestic growth; slopes are
increasingly steep.
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PV markets that we aim to include in our analysis, this is not a
credible method, as we do not know their ultimate market shares.
Fitting logistic curves, and in particular predicting the upper
asymptote is a highly imprecise exercise for such less mature
markets. We can, however, compare absolute market shares of
wind and PV, and the speed with which these grow. Such a com-
parison is at least as relevant in studying the spatial diffusion of
low-carbon technologies.

Here, we analyse differences in the pace of market growth of
wind and PV power in early and late adopters. The metric for
comparison is annual increases of market share, as a percentage of
total power production. Our database spans all countries, and years
1980e2014, although we limit our sample to market share in-
creases in the deployment phase (here defined as starting when a
country exceeds 100 MW of installations of wind or PV; more on
this in the method section). We use panel data analysis to connect
differences in annual market share increases to several explanatory
variables.
We find that increased global experience has acceleratedmarket
growth in both early and late adopters. Market growth is more
rapid in follower countries, possibly resulting from policy learning
or technology transfer programmes. These beneficial effects far
outweigh the negative effects from lower GDP typically found in
late adopter countries. The net effects are that markets shares of
wind power have been growing up to 4.7 times faster than markets
in early adopters did, and up to 16 times faster for PV. The effects,
however, are not linear. Relatively early followers were found to
benefit the most from the build-up of global experience, whilst
relatively late laggards benefit less.
2. Methods and data

In this section, we will explain:

- Our outcome variable, defined as annual market share increases
of wind or PV (2.1);
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- Our selection of key explanatory variables (economic develop-
ment status, development of the domestic market, global
experience build-up and country lag (2.2);

- Control variables selection, based on a review of earlier litera-
ture on factors determining renewable energy development
(2.3);

- The need for a data filter to separate demonstration and
deployment phases, which have strongly differing market me-
chanics (2.4), and;

- The selection of our estimation method (2.5).

Data collection is described in section 2.6, with an overview of
the definition and data sources for the variables used provided in
the appendix, Table A.1.

2.1. Outcome variable

Themost commonoutcomevariable inpreviousworkusingpanel
data analysis to determine what factors drive renewable energy
development is the total share (%) of renewables in energy or elec-
tricity consumption [33e38]. As early adopters have had far longer
periods of time to grow their market shares, it can be expected that
these have (far) larger total markets shares of wind or PV.

We are interested in comparing the growth speed of market
shares of wind and PV in early versus late adopters. We therefore
regard annual market share increases, similar to growth speed
variables used in a number of earlier analyses [39e42]. We use
natural log transformed values of annual market share increases.
The values of both market share and market share increases range
over several orders of magnitude. As implied by the logistic growth
curve, there is a linear relation between current market share and
annual market share increases, when both are (natural) log trans-
formed (this is also apparent in our data; see Supplementary
Fig. S.1). Similar to Hitaj [39], we use logs of annual market share
increases, defined here as:

0Market share increase0i;j;t ¼ ln
�
market sharei;j;t

�market sharei;j;t�1
�

where market sharei;j;t ¼ MWh power productioni;j;t

MWh power consumption; all sourcesi;t
� 100%

and i: country identifier, j: technology (wind or PV), and t: year

2.2. Key explanatory variables

2.2.1. Economic development status
Higher levels of per capita GDP are expected to enable more

rapid deployment. Higher GDP provides a better ability to afford
modern renewables (which are more costly in early development
phases in particular), and the economic stimulus measures often
required for their development [33,35e37,43]. High income coun-
tries also have better technological capabilities to develop and
deploy modern renewables [2,44]. Environmental concern and
policy may or may not be stronger in these countries [45]; this
effect is controlled for with emissions to air (section 2.3).

2.2.2. Current domestic market share of wind power
The logistic growth curve implies that higher market shares of

wind or PV enable greater annual market share increases. At (very)
highmarket shares, annualmarket share increases should slowdown
again, and eventually stall. To identify the former, we include the
natural log of wind or PV's market share. To identify the latter effect,
we include the untransformed value of this market share. Both vari-
ables are lagged one year, as we are interested in effects of current
market shares on market shares increases in the following period.
2.2.3. Country lag and global development of the industry
To determinewhether latecomer countries do indeedmanage to

deploy wind power more rapidly, we include the following
variables:

- Country lag: the number of years a country was behind on the
first nation to enter the (pre-commercial) deployment phase for
wind or PV power (see section 2.5 for more on howwe separate
demonstration and deployment phases). This variable has a
single, time-invariant, value per country.

