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ABSTRACT

Information Flow Control (IFC) is a language-based security mechanism that
tracks where data flows within a program and prevents leakage of sensitive data.
IFC has been embedded in pure functional languages such as Haskell, in the
form of a library, thus reducing the implementation and maintenance effort
and fostering a secure-by-construction programming-model. MAC is a state-of-
the-art IFC Haskell library that detects leaks statically and that supports many
advanced programming features, such as exceptions, mutable references and
concurrency. While MAC is an elegant functional pearl and is implemented
concisely in less than 200 lines of code, it does not provide any formal security
guarantee.

This thesis presents the first full-fledged verified formal model of MAC,
which guarantees that any program written against the library’s API satisfies
non-interference by construction. In particular, the contributions of this work
improve MAC in three areas: formal verification techniques, expressivity and
protection against covert channels. Firstly, the thesis enriches term erasure with
two-steps erasure, a novel flexible technique, which has been used to reason
systematically about the security implications of advanced programming fea-
tures and that greatly simplifies the non-interference proof. Secondly, this work
gives a functor algebraic structure to labeled values, an abstract data type which
protects values with explicit labels, thus enabling flexible manipulation of la-
beled data through classic functional programming patterns. Thirdly, the thesis
closes the sharing-based internal-timing covert channel, which exploits the shar-
ing feature of lazy evaluation to leak data, by affecting the timing behavior of
threads racing to gain access to some shared resource. We design an unsharing
primitive that disables sharing by lazily duplicating thunks and we apply it to
restrict sharing, when needed for security reasons.

All the results presented in this thesis have been corroborated with extensive
mechanized proofs, developed in the Agda proof assistant.
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CHAPTER

ONE

INTRODUCTION

Our digital society relies on software in virtually any aspect. Banks and finan-
cial institutions, social security and intelligent transportation systems, business,
telecommunication and logistics companies use software to provide their ser-
vices to clients and keep digital records of their activity in information systems.
The advantages and benefits of the digitalization process are many. Firstly, digi-
tal storage is cost-effective and durable, which makes it feasible to collect and
store large amounts of data. Secondly, digital data can be exactly replicated and
copies are indistinguishable from the original. Data replication then improves
data reliability, e.g., against data corruption, fault-tolerance, e.g., against data
loss, and accessibility, as the information becomes available to users anytime and
anywhere via internet. The data itself represents a precious resource for commer-
cial companies, because it reveals trends and habits of customers—something
extremely precious in a competitive market.

Nowadays, the role that software plays in handling data is even bigger due
to the spread of personal computer and, in the past few years, smartphones.
App stores distribute software for these devices in the form of apps, which
provide users with handy functionalities, (e.g., route planning, fitness), social
virtual platforms, (e.g., chats, social networks, dating apps), entertainment, (e.g.,
games, music, videos), etc. Often apps manipulate sensitive data and usually
deliver a unique experience to each user, tailored on his or her personal data. For
example a route planner requires the user’s geographical location, obtained from
the GPS of his device, to provide accurate directions, and a social network app
suggests friends based on the device contacts list. Clearly, such personal data is
sensitive and should be handled with care by apps, however users, who are not
security experts, are normally not concerned about the risks of data theft and
unaware of the dangers of data breach. As a result, mobile devices are an easy
target for malicious software, that collects and leaks sensitive data—remember
that data is valuable in the digital society!
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Fig. 1: Route planner app secured with IFC.

Unfortunately, the security mechanisms currently deployed to protect sensi-
tive data in smartphones are inappropriate. In fact a user, who wishes to use an
app, must first install it and grant it explicit access to any sensitive information
or functionality that it requires. This security mechanism, known as access con-
trol, is unsatisfactory, because, once access to data and capabilities is granted,
users have no control of what the app might do with it. For example, a malicious
application that has access to the GPS location and network connectivity of a
device can monitor and track the location of users. Since there are legitimate
uses of these features, e.g., a route planner app, users have no way to distinguish
between a malicious and a honest app, and therefore will likely grant access in
good faith [14]. Furthermore, even honest apps may involuntarily leak sensitive
information, due to security vulnerabilities or software bugs, therefore there is a
need to systematically prevent data leakage, either intentional or accidental.

Clearly, there is a tension between the opportunities and the risks connected
to digitalization. Surely, we cannot stop the digitalization process, because our
society profoundly relies on software already, however the dangers connect
to data theft and data breach may hinder or even outweigh the benefits. In
this thesis, we investigate Information-Flow Control (IFC) [19], a promising
programming language-based security mechanism, alternative to access control,
which supports a sustainable digitalization process.

1 Information Flow Control

IFC protects the confidentiality of data by tracking where data at different secu-
rity levels flows within a program and raises alarms when sensitive information
is leaked. A security lattice [6] specifies the security levels of the system and
which flows of information are insecure. For instance, Figure 2 describes a sim-
ple security lattice, that contains two levels, i.e., Secret and Public and where the
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only insecure flow is from Secret to Public. Intuitively, Figure 1 describes how
an IFC system secures a routing planner app, depicted as the box in the center.

Secret

Public

Fig. 2: 2-points Lattice.

The inputs of a program are annotated with
their sensitivity as Secret or Public, for
which we use color red and blue respectively.
The routing planner app has two inputs (the
circles on the left of the box): the user’s lo-
cation, i.e., secret data, and the review of a
restaurant, i.e., public data. The outputs of the
app are depicted on the right and are also labeled as secret or public. It is secure
to show secret data, e.g., the location, on the device display, which is considered
a Secret channel, because only the authenticated user can view it. For example,
the routing app can safely display on the user’s device the route from the current
location to home—see the top-right red circle. A route planner app with access
to network connectivity can send the current location over the internet, i.e., a
Public channel, to any server, which we depict as the attacker’s computer in
the bottom-right blue circle. Clearly, sending secret data over a public channel
represents a leak and it is the goal of an IFC system to stop this insecure flow
of information. The security policy, that we have just informally described, is
known in literature as non-interference [8] and guarantees that the secrets inputs
of a program shall not interfere with the public outputs.

IFC has been applied to both imperative and functional programming lan-
guages, statically [3, 15, 25], i.e., using a type system that rejects possibly leaky
programs, dynamically [10, 24], i.e., adding a run-time monitor that aborts the
execution of a program that is about to leak, and in a hybrid fashion [4], i.e.,
as a combination of both approaches. IFC is able to detect both explicit and
implicit insecure flows of information, however the number and the bandwidth
of covert channels, i.e., unintended communication channels that leak informa-
tion by exploiting system features, challenge the applicability of IFC. Examples
of covert channels, which may reveal some bits of information about a secret,
include the power consumption of a program, which can be detected with power
analysis, the wall-clock time that it takes to execute a program, also known as
external timing covert channel [2, 7, 9, 12, 26] and the order of public outputs
in a concurrent system, where the interleaving of racing threads depends on a
secret, i.e., the internal timing covert channel [21].

Modern programming languages provide many sophisticated features to sim-
plify software development. For example, exception handling primitives are an
advanced control-flow structure to deal with exceptional situations, concurrency
fosters modular programming, locks provide a synchronization mechanism be-
tween threads, etc. The lack of advanced features makes software development
impractical, hence defeating the applicability of IFC systems, therefore it is de-
sirable to support them. Unfortunately, the inclusion of such advanced features
in IFC systems is challenging, because their elusive behavior and their subtle
interaction might secretly enable data leakage. Term erasure [13] is a standard
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proof technique used to verify IFC functional languages [4, 11, 22, 23], which
requires that the same public output should be produced if secrets are erased
before or after program execution. Erasure is performed by the erasure func-
tion, which removes any piece of sensitive data above the attacker’s level from
a program. Then, the technique requires to establish a simulation between the
reductions of the original and the erased program, which are formally defined
by the operational semantics of the language.

2 MAC

This thesis focuses on MAC, a state-of-the-art static IFC library for Haskell, a
pure functional programming language [18]. MAC brings ideas from Manda-
tory Access Control into a language-based setting, fostering a programming
model, where any well-typed program written against the library’s API is se-
cure by construction. In particular, the library guarantees data confidentiality by
restricting all side-effectful operations to comply with the no write-down and
no read-up security policies [1]. Intuitively, MAC prevents the attempted leak
in Figure 1, because that operation violates the no write-down security policy,
since it sends the location, i.e., secret data, to the attacker’s server, i.e., a public
channel. In Haskell, the type-system strictly separates side-effecful code, i.e.,
code that can perform I/O, from that that can perform none, which are also
referred to as impure and pure code respectively. The rigid and syntactic distinc-
tion between pure and impure code simplifies the design and implementation
of security mechanisms so much that MAC is implemented as a simple 200
lines of code (LOC) Haskell library. IFC systems for mainstream languages,
e.g., Jif [15] and Paragon [3] for Java, JSFlow for JavaScript [10], FlowCaml
for Caml [17], require instead to extend the the language, the compiler and the
run-time system. MAC is fully embedded in Haskell: the security type system
and the security lattice is encoded in Haskell’s expressive type-system using
standard well-established features, such as type classes. Furthermore, MAC is
very expressive and provides many advanced programming features, such as
exceptions, mutable data structures and concurrency. Russo does not give any
formal security guarantees about MAC in his functional pearl, instead the ele-
gance and the compactness of the code convinces the reader that the library is
secure [18].

3 Contributions

Figure 3 outlines the contributions of this thesis, which revolve about improv-
ing IFC systems for pure functional languages, such as MAC, in three areas:
formal verification techniques, expressivity and protection against covert chan-
nels. Firstly, we have devised two-steps erasure, a novel idea that extends and
improves term erasure, when it fails for certain problematic language primitives.
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MAC

Expressive PowerProof Technique Covert Channels

Functor StructureTwo-steps Erasure Lazy Evaluation

Chapter 2 Chapter 3

PLAS ’16 CSF ’17ESORICS ’16

Fig. 3: Overview of the thesis.

Two-steps erasure perform term erasure in two steps, i.e., it replaces the challeng-
ing primitives with special, ad-hoc constructs, whose semantics then performs
the desired term erasure. We have used this technique systematically, in order to
develop the first comprehensive fully-verified formal model of MAC. Secondly,
we have extended MAC with new sophisticated primitives that boost expres-
sivity and that encourage the functional coding style of the host language, i.e.,
Haskell, therefore making the library more practical for software development.
Thirdly, we have addressed the internal-timing covert channel [5], which arise
from Haskell’s lazy evaluation. Lazy evaluation combines non-strictness and
sharing, two characteristics that have opposite security implications. Informally,
non-strictness guarantees that function arguments are not evaluated until needed
inside the function—a feature that, as we describe in the second paper, naturally
stops termination leaks in IFC libraries and tools. Sharing ensures that results
of evaluated terms are stored for subsequent re-utilization. Crucially, sharing
represents a hidden side-effect in disguise, that eludes the security mechanisms
of the libraries and that enables the internal-timing channel [5]. All the results
of this thesis have been corroborated with mechanized proofs, developed in the
Agda proof assistant [16], which we have made available online.

This thesis focuses on MAC, because it lacks formal security guarantees
and because it is simpler to formalize due to its static nature—the presence of
security labels in typing judgments simplifies proofs. Nevertheless, we remark
that the ideas and the techniques developed in this thesis apply to other state-
of-the-art dynamic and hybrid IFC Haskell libraries, such as LIO [23] and
HLIO [4], and to other IFC systems as well.
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4 Overview

In this section, we give a more detailed overview of the thesis, which is based
on three peer-reviewed papers, published individually in the proceedings of
peer-reviewed international conferences and workshops.

4.1 On Formalizing Information-Flow Control Libraries

The paper presents a full-fledged, mechanically-verified formal model of the
MAC library as a simply-typed λ-calculus extended with security primitives
and advanced features, such as exceptions, mutable references and concurrency.
The main contribution of the paper consists of three insights, which empowers
term erasure with new proof techniques and simplify reasoning about concur-
rent systems. The paper describes in detail i) two-steps erasure, a novel proof
technique to reason about security in presence of advanced stateful features; ii)
exception masking, a novel proof technique that simplifies reasoning about the
interaction between exceptions and security primitives; iii) scheduler paramet-
ric proofs: the security guarantees are valid for a wide range of deterministic
schedulers, that we characterize formally with precise scheduler requirements.
As a result we prove that MAC is secure under a round-robin scheduler, by
simply instantiating our main scheduler-parametric theorem. In addition, the
insights of the paper and the extensive mechanized proof (4000 LOC), led us
to uncover some problems in LIO’s proofs and propose changes to repair its
non-interference guarantees.

Statement of contributions This paper was coauthored with Alejandro Russo and
published in the proceedings of the 11th Workshop on Programming Languages
and Analysis for Security (PLAS), 2016. Marco and Alejandro devised the
proof techniques, Marco was responsible for the mechanized formalization of
the model and significantly contributed to the writing of the whole paper.

4.2 Flexible Manipulation of Labeled Values for Information-Flow
Control Libraries

This paper explores the algebraic structure of labeled data, i.e., an abstract data
type that explicitly labels a piece of data with a label, which is used in IFC
libraries to enforce the no write-down and no read-up security policies. Unfor-
tunately, programmers have to deal with these policies unnecessarily also when
performing pure computations on labeled data, which are inherently secure,
since they cannot perform any I/O. In this paper, we give a functor structure to
labeled data, which precisely encapsulates this pattern. Furthermore, we study
an applicative functor operator, which extends this feature to work on multiple
labeled values combined by a multi-parameter function and a relabel primitive
which securely upgrades the label of labeled values, as needed when aggregat-
ing data with heterogeneous labels. These primitives encourage the functional
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programming style, typical of the host language, i.e., Haskell, and provides
flexibility when manipulating labeled data with side-effect free computations,
therefore fostering the secure-by-construction programming model.

Statement of contributions This paper was coauthored with Pablo Buiras, Lucas
Waye, and Alejandro Russo and published in the proceedings of the 21st Euro-
pean Symposium on Research in Computer Security (ESORICS), 2016. Pablo
and Lucas conceived the idea of adding a functor structure to labeled values.
Marco identified some technical problems with that feature and devised a so-
lution. He was responsible for the mechanized proofs and writing most of the
paper.

Chapter 2 merges and revises these two papers, in order to provide a uniform,
coherent, comprehensive formal model of MAC, to integrate more examples of
the features of the library, to fix few technical inaccuracies in the semantics of
the calculus and to give a full account of the scheduler-parametric PSNI theorem
and simplify its proof. An extended abstract based on these papers was accepted
at the 28th Nordic Workshop on Programming Theory (NWPT’16), where it has
been then selected as one of the best contributions and invited to a special issue
of the Journal of Logical and Algebraic Methods in Programming (JLAMP),
where Chapter 2 is currently under submission as a full research article.

4.3 Securing Concurrent Lazy Programs Against Information Leakage

Lazy evaluation is a distinctive feature of Haskell, the programming language
used to implement many state-of-the-art IFC libraries and tools, including MAC.
Unfortunately, sharing enables data leakage via the internal timing covert chan-
nel. The paper proposes, as a counter measure, an unsharing primitive, which
lazily restricts sharing from secret computations, i.e., sensitive threads, to public
computations, therefore disabling any data race between public threads, which
implicitly depends on secrets via sharing. We formally model sharing with Ses-
toft’s abstract machine [20], extended with a mutable store, which also exhibits
sharing (the first of its kind), and adapt the semantics of the calculus to duplicate
thunks, when needed for security reasons. We show that the calculus satisfies
progress-sensitive non-interference and support our results with mechanized
proofs. In addition, we remark that such primitive is useful beyond security,
also to close memory leaks in programs implemented in languages with lazy
evaluation.

Statement of contributions This paper was coauthored with Joachim Breitner
and Alejandro Russo and published in the proceedings of the 30th IEEE Com-
puter Security Foundations Symposium (CSF), 2017. Joachim conceived the
first version of the lazy unsharing primitive and Alejandro suggested to use it
to close the sharing-based internal-timing covert channel. Marco adapted the
primitive for the operational semantics of Sestoft’s abstract machine and for
introducing mutable references. He also extended MAC with the new primitive,
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he was responsible for the mechanized proofs and writing the technical sections
of the paper and the examples as well.
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CHAPTER

TWO

MAC, A VERIFIED INFORMATION FLOW
CONTROL LIBRARY

Abstract. The programming language Haskell plays a unique, privi-
leged role in information-flow control (IFC) research: it is able to enforce
information security via libraries. Many state-of-the-art IFC libraries
(e.g., LIO and HLIO) support a variety of advanced features like muta-
ble data structures, exceptions, and concurrency, whose subtle interaction
makes verification of security guarantees challenging. In this work, we
focus on MAC, a statically-enforced IFC library for Haskell. In MAC,
like other IFC libraries, computations have a well-established algebraic
structure for computations (i.e., monads) responsable to manipulate la-
beled values—values coming from an abstract data type which associates
a sensitivity label to a piece of information. In this work, we enrich la-
beled values with a functor structure and provide an applicative functor
operator which encourages a more functional programming style and
simplifies code. Furthermore, we present a full-fledged, mechanically-
verified model of MAC. Specifically, we show progress insensitive non-
interference for our sequential calculus and pinpoint sufficient require-
ments on the scheduler to prove progress-sensitive non-interference for
our concurrent calculus. For that, we study the security guarantees of
MAC using term erasure, a proof technique that ensures that the same
public output should be produced if secrets are erased before or after
program execution. As another contribution, we extend term erasure with
two-steps erasure, a flexible novel technique that, which greatly simpli-
fies the non-interference proof and helps to prove many advanced features
of MAC.

1 Introduction

Nowadays, many applications (apps) manipulate users’ private data. Such apps
could have been written by anyone and users who wish to benefit from their
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functionality are forced to grant them access to their data—something that most
users will do without a second thought [33]. Once apps collect users’ informa-
tion, there are no guarantees about how they handle it, thus leaving room for
data theft and data breach by malicious apps. The key to guaranteeing security
without sacrificing functionality is not granting or denying access to sensitive
data, but rather ensuring that information only flows into appropriate places.

Information-flow control (IFC) [47] is a promising programming language-
based approach to enforcing security. IFC scrutinizes how data of different
sensitivity levels (e.g., public or private) flows within a program, and raises
alarms when there is an unsafe flow of information. Most IFC tools require
the design of new languages, compilers, interpreters, or modifications to the
runtime, e.g., [8, 36, 39, 42]. In this scenario, the functional programming lan-
guage Haskell plays a unique privileged role: it is able to enforce security via
libraries [29] by using an embedded domain-specific language. Many of the
state-of-the-art Haskell security libraries, namely LIO [52], HLIO [10], and
MAC [45], bring ideas from Mandatory Access Control [5] into a language-
based setting. Every computation in such libraries has a current label which
is used to (i) approximate the sensitivity level of all the data in scope and (ii)
restrict subsequent side-effects which might compromise security. From now
on, we simply use the term libraries when referring to LIO, HLIO, and MAC.
IFC uses labels to model the sensitivity of data, which are then organized in a
security lattice [12] specifying the allowed flows of information, i.e., `1 v `2
means that data with label `1 can flow into entities labeled with `2. Although
these libraries are parameterized on the security lattice, for simplicity we focus
on the classic two-point lattice with labels H and L to respectively denote secret
(high) and public (low) data, and where H 6v L is the only disallowed flow.

Code
17◦C

Current label L

H -sink

L-sink

Fig. 1: Public computation

Figure 1 shows a graphical repre-
sentation of a public computation in
these libraries, i.e., a computation
with current label L. The computation
can read or write data in scope, which
is considered public (e.g., average
temperature of 17◦C in the Swedish
summer), and it can write to public
(L-) or secret (H -) sinks. By contrast, a secret computation, i.e., a computa-
tion with current label H , can also read and write data in its scope, which is
considered sensitive, but in order to prevent information leaks it can only write
to sensitive/secret sinks. Structuring computations in this manner ensures that
sensitive data does not flow into public entities, a policy known as noninterfer-
ence [16]. While secure, programming in this model can be overly restrictive for
users who want to manipulate differently-labeled values.

To address this shortcoming, libraries introduce the notion of a labeled value
as an abstract data type which protects values with explicit labels, in addition
to the current label. Figure 2 shows a public computation with access to both
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public and sensitive pieces of information, such as a password (pwd). Public
computations can freely manipulate sensitive labeled values provided that they
are treated as black boxes, i.e., they can be stored, retrieved, and passed around
as long as its content is not inspected. Libraries LIO and HLIO even allow
public computations to inspect the contents of sensitive labeled values, raising
the current label to H to keep track of the fact that a secret is in scope—this
variant is known as a floating-label system.

Code
17◦C

pwd
Current label L

H -sink

L-sink

H

Fig. 2: Labeled values

Reading sensitive data usually
amounts to “tainting” the entire con-
text or ensuring the context is as sen-
sitive as the data being observed. As a
result, the system is susceptible to an
issue known as label creep: reading
too many secrets may cause the cur-
rent label to be so high in the lattice
that the computation can no longer perform any useful side effects. To address
this problem, libraries provide a primitive which enables public computations
to spawn sub-computations that access sensitive labeled values without tainting
the parent. In a sequential setting, such sub-computations are implemented by
special function calls. In the presence of concurrency, however, they must be
executed in a different thread to avoid compromising security through internal
timing and termination covert channels [51].