- Global installed capacity (cumulativeMWof installations, natural
log). We expect accumulated global installations to accelerate
domestic market growth. Cumulative installations have previ-
ously been used as a proxy for technological maturity and eco-
nomic competitiveness in technological experience curves
[24,25]. We use a log transformation of the original MW values,
as these experience curves follow an inverse exponential form.
Unit costs, the focal indicator of accumulated experience in
modelling these experience curves, tend todropbya certain factor
(the ‘progress ratio’) with each doubling of installations [24,25].

- Interaction term between ‘Country lag’ and ‘Global installed
capacity’. Included to identify whether latecomer countries in
particular benefit from accumulated global industry experience.
The reasoning is that these may ‘leap-frog’ many years of slow
technical development by utilizing globally available technol-
ogy, whereas early adopters may already have such developed
industries that additional global experience does not boost
further deployment much more.

2.3. Control variables

Based on a set of earlier studies on factors that drive the
development of renewable energy [33,35e37,43,46e50], we
included variables on the make-up of the electric power system,
levels of air pollution and natural resource endowment.

Individual market shares of power generation are included for
each of the most important alternative technologies (coal, hydro,
nuclear, gas, oil, biomass and geothermal). These different energy
types may affect the drive for renewables as theymay or may not 1)
result in energy import dependency [37,43,51]; 2) lead to concern
over environmental impact [16,35,43]; and/or 3) make it easier or
more difficult to integrate substantial shares of renewables into the
power mix [52]. To identify if environmental concern drives
deployment we also include per capita emissions of CO2 (emissions
related to climate change) and emissions of SO2 (related to local air
pollution).

High levels of per capita, or total volume of power consumption,
may make it more difficult to attain rapid market penetration of
renewables. There may be limiting factors to the growth speed of
industries required to deploy renewables [53,54], so that these
industries might not be able to scale up together with market de-
mand in large markets as easily as they would in smaller markets.
Growing power demand may create a larger market for wind or PV
installations, although some analysts hold that countries with
rapidly growing power demand tend to concentrate on construc-
tion of fossil and hydropower plants [43,51].

Lastly, wind and PV power generation can be expected to
depend on natural resources, in these cases wind or solar irradiance
[33,35,37,39,40]. We use indicators of natural resource endowment
in MWh/km2. For wind, we consider only areas with sufficiently
high wind speeds (classes 3 and above), and in relative close
proximity (<100 km) to existing energy infrastructure. For PV, we
use the country wide average of solar energy potential (MWh/km2).
This selection provides an indicator of ‘readily available’ technical
potential [40,50], whilst preventing bias towards countries with
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vast, scarcely populated landmasses.

2.4. Data filter: separating demonstration and deployment phases

We differentiate early and late adopters with a variable ‘country
lag’, which is the number of years a country was behind on adopting
the technology, relative to thefirst adopter. Itwouldbemost intuitive
to regard the very first installation of a wind turbine or PV panel in
determining such country lag. Here, however, we consider the first
100 MW of installations to be the demonstration phase, with pre-
commercial deployment starting at 100 þ MW. We exclude data
from the period before a country exceeds 100 MWof installations in
our analyses. Our variable country lag is determined as themoment a
country exceeded this 100 MW threshold, compared to the first
country to do so. Our reasons to do so are as follows.

It is theoreticallywell established that the demonstrationphase is
subject to very different marketmechanics than the pre-commercial
and supported commercial phases [11,55,56]. In the demonstration
phase, small individual projects are developed for testingpurposes or
as lighthouse projects, etc. Such projects are much more stochastic
events, because in these early ‘nursing markets’, market driving
forces and institutional pressure or stimulus are still underdeveloped
[56,57]. This is also what we see in our data. Demonstration in many
countries consisted of individual projects, with little or no further
projects for many years. The period required to get from 0 þ MW to
100MWwasoftenadecadeormore (Fig. S.2). This phase iswhere the
mathematicalmodel (the logisticgrowthcurve)diverges fromreality.
The logistic growth model supposes a near constant year-on-year
growth throughout the first half of the growth curve (e.g., 10%
annual increases in total installations). Suchmarket growthwould be
linearwhengraphed ona (natural) log scale. This is oftennot the case
in real world data, where prolonged periods of no, or very few new
installations in the demonstration phase result in very flat market
development lines, evenwhen graphed on a natural log scale. Rather
than a constant year-on-year growth rate throughout (linear growth
on a natural log scale), markets tend to see a distinct acceleration
(higher year-on-year growth rates, with a kink in the linear growth
pattern on a log scale) whenmarket sizes exceed a certain threshold.
A number of example graphs to clarify the issue are provided in
Fig. S.3. Including data from the lengthy demonstration phase
strongly flattens the development of annual market share increases,
making itmoredifficult tofinda statistical relationshipwithvariables
that do vary.