Practical programs need to manipulate sensitive labeled values by transform-
ing them. It is quite common for these operations to be naturally free of I/O or
other side effects, e.g., arithmetical or algebraic operations, especially in appli-
cations like image processing, cryptography, or data aggregation for statistical
purposes. Writing such functions, known as pure functions, is the bread and
butter of functional programming style, and is known to improve programmer
productivity, encourage code reuse, and reduce the likelihood of bugs [24]. Nev-
ertheless, the programming model involving sub-computations that manipulate
secrets forces an imperative style, whereby computations must be structured into
separate compartments that must communicate explicitly. While side-effecting
instructions have an underlying structure (called monad [34]), research literature
has neglected studying structures for labeled values and their consequences for
the programming model. To empower programmers with the simpler, functional
style, we propose additional operations that allow pure functions to securely ma-
nipulate labeled values, specifically by means of a structure similar to applicative
functors [32]. In particular, this structure is useful in concurrent settings where
it is no longer necessary to spawn threads to manipulate sensitive data, thus
making the code less imperative (i.e., side-effect free).

Additionally, practical programs often aggregate information from heteroge-
neous sources. For that, programs needs to upgrade labeled values to an upper
bound of the labels being involved before data can be combined. In previous
incarnations of the libraries, such relabelings require to spawn threads just for
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that purpose. As before, the reason for that is libraries decoupling every compu-
tation which manipulate sensitive data—even those for simply relabeling—so
that the internal timing and termination covert channels imposed no threats. In
this light, we introduce a primitive to securely relabel labeled values, which can
be applied irrespective of the computation’s current label and does not require
spawning threads.

We provide a mechanized security proof for the security library MAC1 and
claim our results also apply to LIO and HLIO. MAC has fewer lines of code
and leverages types to enforce confidentiality, thus making it ideal to model its
semantics in a dependently-typed language like Agda. The contributions of this
paper are:

1. We develop the first exhaustive full-fledged formalization of MAC, a state-
of-the-art library for Information-Flow Control, in a call-by-need λ-calculus
and prove progress-insensitive (PINI) for the sequential calculus.

2. We enrich the calculus with scheduler-parametric concurrency and prove
progress-sensitive noninterference (PSNI) [1] for a wide-range of deter-
ministic schedulers, by formally identifying sufficient requirements on the
scheduler to ensure PSNI—a novel aspect if compared with previous work
[20, 51]. We leverage on the generality of our result and prove that MAC is
secure by instantiating our PSNI theorem with a round-robin scheduler, i.e.,
the scheduler used by GHC’s runtime system.

3. We corroborate our results with an extensive mechanized proof developed
in the Agda proof assistant that counts more than 4000 lines of code. The
mechanization has provided us with stimulating insights and pinpointed
problems in proofs of similar works.

4. We improve and simplify the term-erasure proof technique by proposing a
novel flexible technique called two-steps erasure, which we utilize system-
atically to prove that many advanced features are secure, especially those
that change the security level of other terms and detect exceptions.

5. We introduce a functor structure, a relabeling primitive and an applicative
operator that give flexibility to programmers, by upgrading labeled values
and conveniently aggregating heterogeneously labeled data.

6. We have released a prototype of our ideas in the MAC library2.

Highlights This work builds on our previous papers “Flexible Manipulation of
Labeled Values for Information-Flow Control Libraries” [57] and “On Formal-
izing Information-Flow Control Libraries” [58], which we have blended and
significantly rewritten and corrected in a few technical inaccuracies. We have
integrated these works with several examples and shaped them into a uniform,
coherent and comprehensive story of this line of work. We summarize the novel
contributions of this article as follows:

1 Available at https://github.com/marco-vassena/agda-mac
2 Available at https://hackage.haskell.org/package/mac

https://github.com/marco-vassena/agda-mac
 https://hackage.haskell.org/package/mac
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data Labeled ` a
data MAC ` a
instance Monad (MAC `)

label :: `L v `H ⇒ a → MAC `L (Labeled `H a)
unlabel :: `L v `H ⇒ Labeled `L a → MAC `H a

runTCB ::MAC ` a → IO a

Fig. 3: Core API for MAC.

– Uniform, coherent and comprehensive account of a formal model of MAC;
– Integration of examples in the description of the features of the library;
– Fixed several technical inaccuracies in the semantics of the calculus;
– Simplification and full account of the scheduler-parametric PSNI proof.

In the following, we point out the technical differences between this article and
the conference version in footnotes.

This paper is organized as follows. Section 2 gives an overview of MAC.
Section 3 formalizes the core of MAC in a simply-typed call-by-need lambda-
calculus. Section 4 presents a secure primitive that regulates the interaction
between computations at different security levels. Sections 5 and 6 extend the
calculus with other advanced practical features, namely exceptions and muta-
ble references. Section 7 proves that the sequential calculus satisfies progress-
insensitive non-interference (PINI). Section 8 extends the calculus with con-
currency and Section 9 presents functor, applicative, and relabeling operations.
Section 10 gives the security guarantee of the concurrent calculus, which satis-
fies progress-sensitive non-interference (PSNI). Section 11 gives related work
and Section 12 concludes.

2 Overview

In MAC, each label is represented as an abstract data type. Figure 3 shows the
core part of MAC’s API. Abstract data type Labeled ` a classifies data of type
a with a security label `. For instance, pwd :: Labeled H String is a sensitive
string, while rating :: Labeled L Int is a public integer. (Symbol :: is used to
describe the type of terms in Haskell.) Abstract data type MAC ` a denotes a
(possibly) side-effectful secure computation which handles information at sensi-
tivity level ` and yields a value of type a as a result. A MAC ` a computation
enjoys a monadic structure, i.e., it is built using the fundamental operations
return :: a → MAC ` a and (>>=) :: MAC ` a → (a → MAC ` b) →
MAC ` b (read as “bind”). The operation return x produces a computation
that returns the value denoted by x and produces no side-effects. The function
(>>=) is used to sequence computations and their corresponding side-effects.
Specifically, m >>= f takes a computation m and function f which will be ap-
plied to the result produced by running m and yields the resulting computation.
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do x ← m
return (x + 1)

Fig. 4: do-notation

We sometimes use Haskell’s do-notation to write
such monadic computations. For example, the pro-
gram m >>= λx → return (x + 1), which adds 1 to
the value produced by m, can be written as shown in
Figure 4.

2.1 Secure Flows of Information

Generally speaking, side-effects in a MAC ` a computation can be seen as
actions which either read or write data. Such actions, however, need to be con-
ceived in a manner that respects the sensitivity of the computations’ results as
well as the sensitivity of sources and sinks of information modeled as labeled
values. The functions label and unlabel allow MAC ` a computations to se-
curely interact with labeled values. To help readers, we indicate the relationship
between type variables in their subindexes, i.e., we use `L and `H to attest that
`L v `H. If a MAC `L computation writes data into a sink, the computation
should have at most the sensitivity of the sink itself. This restriction, known as
no write-down [5], respects the sensitivity of the data sink, e.g., the sink never
receives data more sensitive than its label. In the case of function label , it cre-
ates a fresh labeled value, which from the security point of view can be seen
as allocating a fresh location in memory and immediately writing a value into
it—thus, it applies the no write-down principle. In the type signature of label ,
what appears on the left-hand side of the symbol⇒ are type constraints. They
represent properties that must be statically fulfilled about the types appearing on
the right-hand side of⇒. Type constraint `L v `H ensures that when calling
label x (for some x in scope), the computation creates a labeled value only if `L,
i.e. the current label of the computation, is no more confidential than `H, i.e. the
sensitivity of the created labeled value. In contrast, a computation MAC `H a is
only allowed to read labeled values at most as sensitive as `H—observe the type
constraint `L v `H in the type signature of unlabel . This restriction, known
as no read-up [5], protects the confidentiality degree of the result produced by
MAC `H a , i.e. the result might only involve data `L which is, at most, as
sensitive as `H.

We remark that MAC is an embedded domain specific language (EDSL),
implemented as a Haskell library of around 200 lines of code and programs
written in MAC are secure-by-construction. What makes it possible to provide
strong security guarantees via a library is the fact that Haskell type-system en-
forces a strict separation between side-effect free code, which is guaranteed
not to perform side effects, and side-effectful code, where side-effects may oc-
cur3. Specifically side-effects, i.e., input-output operations, can only occur in
monadic computations of type IO a . Crucially pure computations are inher-
ently secure, while IO computations are potentially leaky. In MAC, a secure

3 In the functional programming community, they are also known as pure and impure
code respectively.
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computation of type MAC ` a is internally represented as a wrapper around
an IO a computation, that is used to implement side-effectful features, such as
references and concurrency. MAC provides security-by-construction because
impure operations, i.e., those of type IO , can only be constructed using MAC
label-annotated API, which accepts only those that are statically deemed secure.
Function runTCB extracts the underlying IO a computation from a secure com-
putation of type MAC ` a . Thanks to the secure-by-construction design, the IO
computation so obtained is secure and can be executed directly, without the need
of additional protection mechanism, such as monitors. Note that the function
runTCB is part of the Trusted Computing Base (TCB), i.e., it is available only to
trusted code. In what follows, we describe an example which illustrates MAC’s
programming model, particularly the use of label , unlabel .

Example The most common use of label is to classify data to be protected. As
an example, consider the Haskell program listed in Figure 5, which prompts
the user for a password through the terminal and then passes it to a routine to
check if the password is listed on dictionaries of commonly used passwords.

p :: IO Bool
p = do

putStrLn "Choose a password:"
pwd ← getLine
return (isWeak pwd)

Fig. 5: The password is exposed in isWeak .

Observe that the program
performs input-output opera-
tions: putStrLn :: String →
IO () prints to standard out-
put and getLine :: IO String
reads from standard input.
Clearly the content of vari-
able pwd should be han-
dled with care by isWeak ::
String → IO Bool . In particular a computation of type IO Bool can also per-
form arbitrary output operations and potentially leak the password. One way to
protect pwd is by writing all password-related operations, like isWeak , within
MAC, where pwd is marked as sensitive data.

Figure 6 shows the modifications to the code to secure isWeak . Observe
how label is used to mark pwd as sensitive by wrapping it inside a labeled ex-
pression of type Labeled H String . After that, the labeled password is passed
to function isWeak by bind (>>=) and function runTCB executes the whole com-
putation. Fixing the type of isWeak appropriately, MAC prevents intentional or
accidental leakage of the password. Several secure designs are possible, depend-
ing on how isWeak provides its functionality. For example a secure interface
could be isWeak :: Labeled H String → MAC L (Labeled H Bool), where
the outermost computation (MAC L) accounts for reading public data, e.g.,
fetching online dictionaries of common passwords, while the labeled result
(Labeled H Bool ), protects the sensitivity of this piece of information about the
password, namely if it is weak or not. The type isWeak ::Labeled H String →
MAC H Bool is also secure and additionally allows to read from secret chan-
nels, e.g., file /etc/shadow, to check that the password is not reused.
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p :: IO Bool
p = do putStrLn "Choose a password:"

pwd ← getLine
let lpwd = label pwd ::MAC L (Labeled H String)
runTCB (lpwd >>= isWeak)

Fig. 6: Label H protects the password in isWeak .

2.2 Implicit flows

The interaction between the current label of a computation and the no write-
down restriction makes implicit flow ill-typed, as shown in Figure 7.

impl :: Labeled H Bool →
MAC H (Labeled L Bool)

impl secret = do
bool ← unlabel secret

-- H 6v L
if bool then label True

else label False

Fig. 7: Implicit flows are ill-typed.

In order to branch on sensitive
data, a program needs first to un-
label it, thus requiring the compu-
tation to be of type MAC H a
(for some type a). From that
point, the computation cannot
write to public data regardless
of the taken branch. As MAC
provides additional primitives re-
sponsible for producing useful
side-effects like exception han-
dling, network communication, references, and synchronization primitives—we
refer the interested reader to [45] for further details.

3 Core Calculus

This section formalizes MAC as a simply typed call-by-name λ-calculus ex-
tended with unit and boolean values and security primitives.

3.1 Pure Calculus

Figure 8 shows the formal syntax of the pure calculus underlying MAC, where
meta variables τ , v and t denote respectively types, values, and terms. The
typing judgment Γ ` t : τ denotes that term t has type τ assuming typing en-
vironment Γ . The typing rules of the pure calculus are standard and therefore
omitted. The small-step semantics of the the calculus is represented by the rela-
tion t1 ; t2, which denotes that term t1 reduces to t2. Rule [BETA] indicates
that the calculus has call-by-value semantics, because the argument of a func-
tion, evaluated to weak-head normal form by rule [APP], is not evaluated upon
function application, but rather substituted in the body—we write t1 [x / t2 ]
for capture-avoiding substitution4. Rule [IF1] evaluates the conditional of a
if-then-else expression and rules [IF2 ,IF3] take the appropriate branch.

4 In the machine-checked proofs all variables are De Bruijn indexes.
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Types: τ ::= () | Bool | τ1 → τ2
Values: v ::= () | True | False | λx .t
Terms: t ::= v | t1 t2 | if t1 then t2 else t3

(APP)
t1 ; t ′1

t1 t2 ; t ′1 t2

(BETA)
(λx .t1) t2 ; t1 [t2 / x ]

(IF1)
t1 ; t ′1

if t1 then t2 else t3 ; if t ′1 then t2 else t3

(IF2)
if True then t1 else t2 ; t1

(IF3)
if False then t1 else t2 ; t2

Fig. 8: Syntax and semantics of the pure calculus.

3.2 Core of MAC

We now extend this standard calculus with the security primitives of MAC as
shown in Figure 9. Meta variable ` ranges over labels, which are assumed to
form a lattice (L ,v). Labels are types in MAC despite we place them in a
different syntactic category named `—this decision is made merely for clarity
of exposition. The new type Labeled ` τ represents a (possibly side-effect
free) resource, which annotates with the security level ` a value t :: τ wrapped
in Labeled . For example, Labeled 42 :: Labeled L Int is a public integer. In
the following, we introduce further forms of labeled resources, in particular
mutable references in Section 6 and synchronization variables in B. The actual
MAC implementation handles more labeled resources and provides an uniform
implementation for them [45]5. The constructor Labeled is not available to the
user, who can only use label and unlabel to create and inspect labeled resources,
respectively.

A configuration 〈Σ, t〉 consists of a store Σ and a term t describing a com-
putation of type MAC ` τ and represents a secure computation at sensitivity
level `, which yields a value of type τ as result. For the moment, we ignore
the store in the configuration (explained in Section 6). In order to enforce the
security invariants, functions label and unlabel live in the MAC monad and
their type signatures ensure that the label of the resource is compatible with the
security level of the current computation, as explained in the previous section.
Besides those primitives, computations are created using the standard monad

5 In our conference version [57, 58], we follow the original MAC paper [45] and
represent all labeled resources using the same labeled data type Res t ::Res ` τ , where
t :: τ determines the kind of resource. For example Res (Id 42) :: Res ` (Id Int) is
a term representing a public integer. Here, for clarity of exposition, we use separate
data types for each labeled resource. This design choice does not affect our results.
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Label: `
Store: Σ
Types: τ ::= · · · | MAC ` τ | Labeled ` τ
Configuration: c ::= 〈Σ, t〉
Values: v ::= · · · | return t | Labeled t
Terms: t ::= · · · | t1 �= t2 | label | unlabel t

(LIFT)
t ; t ′

〈Σ, t〉 −→ 〈Σ, t ′〉

(BIND1)
〈Σ, t1〉 −→ 〈Σ′, t ′1〉

〈Σ, t1 >>= t2〉 −→ 〈Σ′, t ′1 >>= t2〉

(BIND2)
〈Σ, return t1 >>= t2〉 −→ 〈Σ, t2 t1〉

(LABEL)
〈Σ, label t〉 −→ 〈Σ, return (Labeled t)〉

(UNLABEL1)
t ; t ′

〈Σ, unlabel t〉 −→ 〈Σ, unlabel t ′〉

(UNLABEL2)
〈Σ, unlabel (Labeled t)〉 −→ 〈Σ, return t〉

Fig. 9: Core of MAC.

(LABELτ )
`L v `H Γ ` t : τ

Γ ` label t :MAC `L (Labeled `H τ)

(UNLABELτ )
`L v `H Γ ` t : Labeled `L τ

Γ ` unlabel t :MAC `H τ

Fig. 10: Typing rules for label and unlabel .

operations return and >>=. For easy exposition, in the following we give the
type of MAC’s constructs as Haskell APIs. We explain their relation with tradi-
tional typing judgments by means of an example, see Figure 10. The typing rules
[LABELτ , UNLABELτ ] are type scheme rules, i.e., there is such a judgment for
every label `L and `H ∈ L , such that `L v `H, where labels come from either
type signatures or explicit type annotations in programs, as we showed in the
previous section. The type constraints in the API, i.e., what appears before the
symbol⇒, is placed as a premise of the corresponding typing rule. We remark
that type constrains are built using type classes, a well-established feature of
Haskell type system, therefore we do not discuss them any further [59].

In Figure 9, we explicitly distinguish pure-term evaluation from top-level
monadic-term evaluation, similarly to [53]. In particular, the relation c1 −→ c2
denotes monadic evaluation, which extends the evaluation of pure terms, i.e.,
;, via [LIFT]. The semantics rules in Figure 9 are fairly straight-forward and
follow the pattern seen in the pure semantics, where some context-rules, e.g.
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savePwd :: Labeled H String → MAC L (MAC H ())
savePwd lpwd = do putStrLnMAC "Saving new password"

return (passwd pwd)

Fig. 11: A nested computation that writes at security level L and H .

[BIND1 , UNLABEL1] reduce a redex subterm, and then the interesting rule fires,
e.g. [BIND2 , UNLABEL2]. In particular rule [BIND1] executes the computation
on the left of the bind and rule [BIND2] extracts the result of the computation
and feeds it to the right-side argument of (>>=). Rule [UNLABEL1] evaluates the
argument to labeled expression and rule [UNLABEL2] returns its content. Rule
[LABEL] creates a labeled expression by wrapping the argument in Labeled and
returns it in the security monad. It is worth noting that thanks to the static nature
of MAC, no run-time checks are needed to prevent insecure flows of information
in these rules.

4 Label Creep

Let us continue the password example from the introduction. After checking
that the password is strong enough, the program replaces the old password with
the new one by updating file /etc/shadow with the new hashed password,
using primitive passwd :: Labeled H String → MAC H ()—note that the
label of the computation is H , in order to unlabel the password and hash it. We
consider the hash of a password as sensitive data: it should not be leaked in order
to prevent offline dictionary attacks [19,38]. The program should also inform the
user that the password is being saved by printing on the screen a message. We
consider printing on the screen as a public write operation, i.e., putStrLnMAC ::
String → MAC L (). Figure 11 shows the code of the discussed routine.
Observe that putStrLnMAC "Saving new password" :: MAC L () and
passwd pwd :: MAC H () belong to different MAC computations. Therefore,
both operations cannot coexist together, otherwise secret data, e.g., the password,
could be unlabeled and then leaked on a public channel, e.g., standard output.

putStrLnMAC "Saving ..."
passwd lpwd

Fig. 12: Ill-typed (L 6≡ H ).

Specifically the program in Figure 12
is rejected as ill-typed. Programs that
handle data and channels with heteroge-
neous labels necessarily involve nested
MAC ` a computations in its return type.
In this case, the type of savePwd lpwd ::
MAC L (MAC H ()) indicates that it is a public computations, which prints
on the screen, and that produces as value a sensitive computation MAC H Int ,
which lastly writes to the sensitive file. Obviously having to nest computations
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join :: `L v `H ⇒ MAC `H τ → MAC `L (Labeled `H τ)

Fig. 13: Primitive join .

Terms: t ::= · · · | join t

(JOIN)
〈Σ, t〉 ⇓ 〈Σ′, return t ′〉

〈Σ, join t〉 −→ 〈Σ′, return (Labeled t ′)〉

Fig. 14: Calculus with join .

complicates the programming model of MAC and hinders its applicability6. We
recognize this pattern of returning nested computations as a static version of a
problem known in dynamic systems as label creep [11,46]—which occurs when
the context gets tainted to the point that no useful operations are allowed any-
more. In savePwd , it is necessary to do all the public computation first and the
all the sensitive ones. In a sequential setting, MAC provides the primitive join7,
which alleviates this problem by safely integrating more sensitive computations
into less sensitive ones.