An additional issue is that the very slow (or no) growth in in-
stallations in the demonstration phase may lead to negative market
share increases, when overall power consumption grows faster
thanwind or PV power output. Such negative values are dropped in
the natural log transformation of our outcome variable. This means
that years with relatively big growth spurts within the demon-
stration phase are preserved, whilst smaller values are dropped.
These negative values of annual market share increase are strongly
concentrated in the demonstration phase (Table S.2). This further
flattens the development of our outcome variable, as this gives the
appearance that average market share increases in the demon-
stration phase are as large as, or larger than, market share increases
in larger, more matured markets.

The effect of this flattening was that a number of the relation-
ships investigated here were less, or not, apparent when including
data from countries and years with at least 0þMWof installations.
The threshold of 100 þ MW as the distinction between demon-
stration and diffusion phases was based on visual inspection of
individual countries' growth curves (examples in Fig. S.3) and
comparison of regression results using different data filters. Below
this threshold, the relationships investigated here were not
apparent; above this threshold, the patterns in terms of significance
and sign remained the same. Results using different data filters
(0 þ MW, 50 þ MW, 100 þ MW, 200 þ MW, 500 þ MW) are
included in Tables S.3 & S.4.

2.5. Estimation method

Our data has a number of properties that require attention to the
error structure. Our data is trending, with larger annual market
increases over time. If we assume that variance increases with
increasing levels of the observed outcome variable (annual market
share increase), then there is a risk of heteroskedasticity as well as
serial correlation of the disturbances. If we also assume that de-
velopments between countries may be linked (which we specif-
ically do, as our model contains reference to global sector
development), there is also a risk of contemporaneous correlation
of the disturbances [58,59]. Tests confirmed the presence of both
heteroskedasticity and serial correlation for both wind and PV
models (Table S.5).

We performed estimations using a Prais-Winsten regression,
with panel corrected standard errors (PCSE). This method corrects
for heteroskedasticity, contemporaneous and serial correlation
[60]. The Prais-Winsten regression uses the generalized least-
squares (fGLS) method to estimate parameters in a linear regres-
sion model assuming the errors to be serially correlated (AR(1))
[61]. Removing this serial correlation is a prerequisite before
calculating PCSE [58,59], which further correct for panel hetero-
skedasticity and contemporaneous correlation [58,59]. Simulta-
neously, PCSE prevent over-optimistic standard errors (particular
with small time vs units (panels) dimensions, as is the case in our
dataset) when compared with alternative estimation methods,
including pooled OLS estimation [58,59]. The same dimensions of
our dataset can result in over-optimistic standard errors when
using panel-specific autocorrelation parameters [58], and we
therefore choose to use the more conservative method of a com-
mon autocorrelation parameter.

This estimation was performed using Stata, version 13.1, using
the xtpcse command [62], with first order autoregressive correla-
tion structure specified.

To make sure that our results were not due to the specificity of
the selected estimation method, we performed the same analysis
using four closely related estimation methods; results were robust
throughout (see Tables S.6 & S.7). This comparison included
random effects but not fixed effect models. One of our key
explanatory variables, country lag, has a single value for each
country and would be dropped in such a model.

2.6. Data collection

Wind and PV development are well reported on in a number of
databases. Because of differing data availability, we combined data
from Eurostat [5], UN data [1], and the BP review [6]. Eurostat data
was used for EU countries (availability 1990e2014); UN data for all
other countries (availability 1990e2013); BP data to update 2014
values and for years prior to 1990. BP datawas used for a number of
countries for which data series were more complete than the UN
data. The three sources were also checked for internal consistency
(reporting on MW of installations versus MWh of power produc-
tion), requiring a number of fixes (details in Table S.1).

3. Results

3.1. Domestic versus global determinants of renewables market
growth speeds

Our first finding is that economic development status matters:
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higher per capita GDP enables more rapid market growth of both
wind and PV (Table 1). This relates to the question of early versus
late adopters, as early adopters were, on average, wealthier coun-
tries (more in section 3.3). This result is in line with previous work
on modern renewables [44,51]. Earlier analyses have also regularly
used the share of all renewable energy as the outcome variable, and
tended to find an insignificant relationship between GDP and
renewable energy use [35e37]. We suspect that the difference is
due to the inclusion of hydropower in these studies. This technol-
ogy is far more mature, less costly than modern renewables, and
strongly dependent on natural resource endowment, and therefore
likely less related to income levels. This suggests that driving fac-
tors for the deployment of renewable power generation are not
equal across all technologies, and supports the relevance of tech-
nology specific analysis.

Our second finding is that the development of the domestic
sector matters. We find that larger market shares of wind and PV
power enable more rapid market share growth, in line with the
non-linearity in growth implied in the logistic growth pattern
(Fig. 2). Domestic sector growth may lead to positive feedback
loops, as the technology itself matures, but also because
manufacturing and maintenance industries grow in size and
become more competitive, and because societal support, user
acceptance, and policy support, develops [8,15,57]. The variable
with untransformed values of current market share, included to
identify whether growth slows down again at very high market
shares, was significant for PV, but not for wind. In effect, we
identified an exponential growth pattern for wind, and a logistic
growth pattern for PV. This is contrary to what wewould expect, as
windmarkets are surely morematured than those for PV, making it
more likely that those would already see some slowing effects of
market saturation. We have no credible explanation as to why the
slowdown shows up in PV but not wind markets.

Our third finding is that the build-up of global experience en-
ables more rapid domestic market growth. This positive relation
implies that countries are able to access and utilize this global
Table 1
Regression results for ‘Market share increase’ (wind & PV).

Wind
pcse, common AR(1)

Per capita GDP 0.499***

Market share Wind or PV (%, ln, lag1)a 0.675***

Market share Wind or PV (%, lag1) a �0.003
Global installed capacity a 0.405**

Country lag a 0.294***

Global capac*ctry lag a �0.025***

National power cons. �0.151
Growth of power cons. �0.055***

Per capita power cons. �1.025**

Energy imports (%) 0.001
Coal power (%) 0.002
Hydro power (%) 0.009*

Nuclear power (%) 0.008*

Gas power (%) 0.001
Oil power (%) �0.003
Bio&Geo power (%) �0.009
PV Power (%) �0.192***

Wind Power (%) e

Emissions to air (CO2) 0.193
Emissions to air (SO2) 0.300**

Natural Resource Endowmenta 0.000
Constant �5.961**

N 429
groups (countries) 46
R2 0.521

p-values in parentheses.
*p < 0.10, **p < 0.05, ***p < 0.01.

a Variable is technology specific: refers to market share, global capacity etc., of wind p
experience. This indicates that technology transfer has occurred, at
least if we consider a very wide definition of technology transfer
(for a good overview of the many mechanisms considered under
the umbrella of technology transfer see Reisman, 2005 [63]). In its
simplest form, such technology transfer could have occurred
through international sales of power generation equipment. Such
equipment has become available at ever lower cost on the global
market, making the technology more competitive in domestic
markets. It is also possible that experience has been transferred
between foreign and domestic manufacturing industries, for
example through licensing of equipment designs, or in joint ven-
tures for manufacturing [63]. Such mechanisms have, for example,
been pointed to in the development of wind turbinemanufacturing
industries in China and India [64,65]. Note, however, that out of all
the countries that have installed wind turbines (Fig. 1), only a
limited number has domestic manufacturing or domestic wind
turbine brands. Further channels for transfer include knowledge
spill-overs in global production networks and/or research organi-
zations, etc. [63,66]. It is difficult to determine which of such
channels has provided the access to global experience. Such an
exercise would likely involve investigation of developments in in-
dividual countries to a level of detail that is more suited to case
study research. Here, we suffice it to say that domestic market
growth speed depends in part on domestic sector development,
and in part on global experience build-up.

Our fourth finding is that late adopters manage more rapid
market growth, in addition to the beneficial effect from global
technological experience. There is a positive effect from country lag.
This indicates that there are beneficial effects of developments of
the technological field, which are not accurately grasped by expe-
rience as measuredwith cumulative global installations.Within the
literature on learning curves, analysts regularly suggest the use of
R&D based knowledge stock as a complementary factor to cumu-
lative production output, as parameters in the modelling of such
curves [27]. Similarly, Coe and Helpman [67] identified that foreign
R&Dmay stimulate domestic economic productivity, depending on
PV
pcse, common AR(1)

(0.007) 0.883*** (0.005)
(0.000) 0.448*** (0.002)
(0.906) �0.320*** (0.002)
(0.028) 0.715*** (0.000)
(0.005) 0.263** (0.011)
(0.004) �0.024*** (0.006)
(0.170) �0.175* (0.053)
(0.000) �0.004 (0.666)
(0.030) �1.825 (0.151)
(0.345) 0.001 (0.695)
(0.668) �0.003 (0.836)
(0.076) �0.024* (0.082)
(0.079) �0.004 (0.772)
(0.124) 0.004 (0.796)
(0.587) �0.002 (0.948)
(0.730) 0.006 (0.917)
(0.001) e e

e �0.035 (0.143)
(0.650) �0.333 (0.785)
(0.016) 0.972*** (0.000)
(0.944) �0.001*** (0.001)
(0.016) �3.485 (0.318)

140
27
0.747

ower in the wind model and to PV in the PV model.
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openness to foreign trade. There may also be an effect of policy
learning; late adopters may learn from successful experience with
implementing favourable renewables policies elsewhere. The effect
may also be due to the many bilateral and global programmes for
technological cooperation and transfer in the area of renewable
energy technologies.