4.1 Primitive join

Figure 13 shows the type signature of join . Intuitively, function join runs the
computation of type MAC `H τ and wraps the result into a labeled expres-
sion to protect its sensitivity. As we will show in Section 7.4, programs written
using the monadic API, label , unlabel , and join satisfy progress-insensitive
non-interference (PINI), where leaks due to non-termination of programs are ig-
nored. This design decision is similar to that taken by mainstream IFC compilers
(e.g., [17, 37, 49]), where the most effective manner to exploit termination takes
exponential time in the size (of bits) of the secret [1]. In the semantics, Figure
14 extends terms with the new primitive join t . Rule [JOIN] formalizes the
semantics of join using big-step semantics—similar to other work [45, 54], we
restrict ourselves to terminating computations. We write 〈Σ, t〉 ⇓ 〈Σ′, v〉 if and
only if v is a value and 〈Σ, t〉 −→∗ 〈Σ′, v〉, where relation −→∗ denotes the
reflexive transitive closure of −→. Rule [JOIN] executes the secure computation
t ⇓ return t ′ and wraps the result t in Labeled to protect its sensitivity.8

6 Remember that Haskell employs lazy evaluation, therefore the inner computations is
not automatically evaluated, but needs to be explicitly executed. Only trusted code,
using runTCB can force evaluation of MAC computations.

7 Not to be confused with the monadic join ::Monad m ⇒ m (m a)→ m a .
8 We refrain from using label t2 because we will soon add exceptions to secure compu-

tations.
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savePwd :: Labeled H String → MAC L ()
savePwd lpwd = do putStrLnMAC "Saving new password"

join (passwd pwd)
putStrLnMAC "Password saved"

Fig. 15: Example revisited with join .

throw :: χ→ MAC ` τ
catch ::MAC ` τ → (χ→ MAC ` τ)→ MAC ` τ

Fig. 16: API for exceptions.

Revisited Example In Figure 15 we simplify program savePwd , by replacing
return with join . Observe that the return type of savePwd does not involve
nested computations, therefore the execution of the sensitive computation is not
suspended, but rather follows directly after the public print statement.

5 Exception Handling

Exception handling is a common programming language mechanism used to
signal some anomalous condition and stop the execution of a program. It is some-
times possible to recover from such exceptional circumstances and resume exe-
cution afterwards. For instance, consider again the program savePwd in Figure
15. If primitive passwd fails due to some IO exception, e.g., file etc/shadow
has already been opened or has not been found, the whole program crashes.
Not supporting exceptions in the context of input-output operations, is not only
impeding our programming model, but it is also insecure. In fact, exceptions
change the control flow of a program, and an uncaught exception can propagate
throughout a program and eventually crash it, potentially suppressing public
events. For example, if passwd throws an exception, the program aborts before
printing "Password saved" on the screen. Observe that, such behavior con-
stitutes a leak, because the failure comes from a sensitive context, i.e., passwd ,
and therefore can depend on the value of the secret, i.e., the password. In this
section, we incorporate exception handling primitives in MAC to remedy this
situation, see Figure 16. Intuitively, catch t1 t2 runs the computation t1 and
recovers from a failure by passing the exception to the exception handler t2. Sec-
tion 5.2 discusses some subtleties between exception handling primitives and
join , which may propagate exceptions from sensitive contexts to less sensitive
ones, if neglected.
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Types: τ ::= · · · | χ
Values: v ::= · · · | ξ | throw t
Terms: t ::= · · · | catch t1 t2

(BINDχ)
〈Σ, throw t1 >>= t2〉 −→ 〈Σ, throw t1〉

(CATCH1)
〈Σ, t1〉 −→ 〈Σ′, t ′1〉

〈Σ, catch t1 t2〉 −→ 〈Σ′, catch t ′1 t2〉

(CATCH2)
〈Σ, catch (return t1) t2〉 −→ 〈Σ, return t1〉

(CATCH3)
〈Σ, catch (throw t1) t2〉 −→ 〈Σ, t2 t1〉

Fig. 17: Exception handling primitives.

Values: v ::= · · · | Labeledχ t

(JOINχ)
〈Σ, t〉 ⇓ 〈Σ′, throw t ′〉

〈Σ, join t〉 −→ 〈Σ′, return (Labeledχ t ′)〉

(UNLABELχ)
unlabel (Labeledχ t) ; throw t

Fig. 18: Secure interaction between join and exceptions.

5.1 Calculus

For simplicity, we consider only one exception ξ ::χ, where χ denotes an excep-
tion type. In the calculus, we extend terms with ξ, throw t , and catch t1 t2—see
Figure 17. Term throw t aborts the current MAC computation with exception t ,
see rule [BINDχ]. Term catch t1 t2 evaluates computation t1 via rule [CATCH1],
and either it returns the result, if the computation succeeds, i.e., rule [CATCH2],
or it attempts to recover a failure by running exception handler t2, if the compu-
tation throws an exception, i.e., rule [CATCH3].

5.2 Join and Exceptions

The interplay between exceptions and join is delicate and security might be at
stake if these two features were naively combined [23,53]. Observe that the type
signatures in Figure 16 hint that exceptions can be thrown and caught among
computations with the same label—a design decision which does not break se-
curity guarantees. Nevertheless, information can be leaked if exceptions thrown
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fetchDict :: String → MAC L [String ]
fetchDict lang = readFile "usr/share/dict"++ "-"++ lang

fetchCacheDict : Ref L (Map String [String ])→ String → MAC L [String ]
fetchCacheDict r lang = do

dicts ← read r
case lookup lang dicts of

Just dict → return dict
Nothing → do
dict ← fetchDict lang
write (insert dict dicts) r
return dict

Fig. 19: fetchCacheDict is a cached version of fetchDict .

in sensitive computations are propagated to less sensitive ones. From now on,
we refer to exceptions raised in a sensitive MAC computation as sensitive ex-
ceptions. In fact, sensitive exceptions can affect the control-flow of less sensitive
computations and thus suppressing observable events, giving place to an implicit
flow9. In our calculus, join is the only primitive that combines computations
with different labels and thus is potentially vulnerable to this attack. In order
to close leaks via exceptions, MAC modifies the semantics of join to mask
exceptions, preventing them to propagate to less sensitive computations—this
solution is similar to previous work [23, 53].

Figure 18 implements this countermeasure. Firstly it adds a new internal
constructor Labeledχ t denoting a labeled value (of type Labeled ` τ ) which
contains inside the exception (t :: χ). Rule [JOINχ] shows the semantics for
join t when exceptions are triggered: exceptions are not propagated further
but rather returned inside a labeled expression. Under this programming model,
it is necessary to inspect the return value of join to determine if the compu-
tation terminated abnormally. The attacker must then unlabel the result to ob-
serve the exception, see rule [UNLABELχ]. Observe that, since this operation
is subject to no read-up, sensitive exceptions are not observable from less sen-
sitive computations. As a consequence of this programming model, only sensi-
tive computations can handle sensitive exceptions. Consider again the example
from Figure 15. Note that program savePwd prints "Password Saved"
even though passwd might have actually failed: it would be insecure to do
otherwise! The only way to observe and recover from a failure of passwd , with-
out compromising security, is to explicitly surround it with a catch block, i.e.,
catch (passwd pwd) handler .
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data Ref ` τ
new :: `L v `H ⇒ τ → MAC `L (Ref `H τ)
read :: `L v `H ⇒ Ref `L τ → MAC `H τ
write :: `L v `H ⇒ τ → Ref `H τ → MAC `L ()

Fig. 20: API for references.

6 References

Mutable references are an imperative feature often needed to boost the per-
formance of algorithms. Following the password example from the previous
sections, we might want to reject weak password that are vulnerable to dictio-
nary attacks. To do that, in Figure 19, function fetchDic fetches the list of words
on a dictionary available in the system—we consider the content of a dictio-
nary to be public information therefore the computation has security level L.
Depending on the local system language, we can tweak the function to pick an
appropriate dictionary, for example fetchDic "en" fetches English words from
dictionary "usr/share/dict-en". A password-strength checker applica-
tion could test a password against multiple dictionaries, which would require
to call fetchDict multiple times. Since dictionaries are seldom changed, it is
wasteful to fetch the same dictionary multiple times, therefore, using references,
we implement a simple caching mechanism that avoids the overhead. Function
fetchCacheDict takes as an extra argument a reference to a table of cached
dictionaries, i.e., Ref L (Map String [String ]). When the language lang dic-
tionary is needed, the function reads the cached table (dicts) from the reference
(read r ) and checks if it has already been fetched (lookup lang dicts). If it
is a hit (case Just dict), the dictionary is returned directly without the need
of any IO operation. Otherwise (case Nothing), the dictionary is fetched with
fetchDict , the result cached (write (insert dict dicts) r ) and returned.

6.1 Calculus

Figure 21 extends the calculus with mutable references, another feature available
in MAC. Memory is compartmentalized into isolated labeled segments10, one
for each label of the lattice, and accessed exclusively through the store Σ. A
memory in the category Memory ` contains terms at security level `. We use
the standard list interface [ ], t : ts and ts[n] for the empty list, the insertion
of a term into an existing list and accessing the nth-element, respectively. We
writeΣ(`)[n] to retrieve the nth-cell in the `-memory. The notationΣ(`)[n] := t

9 We refer interested readers to [45] for further details about this attack.
10 A split memory model simplifies the proofs because allocation in one segment does

not affect allocation in another. We argue why this model is reasonable and discuss
alternatives in Section 7.
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Store: Σ ::= (` : Label)→ Memory `
Memory ` ts ::= [ ] | t : ts
Addresses: n ::= 0 | 1 | 2 | · · ·
Types: τ ::= · · · | Ref ` τ
Values: v ::= · · · | Ref n
Terms: t ::= · · · | new t | read t | write t1 t2

(NEW)
|Σ(`)| = n

〈Σ,new t〉 −→ 〈Σ(`)[n] := t , return (Ref n)〉

(WRITE1)
t1 ; t ′1

〈Σ,write t1 t2〉 −→ 〈Σ,write t ′1 t2〉

(WRITE2)
〈Σ,write (Ref n) t〉 −→ 〈Σ(`)[n] := t , return ()〉

(READ1)
t ; t ′

〈Σ, read t〉 −→ 〈Σ, read t ′〉

(READ2)
〈Σ, read (Ref n)〉 −→ 〈Σ, return Σ(`)[n]〉

Fig. 21: MAC with references.

denotes the store obtained by performing the update Σ(`)[n 7→ t ]. Secure
computations create, read and write references using primitives new , read and
write respectively. Observe that their types are restricted according to the no
read-up and no write-down rules, like those of label and unlabel—see Figure
20. A reference is represented as a value Ref n :: Ref ` τ where n is an
address11, pointing to the n-th cell of the `-memory, which contains a term
of type τ . Rule [NEW] extends the `-labeled memory with the new term and
returns a reference to it. The notation |ts| denotes the length of a list and is
used to compute the address of a new reference—memories are zero-indexed.
Rule [WRITE1] evaluates its first argument to a reference and rule [WRITE2]
overwrites the content of the memory cell pointed by the reference and returns
unit. Similarly, rule [READ2] retrieves the term stored in memory and pointed
to by the reference, which is evaluated via rule [READ1].

7 Soundness

This section formally presents the security guarantees of the sequential calculus.
Section 7.1 describes the proof technique (term erasure), Section 7.2 defines
11 MAC’s implementation of labeled reference is a simple wrapper around Haskell’s type
IORef . However, we denote references as a simple index into the labeled memory.
This design choice does not affect our results.
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t t ′

ε`A (t) ε`A (t ′)

ε`A
ε`A

Fig. 22: Single-step simulation.

ε`A(Labeled t :: Labeled `H τ) =

{
Labeled • if `H 6v `A

Labeled ε`A(t) otherwise

ε`A(label t :: MAC `L (Labeled `H τ)) =

{
label • if `H 6v `A

label ε`A(t) otherwise

Fig. 23: Term erasure for labeled values.

the erasure function and Section 7.4 concludes with the progress-insensitive
non-interference theorem (PINI).

7.1 Term Erasure

Term erasure is a proof technique to prove non-interference in functional pro-
grams. It was firstly introduced by Li and Zdancewic [30] and then used in a
subsequent series of work on information-flow libraries [20, 43, 51, 53, 54]. The
technique relies on an erasure function on terms, which we denote by ε`A . This
function essentially rewrites data above the attacker’s security level, denoted by
label `A, to the special syntax node •. Once ε`A is defined, the core of the proof
technique consists of proving an essential relationship about the erasure function
and reduction steps. The diagram in Figure 22 highlights this intuition. It shows
that erasing sensitive data from a term t and then taking a step (orange path) is
the same as firstly taking a step and then erasing sensitive data (cyan path), i.e.,
the diagram commutes. If term t leaks data whose sensitivity label is above `A,
then erasing all sensitive data first and then taking a step might not be the same
as taking a step and then erasing secret values—the leaked sensitive data in t ′

might remain in ε`A(t
′) after all. From now on, we refer to this relationship as

the single-step simulation between regular terms and erased ones.

7.2 Erasure Function

We proceed to define the erasure function for the pure calculus. Since security
levels are at the type-level, the erasure function is type-driven. We write ε`A(t ::
τ) for the erasure of term t with type τ of data not observable by the attacker.
We omit the type annotation when it is either irrelevant or clear from the context.
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ε`A(〈Σ, t ::MAC `H τ〉) =

{
〈ε`A(Σ), •〉 if `H 6v `A

〈ε`A(Σ), ε`A(t)〉 otherwise

(a) Erasure for configuration.

ε`A(ts :: Memory `H) =

{
• if `H 6v `A

map ε`A ts otherwise

(b) Erasure for memory.

ε`A(Ref n :: Ref `H τ) =

{
Ref • if `H 6v `A

Ref n otherwise

ε`A(new t :: MAC `L (Ref `H τ)) =

{
new• ε`A(t) if `H 6v `A

new ε`A(t) otherwise

ε`A(write t1 t2) =

{
write• ε`A(t1) ε`A(t2 :: Ref `H τ) if `H 6v `A

write ε`A(t1) ε`A(t2) otherwise

(c) Erasure for references and memory primitives.

Fig. 24: Erasure for configuration, store and memory primitives.

Ground values (e.g., True) are unaffected by the erasure function and, for most
terms, the function is homomorphically applied, e.g., ε`A(t1 t2 :: τ) = ε`A(t1 ::
τ ′ → τ) ε`A(t2 :: τ ′). Figure 23 shows the definition of the erasure functions for
the interesting cases. The content of a resource of type Labeled `H τ is rewritten
to • if the label is sensitive, i.e., it is not visible to the attacker’s label (`H 6v `A),
otherwise it is erased homomorphically. Similarly the erasure function rewrites
the argument of label to •, if it gets labeled with a sensitive label or otherwise
erased homomorphically. Observe that this definition respects the commutativity
of the diagram in Figure 22 for rule [LABEL].

Figure 24 shows the erasure function for configuration, store and memory
primitives. A configuration 〈Σ, t〉 is erased by erasing the store Σ and by rewrit-
ing term t to •, if it represents a sensitive computation, i.e., if term t has type
MAC `H τ , where (`H 6v `A), and homomorphically otherwise, see Figure
24a. It is worth pointing out that, different from the conference version of this
work [58], the erasure of a term t :: MAC `H τ , where `H 6v `A is homomor-
phic if the term is considered in isolation. Intuitively the term alone is just the
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Address: a ::= · · · | •
Terms: t ::= · · · | new• t | write• t1 t2 | •

NEW•
〈Σ,new• t〉 −→ 〈Σ, return (Ref •)〉

WRITE•1
t2 ; t ′2

〈Σ,write• t1 t2〉 −→ 〈Σ,write• t1 t ′2〉

WRITE•2
〈Σ,write• t1 (Ref t2)〉 −→ 〈Σ, return ()〉

(HOLE)
•; •

Fig. 25: Semantics of •, new• and write•.

description of a secure computation12, which can be executed only if paired with
a store in a configuration, where instead is aggressively erased to • as shown in
Figure 24a. The store Σ is erased pointwise by erasing the memories at each se-
curity level, i.e., ε`A(Σ) = λ`.ε`A(Σ(`)), see Figure 24b. The erasure function
collapses sensitive memories completely by rewriting them to • and erase non-
sensitive ones homomorphically. Figure 24c shows the erasure of references,
whose address is rewritten to • if sensitive, and primitive new and write , which
is non-standard. Observe that these primitive perform a write effect and due to
the no write-down rule they can only affect memories at least as sensitive as the
current secure computation. When these operations constitute a sensitive write,
i.e., they involve memories not visible to the attacker (`H 6v `A), we employ
a technique called two-steps erasure—a novel approach if compared with pre-
vious papers (e.g., [52]). Rather than being a pure syntactic procedure, erasure
is also performed by additional evaluation rules, triggered by special constructs
introduced by the erasure function. Specifically the erasure function replaces
constructs new and write with special constructs new• and write•, whose se-
mantics simulates that of the original terms with a no-operation—see Figure 25.
In particular rule [NEW•] leaves the store Σ unchanged (the argument to new•
is ignored), and returns a dummy reference with address •. The same principle
applies to write•. Rule [WRITE•1] evaluates the second argument to a reference,
simulating rule [WRITE1] and [WRITE•2] skips the write and just returns unit.
Note that the semantics of new• and write• correctly captures the unchanged
observational power of an attacker performing sensitive write operations. We
remark that •, new• and write• and their semantics rules are introduced in the

12 Observe that in [58] this was not the case, because rule [UNLABEL2] and [BIND2]
where given as pure reductions (;). By separating the pure semantics from the top-
level monadic semantics, we simplify the formalization of applicative functors, see
Section 10.1.
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Terms: t ::= · · · | join• t

ε`A(join t :: MAC `L (Labeled `H τ)) =

{
join• ε`A(t) if `H 6v `A

join ε`A(t) otherwise

ε`A(Labeledχ t :: Labeled `H τ) =

{
Labeled • if `H 6v `A

Labeledχ ε`A(t) otherwise

(JOIN•)
〈Σ, join• t〉 −→ 〈Σ, return (Labeled •)〉

Fig. 26: Erasure of join and Labeledχ and semantics of join•.

calculus due to mere technical reasons (as explained above)—they are not part
of the surface syntax nor MAC.

Figure 26 shows the erasure function for the remaining terms of the sequen-
tial calculus, that is join and Labeledχ. Using the same technique that we have
described previously, we replace join with special term join•, when it is used
to run a sensitive computation (`H 6v `A). Erasure is then performed by means
of rule [JOIN•], which immediately returns a dummy labeled value (Labeled •)
and the store unchanged. The rule captures the observational power of an at-
tacker that runs a terminating sensitive computation. Observe in particular that
the rule does not need to run the sensitive computation: the store can only be
changed in sensitive memories (no write-down), which are not visible to the
attacker, and the result of the computation is irrelevant—the attacker cannot
unlabel it (no read-up), because it is marked as sensitive. What about compu-
tations that fail with an exception? In Figure 26, the erasure function not only
rewrites the content of a sensitive exception to •, as expected, but it also masks
its exceptional nature, by replacing the constructor Labeledχ with Labeled , thus
ensuring that rule [JOIN•] simulates rule [JOINχ] as well. Crucially, we have
the freedom of choosing this definition without breaking simulation, because no
other construct can detect, either explicitly or implicitly, the difference. For in-
stance, rule [UNLABELχ] operates on labeled expressions containing exceptions.
In this case, if the labeled exception is not visible to the attacker, then unlabel
must be performed in a non-visible computation as well, due to the typing rules.
Operation unlabel then gets rewritten to • and the step is then simulated by rule
[HOLE] instead. As a result of that, and unlike the approach taken by Stefan et
al. in [53], there are no sensitive labeled exceptions in erased terms.

7.3 Discussion

Term Erasure We prove the single-step simulation directly over the small-step
reduction relation. Instead, other works [20, 30, 43, 51, 53, 54] prove the simula-
tion by relating operational semantics step reductions (upper part in Figure 22)
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with reductions on a `A-indexed small-step relation of the form c −→` ε`A(c
′),

i.e., a relation which applies erasure at every reduction step. The reason for that
is wired deeply in the dynamic nature of the enforcement. For instance, LIO
considers labels as terms, which makes difficult to know what data is sensitive
until run-time. In contrast, MAC does not need such an auxiliary construction
because, due to its static nature, labels are not terms but rather type-level entities
and therefore known before execution. In this light, our erasure function can
safely erase any sensitive information found in labeled terms according to their
type. Our small-step semantics satisfies type-preservation, i.e., reduction does
not change types of terms, therefore labels are unaffected by execution—freeing
us from the need to use a special small-step relation like −→`.

Masking Sensitive Exceptions In previous work, labeled exceptions are erased
by erasing their content according to their label, but always preserving their
exceptional state [53]. In contrast, we mask sensitive exceptions in erased pro-
grams. More specifically, erasing sensitive exceptions always results in erased
unexceptional values—in other words, there are no sensitive exceptions in erased
programs. Note that the simulation between terms and their erased counterparts
guarantees that this rewriting is sound. In particular sensitive exception handling
routines, the only routines which can distinguish exceptional from unexceptional
sensitive values, gets also erased and do not occur in erased programs.

Memory It is known that dealing with dynamic allocation of memory makes
it challenging to prove non-interference (e.g., [2, 18]). One manner to tackle
this technicality is by establishing a bijection between public memory addresses
of the two executions we want to relate and considering equality of public
terms up to such notion [2]. Instead, and similar to other work [20, 52], we
compartmentalize the memory into isolated labeled segments, one for each label
of the lattice. This way, allocation in one segment does not affect the others.
The fact that GHC’s memory is non-split, does not compromise our security
guarantees, because references are part of MAC’s internals and they cannot be
inspected or deallocated explicitly. In the conference version of this work [58],
we have explored an alternative way to prove single-step simulation for terms
new and write consists in extending the semantics of memory operations to
node •, i.e., by defining | • | = • and •[• 7→ t ] = •. Thanks to two-steps
erasure, we can prove simulation as we did here, without recurring to a non-
standard memory semantics. Having an split-memory model requires some care
when proving non-interference, and in fact, we have identified problems with the
proofs in manuscripts and articles related to LIO [53, 54]. We refer interested
readers to Appendix B of our conference version [58] for details about the
mistakes.

7.4 Progress-Insensitive Non-Interference

The sequential calculus that we have presented satisfies progress-insensitive non-
interference. The proof of this result is based on two fundamental properties:
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single-step simulation and determinancy of the small step semantics. In the
following, we assume well-typed terms.

Proposition 1 (Single-step Simulation) If c1 −→ c2 then ε`A(c1) −→ ε`A(c2).

Proof 1 By induction on the reduction steps and typing judgment.

Sensitive computations are simulated by transition 〈Σ, •〉 −→ 〈Σ, •〉, obtained
by lifting rule [HOLE] with [PURE]. Non-sensitive computations are simulated
by the same rule that performs the non-erased transition, except when it involves
some sensitive write operations, e.g., in rules [NEW, WRITE1, WRITE2, JOIN,
JOINχ], which are simulated by rules [NEW• , WRITE•1 , WRITE•2, JOIN•].

Proposition 2 (Determinancy) If c1 −→ c2 and c1 −→ c3 then c2 ≡ c3.

Proof 2 By standard structural induction on the reductions.

Before stating progress-insensitive non-interference, we define low-equivalence
for configurations.

Definition 1 (`A-equivalence). Two configurations c1 and c2 are indistinguish-
able from an attacker at security level `A, written c1 ≈`A c2, if and only if
ε`A(c1) ≡ ε`A(c2).

Using Proposition 1 and 2, we show that our semantics preserves `A-equivalence.

Proposition 3 (≈`A Preservation) If c1 ≈`A c2, c1 −→ c′1, and c2 −→ c′2,
then c′1 ≈`A c′2.

By repeatedly applying Proposition 3, we prove progress-insensitive non-interference.

Theorem 1 (PINI) If c1 ≈`A c2, c1 ⇓ c′1 and c2 ⇓ c′2, then c′1 ≈`A c′2.

8 Concurrency

Every day, millions of users around the world use concurrent applications, such
as email, chat rooms, social networks, e-commerce platforms etc. These services
are normally designed concurrently so that multithreaded servers can handle a
large number of user requests simultaneously by running multiple instances of
the same application. MAC features concurrency and synchronization variables,
which shows that the secure-by-construction programming model, that we pro-
pose is possible even in a concurrent setting. The extension is non-trivial: the
possibility to run simultaneous MAC ` computations provides attackers with
new means to bypass security checks.
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fork :: `L v `H ⇒ MAC `H ()→ MAC `L ()

Fig. 29: API for concurrency.

8.1 Termination Attack

leak :: Int → Labeled H Secret → MAC L ()
leak n secret = do

joinMAC (do bits ← unlabel secret
when (bits !! n) loop
return True)

printMAC n

Fig. 27: Termination leak.

In Section 7, we have
proved that the sequential
calculus satisfies progress-
insensitive non-interference,
a security condition that
is too weak for concurrent
systems. The key observa-
tion is the fact that a non-
terminating sensitive com-
putation at security level
`H embedded in a non-sensitive one at security level `L via join , will suppress
public side-effects that follows join . Since the embedded computation is sensi-
tive, the suppressed public events may depend on a secret, therefore revealing a
bit of secret information. To illustrate this point, we present the attack in Figure
27. We assume that there exists a function printMAC which prints an integer on
a public channel. Observe how function leak may suppress subsequent public
events with infinite loops.

magnify :: Labeled H Secret → MAC L ()
magnify secret =

for [0 . . |secret | ]
(λn → fork (leak n secret))

Fig. 28: Attack magnification.

Unfortunately concurrency
magnifies the bandwidth of
the termination covert chan-
nel to be linear in the size (of
bits) of secrets [51]13, which
permits to leak any secret sys-
tematically and efficiently. If
a thread runs leak 0 secret ,
the code publishes 0 only if the first bit of secret is 0; otherwise it loops (see
function loop) and it does not produce any public effect—see Figure 28. Simi-
larly, a thread running leak 1 secret will leak the second bit of secret , while a
thread running leak 2 secret will leak the third bit of it and so on. An attacker
might then leak the whole secret by spawning as many threads as bits in the
secret, i.e., |secret |, where each thread runs the one-bit attack described above
and n matches the bit being leaked (e.g., n = 0 for the first bit, n = 1 for the
second one, etc.).

13 Furthermore, the presence of threads introduce the internal timing covert channel [50],
a channel that gets exploited when, depending on secrets, the timing behavior of
threads affect the order of events performed on public-shared resources. Since the
same countermeasure closes both the internal timing and termination covert channels,
we focus on the latter.



CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 37

Scheduler state: ω
Pool Map : Φ ::= (` : Label)→ (Pool `)
Thread Pool `: ts ::= [ ] | t : ts
Configuration: c ::= 〈ω,Σ,Φ〉
Sequential Event `: s ::= ∅ | fork(t)
Concurrent Event `: e ::= Step | Skip | Done | Fork ` n
Terms: t ::= · · · | fork t

(a) Syntax of concurrent calculus.

Φ(`)[n] = t1 〈Σ1, Φ(`)〉 −→s 〈Σ2, t2〉 ω1
(`,n,e)−−−−→ ω2

〈ω1, Σ1, Φ〉 ↪→ 〈ω2, Σ2, Φ(`)[n] := t2〉

(b) Scheme rule for concurrent semantics.

Fig. 30: Calculus with concurrency.

(SFORK)
〈Σ, fork t〉 −→fork(t) 〈Σ, return ()〉

(BIND1)
〈Σ, t1〉 −→s 〈Σ′, t ′1〉

〈Σ, t1 >>= t2〉 −→s 〈Σ′, t ′1 >>= t2〉

(CATCH1)
〈Σ, t1〉 −→s 〈Σ′, t ′1〉

〈Σ, catch t1 t2〉 −→s 〈Σ′, catch t ′1 t2〉

Fig. 31: Decorated Sequential Semantics (interesting rules).

To securely support concurrency, MAC forces programmers to decouple
MAC computations with sensitive labels from those performing observable
side-effects—an approach also taken in LIO [51]. As a result, non-terminating
computations based on secrets cannot affect the outcome of public events. To
achieve this behavior, MAC replaces join by fork—see Figure 29. Informally,
it is secure to spawn sensitive computations (of type MAC `H ()) from non-
sensitive ones (of type MAC `L ()) because that decision depends on data at
level `L, which is no more sensitive (`L v `H). From now on, we call sensitive
(non-sensitive) threads those executing MAC computations with a label non-
observable (observable) to the attacker. In the two-point lattice, for example,
threads running MAC H () computations are sensitive, while those running
MAC L () are observable by the attacker.
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8.2 Calculus

Figure 30 extends the calculus from Section 3 with concurrency. It introduces
global configurations of the form 〈ω,Σ, Φ〉 composed by an abstract scheduler
state ω, a store Σ and a pool map Φ, see Figure 30a. Threads are secure compu-
tations of type MAC ` () and are organized in isolated thread pools according
to their security label. A pool ts in the category Pool ` contains threads at secu-
rity level ` and is accessed exclusively through the pool map. We use the same
notation for thread pools and pool maps that we have defined to manipulate and
extend stores and memories. Term fork t spawns thread t and replaces join in
the calculus. Without join , constructor Labeledχ becomes redundant and is also
removed. Our calculus includes also synchronization primitives [45], we refer
to B for details.

Relation c1 ↪→ c2 denotes that concurrent configurations c1 steps to c2. Fig-
ure 30b shows the scheme rule for c1 ↪→ c2 and highlights the top-level common

aspects to all the rules, which we detail later on. The relation ω1
(`,n,e)−−−−→ ω2

represents a transition in the scheduler, that depending on the initial state ω1,
decides to run thread identified by (`,n), which is retrieved from the configura-
tion (Φ(`)[n]) and executed. Concurrent events inform the scheduler about the
evolution of the global configuration, so that it can realize concrete scheduling
policies and update its state accordingly. Event Step denotes a single sequential
step, event Fork ` n informs the scheduler that the current thread has forked
a new thread identified by (`,n), event Done is generated when a thread has
terminated and event Stuck denotes that a thread is stuck, e.g., on a synchro-
nization variable. Note that the scheduled thread determines, with its execution
and with sequential event s, triggered by the decorated sequential step, i.e.,
〈Σ, t1〉 −→s 〈Σ, t2〉, which concurrent event e should be passed to the sched-
uler. Lastly, the final configuration is composed by the updated scheduler state,
i.e., ω2, the updated memory, i.e., Σ2 and the pool map updated with the exe-
cuted thread, i.e., Φ(`)[n] := t2.

Decorated Semantics Figure 31 shows the interesting rules of the decorated
semantics. Rule [SFORK] is the only rule that explicitly generates event fork(t)
and context rules [BIND1,CATCH1] propagate the same event generated by the
premise step. All the other rules generate the empty event ∅. Note that, with-
out context rules we could have given the semantics of fork in the concurrent
semantics directly.

Concurrent Semantics Figure 32 shows the actual semantics of the concurrent
calculus, where each rule generates the appropriate event for the scheduler de-
pending on the state of the thread scheduled and the sequential event. Concurrent
rule [STEP] sends event Step to the scheduler, because the thread generates se-
quential event ∅, and then updates the store and the thread pool accordingly.
Rule [CFORK] generates concurrent event Fork `H m , because the thread gen-
erates event fork(t), which is identified by label `H and number m . Observe that
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(STEP)

ω
(`,n,Step)−−−−−−→ ω′ 〈Σ,Φ(`)[n]〉 −→∅ 〈Σ′, t ′〉
〈ω,Σ,Φ〉 ↪→ 〈ω′, Σ′, Φ(`)[n] := t ′〉

(CFORK)

ω
(`L,n,Fork `H m)−−−−−−−−−−→ ω′

|Φ(`H)| = m 〈Σ,Φ(`L)[n]〉 −→fork(t) 〈Σ, t ′〉 Φ′ = Φ(`H)[m 7→ t ]

〈ω,Σ,Φ〉 ↪→ 〈ω′, Σ, Φ′(`L)[n] := t ′〉

(DONE)

ω
(`,n,Done)−−−−−−−→ ω′ Φ(`)[n] = v

〈ω,Σ,Φ〉 ↪→ 〈ω′, Σ, Φ〉

(STUCK)

ω
(`,n,Stuck)−−−−−−−→ ω′ 〈Σ,Φ(`)[n]〉 6−→
〈ω,Σ,Φ〉 ↪→ 〈ω′, Σ, Φ〉

Fig. 32: Concurrent Semantics.

ω ::= (`,n) : ω | [ ]

(`,n) : ω
(`,n,Step)−−−−−−→RR ω ++ [(`,n)] (`,n) : ω

(`,n,Skip)−−−−−−→RR ω ++ [(`,n)]

(`,n) : ω
(`,n,Done)−−−−−−−→RR ω

(`L,n1) : ω
(`L,n1,Fork `H n2)−−−−−−−−−−−→RR ω ++ [(`H,n2), (`L,n1)]

Fig. 33: Round-robin Scheduler.

the spawned thread is placed in pool Φ(`H) in the free position m = |Φ(`H)|—
threads are identified with their position in the pool map. The extended pool
map Φ′ is lastly updated with the parent thread. In rule [DONE], Φ(`)[n] = v
denotes that the scheduled thread is a value, i.e. the computation has terminated,
then the rule sends event Done to the scheduler and leaves the store and pool
map unchanged—terminated threads remain in pool map Φ. In rule [STUCK],
the notation Φ(`)[n]〉 6−→ denotes that the thread is stuck, i.e., it is not a value
nor a redex. The scheduler is then informed by event Stuck and the store Σ and
pool map Φ are left unchanged.

8.3 Round-robin Scheduler

Figure 33 shows a round-robin scheduler with time-slot of one step, as an ex-
ample of a scheduler that can be securely employed in our concurrent calculus.
The state of the scheduler is a queue that tracks the identifiers of alive threads in
the global configuration. A thread is uniquely identified by a pair consisting of
a label, i.e., its security level, and a thread identifier, i.e., its position in the cor-
responding thread pool. The queue is concretely represented by a list of thread
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fmap :: (a → b)→ Labeled ` a → Labeled ` b
(〈∗〉) :: Labeled ` (a → b)→ Labeled ` a → Labeled ` b
relabel :: `L v `H ⇒ Labeled `L a → Labeled `H a

Fig. 34: API for flexible manipulation of labeled values.

identifiers, whose first element identifies the next thread in the schedule. After
executing one step (event Step), the current thread has used up its time slot and
is enqueued. If the scheduled thread cannot execute (event Skip), it is skipped
and enqueued as well. When the current thread has terminated (event Done),
the thread is not alive anymore and hence removed from the queue. Message
(`L,n1,Fork `H n2) informs the scheduler that thread (`L,n1) has spawned
thread (`H,n2), which is then enqueued with the current thread.

9 Flexible Labeled Values

In this section we extend the API of labeled values with new operations that
allow to perform pure (side-effect free) computations with labeled data—see
Figure 34. Observe that these primitives operate on labeled data without using
label and unlabel , thus avoiding incurring in the no read-up and no write-down
restrictions and irrespectively of their security level. For instance, a non-sensitive
computation at security level `L can operate on sensitive labeled data at secu-
rity level `H using fmap, without forking threads in a concurrent setting, thus
introducing flexibility when data is processed by pure functions. We remark that,
depending on the evaluation strategy of the host language (i.e. call-by-value or
call-by-name), a naive implementation of these primitives is vulnerable to leaks
via non-termination—we elaborate on this point later, in Section 9.3. Section 9.1
gives a broad description of these primitives, Section 9.2 shows their flexibility
with an example, and Section 9.3 formalizes them in our calculus.

9.1 Functors and Relabeling

Intuitively, a functor is a container-like data structure which provides a method
called fmap that applies (maps) a function over its contents, while preserving its
structure. Lists are the most canonical example of a functor data-structure. In this
case, fmap corresponds to the function map, which applies a function to each
element of a list, e.g. fmap (+1) [1, 2, 3] ≡ [2, 3, 4]. A functor structure for
labeled values allows to manipulate sensitive data without the need to explicitly
extract it—see Figure 34. For instance, fmap (+1) d , where d ::Labeled H Int
stores the number 42, produces the number 43 as a sensitive labeled value.

To aggregate data at possibly different security levels MAC provides primi-
tives relabel and (〈∗〉). Primitive relabel upgrades the security level of a labeled
value, which is useful to “lift” data to an upper bound of all the data involved
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in a computation prior to combining them. Operator (〈∗〉) supports function
application within a labeled value, i.e. it allows to feed functions wrapped in a
labeled value (Labeled ` (a → b) with arguments also wrapped (Labeled ` a),
where aggregated results get wrapped as well (Labeled ` b).

Discussion In functional programming, operator (〈∗〉) is part of the applica-
tive functors [32] interface, which in combination with fmap, is used to map
functions over functors. Note that if labeled values were full-fledged applicative
functors, our API would also include the primitive pure :: a → Labeled ` a .
This primitive brings arbitrary values into labeled values, which might break
the security principles enforced by MAC. Instead of pure , MAC centralizes the
creation of labeled values in the primitive label . Observe that, by using pure,
a programmer could write a computation m :: MAC H (Labeled L a) where
the created labeled information is sensitive rather than public. We argue that
this situation ignores the no-write down principle, which might bring confusion
among users of the library. More importantly, freely creating labeled values is
not compatible with the security notion of cleareance, where secure computa-
tions have an upper bound on the kind of sensitive data they can observe and
generate. This notion becomes useful to address certain covert channels [60]
as well as poison-pill attacks [23]. While MAC does not yet currently support
cleareance, it is an interesting direction for future work.

9.2 Examples

isShort :: Labeled H String → Labeled H Bool
isShort = fmap (λpwd → |pwd | 6 5)

Fig. 35: A pure computation on a password.

The functor API of la-
beled values, i.e., fmap,
is a handy tool that func-
tional programmers use
to code simple concise
functions elegantly. In
Figure 35, the 1-line function isShort checks whether the password is weak
because it is too short. In the anonymous function, pwd is the unlabeled pass-
word, and the expression |pwd | 6 5 checks if the password contains less than 5
characters. Observe that what the function computes is an attribute of the pass-
word, therefore it should be considered sensitive. The API of fmap ensures that
by preserving the label of the labeled argument, i.e., Labeled H String , in the
resulting labeled value, i.e., Labeled H Bool . Compare the program in Figure
35 with the homonym program in Figure 36 written without fmap, but using
join instead. Firstly, note that the imperative program has a different signature: it
must necessarily involve MAC computation in order to perform unlabel . Since
the password lpwd is sensitive, i.e., it has type Labeled H String , only a sensi-
tive computation can unlabel it. Then, the program employs join to convert the
sensitive computation into a sensitive labeled value, which then gets wrapped in
a non-sensitive computation, i.e., MAC L (Labeled H Bool). In a concurrent
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isShort :: Labeled H String → MAC L (Labeled H Bool)
isShort lpwd = do

join (do
pwd ← unlabel lpwd
return (|pwd | 6 5))

Fig. 36: join involves MAC also for pure computations.

isWeak :: Labeled L′ (String → Bool).

(a) Third party API.

f :: Labeled H String → Labeled H Bool
f pwd = relabel isWeak 〈∗〉 pwd

(b) Embedding mistrusted code.

H

L L′

(c) 3-Points Lattice.

Fig. 37: Combining heterogeneously labeled data.

setting, where join is not available, the whole program must be completely re-
structured, because threads have type MAC H () and may not return any other
result in a non-sensitive computation.

The strength of a password is often estimated by combining several syntactic
aspects, such as its length or the presence and number of special characters and
digits. Suppose now that some third-party API function provides such syntactic
checks in the form of a MAC labeled pure function isWeak , see Figure 37a.
The type system guarantees that the function is secure, because it has type
String → Bool , however the third party has labeled it with its own label L′,
because it wants to strictly control who can use it and under what terms. In
order to keep the code of our password-checker isolated from that of the third
party, while still providing functionality to the user, we incorporate the new label
L′ into the system and modify the lattice as shown in Figure 37c. The lattice
reflects our mistrust over the third-party code by making L and L′ incomparable
elements. Thanks to MAC’s security guarantees, we can safely run third-party
mistrusted code, i.e., isWeak , with the user’s secret password, as shown in
Figure 37b. In particular relabel upgrades the function to isWeak to security
level H (observe that L′ v H in the lattice), and then applies the function
to the password (pwd ) using the applicative functor operator, i.e., 〈∗〉, which
protects the final result with label H .

9.3 Calculus

In Figure 38, we extend our calculus with the primitives for flexible manipula-
tion of labeled values, discussed in the previous section. Firstly we add terms
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Terms: t ::= · · · | fmap t1 t2 | t1 〈∗〉 t2 | relabel t

(FMAP)
fmap t1 t2 ; (Labeled t1) 〈∗〉 t2

(〈∗〉1)
t1 ; t ′1

t1 〈∗〉 t2 ; t1 〈∗〉 t2

(〈∗〉2)
t2 ; t ′2

(Labeled t1) 〈∗〉 t2 ; (Labeled t1) 〈∗〉 t ′2

(〈∗〉3)
(Labeled t1) 〈∗〉 (Labeled t2) ; Labeled (t1 t2)

(RELABEL1)
t ; t ′

relabel t ; relabel t ′

(RELABEL2)
relabel (Labeled t) ; Labeled t

Fig. 38: Calculus with flexible labeled values.

leak :: Int → Labeled H Secret → MAC L ()
leak n secret = let result = fmap loopOn secret in publish n

where loopOn = λbits → if (bits !! n) then loop else bits

Fig. 39: Function leak attempts to leak the n-th bit of secret .

fmap t1 t2, t1 〈∗〉 t2 and relabel t , whose types correspond to those given in Fig-
ure 34. Primitive fmap is implemented in terms of 〈∗〉 in rule [FMAP], where the
function is simply lifted to labeled value (every applicative functor is also a func-
tor). Rules [〈∗〉1 , 〈∗〉2] evaluate the first and second argument to a labeled value
respectively, which are then combined by rule [〈∗〉3], which applies the function
to the argument and wraps the result in a labeled value. Rule [RELABEL1] evalu-
ates its argument to weak-head normal form and rule [RELABEL2] upgrades its
label. Observe that since labels are types relabel leaves the content of Labeled
unchanged. We remark that these primitives do not affect the security guaran-
tees of the sequential calculus, where their semantics solely must be adjusted to
handle exceptional values, i.e., constructor Labeledχ, see A for more details.