Lastly, the interaction variable between global experience build-
up and country lag has a negative coefficient, indicating that the
global experience is not equally accessible to early and late adopters.
Late adopters do not manage to benefit as much from global tech-
nological experience as early followers do. This is in line with con-
clusions from much of the literature on technological catch-up,
which suggests that ‘absorptive capacity’, i.e., the ability to compre-
hend, utilize andmanufacture technologies ismuch stronger in early
followers than laggards [68,69]. Technology transfer programmes,
including projects co-financed through the CDMmechanism, are also
strongly concentrated in early follower countries [70,71].

3.2. Control variables

Most of our control variables had limited or no consistent effect
on annual market share increases of wind and PV.

Market size and growth variables had insignificant effects on PV
developments, although the total national volume of electricity
consumption had a marginally significant negative effect on PV
market share increases. For wind power, there was a clearer, and
negative, effect on market share increases in markets with higher
per capita consumption, andmarkets with growing power demand.
This suggests upscaling of industry output to fulfil greater market
demand has been more of an issue for wind than PV industries
(more on this in section 3.4).

We find no effects from energy imports, suggesting that import
dependency concerns are not a common or strong driver for rapid
transitions towind or PV power. Similarly, the shares of other energy
sources for electricity production have little or no effect on market
growth speeds of wind or PV. There aremarginally significant effects
from hydropower on wind and PV, but the sign of the effect is
opposite for these two technologies. A marginally significant effect
from nuclear power on wind markets is not replicated for PV. High
shares of PV reduce market growth speeds of wind, which could be
because both technologies contribute to the same societal goals, and
successful PV market development therefore reduces the need to
spur wind power development. Our data does not show that high
shares of wind also reduce market growth speeds of PV, however.
The limited significance, or inconsistency over technologies, for
these variables, makes it difficult to make statements with much
certainty about connections with market growth speeds.

With regard to environmental concerns, it appears countries
with higher levels of local air pollution are more rapidly tran-
sitioning towind and PV, whilst there appears to be no difference in
how rapidly countries with low or high carbon dioxide emissions
are working on such transitions.

We find no effect of natural resource endowment on wind po-
wermarket growth, and a negative effect on PVmarket growth. The
latter in particular may seem surprising, but other studies have
regularly reported positive, insignificant, as well as negative effects
(cf. [33,35,37,72]). Here, we would explain it because of a strong
negative correlation between GDP and solar resources, i.e.,
wealthier countries are concentrated in latitudes with less solar
irradiance (see Fig. S.4, and note that no such relation exists for
wind resources).

3.3. Net effects on deployment speeds for early versus late adopters

The effects of key variables described in 3.1 require some
framing before their relevance can be properly assessed. Statistical
significance does not say much about the size of the effect of a
variable [73]. Further, some of these variables had positive effects
for late adopters, whilst others had negative effects. To help clarify,
we graph the development of these effects over time. Global
installed capacity of wind and PV in any year is known. We know
the value of country lag for a country that starts deploying the
technology in a certain year, and we can derive the value of the
interaction term between it and cumulative global capacity. To
account for the lower average per capita GDP in late adopter
countries, we use the values of the linear trend line between GDP
and country lag (Fig. S.5). Effect sizes are calculated by multiplying
coefficients from the regressions (Table 1) with the value of cor-
responding variables in each year.

Results in Fig. 4 show that the negative effect of lower average
GDP in late adopter countries is outweighed by beneficial effects
from global industry experience, and initially positive effects of
country lag.

For wind power, the net effect on annual market share increases
of these variables has reached a maximum in 2001. Countries that
started to deploy wind power around the year 2001, ceteris paribus,
have done so at a pace 4.7 times greater than the earliest adopters
managed (calculated as e1.55, 1.55 being the maximum value of the
net effects on ‘annual market share increase’, which was natural log
transformed). Countries that have started to deploy wind power
past this point still manage more rapid deployment than the
earliest of adopters, but not as rapid as countries that started
around 2001. For countries that have recently started to deploy
wind power, deployment speeds are approximately 2.0 times as
high as those realised by the earliest adopters.

For PV, the pattern is similar. Here, however, net beneficial ef-
fects have started to plateau but not yet fall. Further, the magnitude
of effects is larger; deployment speeds for countries that have
recently adopted the technology are approximately 16 times higher
than they were for the earliest adopters.