Discussion The API of flexible labeled values shown in Figure 34 might seem
insecure at first sight. In particular, it might be counter-intuitive that a public
computation might be able to manipulate a secret with an arbitrary function
without introducing potential leaks. Figure 39 shows an attack that attempts to
leak via non-termination the n-th bit of a secret. Function leak applies function
loopOn on the secret using fmap and then performs a non-sensitive side-effect,
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i.e., publish n , which outputs the number n on a public channel. Interestingly,
depending on the evaluation strategy of the language, the attack might succeed.
Specifically, under a call-by-value evaluation strategy, function loopOn passed
to fmap is eagerly applied to the secret, which might introduce a loop depending
on the value of the n-th bit of the secret suppressing the subsequent public action
publish n . Under a call-by-name evaluation strategy, however, function loopOn
does not get immediately evaluated since result is not needed for computing
publish n . Therefore, publish n gets executed independently of the value of the
secret, i.e., no termination leaks are introduced. Instead, loopOn gets evaluated
when and only if result is unlabeled and its content inspected—something that
is possible only in a computation at security level at least as sensitive as H
because of the no-read up policy, where it is secure to do so. We remark that
it is possible to close this termination channel under a call-by-value semantics
by defining Labeled with an explicit suspension, e.g. data Labeled ` a =
Labeled (()→ a), and corresponding forcing operation, so that fmap behaves
lazily as desired.

10 Soundness of Concurrent Calculus

The concurrent calculus that we have presented satisfies progress sensitive
non-interference. Section 10.1 extends the erasure function for the concurrent
calculus and for flexible labeled values. To obtain a parametric proof of non-
interference, we assume certain properties about the scheduler. Specifically,
our proof is valid for deterministic schedulers which fulfill progress and non-
interference themselves, i.e., schedulers cannot leverage sensitive information
in threads to determine what to schedule next. Section 10.2 formalizes the re-
quirements for such suitable schedulers. In Section 10.3 we prove a scheduler-
parametric progress-sensitive non-interference theorem for our calculus and we
constructively obtain a proof that MAC is secure with a round-robin scheduler
by simply instantiating our main theorem.

10.1 Erasure Function

Figure 40 shows the erasure function for the concurrent calculus. A concurrent
configuration 〈ω,Σ, Φ〉 is erased by erasing each component, where the erasure
of the scheduler state ω is scheduler specific (Figure 40a). Similarly to store
Σ, pool map Φ is erased pointwise, i.e., ε`A(Φ) = λ`.ε`A(Φ(`)), and sensitive
thread pools are rewritten to • and erased homomorphically otherwise, just like
memories (see Figure 40b). Observe that primitive fork performs a write effect
because it adds a new thread to a thread pool, therefore we employ our two-
steps erasure technique, just like we did for memory primitives. Specifically,
the erasure function replaces fork with fork• whenever it spawns a sensitive
thread, which would write to a sensitive thread pool (`H 6v `A), see Figure
40c. Sequential fork-events are erased similarly in order to ensure simulation,
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ε`A(〈ω,Σ,Φ〉) = 〈ε`A(ω), ε`A(Σ), ε`A(Φ)〉

(a) Erasure for concurrent configuration.

ε`A(ts :: Pool `H) =

{
• if `H 6v `A

map ε`A ts otherwise

(b) Erasure for thread pool.

ε`A(fork t) =

{
fork• ε`A(t :: MAC `H ()) if `H 6v `A

fork ε`A(t) otherwise

(c) Erasure of fork.

ε`A(fork(t ::MAC `H ())) =

{
fork•(ε`A(t)) if `H 6v `A

fork(ε`A(t)) otherwise

(d) Erasure for sequential fork event.

ε`A(Fork `H n) =

{
Step if `H 6v `A

Fork `H n otherwise

(e) Erasure for concurrent fork event.

Fig. 40: Erasure function for concurrent calculus.

i.e., the erasure function rewrites fork(t) to fork•(ε`A(t)) when t is sensitive—
see Figure 40d. Sequential event ∅ is not affected by the erasure function. The
erasure function masks spawning sensitive threads from the scheduler as well
by erasing concurrent events accordingly (Figure 40e). In this case it rewrites
event Fork `H n to Step whenever `H 6v `A—the other events are not affected
by the erasure function. In the sequential calculus fork• is reduced by rule
[SFORK•], defined in Figure 41, which simulates the decorated reduction of
fork . A new concurrent rule [CFORK•] detects the sequential event fork•(t)
and skips spawning the thread, i.e., it does not insert it in the thread pool, and
sends concurrent event Step to the scheduler, therefore simulating precisely rule
[CFORK] when a non-sensitive thread of type MAC `L () forks a sensitive
thread MAC `H ().
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Seq. Effect: s ::= · · · | fork•(t)
Terms: t ::= · · · | fork• t

(SFORK•)
〈Σ, fork• t〉 −→fork•(t) 〈Σ, return ()〉

(CFORK•)

ω
(`L,n,Step)−−−−−−−→ ω′ 〈Σ,Φ(`L)[n]〉 −→fork•(t) 〈Σ, t

′〉
〈ω,Σ,Φ〉 ↪→ 〈ω′, Σ, Φ(`L)[n] := t ′〉

Fig. 41: Sequential and concurrent semantics of fork•.

ε`A(fmap t1 t2 :: Labeled `H τ) =

{
fmap• ε`A(t1) ε`A(t2) if `H 6v `A

fmap ε`A(t1) ε`A(t2) otherwise

ε`A(t1 〈∗〉 t2 :: Labeled `H τ) =

{
ε`A(t1) 〈∗〉• ε`A(t2) if `H 6v `A

ε`A(t1) 〈∗〉 ε`A(t2) otherwise

ε`A(relabel t :: Labeled `H τ) =

{
relabel• ε`A(t) if `H 6v `A

relabel ε`A(t) otherwise

Fig. 42: Erasure of flexible labeled values.

Context-Aware Erasure Function A common challenge when reasoning about
security of IFC libraries is that the sensitivity of a term may depend on context
where they are used. Consider for instance the primitive relabel , i.e., which
upgrades the security level of a labeled term. A public number, e.g., Labeled 42::
Labeled L Int , should be treated as secret when in the context of relabeling, e.g.,
relabel (Labeled 42) :: Labeled H Int . Doing otherwise, i.e., erasing the term
homomorphically, breaks simulation because sensitive data produced by relabel
remains after erasure. For example relabel (Labeled 42) is homomorphically
erased to relabel εL(Labeled 42 :: Labeled L Int) which reduces on the orange
path to Labeled 42 6≡ Labeled •, obtained on the cyan path by εL(Labeled 42 ::
Labeled H Int), thus breaking commutativity of rule [RELABEL2].

Then, one might be tempted to stretch the definition of the erasure function
to accommodate for the problematic cases shown above. Unfortunately, this ap-
proach does not work, because it will necessary break simulation for other cases.
We support this statement by showing that this is the case for any arbitrary era-
sure function that is suitable for relabel t ::Labeled H τ , where t ::Labeled L τ .
Observe that we need a different behavior for our erasure function for public la-
beled values when embedded in relabel , which we will capture in a different aux-
iliary erasure function ε′L. Suppose we defined εL(relabel t :: Labeled H τ) =



CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 47

Terms: t ::= | fmap• t1 t2 | t1 〈∗〉• t2 | relabel• t

(FMAP•)
fmap• t1 t2 ; (Labeled •) 〈∗〉• t2

(〈∗〉•1)
t1 ; t ′1

t1 〈∗〉• t2 ; t ′1 〈∗〉• t2

(〈∗〉•2)
t2 ; t ′2

(Labeled t1) 〈∗〉• t2 ; (Labeled t1) 〈∗〉• t ′2

(〈∗〉•3)
(Labeled t1) 〈∗〉• (Labeled t2) ; Labeled •

(RELABEL•1)
t ; t ′

relabel• t ; relabel• t
′

(RELABEL•2)
relabel• (Labeled t) ; Labeled •

Fig. 43: Semantics of fork•, 〈∗〉• and relabel•.

relabel ε′L(t :: Labeled L τ), for some suitable ε′L that exhibits the desired
behavior, e.g., ε′L(Labeled 42 :: Labeled L Int) = Labeled •. Alas, while
this definition respects simulation for step [RELABEL2], introducing a different
erasure function in a context-sensitive way is fatal for simulation of beta reduc-
tions. More precisely, the original erasure function is no longer homomorphic
over substitution, i.e., ε`A([x / t1 ] t2) 6≡ [x / ε`A(t1)] ε`A(t2)—an essential
property of the erasure function [20, 30, 43, 53, 54], without which step [BETA]
does not commute anymore. Essentially, function ε`A is oblivious to the context
in which some term will be substituted inside the body of a function, thus break-
ing simulation. As a counterexample, consider term (λx .relabel x ) t , which is
erased homomorphically, that is (λx .relabel x ) εL(t), and then beta-reduces
on the orange path to relabel εL(t). On the cyan path term (λx .relabel x ) t
beta-reduces to relabel t and then is context-sensitively erased to relabel ε′L(t).
Observe that relabel εL(t) 6≡ relabel ε′L(t) in general because ε′L captures a
different behavior than that exposed by εL, specifically for public labeled values,
e.g., when t = Labeled 42 :: Labeled L Int . To the best of our knowledge, this
work is the first to point out this issue. Furthermore, we identify problematic
cases in the formalization of previous work on LIO [51,54] which lead to break-
ing the one-step simulation—see details in Appendix A of [58]. By using the
two-step erasure technique, we can craft a sound erasure function that is homo-
morphic over substitution and is context-aware. The erasure function replaces
relabel with relabel•, rule [RELABEL•1] simulates rule [RELABEL1] and rule
[RELABEL•2] performs context-sensitive erasure by producing Labeled •, see
Figure 43. Even though the actual erasure is done by rule [RELABEL•2], we still
have to erase the arugment of relabel , or else the erasure function would not
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be homomorphic over substitution. Simulation of the context rule [RELABEL•]
follows then by inductive hypothesis.

Primitive 〈∗〉 raises a similar problem. To illustrate this point, consider
the term (Labeled t1) 〈∗〉 (Labeled t2) of type Labeled H Int , which re-
duces to Labeled (t1 t2) according to rule [〈∗〉3].14 Following the orange path
we get εL(Labeled t1) 〈∗〉 εL(Labeled t2), by applying the erasure func-
tion homomorphically, i.e., (Labeled •) 〈∗〉 (Labeled •) which reduces to
Labeled (• •) 6≡ Labeled •, obtained instead by first reducing the term and then
erasing following the cyan path. Observe that rule [〈∗〉3] produces a function
application within a Labeled constructor, therefore it cannot possibly commute
for sensitive labeled values, which always rewrite the content of a labeled value
to •. We then prove simulation using two-steps erasure again. Specifically, the
erasure function replaces 〈∗〉 with 〈∗〉•, see Figure 42, and erasure is then per-
formed by means of its semantics rules [〈∗〉•1 ,〈∗〉•2 , 〈∗〉•3], listed in Figure 43,
which simulate rules [〈∗〉1 ,〈∗〉2 , 〈∗〉3] respectively. Observe that [〈∗〉•3] ignores
the content of the labeled values and simply yields Labeled • to enforce the sim-
ulation property. Since fmap is defined in terms of 〈∗〉, we likewise replace it
with new node fmap• and give its semantics in terms of 〈∗〉•, see rule [FMAP•].
We remark that fmap•, 〈∗〉• and relabel• and their semantics rules are intro-
duced in the calculus as a device to prove simulation (they only occur in erased
programs), they are not part of the surface syntax nor MAC.

10.2 Scheduler Requirements

We take advantage of the level of abstraction of our concurrent semantics and
make our proof parametric in the scheduler state and its semantics. For this
reason, we study what are the sufficient requirements of a scheduler to guar-
antee PSNI in our calculus. We evaluate our characterization of schedulers by
formalizing a round-robin scheduler, similar to that used by GHC’s run-time
system [31], and show that it satisfies the requirements listed in this section.

Our proof is valid for schedulers which are (i) deterministic, (ii) fulfill a re-
stricted variant of single-step simulation from Figure 22, i.e., schedulers may not
leverage on sensitive information to determine what observable thread should
be scheduled next, (iii) do not leak secret information when scheduling a sen-
sitive threads and (iv) guarantee progress of observable threads, i.e., execution
of observable threads cannot be indefinitely deferred by sensitive ones. In the
following, we use labels `L and `H to denote a security level that is visible resp.
invisible to the attacker, i.e., `L v `A and `H 6v `A. Furthermore, we call a
14 In our conference version [57], rule [〈∗〉3] raises a problem also for public la-

beled values, because the erasure function is not homomorphic over function ap-
plication, in particular εL(t1 t2 :: MAC H τ) = • 6≡ εL(t1) εL(t2).
To avoid this problem, we replace function application with substitution, i.e.
(Labeled (λx .t1)) 〈∗〉 (Labeled t2) ; Labeled (t1 [x / t2 ]), at the price of hav-
ing a non-standard stricter semantics for 〈∗〉. The erasure function presented here is
homomorphic over function application and the semantics of 〈∗〉 is standard.



CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 49

scheduler step that runs a non-sensitive thread, e.g., ω1
(`L,n,e)−−−−−→ ω2, public or

low step. Similarly we refer to a run of a sensitive thread, e.g., ω1
(`H,n,e)−−−−−→ ω2, as

secret or high step. We formally characterize schedulers for which our security
guarantees apply.

Requirement 1

i) Determinancy: if ω1
(`,n,e)−−−−→ ω2 and ω1

(`′,n′,e)−−−−−→ ω′2, then ` ≡ `′, n ≡ n ′

and ω2 ≡ ω′2.

ii) Restricted Simulation: if ω1
(`L,n,e)−−−−−→ ω2 then ε`A(ω1)

(`L,n,ε`A (e))
−−−−−−−−→ ε`A(ω2).

iii) No Observable Effect: if ω1
(`H,n,e)−−−−−→ ω2 then ω1 ≈`A ω2.

iv) Progress: If ω1
(`L,n,e)−−−−−→ ω′1 and ω1 ≈`A ω2 then ω2 will schedule thread

(`L,n) eventually.

Observe that determinancy of the scheduler is essential for determinancy
of the concurrent semantics—after all, the scheduler state is part of the concur-
rent configuration. As it is expected from the concurrent calculus, we assume
that the abstract scheduler satisfies a variant of the single-step simulation re-
stricted to low steps15. “No observable effect”, i.e., Requirement (iii), ensures
that high steps do not leak sensitive information in the scheduler state—we
extend `A-equivalence to scheduler states, that is ω1 ≈`A ω2 if and only if
ε`A(ω1) ≡ ε`A(ω2). Observe that the erasure function of the scheduler state is
scheduler specific, and thus we leave it unspecified. Requirement (iv) avoids
revealing sensitive data by observing progress of non-sensitive threads via pub-
lic events. Intuitively, a concurrent program might reveal sensitive information
by forcing a sensitive thread to induce starvation of a non-sensitive thread, thus
potentially suppressing subsequent public events. The formal definition of even-
tually is technically interesting. Since we aim to a modular proof, the scheduler
is considered in isolation from the pool thread, therefore the scheduler cannot
predict how long high threads are going to run. We overcome this technicality
by indexing the `A-equivalence relation between scheduler states. We then use
the indexes to encode a single-step progress principle, i.e., Requirement 2 (ex-
plained below), and to exclude starvation, by making the progress principle a
well-founded induction principle, i.e., Requirement 3 (explained below).

Definition 2 (Annotated Scheduler `A-equivalence). Two states are (i, j )-`A-
equivalent, written ω1 ≈(i,j )

`A
ω2 if and only if ω1 ≈`A ω2 and i and j are upper

bounds over the number of sensitive threads scheduled before the next common
non-sensitive thread in ω1 and ω2, respectively.

15 Different to our conference version [58], we do not require lock-step simulation for
high scheduler steps, i.e., when `H 6v `A, for which is instead sufficient to show
indistinguishability. This choice gives the same security guarantees and simplifies the
formalization of a non-interfering scheduler.
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The relation ω1 ≈(i,j )
`A

ω2 captures an alignment measure of two `A-equivalent
states and how close they are to schedule the next common non-sensitive thread.
Informally, our non-interference proof excludes starvation of observable threads,
that can leak information to the attacker, by ensuring that two `A-equivalent
schedulers will eventually align and schedule the same non-sensitive thread,
regardless of how the global configuration evolves. Specifically, our calculus
requires that the indexes in ω1 ≈(i,j )

`A
ω2 strictly decreases after every reduction.

We capture the interplay between the (i, j )-`A-equivalent relationship and the
evolution of schedulers by establishing unwinding-like conditions [15].

Requirement 2 (Progress) Given ω1
(`L,n,e)−−−−−→ ω′1, and ω1 ≈(i,j )

`A
ω2 then:

– If j = 0, then there exists state ω′2 such that ω2
(`L,n,e

′)−−−−−→ ω′2, for any event
e ′ such that e ≈`A e ′.

– If j > 0, then there exists `H, n ′ such that ∀ e ′ ⇒ ∃ ω′2 : ω2
(`H,n

′,e′)−−−−−−→ ω′2

If a scheduler runs a public thread, then a (i, j )-`A-equivalent scheduler runs
at most j secret threads before the same public thread. In particular, if j = 0
then the two schedules align and the threads generate `A-equivalent events16,
otherwise a secret thread is run (j > 0). In the second case the scheduler cannot
predict what event will be triggered by thread (`H,m), therefore, as a conserva-
tive approximation, the step may involve any possible event e ′, which in addition
determines the final state ω′2. Conceptually, by repeatedly applying Requirement
2, Requirement (iii) and by transitivity of ≈`A , we could build the chain of high
steps that precedes the common low-step. However, this recursion scheme is
not well founded in general, because it does not exclude starvation, e.g., for
non-preemptive schedulers [20]. The following requirement guarantees instead
that such chain is finite, i.e., that public threads cannot starve indefinitely due to
secret threads.

Requirement 3 (No Starvation) Given ω1
(`L,n,e)−−−−−→ ω′1, ω2

(`H,n
′,e′)−−−−−−→ ω′2, such

that ω1 ≈(i,j )
`A

ω2, then there exist j ′ such that j′ < j and ω′1 ≈
(i,j ′)
`A

ω′2.

Intuitively, the combination of Requirement 2 and 3 ensures that the two sched-
ules will align eventually17. Figure 44 highlights this intuition. The colored
scheduler steps denote running either a secret (red for `H) or a public (blue for

16 In our conference version [58], the requirement expects the same event e in the other
step, which is too strict. Intuitively an event Fork `H n contains a bit of secret
information, namely the number n of secret threads, which could differ in the other
run. The relation e ≈`A e ′, defined as ε`A(e) ≡ ε`A(e

′) captures this scenario:
Fork `H n ≈`A Fork `H n ′, because ε`A(Fork `H n) ≡ ε`A(Fork `H n ′) ≡ Step.

17 In our conference version [58], Requirements 2 and 3 are combined, but technically we
need to split these two requirements. Progress of the concurrent configuration requires
the former, while the latter ensures a well-founded inductive principle.
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ω ω′

ω0 ω1 · · · ωj ω′j1 2 j

Fig. 44: Two (i, j )-`A-equivalent schedulers align in at most j steps.

[ ] ≈(0,0)
`A

[ ]
ω1 ≈(i,j)

`A
ω2

(`L,n) : ω1 ≈(0,0)
`A

(`L,n) : ω2

ω1 ≈(i,j)
`A

ω2

(`H,n) : ω1 ≈(i+1,j)
`A

ω2

ω1 ≈(i,j)
`A

ω2

ω1 ≈(i,j+1)
`A

(`H,n) : ω2

Fig. 45: Annotated `A-equivalence (Round-robin).

`L) thread respectively and the dashed line links `A-equivalent states. Given
two initial scheduler states such that ω0 ≈(i,j )

`A
ω, where ω runs a public thread,

progress, i.e., Requirement 2, guarantees that ω0 steps to ω1, running a secret
thread. By Requirement 3, it follows that ω1 ≈(i,j ′)

`A
ω, where j′ < j. After re-

peating this mechanism at most j times (j is strictly smaller after each step), we
obtain ωj ≈(i,0)

`A
ω, from which it follows that ωj runs the same thread, stepping

to ω′j . We conclude that ω′j ≈`A ω′ by low-simulation and determinism, i.e.,
Requirements (i) and (ii).

Definition 3 (Non-interfering Scheduler). A scheduler is non-interfering if it
is satisfies Requirements 1,2, and 3.

Round Robin We show that round-robin fulfills all the requirements and hence is
an eligible candidate scheduler for our calculus. Firstly, it is immediately evident
from the reductions that round-robin is deterministic, i.e., it fulfills scheduler re-
quirement (i). We define the erasure function to filter out the identifiers of threads
non observable to the attacker, i.e., ε`A(s) = filter (λ(`,n) → ` v `A) s.
By induction on the scheduler reduction, it follows that round-robin satisfies
restricted simulation, no observable effect, i.e., scheduler requirements (ii) and
(iii). Before proving progress Figure 45 defines annotated `A-equivalence. In
particular, if ω1 ≈(0,0)

`A
ω2 for non-empty states ω1 and ω2, then round-robin

will schedule the same low thread in the next reduction. Lastly round-robin is
starvation-free because it has a finite time-slot and is preemptive.

Proposition 4 (RR non-interfering) Round-robin is non-interfering.



52 10. SOUNDNESS OF CONCURRENT CALCULUS

c1 c′1

ε`A(c1) ε`A(c
′
1)

ε`A(c2) ε`A(c
′
2)

c2 c′2

(`L,n)

≡ ≡

(`L,n)

Fig. 46: 1-Step Progress.

10.3 Progress-sensitive Non-Interference

The proof of progress-sensitive non-interference relies on lemmas similar to
those listed in Requirement 1. In the following, we write c1 ↪→(`,n) c2 to denote
that configuration c1 steps to c2 executing thread (`,n) and we use `L and
`H to denote `L v `A and `H 6v `A respectively. As usual, we write
↪→? for the reflexive transitive closure of ↪→. We write c1 ≈`A c2 if and only
if ε`A(c1) ≡ ε`A(c2), to denote `A-equivalence between configurations and
we lift scheduler annotations, i.e., c1 ≈(i,j )

`A
c2 if and only if c1 ≈`A c2 and

ω1 ≈(i,j )
`A

ω2.

Proposition 5

i) Determinancy: if c1 ↪→ c2 and c1 ↪→ c3 then c2 ≡ c3.
ii) Restricted Simulation: if c1 ↪→(`L,n) c2 then ε`A(c1) ↪→(`L,n) ε`A(c2).

iii) No Observable Effect: if c1 ↪→(`H,n) c2 then c1 ≈`A c2.

Using Proposition 5, we show that the concurrent semantics preserves `A-
equivalence.

Proposition 6 (≈`A Preservation) If c1 ≈`A c2 and c1 ↪→(`,n) c′1, then

– If ` 6v `A, then c′1 ≈`A c2.
– If ` v `A and c2 ↪→(`,n) c′2, then c′1 ≈`A c′2.

Progress sensitive non-interference requires to prove that `A-equivalence
is preserved between two `A-equivalent configurations, even if only one steps.
When a secret thread steps, the theorem follows easily by Proposition 6 and
transitivity. The interesting case of the proof consists in showing progress of
a public thread, which is simulated by the execution of multiple high threads
followed by the same public thread, which corresponds to the diagram in Figure
44. Intuitively we prove progress by firstly simulating the secret threads that
precede the public thread in the schedule (scheduler progress), then by simulat-
ing the common public thread under erasure (restricted simulation) and lastly
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reconstructing from the erased step the original step in the other public thread.
Before proving this proposition, we have to restrict configurations c1 and c2 to
be valid—we explain why we need this assumption later on.

Definition 4 (Valid Configuration). A concurrent configuration c is valid if
and only if it does not contain any invalid memory reference, node • and terms
new•, write•, fork•, fmap•, 〈∗〉•, relabel•.

Assuming valid configurations, we can prove 1-Step simulation, i.e., the recon-
struction of the other public step.

Proposition 7 (1-Step Progress) If c1 ≈(i,0)
`A

c2, c1 ↪→(`L,n) c′1 and c2 is valid,
then there exists c′2 such that c2 ↪→(`L,n) c′2.

The diagram in Figure 46 shows our proof technique. Since the initial con-
figurations are `A-equivalent, i.e., c1 ≈(i,0)

`A
c2, then the erased initial configura-

tions are equivalent, i.e., ε`A(c1) ≡ ε`A(c2). Furthermore, since the schedulers
in c1 and c2 are aligned (the second index in the annotated `A-equivalence is 0),
the fact that the first scheduler runs thread (`L,n), implies that the second runs
it as well (Proposition 2). Given c1 ↪→(`L,n) c′1 we obtain the erased reduction
step ε`A(c1) ↪→(`L,m) ε`A(c2), by restricted simulation and we then reconstruct
c′2 and the other step c2 ↪→(`L,n) c′2 from the step ε`A(c1) ↪→(`L,m) ε`A(c2),
ε`A(c2) ≡ ε`A(c1) and the assumption that c1 and c2 are valid.

Validity We explain by means of an example why we need to assume that
the configurations c1 and c2 are valid. The fact that non-sensitive threads can
write to sensitive resources, such as memories, complicates the reconstruction
of a non-erased reduction step from an erased one, because, intuitively, too
much information has been erased. For instance, since the erasure function
rewrites secret memories and addresses to •, we need to assume that the other
program is in a “consistent state” in order to replay sensitive write memory-
operations. Concretely, consider a public thread performing a secret write, i.e.,
〈Σ,write (Ref n) t〉 −→ 〈Σ(`H)[n] := t , return ()〉. A low-equivalent pro-
gram will be 〈Σ′,write (Ref n ′) t ′〉, for some store Σ′, address n ′ and term
t ′ such that Σ ≈`A Σ′, Ref n ≈`A Ref n ′ and t ≈`A t ′. Unfortunately, there
is no guarantee that n ′ is a valid address in memory Σ′(`H). Observe that the
erasure function maps is non-injective: it maps both valid and invalid references
to Ref •, therefore knowing that n is defined in Σ(`H) does not guarantee that
n ′ is valid in Σ′(`H). Before proving progress, we show that our semantics
preserves validity.

Proposition 8 (Valid Preservation) If c1 is valid and c1 ↪→ c2 then c2 is valid.

Proposition 9 (Progress) If c1 ≈(i,j )
`A

c2, c1 ↪→(`L,n) c′1, and c1, c2 are valid
configurations, then there exists c′2 and c′′2 such that c2 ↪→? c′2 ↪→(`L,n) c′′2 .



54 11. RELATED WORK

Proof (Sketch) The proof is driven by scheduler progress, i.e. Requirement 2,
which determines what thread is scheduled next.

– (j > 0) The scheduler runs a secret thread, which is executed leading to the
next intermediate configuration c′2, i.e. c2 ↪→(`H,n′) c′2. By no starvation,
i.e., Requirement 3, and no observable effect, i.e. Proposition 5.iii, it follows
that c1 ≈(i,j ′)

`A
c′2 for some j′ < j and we then apply induction.

– (j = 0) The scheduler runs public thread (`L,n) and the proposition follows
from Proposition 7.

By combining progress, i.e., Proposition 9 and `A-equivalence preservation,
i.e., Proposition 6, we prove PSNI.

Theorem 2 (Progress-sensitive non-interference) Given valid global config-
urations c1, c′1, c2, and a non-interfering scheduler, if c1 ≈`A c2 and c1 ↪→ c′1,
then there exists c′2 such that c2 ↪→? c′2 and c2 ≈`A c′2.

We conclude with a corollary that asserts that MAC satisfies PSNI.

Corollary 1 MAC satisfies PSNI.

Proof By applying Theorem 2 and Proposition 4.

11 Related Work

Mechanized Proofs Russo presents the library MAC as a functional pearl and
relies on its simplicity to convince readers about its correctness [45]. This work
bridges the gap on MAC’s lack of formal guarantees and exhibits interesting
insights on the proofs of its soundness. LIO is a library structural similar to
MAC but dynamically enforcing IFC [54]. The core calculus of LIO, i.e., side-
effect free computations together with exception handling, has been modeled in
the Coq proof assistant [53]. Different from our work, these mechanized proofs
do not simplify the treatment of sensitive exceptions by masking them in erased
programs. In parallel to [53], Breeze [23] is a pure programming language that
explores the design space of IFC and exceptions, which is accompanied with
mechanized proofs in Coq. Bichhawat et al. develop an intra-procedural analysis
for Javascript bytecode, which prevents implict leaks in presence of exceptions
and unstructured control flow constructs [7].

Concurrency Considering IFC for a general scheduler could lead to refinements
attacks. In this light, Russo and Sabelfeld provide termination-insensitive non-
interference for a wide-class of deterministic schedulers [44]. Barthe et al. adopt
this idea for Java-like bytecode [3]. Although we also consider deterministic
schedulers, our security guarantees are stronger by considering leaks of informa-
tion via abnormal termination. Heule et al. describe how to retrofit IFC in a pro-
gramming language with sandboxes [20]. Similar to our work, their soundness
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proofs are parametric on deterministic schedulers and provide progress-sensitive
non-interference with informal arguments regarding thread progress—in this
work, we spell out formal requirements on schedulers capable to guarantee
thread progress. A series of work for π-calculus consider non-deterministic
schedulers while providing progress-sensitive non-interference [21, 22, 27, 40].

Security Libraries Li and Zdancewic’s seminal work [29] shows how the struc-
ture arrows can provide IFC as a library in Haskell. Tsai et al. extend that work to
support concurrency and data with heterogeneous labels [56]. Russo et al. imple-
ment the security library SecLib using a simpler structure than arrows [43], i.e.
monads—rather than labeled values, this work introduces a monad which stati-
cally label side-effect free values. The security library LIO [51,52] dynamically
enforces IFC for both sequential and concurrent settings. LIO presents opera-
tions similar to fmap and 〈∗〉 for labeled values with differences in the returning
type due to LIO’s checks for clearence—this work provides a foundation to ana-
lyze the security implications of such primitives. Mechanized proofs for LIO are
given only for its core sequential calculus [52]. Inspired by SecLib and LIO’s
designs, MAC leverages Haskell’s type system to enforce IFC [45]. HLIO uses
advanced Haskell’s type-system features to provide a hybrid approach: IFC is
statically enforced while allowing the programmers to defer selected security
checks until run-time [10]. Our work studies the security implications of extend-
ing LIO, MAC, and HLIO with a rich structure for labeled values. Devriese and
Piessens provide a monad transformer to extend imperative-like APIs with sup-
port for IFC in Haskell [13]. Jaskelioff and Russo implements a library which
dynamically enforces IFC using secure multi-execution (SME) [25]—a tech-
nique that runs programs multiple times (once per security level) and varies the
semantics of inputs and outputs to protect confidentiality. Rather than running
multiple copies of a program, Schmitz et al. provide a library with faceted val-
ues [48], where values present different behavior according to the privilege of
the observer. Different from the work above, we present a fully-fledged mecha-
nized proof for our sequential and concurrent calculus which includes references,
synchronization variables, and exceptions.

IFC Tools IFC research has produced compilers capable of preserving confi-
dentiality of data: Jif [37] and Paragon [8] (based on Java), and FlowCaml [49]
(based on Caml). The SPARK language presents a IFC analysis which has been
extended to guarantee progress-sensitive non-inference [41]. JSFlow [17] is one
of the state-of-the-art IFC system for the web (based on JavaScript). These tools
preserve confidentiality in a fine-grained fashion where every piece of data is
explicitly label. Specifically, there is no abstract data type to label data, so our
results cannot directly apply to them.

Operating Systems MAC borrows ideas from Mandatory Access Control (MAC)
[5, 6] and phrases them into a programming language setting. Although origi-
nated in the 70s, there are modern manifestations of this idea [28,35,60], applied
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to diverse scenarios, like the web [4, 55] and mobile devices [9, 26]. Due to its
complexity, it is not surprising that OS-based MAC systems lack accompanying
soundness guarantees or mechanized proofs—seL4 being the exception [35].
The level of abstractions handled by MAC and OSes are quite different, thus
making uncertain how our insights could help to formalize OS-based MAC sys-
tems. MAC systems [5] assign a label with an entire OS process—settling a
single policy for all the data handled by it. In principle, it would be possible
to extend such MAC-like systems to include a notion of labeled values with
the functor structure as well as the relabeling primitive proposed by this work.
For instance, COWL [55] presents the notion of labeled blob and labeled XHR
which is isomorphic to the notion of labeled values, thus making possible to
apply our results. Furthermore, because many MAC-like system often ignore
termination leaks [14, 60], there is no need to use call-by-name evaluation to
obtain security guarantees.

12 Conclusion

We present a full-fledged formalization of MAC in Agda, where non-interference
is proven by term erasure. To the best of our knowledge, this is the first work
of its kind for IFC libraries in Haskell, both for completeness and number of
features included in the model. Thanks to our mechanized proofs, we identify
challenges arising from erasing terms depending on the context where they ap-
pear and propose two-steps erasure—an effective technique to systematically
deal with such cases. We present an extension of MAC that provides labeled val-
ues with an applicative functor-like structure and a relabeling operation, enabling
convenient and expressive manipulation of labeled values using side effect-free
code and saving programmers from introducing unnecessary sub-computations,
e.g., forking a thread. We have proved this extension secure both in sequential
and concurrent settings, using two-steps erasure. This work bridges the gap be-
tween existing IFC libraries (which focus on side-effecting code) and the usual
Haskell programming model (which favors pure code), with a view to making
IFC in Haskell more practical. Our mechanized proofs also make explicit suffi-
cient scheduler requirements to guarantee PSNI—something that has been only
treated informally before [20, 51]. As a result, our security proofs for the con-
current calculus are valid for a wide-range of deterministic schedulers. It is our
hope that the insights gained by this work will help to formally verify other IFC
programming languages.
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(RELABELχ)
relabel (Labeledχ t) ; Labeledχ t

(〈∗〉χ1)
t2 ; t ′2

(Labeledχ t1) 〈∗〉 t2 ; (Labeledχ t1) 〈∗〉 t ′2

(〈∗〉χ2)
(Labeledχ t1) 〈∗〉 (Labeled t2) ; Labeledχ t1

(〈∗〉χ3)
(Labeledχ t1) 〈∗〉 (Labeledχ t2) ; Labeledχ t1

(〈∗〉χ4)
(Labeled t1) 〈∗〉 (Labeledχ t2) ; Labeledχ t2

Fig. 47: Semantics of flexible labeled values with exceptions.

Appendix

A Flexible Labeled Values in Sequential Calculus

In this section, we extend the semantics of flexible labeled values described
in Section 9 for the sequential setting, where labeled values have an addi-
tional constructor, namely Labeledχ. This constructor is used to prevent sen-
sitive exceptions from leaking into a non-sensitive context, when embedding
a secret computation in a public one using join . The semantics of the primi-
tives relabel and 〈∗〉 handle exceptional values, by propagating the exceptions,
which is exactly what happens in rule [RELABELχ]—see Figure 47. Rules
[〈∗〉χ1, 〈∗〉χ2, 〈∗〉χ3, 〈∗〉χ4] yield (propagate) the first exception observed
when 〈∗〉 is applied to exceptional values. In particular, rule [〈∗〉χ3] applies
when both arguments are exceptions and returns the first one triggered dur-
ing evaluation, i.e., the left one. Rules [〈∗〉χ1, 〈∗〉χ2, 〈∗〉χ3] are somewhat
unusual. In particular, even though our language is non-strict, the rules give a
strict semantics to 〈∗〉—note that they reduce unnecessarily the second term,
even though it is not used in the final result. It would have been more natu-
ral, in this context, to replace them by a single rule Labeledχ t1 〈∗〉 t2 ;
Labeledχ t1, that does not evaluate the second term. The two alternative seman-
tics are equivalent, except for abnormal non-terminating terms, that we denote
with⊥. With strict semantics the term (Labeledχ t1) 〈∗〉 ⊥ results in⊥, because
it loops due to rule [〈∗〉χ1], instead it terminates with a non-strict semantics,
i.e., (Labeledχ t1) 〈∗〉 ⊥ ; (Labeledχ t1). We remark that the two semantics
are equivalent for terminating programs and therefore security is not at stake:
the sequential calculus is already termination insensitive. Technically, we give
a strict definition of 〈∗〉, because erasing sensitive exceptions are replaced by
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data MVar ` τ
newMVar :: `L v `H ⇒ MAC `L (MVar `H τ)
takeMVar ::MVar ` τ → MAC ` τ
putMVar ::MVar ` τ → τ → MAC ` ()

Fig. 48: API of synchronization primitives.

non-exceptional values, i.e., εL(Labeled H τ) (Labeledχ t) = Labeled •.
Therefore, we could not prove simulation for a non-strict applicative func-
tor, since, crucially, it is sensitive to exceptions. While these behaviour could
be simulated by an erasure function that preserves sensitive exceptions, i.e.,
εL(Labeled H τ) (Labeledχ τ) = Labeledχ •, it is an open question how to
prove single-step simulation for join , specifically for rules [JOIN,JOINχ].

B Synchronization Primitives

In this section we extend our calculus with synchronization primitives, an es-
sential feature for concurrent programs. Using synchronized mutable variables
(MVar ) users can implement simple inter-thread communication mechanisms
such as binary semaphores and channels.

The type MVar ` τ denotes a labeled mutable location that is either empty
or full and contains a term of type τ of security level τ . Figure 48 shows the
API of basic synchronization primitives, based on MVar . Specifically, function
newMVar creates an empty MVar . Function takeMVar empty a full MVar
and returns its content or blocks otherwise. Function putMVar fills an empty
MVar or blocks otherwise. Primitive newMVar performs a write operation,
therefore its type is restricted to comply with the no write-down policy, just like
the type of new for memory. Interestingly, and unlike memory primitives read
and write , the type of takeMVar and putMVar accepts only one security level.
Intuitively, that is the case because MVar ’s primitives perform both read and
write side-effects, therefore both no read-up and no write-down security policies
apply. For instance, to execute putMVar , it is necessary to observe (read) if
the MVar is empty. We show how those security policy guide our design and
lead us to give the API shown in Figure 48 as the only secure option. Assume
that primitive takeMVar had a completely unrestricted type, i.e., ∀ `1 `2 .
MVar `1 τ → MAC `2 τ . Since takeMVar returns the content of the MVar—
a read effect that is secure only if `2 is at least as sensitive as `1, i.e., `1 v `2.
Observe however that takeMVar empties the MVar as well, after returning its
content—a write effect that is secure only if `1 is at least as sensitive as `2,
i.e., `2 v `1. By the antisymmetry of the security lattice, it follows that the
interaction between computations and synchronization variables is secure only
when they have the same security level, i.e., `1 ≡ `2. The same principle applies
for putMVar .
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Memory ` ts ::= [ ] | c : ts
Cell c ::= ⊗ | JtK
Types: τ ::= · · · | MVar ` τ
Values: v ::= · · · | MVar n
Terms: t ::= · · · | newMVar | takeMVar t | putMVar t1 t2

(NEWMVAR)
|Σ(`)| = n

〈Σ,newMVar〉 −→ 〈Σ(`)[n] :=⊗, return (MVar n)〉

(PUTMVAR1)
t1 ; t ′1

〈Σ, putMVar t1 t2〉 −→ 〈Σ, putMVar t ′1 t2〉

(PUTMVAR2)
Σ(`)[n] = ⊗

〈Σ, putMVar (MVar n) t〉 −→ 〈Σ(`)[n] := JtK, return ()〉

(TAKEMVAR1)
t ; t ′

〈Σ, takeMVar t〉 −→ 〈Σ, takeMVar t ′〉

(TAKEMVAR2)
Σ(`)[n] = JtK

〈Σ, takeMVar (MVar n)〉 −→ 〈Σ(`)[n] :=⊗, return t〉

Fig. 49: MAC with synchronization primitives.

B.1 Calculus

Figure 49 extends the concurrent calculus with synchronization primitives. A
synchronization variable is represented as a value MVar n ::MVar ` τ where n
is an address18, pointing to the n-th cell of the `-memory, which contains a term
of type τ . We adjust our memory model to work with synchronization variables
19. We introduce a new syntactic category, memory cell c, which can be either
empty, i.e., ⊗, or full with some term t , i.e., JtK. Rule [NEWMVAR] evaluates
term newMVar by adding an empty memory cell to the `-labeled memory, i.e.,
Σ(`)[n] :=⊗ and returning a reference to it, i.e., MVar n . Rule [PUTMVAR1]
evaluates the reference and rule [PUTMVAR2] fills the empty cell it refers to with
the term, i.e.,Σ(`)[n] :=JtK and returns unit. Rule [TAKEMVAR1] evaluates the

18 In MAC a MVar is just a wrapper around unlabeled synchronization variables from
the standard library. Here we denote synchronization variables as an index, just like
we did for memory references.

19 We model mutable references as a special case of synchronization variables that are
always full.
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ε`A(⊗) = ⊗ ε`A(JtK) = Jε`A(t)K

(a) Erasure for memory cells.

ε`A(newMVar :: MAC `L (MVar `H τ)) =

{
newMVar• if `H 6v `A

newMVar otherwise

ε`A(MVar n :: MVar `H τ) =

{
MVar • if `H 6v `A

MVar n otherwise

(b) Erasure for newMVar and MVar .

Fig. 50: Erasure function for memory cells and synchronization primitives.

reference and rule [TAKEMVAR2] returns the content of the non-empty cell it
refers to, i.e., Σ(`)[n] = JtK for some term t , and empties it, i.e., Σ(`)[n] :=⊗.
Observe that the premise of rules [PUTMVAR2] and [TAKEMVAR2] accounts
for the blocking behavior of the synchronization primitives by making the con-
figuration stuck. In particular, primitive putMVar blocks if the cell is non-empty,
i.e., 〈Σ, putMVar (MVar n) t〉 6−→ if Σ(`)[n] 6≡ ⊗ and similarly takeMVar
blocks if the cell is empty, i.e., 〈Σ, takeMVar (MVar n)〉 6−→ if Σ(`)[n] ≡ ⊗.