These values are largely in accordance with observed ranges of
annual market share increases in early versus late adopters.
Indicative of this is that early adopters of wind power, in their first
five years of deployment, managed average annual market share
increases of approximately 0.05e0.1% points per year, whereas late
adopters regularly managed increases of 0.2e0.4% points per year.
The stronger effects for PV are largely due to the fact that early
adopters managed only very slow initial growth, in the range of
0.005e0.02% points per year, whereas late adopters also managed
0.2e0.4% points per year (Fig. S.6; note that we regard only the first
five years of deployment to roughly correct for the fact that more
mature markets grow faster). Further, residuals plots confirm that
these extremes are not due to over- or underestimation for some
periods or values of country lag (Figs. S.7 & S.8). Still, the fact that
our outcome variable is natural log transformed does make these
estimates quite sensitive. A more proper summary of these findings
is that late adopters have managed deployment speeds that were
several times higher than for early adopters for wind, and more
than a dozen times higher for PV.

3.4. Comparison of effects on deployment speed for wind and PV

Regression results and net effects of key variables showed
similar patterns for wind and PV, but there are important differ-
ences as well.

For both, domestic market growth speed depended on the size of
thedomesticmarket aswell asonaccumulatedglobal experience. For
wind, domestic sector build-up has been more important than the
global experience,whilst forPV, it is theotherwayaround.Adoubling
of the domestic market share enables 68% larger annual market size



Fig. 4. Net effect of key variables on annual market share increases. Note: values relative to first country exceeding 100 MW of installations. The variable ‘market share increase’ is
the natural log of annual increases in markets share. Effect of country lag and its interaction with cumulative global capacity were summed as the two were quite large but opposite.
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increases for wind versus 45% larger increases for PV. A doubling of
global industry experience enables 41% larger annual market size
increases for wind, versus 72% larger increases for PV. The difference
could be due to the relative easewithwhich PV panels are shipped to
foreign markets, whilst a number of wind turbine components are
quite costly to transport. Further, analysts using concepts form the
literature of technology life-cycles have characterized PV panels as
(mostly comparable to) mass-produced goods, whereas wind tur-
bines are closer in characteristics to ‘complex products and systems’
technologies. This has effects on industry localization, with evidence
suggesting that substantial wind power deployment requires the
development of domestic technological capabilities, equipment
production capacity and maintenance industries, to a higher extent
than is the case for PV panels [74,75].

The same mechanisms may also explain why there is less of a
problem with scaling up PV development for the larger demand in
large or rapidly growing electricity markets (as reported in section
3.2).

Per capita GDP is a much stronger determinant of deployment
speed for PV than for wind. This is not very apparent from the net
effects graphed in Fig. 4, because the relationship between per
capita GDP and country lag is less pronounced for PV than for wind
(Fig. S.5). For both wind and PV, high income countries were the
initial users of the technology. The difference is that fewer low
income countries have started using PV. Fig. 4 reflects differences in
mean GDP between early and late adopter countries, but there is a
relatively large spread around this mean (Fig. S.5).

Users of wind power had GDP per capita between roughly $2800
and$50,000 (10thvs.90thpercentile). Countries toward theupperend
of that spread will manage deployment speeds of 4.2 times greater
than countries at the lower end (calculated as e0.499*ln(($50,000)�
ln($2,800)), with 0.499 being the coefficient for GDP from Table 1). Per
capitaGDPofusers of PVvaried roughly between$7000and$50,000,
indicating that the richest of countries manage deployment speeds
5.7 times greater than the poorest of countries did.

Both the lower usage and lower deployment speeds in poorer
countries indicate that PV, still the more expensive technology [76],
remains a technology for wealthier nations; more so than wind
power.
4. Discussion

Our analysis of developments in the PV sector rests on a rela-
tively small sample (N ¼ 140, 27 countries). In itself, this may have
been too little to ensure sufficient reliability of the results. We
would argue, however, that such scrutiny should be reduced by the
very similar pattern found in the far larger data sample for wind
(N ¼ 429, 46 countries). Further studies on other technologies are
required before we could comment on the generic nature across
technologies of the patterns identified here.

Below, we further discuss the potential role of energy prices
(4.1), renewable energy policy (4.2), alternative model specifica-
tions that might have explained the result on country lag (4.3), and
compare our results with earlier work on the timing and speed of
transitions (4.4).

4.1. Energy prices

Earlier analyses have regularly included energy prices as an
explanatory factor of renewable energy deployment [33,35e37,48].
This workwas focused on OECD countries, for which energy pricing
statistics are readily available via the IEA. For our dataset, which
includes a wider variety of countries, we did not manage to find a
sufficiently exhaustive set of domestic energy prices for all major
fuel types and years, and we therefore decided to exclude these. We
have considered using global or regional energy prices as a proxy,
but did not find significant effects, except for a negative effect of
natural gas prices on the pace of wind power development (results
included in Table S.8). Energy prices in international markets are
likely a rather rough proxy for cost to domestic users, as they ignore
taxes and domestic supply. Lacking data quality may therefore be as
much of a reason for the presence or absence of significance as the
existence of an actual relationship between the energy price and
outcome variables.