B.2 Erasure Function

Proving that synchronization primitives are secure is straightforward in our set-
ting. The primitives are clearly deterministic and showing single-step simulation
is simpler than for references because primitives putMVar and takeMVar work
within the same security level. Memory cells are erased homomorphically (Fig-
ure 50a). Applying the two-steps erasure technique, the erasure function replaces
term newMVar with newMVar•, when it creates a sensitive synchronization
variable—see Figure 50b. The erasure function rewrites the address of a synchro-
nization reference to • if it points to a sensitive memory. Figure 51 shows rule
[NEWMVAR•], which reduces term newMVar•, returns a dummy reference,
i.e., MVar •, and skips the write effect, leaving the store Σ unchanged. Ob-
serve that we do not need to replace takeMVar with a special term takeMVar•,
because the primitive can only write to a memory at the same security level as
the computation, therefore either they are both sensitive and the computation
rewritten to • or both non-sensitive and erased homomorphically.
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Terms: t ::= · · · | newMVar•

(NEWMVAR•)
〈Σ,newMVar•〉 −→ 〈Σ, return (MVar •)〉

Fig. 51: Semantics of newMVar•.





PAPER III

Revised version of

Securing Concurrent Lazy Programs Against Information Leakage,

by Marco Vassena, Joachim Breitner and Alejandro Russo,

30th IEEE Computer Security Foundations Symposium.





CHAPTER

THREE

SECURING CONCURRENT LAZY PROGRAMS
AGAINST INFORMATION LEAKAGE

Abstract. Many state-of-the-art information-flow control (IFC) tools are
implemented as Haskell libraries. A distinctive feature of this language is
lazy evaluation. In his influencal paper on why functional programming
matters [19], John Hughes proclaims:

Lazy evaluation is perhaps the most powerful tool for modular-
ization in the functional programmer’s repertoire.

Unfortunately, lazy evaluation makes IFC libraries vulnerable to leaks
via the internal timing covert channel. The problem arises due to sharing,
the distinguishing feature of lazy evaluation, which ensures that results
of evaluated terms are stored for subsequent re-utilization. In this sense,
the evaluation of a term in a high context represents a side-effect that
eludes the security mechanisms of the libraries. A naïve approach to
prevent that consists in forcing the evaluation of terms before entering
a high context. However, this is not always possible in lazy languages,
where terms often denote infinite data structures. Instead, we propose
a new language primitive, lazyDup, which duplicates terms lazily. We
make the security library MAC robust against internal timing leaks via
lazy evaluation, by using lazyDup to duplicate terms manipulated in high
contexts, as they are evaluated. We show that well-typed programs satisfy
progress-sensitive non-interference in our lazy calculus with non-strict
references. Our security guarantees are supported by mechanized proofs
in the Agda proof assistant.

1 Introduction

Information-Flow Control [41] (IFC) scrutinizes source code to track how data
of different sensitivity levels (e.g., public or sensitive) flows within a program,
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and raises alarms when confidentiality might be at stake. There are several
special-purpose compilers and interpreters which apply this technology: Jif [29]
(based on Java), FlowCaml [36] (based on Caml and not developed anymore),
Paragon [9] (based on Java), and JSFlow [16] (based on JavaScript). Rather
than writing compilers/interpreters, IFC can also be provided as a library in the
functional programming language Haskell [22].

Haskell’s type system enforces a disciplined separation of side-effect free
code from side-effectful code, which makes it possible to introduce input and
output (I/O) to the language without compromising on its purity. Computations
performing side-effects are encoded as values of abstract types which have the
structure of monads [26]. This distinctive feature of Haskell is exploited by state-
of-the-art IFC libraries (e.g., LIO [48] and MAC [40]) to identify and restrict
“leaky” side-effects without requiring changes to the language or runtime.

Another distinctive feature of Haskell is its lazy evaluation strategy. The
evaluation is non-strict, as function arguments are not evaluated until required
by the function, and it performs sharing, as the values of such arguments are
stored for subsequent uses. In contrast, eager evaluation, also known as strict
evaluation, reduces function arguments to their denoted values before executing
the function.

From a security point of view it is unclear which evaluation strategy—lazy
or strict—is more suitable to preserve secrets. To start addressing this subtlety,
we need to consider the interaction between evaluation strategies and covert
channels.

Sabelfeld and Sands [42] suggest that lazy evaluation might be intrinsically
safer than eager evaluation for leaks produced by termination, as lazy evalua-
tion could skip the execution of unneeded non-terminating computations that
might involve secrets. In multi-threaded systems, where termination leaks are
harmful [47], a lazy evaluation strategy seems to be the appropriate choice.

Unfortunately, although lazy evaluation could “save the day” when it comes
to termination leaks, it is also vulnerable to leaks via another covert channel
due to sharing. Buiras and Russo [11] described an attack against the LIO li-
brary [47] where lazy evaluation is exploited to leak information via the internal
timing covert channel [45]. This covert channel manifests by the mere presence
of concurrency and shared resources. It gets exploited by setting up threads to
race for a public shared resource in such a way that the secret value affects their
timing and hence the winner of the race. LIO removes such leaks for public
shared-resources which can be identified by the library, e.g., references and file
descriptors. Due to lazy evaluation, variables introduced by let-bindings and
function applications—which are beyond LIO’s control20—become shared re-
sources and their evaluation affects the threads’ timing behavior. Note that the
internal timing channel leverages the order with which threads access the shared

20 As a shallow EDSL, LIO reuses much of the host language features to provide security
(e.g., type-system and variable bindings). This design choice makes the code base
small at the price of not fully controlling the features provided by the host language.
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let ` = [1 . . 10000000]
r = sum `

in do fork LIO -- Secret thread
(do s← unlabel secret

when (s ≡ 1 ∧ r > 10) return ())
no_ops;no_ops

-- Public threads
fork LIO (do sendPublicMsg (r − r))
fork LIO (do no_ops; sendPublicMsg 1)

Fig. 1: Lazy evaluation attack

resource, not their execution time, which constitutes a different side channel,
known as external timing covert channel [6, 14]. The attacker model for the ex-
ternal timing covert channel assumes that the attacker has access to an arbitrarily
precise stopwatch, with which he can measure the wall-clock execution time of
instructions and thereby deduce information about secrets. This paper does not
address the external timing covert channel, which is an harder problem and for
which mitigation techniques exist [2, 52, 53].

Figure 1 shows the lazy evaluation attack. In LIO, every thread has a current
label which serves a role similar to the program counter in traditional IFC
systems [51]. The first thread inspects a secret value (s ← unlabel secret),
which sets the current label to secret. We refer to threads with such current
label as secret threads. The other spawned threads have their current label set to
public, therefore we call them public threads. Observe that the variable r hosts
an expression that is somewhat expensive to calculate, as it first builds a list
with ten million numbers (` = [1 . . 10000000]) before summing up its elements
(r = sum `). Importantly, the variable r is referenced by both the secret and
the public threads. Observe that every thread is secure in isolation—the secret
thread always returns () and the public threads read no secret. Assume that the
expression no_ops is some irrelevant computation that takes slightly longer
than half the time it takes to sum up the ten million numbers. Then the public
threads race to send a message on a shared-public channel using the function
sendPublicMsg :

. If s ≡ 1, then the secret thread has by now evaluated the expression refer-
enced by r , in order to check if r > 10 holds. Due to sharing, the first public
thread will not have to re-calculate r and can output 0 almost imediately, while
the other public thread is still occupied with no_ops .
. If s ≡ 0, then the secret thread did not touch r . While the first public thread

now has to evaluate r the second public thread has enough time to perform
no_ops and output 1 first.

As a result, the last message on the public channel reveals the secret s. This
attack can be magnified to a point where whole secrets are leaked systemati-
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cally and efficiently [47]. Similar to LIO, other state-of-the-art concurrent IFC
Haskell libraries [10, 40] suffer from this attack.

A naïve fix is to force variable r to be fully evaluated before any public
threads begin their execution. This works, but it defeats a main purpose of lazy
evaluation, namely to avoid evaluating unneeded expressions. Furthermore, it is
not always possible to evaluate expressions to their denoted value. Haskell pro-
grammers like to work with infinite structures, even though only finite approxi-
mation of them are actually used by programs. For example, if variable ` in Fig-
ure 1 were the list [1/n | n ← [1 . .]] of reciprocals of all natural numbers and r
the sum of those bigger than one millionth (r = sum (takeWhile (> 1e−6) `)).
The evaluation of r uses only a finite portion of `, so the modified program still
terminates. But naïvely forcing ` to normal form would hang the program. This
demonstrates that simply forcing evaluation as a security measure is unsatisfy-
ing, as it can introduce divergence and thus change the meaning of a program.

Instead, we present a novel approach to explicitly control sharing at the lan-
guage level. We design a new primitive called lazyDup which lazily duplicates
unevaluated expressions. The attack in Figure 1 can then be neutralized by re-
placing r with lazyDup r in the secret thread, which will then evaluate its own
copy of r , without affecting the public threads.

To the best of our knowledge, this work is the first one to formally address
the problem of internal timing leaks via lazy evaluation. In summary, our contri-
butions are:
I We present lazyDup, a primitive to restrict sharing in lazy languages with

mutuable references.
I By injecting lazyDup when spawning threads, we demonstrate that internal

timing leaks via lazy evaluation are closed. The primitive lazyDup is not only
capable to secure MAC against lazy leaks, but also a wide range of other security
Haskell libraries (e.g., LIO and HLIO).
I We prove that well-typed programs satisfy progress-sensitive non-interference

(PSNI) for a wide-range of deterministic schedulers. However, for ease of ex-
position in this article, we focus only on a round-robin scheduler—the same
scheduler used in GHC’s runtime system21. Our non-interference claims are sup-
ported by mechanized proofs in the Agda proof assistant [31] and are parametric
on the chosen (deterministic) scheduler.
I As a by-prodcut of interest for the programming language community, we

provide—to the best of our knowledge—the first operational semantics for lazy
evaluation with mutable references.

This paper is organized as follows. Section 2 provides a brief overview on
MAC. Section 3 describes our formalization for a concurrent non-strict calculus
with sharing that also includes references. Primitive lazyDup is described in
Section 4. Section 5 shows how lazyDup can remove leaks via lazy evaluation

21 The Glasgow Haskell Compiler (GHC) is a state-of-the-art, industrial-strength, open
source, Haskell compiler.
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-- Abstract types
data Labeled ` τ
data MAC ` τ

-- Monadic structure for computations
instance Monad (MAC `)

-- Core operations
label :: `L v `H ⇒ τ → MAC `L (Labeled `H τ)
unlabel :: `L v `H ⇒ Labeled `L τ → MAC `H τ

forkMAC :: `L v `H ⇒ MAC `H ()→ MAC `L ()

Fig. 2: Core API for MAC

and Section 6 provides the corresponding security guarantees. Related work is
given in Section 7 and Section 8 concludes.

2 The MAC Library

To set the stage of the work at hand, we briefly introduce the relevant aspects of
the MAC IFC library [40].

Security lattice The sensitivity of data is indicated by labels. These are partially
ordered by v, and form a security lattice [12]. Concretely `1 v `2 holds if
data labeled with label `1 is allowed to flow to entities labeled with `2. Although
MAC is parameterized on the security lattice, for simplicity we focus on the
classic two-point lattice where the label H denotes secret (high) data, the label
L denotes public (low) data, and H 6v L is the only disallowed flow. In
MAC, each label is represented as an abstract data type. To improve readability,
subscripts on label metavariables hint at their relationship, e.g., if `L and `H
appear together, then `L v `H holds.

Security Types Figure 2 shows the core of MAC’s API. The abstract type
Labeled ` τ classifies data of type τ with a security label `. For example,
creditCard :: Labeled H Int represents a sensitive integer, while weather ::
Labeled L String is a public string. The abstract type MAC ` τ denotes a
(possibly) side-effectful secure computation which handles information at sen-
sitivity level ` and yields a value of type τ as a result. Importantly, a MAC ` τ
computation enjoys a monadic structure, i.e., it is built by the two fundamen-
tal operations return :: τ → MAC ` τ and (>>=) :: MAC ` τ → (τ →
MAC ` τ ′) → MAC ` τ ′ (called “bind”). The operation return x produces
a computation that returns the value denoted by x without causing side-effects.
The function (>>=) is used to sequence computations and their corresponding
side-effects. Specifically, m >>= f takes the result of running the computation
m , passes it to the function f which then returns a second computation to run.
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impl :: Labeled H Bool → MAC H (Labeled L Bool)
impl secret = do

bool ← unlabel secret
if bool then label True

else label False

Fig. 4: Implicit flows are ill-typed (H 6v L).

do x ← m
return (x + 1)

Fig. 3: do-notation

Haskell provides syntax sugar for
monadic computations known as do-
notation. For instance, the program m>>=
λx → return (x + 1), which adds 1 to
the value produced by m, can be written
as shown in Figure 3.

Flows of information Abstractly, the side-effects of a MAC ` τ computation
involve either reading or writing data. We need to ensure that these actions
respect the flows of information that are permitted by the security lattice. The
functions label and unlabel allow MAC ` τ computations to securely interact
with labeled expressions, which are the simplest kind of resources available
in MAC. If a MAC `L computation writes data into a sink, the computation
needs to have at most the sensitivity of the sink itself. This restriction, known
as no write-down [5], preserves the sensitivity of data handled by the MAC `L-
computation. The function label creates a fresh, labeled value. From the security
point of view this corresponds to allocating a fresh location in memory and
immediately writing a value into it—hence the no write-down principle applies.
The type signature of label , has a type constraint before the symbol⇒, which
is a property about the types that follow, which must be statically fulfilled.
The constraint `L v `H ensures that when calling label x , the level of the
computation `L is no more confidential than the sensitivity `H of the labeled
value that it creates. In contrast, a computation MAC `H τ , according to the no
read-up rule, is only allowed to read labeled values at most as sensitive as `H.
The constraint `L v `H in the type signature of unlabel enforces this restriction.
It protects the sensitivity of the result produced by MAC `H τ since the result
might only involve data `L which is at most as sensitive as `H. This paper focuses
on labeled expression, but MAC provides additional side-effecting primitives for
exception handling, network communication, references, and synchronization
primitives [40].

Implicit flows The interaction between the type of a MAC `-computation and
the no write-down restriction makes an implicit flow ill-typed. Figure 4 shows
a program that attempts to implicitly leak a Boolean secret, which is correctly
rejected by the compiler. In order to branch on sensitive data, a program needs
first to unlabel it, which forces the computation to be of type MAC H τ , for
some type τ . Observe that the computation is at level H , therefore it cannot write
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Types: τ ::= () | τ1 → τ2
Values: v ::= () | λx .t
Terms: t ::= v | x | t1 t2
Stacks: S ::= [ ] | C : S
Continuations: C ::= x | #x

(APP1)
fresh(x )

(∆, t1 t2,S) ; (∆[x 7→ t2], t1, x : S)

(APP2)
(∆,λy .t , x : S) ; (∆, t [x / y ],S)

(VAR1)
(∆[x 7→ t ], x ,S) ; (∆, t ,#x : S)

(VAR2)
(∆, v ,#x : S) ; (∆[x 7→ v ], v ,S)

Fig. 5: Syntax and semantics à la Sestoft

public data, i.e., labeled with L, due to the no write-down policy, regardless of
which branch is taken. Trying to do so, as shown in Figure 4, incurs in a violation
of the security policy, which is detected by the compiler and reported as a type
error. In particular, the use of label in the example is rejected, because its type
constraint cannot be satisfied, since the two-points lattice disallows that flow of
information, i.e., H 6v L.

Concurrency The mere possibility to run (conceptually) simultaneous MAC `
computations provides attackers with new tools to bypass security checks. In
particular, threads introduce the internal timing covert channel described in the
introduction. Furthermore, it considerably magnifies the bandwidth of the termi-
nation covert channel, where secrets are learned by observing the terminating
behavior of threads [47]. To securely support concurrency, MAC forces pro-
grammers to decouple computations which depend on sensitive data from those
performing public side-effects. This way, non-terminating loops based on secrets
cannot affect the outcome of public events. To prevent that, the type signature
of fork MAC in Figure 2 only allows spawning threads, i.e., a secure computation
with type MAC `H (), which are at least as sensitive as the current computation,
i.e., MAC `L (). It is secure to do so because that decision depends on less
sensitive data (`L v `H).

3 Lazy Calculus

In order to rigorously analyze the information leaks introduced by sharing, we
need to build on top of a formal semantics that is operationally precise enough
to make sharing observable. The default choice for such a semantics is Launch-
bury’s “Natural Semantics for lazy evaluation” [21], where the structure of the
heap is explicit and sharing, as well as cyclic data structures, are manifestly vis-
ible. The heap is a partial map from names to terms. This is still more abstract
than other formalisations such as the Spineless Tagless G-machine (STG) [32],
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which concerns itself with pointers and memory representation and is the basis
of the Haskell implementation GHC [25]. That much operational detail would
only clutter this work, and in terms of lazy evaluation, Launchbury’s semantics
is a suitable model of the actual implementation.

This work will have to address concurrency, for which a big-step seman-
tics such as Launchbury’s is unsuitable for. Therefore, we build on Sestoft’s
rendering of Launchbury’s semantics as an abstract machine with small-step
semantics [44]. Here, a judgement (∆, t ,S ) ; (∆′, t ′,S ′) indicates that a con-
figuration consisting of a current expression t , a heap ∆ and a stack S takes one
step to the configuration on the right hand side of the arrow.

The rules in Figure 5 describe the transitions of the abstract machine for
the standard syntactical constructs. Rule (APP1) initiates a function call. Since
we work in a lazy setting, the function argument t2 is not evaluated at this
point. Instead, it is stored on the heap as a thunk, i.e., an unevaluated expression,
under a new name x , which is fresh with regard to the whole configuration—
this corresponds to allocating memory. The machine proceeds to evaluate the
function expression t1 to a lambda expression. Then, rule (APP2) takes over
and substitutes the name of the argument x , which is found on the stack, into
the body t of the lambda expression. At some point the argument x may need
to be evaluated. Rule (VAR1) finds the corresponding thunk t on the heap and,
after leaving an update marker #x on the stack, begins to evalute the thunk—
intuitively, this marker indicates that when the evaluation of the current term
finishes, the denoted value gets stored in x . During evaluation, x is removed
from the heap. If the evaluation of t required the value of x , then the machine
would get stuck. This effect is desired: if the binding for x were to remain on the
heap, evaluation would simply start to run in circles. Removing the variable from
the heap, a technique called blackholing, makes this error condition detectable.
When the machine reduces the thunk to value v , rule (VAR2) pops the update
marker from the stack and puts x back on the heap, now referencing the value
v . Every future use of x will use v directly instead of re-calculating it. This
updating operation is the crucial step to implement sharing behavior.

We simplified Sestoft’s presentation of the semantics in a few ways to re-
move aspects not relevant for the discussion at hand and to facilitate our machine-
checked proofs in Agda: i) our syntax does not include mutual recursive let
expressions; ii) in contrast to Sestoft and Launchbury, we allow non-trivial
arguments in function application, i.e., our terms are not necessarily in Adminis-
trative Normal Form (ANF). In that manner, a non-recursive let expression such
as let x = t1 in t2 can be expressed as (λx .t2) t1; iii) although omitted in
this presentation, our formalism sports types with multiple values (e.g., Boolean
expressions), and the corresponding case-analysis clause (e.g., if -then-else),
using the rules found in [8].
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`
τ ::= · · · | MAC ` τ | Labeled ` τ
v ::= · · · | return t | Labeled t
t ::= · · · | t1 �= t2 | label t | unlabel t
C ::= · · · x | >>=t | unlabel

(LABEL)
(∆, label t ,S) ; (∆, return (Labeled t),S)

(UNLABEL1)
(∆, unlabel t ,S) ; (∆, t , unlabel : S)

(UNLABEL2)
(∆,Labeled t , unlabel : S) ; (∆, return t ,S)

(BIND1)
(∆, t1 >>= t2,S) ; (∆, t1, >>=t2 : S)

(BIND2)
(∆, return t , >>=t2 : S) ; (∆, t2 t ,S)

Fig. 6: Security primitives

3.1 Security Primitives

We now extend this standard calculus with the security primitives of MAC
as shown in Figure 6. The new type Labeled ` τ consists of pure values t ::
τ wrapped in Labeled , and annotates them with the security level `. We call
Labeled 42 :: Labeled ` Int a pure, side-effect free resource labeled ` with
content 42. We introduce a further form of labeled resource, namely references,
in the next section. The actual MAC implementation knows even more labeled
resources (e.g., files) and generalizes over resources [40]. Observe that MAC
requires no modification to Haskell’s type system in order to handle labels: each
label is defined as an empty type, i.e., a type that has no value, and in labeled
data types, e.g., Labeled , labels are phantom types, i.e., a type parameter that
only carries the sensitivity of data at the type-level.