4.2. Renewable energy policy

Many earlier analyses of renewables development have regarded
policy support [33,37,43,50,51,77e80], something that we entirely
agree to be an important driving factor. It is, however, exceptionally
difficult to operationalize the strengthoreffectiveness ofpolicies, and
results have often been inconclusive (for an excellent overview see
e.g., [81]). Earlierworkhas operationalizedpolicy supportwitheither
a binary variable (indicating the presence of a certain support policy
type), or the number of policies implemented [33,37,43,50,51,79,80],
orwith a proxy for political orientationof the government [50,78,82].
Policy count data can be extracted from IRENA's renewable energy
policydatabase [83],which catalogues different policy types andyear
of implementation for a long list of countries.Weused such avariable
for the number of policies implemented, for several different policy
types, and found a significant and positive effect for only a single
policy category for wind, and a negative effect for a single policy
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category for PV (Table S.9). We have decided to exclude these policy
variables in our results, as we are unconvinced that this count data is
the best way to operationalize the effect of policy measures, and
oppose drawing conclusions based on them. The lacking significance
for most policy categories should, in our view, not lead to the
conclusion that thesearenot important. Betteroperationalization, for
example the volume of R&D funding, the level of feed-in-tariffs,
resulting levelized cost of electricity etc., might result in different
conclusions. Such improvedpolicyvariableshavebeenused inasmall
number of earlier analyses for EU countries or US states, for which
data is relatively easily available [34,41]. These studies have also
focused on individual types of policy (e.g., FIT, targets, renewable
portfolios). For the expanded country group regarded here, such data
is much more difficult to obtain, in particular or a wide range of
policies. Includingsuchvariableswouldrequiredatacollectionefforts
that are outside the scope of most analyses, including ours.

4.3. Alternative explanations for the result on country lag

The variable country lag, and its interaction with cumulative
global experience are somewhat of a ‘catch-all’ variable, and do not
specify very well what is different about these late adopters. We
attempted two different model specifications to establish or rule
out our results being due to unobserved variable bias.

A prime candidate to substitute the country lag variable, in its
interaction termwith cumulative global experience, was per capita
GDP. GDP was found to be positively related with deployment
speeds. We included an interaction between per capita GDP and
cumulative global experience to establishwhether poorer countries
were less capable of accessing and utilizing the global experience
pool. This interaction was found to have no significant relationship
with market growth speed, for either wind or PV (Table S.10).

Secondly, Pan and K€ohler [84] have criticised the use of expo-
nential formats for global experience curves, and rather argue that
these follow an inverse logistic growth curve. That is: they agree that
technological costs have often been observed to fall by a certain
fractionwith every doublingof cumulative global experience (the so-
called ‘progress ratio’), but theyargue that this progress ratio starts to
decline with technologies reaching maturity. This could be an alter-
native explanation for the drop-off in beneficial effects from growing
global experience that we found for late adopter countries. To test
whether this was the case, we added a quadratic term of cumulative
global installations. This alternative for the interaction termwas not
found to have a significant relationship with market growth speed,
for either wind or PV (Table S.11).

4.4. Comparison with earlier work on timing and speed of adoption

Results presented here are not exactly equivalent to the shorter
‘turnover times’ identified in studies that concluded that transi-
tions in late adopters were quicker, but also less pervasive
[8,14,15,18,29e32]. Here, we regard absolute levels of market
shares, without adjustment relative to the (unknown) ultimate
market shares. Whereas those earlier analyses concluded that
latecomer countries required a shorter amount of time to reach
their lower level of ultimate market penetration (most clearly
demonstrated in Ref. [31]), we conclude that they require a shorter
amount of time to reach an equal market share, e.g., 1% of all power
production from wind or PV.

Because we do not use the same metric for comparison as in
much of the earlier literature, it is not possible to identify anything
particular about the technologies studied here. There are, however,
reasons why the development of wind or PV may not follow the
exact same patterns as older energy technologies such as coal,
hydro, nuclear, natural gas fired plants, etc. Although the
development of different energy sources has always been highly
influenced by policy making (in addition to relative pricing), the
renewable energy technologies studied here are currently being
pushed by a rather particular set of climate policy goals. The Clean
Development Mechanism, climate finance agreements, and other
policy programs stimulating the transfer of such technologies to
less developed countries, are likely to affect the global diffusion of
these technologies. Already, although the very earliest of adopters
of wind and PV were still the richer countries, early followers have
been a mix of relatively rich and emerging economies, in particular
for PV (Fig. S.5). Further, one explanation for the lower ultimate
shares of coal consumption by late adopters, was that they were so
much later in switching (100 years ormore), that alternative energy
technologies had become available and/or competitive [32]. The
global diffusion of wind and PV are far more rapid. Global markets
are much more interconnected than they were when England
switched from traditional biomass to coal, and “international eco-
nomic integration eases access to environmentally friendly tech-
nologies and leads to earlier adoption“ ([85]: p.16). This means that
the (set of) available energy technologies and their maturity is now
far more similar for early and late adopters of wind and PV. Further
comparison between current and historical transitions, as well as
follow-up on ongoing transitions, may help clarify if these sorts of
differences substantially affect global diffusion patterns or not.
5. Conclusion

Our results show that late adopters have managed substantially
highermarket growth speeds of wind and PV. Late adopter countries
appear to be able to access global experiencewith these technologies
and utilize this experience to accelerate domestic market growth.
Despite their lowerGDP, late adoptercountrieshavemanagedmarket
growth for wind power that was up to 4.7 times faster than it was in
early adopters, and up to 16 times faster for PV.

These results imply that development efforts for novel renew-
able energy technologies, by technologically advanced countries,
may kick-start their global deployment. Even if such efforts have
only small immediate effects on domestic market growth, these
effects may multiply manifold by accelerating market growth in a
large number of late adopter countries.

The beneficial effects, however, are non-linear. Early followers
benefit most, whilst late adopters benefit increasingly less. This
suggests that late adopters have more difficulties accessing and/or
utilizing the global experience pool, which suggests this requires
attention in multi-lateral technology transfer programmes.

In addition, per capita GDP remains to have a strong effect on
market growth speeds. This suggest renewable energy develop-
ment in low income countries may be sped up with co-financing,
through reinvigorating global carbon markets or other forms of
climate finance assistance.
Funding

Jorrit Gosens gratefully acknowledges financial support from
The Swedish Research Council Formas (grant no. 2015-294). The
authors thank the Chalmers Energy Initiative for further financial
support. These sponsors had no involvement in research design or
reporting.
Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.energy.2017.05.046.

http://dx.doi.org/10.1016/j.energy.2017.05.046
http://dx.doi.org/10.1016/j.energy.2017.05.046


J. Gosens et al. / Energy 131 (2017) 267e278276
Appendix A
Table A.1
Variables definition and data sources.

Variable Definition Notes and data source

Per capita GDP per capita GDP, 2010 USD (ln) Source [86]
Market share Wind/PV (%, ln, lag1) Market share; production (MWh) from individual

sources as a percentage of total power consumption
Sources [1,5,6,87], see Table S.1 for further details.

Market share Wind/PV (%, lag1)
Country lag Year of first deployment, minus year in which first

nation started to deploy the technology
Sources [1,5,6,87]

Global wind capacity (cumulative) Cumulative global wind capacity, year end, MW (ln)
Interaction: Ctry Lag*Glob wind

cap.
Interaction term, multiplication of above two variables

National power cons. National level power consumption, total MWh (ln) Source [86]
Per capita power cons. Per capita power consumption, MWh/capita (ln) Source [86]
Growth of power cons. Year on year growth of national power consumption (%

increase)
Calculated from above sources

Energy imports (%) Percentage of primary energy consumption imported Source [86]
Coal power (%) Market share of individual power sources; production

from individual sources as a percentage of total power
consumption

The World Bank reports production, not consumption,
per source only. A small number of countries have
significant power exports. We are interested in
production (per source) as a share of domestic
consumption. Source [86], Bio&Geo source [88]

Hydro power (%)
Nuclear power (%)
Gas power (%)
Oil power (%)
Bio&Geo power (%)
Emissions to air (CO2) Emissions of CO2 from energy use, t/capita (ln) Source [86]. Updates 2014 [88], or if not available with

growth factors in energy use
Emissions to air (SO2) Emissions of SO2, t/capita (ln) Source: years 1980e2011 [89]. Extrapolation through

2014 with growth factors in coal based power
production from Ref. [86], 5 year average growth rates
for other sectors.

Natural Resource Endowment:
Wind

Maximum generation potential from wind sources
(MWh/km2). Includes only onshore, classes c3 and up,
and areas with ‘distance to load’ of <100 km

Source [90]

Natural Resource Endowment: PV Maximum generation potential from PV sources (MWh/
km2), country-wide average irradiation

Source [91]

Policy and energy prices variables used in estimations reported in Tables S.11 & S.12
Price of Steam coal Price of Steam coal, 2010 USD per ton Country specific values for IEA countries [92], others

global prices [93]
Price of Oil Price of Oil, 2010 USD per barrel, average of Brent, Dubai

and WTI
Global average prices [93]

Price of Natural gas Price of Natural gas, 2010 USD per mmbtu Northern America: Henry hub spot prices; Europe:
average import border prices (Europe); rest of world:
LNG import prices [93]

Policy variables, several categories Cumulative number of policies enacted. Categories of policy types as reported by IRENA [83]
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