The constructor Labeled is not available to the user, who can only use label
and unlabel to create resp. inspect labeled resources. In order to enforce the
security invariants, these two functions live in the MAC monad and their type
signatures ensure that the label of the resource is compatible with the security
level of the current computation, as explaind in the previous section. An expres-
sion of type MAC ` τ represents a secure computation at sensitivity level `,
which yields a value of type τ as result. Besides using label and unlabel the user
can create such computations using the standard monad operations return and
>>=.

The semantics rules in Figure 6 are fairly straight-forward and follow the
pattern seen in the pure semantics. It is worth noting that thanks to the static
nature of MAC, no run-time checks are needed to prevent insecure flows of
information in these rules.
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Configuration: c ::= 〈M ,∆, t ,S〉
Memory: M ::= [ ] | x :M
Addresses: n ::= 0 | 1 | 2 | · · ·
Types: τ ::= · · · | Ref ` τ
Values: v ::= · · · | Ref n
Terms: t ::= · · · | new t | read t

| write t1 t2
Continuations: C ::= · · · | read | write t

(LIFT)
(∆, t ,S) ; (∆′, t ′,S ′)

〈M ,∆, t ,S〉 −→ 〈M ,∆′, t ′,S ′〉

(NEW)
n = |M | fresh(x )

〈M ,∆,new t ,S〉 −→ 〈M [n 7→ x ],∆[x 7→ t ], return (Ref n),S〉

(WRITE1)
〈M ,∆,write t1 t2,S〉 −→ 〈M ,∆, t1,write t2 : S〉

(WRITE2)
fresh(x )

〈M ,∆,Ref n,write t : S〉 −→ 〈M [n 7→ x ],∆[x 7→ t ], return (),S〉

(READ1)
〈M ,∆, read t ,S〉 −→ 〈M ,∆, t , read : S〉

(READ2)
〈M ,∆,Ref n, read : S〉 −→ 〈M ,∆, return M [n],S〉

Fig. 7: Syntax and semantics for references

3.2 References

We now extend the abstract machine with mutable references, a feature available
in MAC to boost the performance of secure programs [40]. References live in
the memory M , which is simply a list of variables, added as a component of the
program configuration (Figure 7). The address of a memory cell is its index in
this list. The memory M [n 7→ x ] is M with its n-th cell changed to refer to x .
Observe that the memory M and the heap∆ are two distinct syntactic categories
and that, while the latter contains arbitrary terms and enjoys sharing, the former
merely contains pointers to the heap. A labeled reference is represented as
a value Ref n :: Ref ` τ where n is the address of the n-th memory cell,
which contains a variable (a “pointer”) to some term t :: τ on the heap22. Only

22 MAC’s implementation of labeled reference is a simple wrapper around Haskell’s type
IORef . However, we denote references as a simple index into the labeled memory.
This design choice does not affect our results.
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new :: `L v `H ⇒ τ → MAC `L (Ref `H τ)
read :: `L v `H ⇒ Ref `L τ → MAC `H τ
write :: `L v `H ⇒ τ → Ref `H τ → MAC `L ()

Fig. 8: API of memory operations

secure computations can manipulate these labeled references using the secure
primitives in Figure 8. Observe that the types are restricted according to the no
read-up and no write-down rules—like those of label and unlabel .

The extended semantics is represented as the relation c −→ c′, defined in
Figure 7, which extends ; via [LIFT]. Rule [NEW] allocates the second argu-
ment on the heap with a fresh name x , extends the memory with the new pointer
to x and returns a reference to it. Rule [WRITE1] evalutes its first argument to
a reference and rule [WRITE2] then overrides the memory cell with pointer to
a newly allocated heap entry, just like new . The two [READ]-rules retrieve a
pointer from memory. To the best of our knowledge, this is the first published
operational semantics that models both lazy evaluation and mutable references,
and although we constructed it using standard techniques, we would like to point
out a crucial subtlety.

A naïve model might omit the extra memory M , let a reference simply con-
tain a variable on the heap (t ::= · · · | Ref x ) and use the transition rule
〈∆,Ref x ,write t : S 〉 −→ 〈∆[x 7→ t ], return (),S 〉. But this interacts badly
with sharing, as shown by the program in Figure 9.

do r ← new (1 + 1)
x ← read r
write r 1
if (x ≡ 2) then return ","

else return "/"

Fig. 9: Immutability

The new statement allocates a new
variable x , binds it to 1 + 1 and re-
turns the reference Ref x . The next
read statement brings variable x into
scope. This is a pure variable, and
we expect its denoted value to stay
the same, but, under the naïve seman-
tics, the following write statement
changes x to 1, and chaos ensues.

The solution is to add an extra llayer of indirection, and distinguish between
the mutable memory cells that make up a reference, and the heap locations that—
although changed in [VAR2]—are conceptually constant. We chose to keep track
of them separately in the memory M and the heap ∆, as we found that it makes
formal reasoning easier. It is also viable to keep both on the heap, and just be
disciplined as to which variables denote references and which denote values
and thunks. This would be closer to GHC’s runtime, where both pure data and
mutable references are addressed by pointers into a single heap.
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(SEQ)
〈M1,∆1, t1,S1〉 −→ 〈M2,∆2, t2,S2〉

〈M1,∆1, Ts[n 7→ (t1,S1)]〉 ↪→ 〈M2,∆2, Ts[n 7→ (t2,S2)]〉

(FORK)
m = |Ts|

〈M ,∆, Ts[n 7→ (fork t ,S)]〉 ↪→ 〈M ,∆, Ts[n 7→ (return (),S)][m 7→ (t , [ ])]〉

Fig. 11: Semantics of the concurrent calculus

3.3 Concurrency

Finally we extend our language with concurrency in the form of threads whose
execution interleave23. We consider global configurations of the form 〈M , ∆, Ts〉
as shown in Figure 10, adding a thread pool Ts consisting of a list of threads.

Thread pool: Ts ::= [ ] | (t ,S ) : Ts
Configuration: c ::= 〈M , ∆, Ts〉
Terms: t ::= · · · | fork t

Fig. 10: Concurrent calculus

A thread (t ,S ) is an interrupted se-
cure computation, consisting of a con-
trol term t and a stack S. Within a
global configuration, threads are iden-
tified by their position in the thread
pool. For simplicity and brevity, the
concurrent calculus features a Round
Robin scheduler, the same kind of scheduler used in GHC run-time system24—
however, our results and semantics generalize to a wide range of deterministic
schedulers. In the following, we omit the scheduler from the configuration and
from the semantics rules for space reasons.

A global configuration c1 steps to c2 (written c1 ↪→ c2), according
to the two rules in Figure 11. In both rules [SEQ] and [FORK], thread n is
executed—the scheduler actually deterministically chooses which thread to run,
which is retrieved from the thread pool Ts. In rule [SEQ], the selected thread,
i.e., (t1,S1), takes a sequential step, paired with the current memory and heap:
(〈M1, ∆1, t1,S1〉 −→ 〈M2, ∆2, t2,S2〉). The global configuration is then up-
dated accordingly to the final sequential configuration, in particular the thread
pool is updated with the reduced thread, i.e., Ts[n 7→ (t2,S2)]. In rule [FORK],
the selected thread forks a thread—note that term fork t is stuck in the se-
quential semantics and rule [SEQ] does not apply. The new thread is assigned
the fresh identifier m = |Ts|—thread pool Ts contains threads 0 ... |Ts| − 1.
Lastly, the thread pool is updated with the parent thread, appropriately reduced
to (return (),S ), and by inserting the new thread initialized with an empty stack,
i.e., (t , [ ]), at position m . Note that a thread that tries to evaluate a variable x
that is already under evaluation by another thread will not find this variable on
the heap, due to the blackholing explained earlier.
23 MAC provides also synchronization variables [40], which we omit here.
24 https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/
Scheduler

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Scheduler
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Scheduler
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Terms: t ::= · · · | lazyDup t

(LAZYDUP1)
¬ isVar (t) fresh(x )

〈∆, lazyDup t ,S〉; 〈∆[x 7→ t ], lazyDup x ,S〉

(LAZYDUP2)
x 7→t ∈ ∆ fresh(x ′)

〈∆, lazyDup x ,S〉; 〈∆[x ′ 7→ JtK∅], x ′,S〉

Jt1 t2KB = Jt1KB Jt2KB

Jλx .tKB = λx .JtKB∪{x }

J()KB = ()

JxKB =

{
x if x ∈ B

lazyDup x if x 6∈ B

JlazyDup tKB = lazyDup t

Fig. 12: Synatx and semantics of lazyDup

The thread is now blocked, guaranteeing that, even in the concurrent setting,
every thunk will only be evaluated at most once. This mechanism is consistent
with the operational semantics used by Finch et al. [3].

4 Duplicating Thunks

This section presents one of our main contributions: a primitive, called lazyDup
that prevents sharing. Given a term t , evaluating lazyDup t will lazily create
a copy of t . The laziness is necessary in order to duplicate cyclic or infinite
data structures without sending the program into a loop. In this paper, we lie
the formal ground of lazyDup and the security guarantees that it provides. We
speculate that an implementation for GHC is feasible based on its internals
and how lazyDup has been conceived. We first present the basic semantics of
lazyDup and then describe how we handle references.

4.1 Semantics

Figure 12 extends the syntax and the semantics of the calculus with lazyDup.
The rule [LAZYDUP1] ensures that the argument of lazyDup is a variable, if that
is not already the case. The interesting rule is [LAZYDUP2], which evaluates
lazyDup x and copies the expression t referenced by x . This closes the covert
channel represented by x , but is insufficient, as t might mention further variables.
Therefore, lazyDup has to descent into t , and handle these as well. But instead
of immediately duplicating the terms referenced by those variables, we simply
wrap them in a call to lazyDup—this is the eponymous laziness.
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Values: v ::= · · · | DRef m

JRef nKB = DRef n
JDRef nKB = DRef n

(READD )
〈M ,∆,DRef n, read : S〉 −→ 〈M ,∆, return (lazyDup M [n],S)〉

(WRITED )
fresh(x )

〈M ,∆,DRef n,write t : S〉 −→ 〈M [n 7→ x ],∆[x 7→ t ], return (),S〉

Fig. 13: Duplicate-on-read memory operations

(FORK)
|Ts| = m

〈M ,∆, Ts[n 7→ (fork t ,S)]〉 ↪→
〈M ,∆, Ts[n 7→ (return (),S)][m 7→ ( lazyDup t , [ ])]〉

Fig. 14: Patch needed to secure MAC

Figure 12 shows (some of) the equations of the function JtKB which imple-
ments this. It homomorphically traverses the tree t , while keeping track of the
set of bound variables in its parameter B . Ground values and bound variables
are left alone. When lazyDup finds a free variable, i.e., one not in B , it wraps it
with a call to lazyDup as intended. In the following we omit the superscript B ,
if irrelevant. Finally, if J·K comes across a call to lazyDup, it does not traverse
further, as the existing lazyDup already takes care of the duplication. In fact,
without this case, evaluating expression lazyDup (lazyDup t) would send the
program into an infinite loop. We conjecture that introducting lazyDup does
not change termination behavior. Note that the term JtK has at most one call to
lazyDup wrapped around each free variable, if t already has this property.

4.2 References

Duplicating references requires particular care. To illustrate this, consider what
does not work. We cannot leave references alone (JRef nK = Ref n), because
thunks can be passed through the reference and open a new leaking channel,
but we cannot duplicate the reference and the term it currently references either,
because this would change the semantics of mutable references. More concretely,
consider a Ref n with M [n] = x and ∆(x ) = t . Assume we duplicate t to
∆(y) = JtK for a fresh name y and let JRef nK = Ref n ′ for a fresh memory
cell n ′, such that M [n ′ 7→ y ]. If later Ref n gets updated with the value 42,
i.e., M [n 7→ z ] with ∆(z ) = 42, then this change would be invisible to Ref n ′,
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which would still refer to JtK through variable y . This is bad, as lazyDup is not
supposed to change the observable semantics of the program!

Crucially, we need to propagate any write operation on the original reference
to the duplicated reference, therefore they need to point to the same memory
location, but we also must prevent leaks from reading this shared resource. To
achieve this, we introduce a new variant of reference, called duplicate-on-read
reference25, which is represented by DRef n . When reading from a DRef n
we wrap the read value in a call to lazyDup, as shown in Figure 13, while write
operations on a duplicate-on-read reference are executed as usual. Function J.K
does not need to follow references and duplicate their content, but simply turns
them into duplicate-on-read-references. In this sense, we apply lazyDup lazily
to reference: the duplication is suspended and continues when the reference is
read.

5 Securing MAC

We now pinpoint the vulnerability leveraged by the attack sketched in the in-
troduction and show how to modify MAC to close it using lazyDup. It turns
out that one careful modification to the [FORK] rule suffices. This change, high-
lighted in greeen in Figure 14, ensures that when we create a new thread to
evaluate t , it will work on a lazily duplicated copy of t , i.e., lazyDup t . As
a result, each thunk shared between the parent and the child thread gets lazily
duplicated: the parent thread works on the original thunk, while the child thread
works on a copy.26

Let’s trace how this fixes the leak shown in Figure 1. Let t be the code of the
secret thread. When it is spawned, lazyDup t is added to the thread pool. Note
that the critical resource that causes the leak, namely variable r , is a free variable
of t . As the secret thread executes lazyDup t , the occurrence of r in the code
is replaced by lazyDup r (rule [LAZYDUP2]). Therefore, if s ≡ 1, the thread
duplicates r before evaluating it, leaving r itself alone, just like when s ≡ 0
and the secret thread does not touch r at all. As a result, the timing behavior of
public threads, i.e., the order with which they output a message on the public
channel, is unaffected by the value of the secret s and the internal timing leak is
closed.

Observe that lazyDup conservatively avoids sharing between secret and
public threads. In principle, it is acceptable for a secret thread to evaluate and
update a thunk if that action does not depend on the secret—for example if that
happens before any sensitive command such as unlabel . Assessing whether this
is the case requires sophisticated program analysis techniques, which are beyond

25 The same approach applies to synchronization variables.
26 It is secure to avoid duplication whenever the parent and the child thread share the

same security level, which are both statically known in MAC, see Figure 2. Since the
label of the child thread (`H) is at least as sensitive as that of the parent, i.e., `L v `H,
we only have to use lazyDup if `L < `H.
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c c′

ε`A (c) ε`A (c′)

ε`A
ε`A

Fig. 15: Single-step simulation

the scope of this paper. On the other hand, sharing from public to secret threads
is always secure, and in fact lazyDup allows for this “write-up” behavior: if,
due to lucky scheduling, the public thread finishes evaluating r before the secret
thread looks at it, then the latter will see the fully evaluated term and securily
enjoy the benefits of sharing.

The primitive lazyDup is capable of securing LIO as well, even though
there it has to be used differently from here, because the security level of threads
are not known statically, see Appendix A for more details.

6 Security Guarantees

In this section, we show that our calculus enforces progress sensitive non-
interference (PSNI). We start by describing our proof technique, based on term
erasure. To facilitate reasoning, we proceed to decorate our calculus with labels
that keep track of the security level of terms stored in memory, heaps and con-
figurations. We then prove PSNI for the decorated calculus and conclude that
MAC is likewise secure by establishing a mutual simulation relation with the
vanilla (undecorated) calculus.

6.1 Term Erasure

Term erasure is a technique to prove non-interference in functional programs
[23] and IFC libraries (e.g., [10, 18, 47–50]). It relies on an erasure function,
which we denote by ε`A . This function rewrites data above the attacker’s security
level, denoted by label `A, to the special syntactic construct •. At the core, this
technique establishes a simulation between reductions of configurations and
reductions of their erased counterparts. Figure 15 shows that erasing sensitive
data from a configuration c and then taking a step (orange path) yields the same
configuration as first taking a step and then erasing sensitive data (cyan path),
i.e., the diagram commutes. If the configuration c were to leak sensitive data into
a non-sensitive resource, then it will remain in ε`A(c

′). The same data would be
erased in ε`A(c) and the diagram would not commute.

6.2 Decorated Calculus

The erasure proof technique was conceived to work on dynamic IFC approaches
[23], where security labels are attached to terms. Applying term erasure to MAC,
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where labels are parts of the types instead of the terms, demands to extend our
calculus with extra information about the sensitivity nature of terms. As in
similar work [49, 50], we annotate terms with their type and make the erasure
function type-driven. The annotated term t ::τ denotes that the term t has type τ .
We likewise decorate configurations, heaps, memories, stacks and continuations
with labels.

Figure 16 summarizes the main changes required to decorate our calculus.

Pure conf. `: c ::= (∆`, t ,S `)
Seq. conf. `: c ::= 〈Σ,Γ, t ,S `〉
Heap map: Γ ::= (` : Label)→ Heap `
Store: Σ ::= (` : Label)→ Memory `
Memory `H: M ::= · · · | x `L : M
Terms τ : t ::= · · · | x `

Cont. `: C ::= · · · | x ` | #x `

Conc. conf.: c ::= 〈Σ,Γ, Φ〉
Pool map: Φ ::= (` : Label)→ Pool `

Fig. 16: Decorated Calculus

A pure configuration labeled
with `, i.e., 〈∆`, t ,S `〉, con-
sists of a labeled heap ∆`

and a labeled stack S `. An
`-labeled heap ∆` can be
accessed by `-labeled vari-
ables, e.g. x `. An `-labeled
stack contains exclusively `-
labeled continuations, which
involve only `-labeled vari-
ables, i.e., continuations x `

and #x `. Furthermore an `-
labeled heap contains terms
that can be evaluated only by threads at level `. A sequential configuration
〈Σ,Γ, t ,S `〉 labeled with `, consists of a store Σ, a current term t , an heap map
Γ and a labeled stack S `. An `-labeled configuration denotes a computation of
type MAC ` τ , for some type τ . Note that this does not necessarily mean that
term t is a MAC computation—when the configuration steps the current term
is changed with the next redex, which might have a completely different type.
Instead, the combination of current term and stack guarantees that the whole
configuration represents a MAC ` computation.

It is known that dealing with dynamic allocation of memory makes it chal-
lenging to prove non-interference (e.g., [4,17]). One manner to tackle this techni-
cality is by establishing a bijection between public memory addresses of the two
executions we want to relate and considering equality of public terms up to such
notion [4]. Instead, and similar to other work [18, 48–50], we compartmentalize
the memory into isolated labeled segments, one for each label of the lattice. This
way, allocation in one segment does not affect the others. A similar argument
holds for the heap and the thread pool, which we therefore also organize in
partitions, accessed through the heap map Γ respectively the pool map Φ. Since
we now have multiple heaps in one configuration we need to annotate the free
variables with the label of the heap in which they are bound. So a variable x `

denotes that x is bound in the heap Γ (`). Variables bound inside a term remain
unlabeled, e.g., λx .x . A variable x `L in a `H-labeled memory will have a label
of at most the memory’s sensitivity, `L v `H. Unlike variables, we do not need
to annotate memory cells n , as they only occur in a Ref n expression, which
carries a label in its type. So a reference Ref n :: Ref ` τ points to the n-th
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entry in the `-labeled memory. In the following, we write fresh(x `) to denote
that variable x is fresh with respect to heap Γ (`) = ∆` and stack S `. We write
Γ [`][x `] := t for the heap map obtained by performing the update Γ (`)[x ` 7→ t ],
and likewise for stores and pool maps.

6.3 Decorated Semantics

The interesting rules of the annotated semantics are shown in Figure 17. The
rules for the pure fragment of the calculus are adapted to work with labeled
variables. Note that rule [APP2] replaces the bound, hence unlabeled, variable y
with the labeled variable x ` and thus maintains the invariant that free variables
are labeled.

Why do we get away with giving the pure fragment of the annotated calculus
only access to the heap Γ (`) in a configuration at level `? What if the program
accesses a variable at a different level `′? Because that cannot happen in a safe
program, as the following example shows. Consider the following reduction
sequence:

([x `
′ 7→t ], x `

′
, [ ] )

; ([ ], t , # x `
′
: [ ]) -- rule [VAR1]

;∗ ([ ], v , # x `
′
: [ ])

; ([x `
′ 7→v ], v , [ ] ) -- rule [VAR2]

In the first step, the `-labeled configuration reads the variable x `
′
. According

to the no read-up security policy, this is only safe if `′ v `. In the last step,
the `′-labeled heap entry is updated with the value v . This constitutes a write
operation, so accoring to the no write-down policy, this requires ` v `′. By the
antisymmetry of the security lattice it follows that ` ≡ `′ must hold. So in the
presence of sharing, a configuration complies with the no write-down and no
read-up security policies only if it interacts soley with the `-labeled heap.

Rule [LIFT] executes a pure reduction step, giving it access to the appropri-
ate heap Γ (`) and updating the heap map afterwards. Rules [LAZYDUP1] and
[LAZYDUP2] adapt the semantics of lazyDup to label-partitioned heaps. The
first rule takes care of allocating a non-trivial argument on the heap labeled as
the current configuration. The second rule is the heart of our security leak fix, as
it handles the case where a high thread reads a thunk from a lower context and a
subsequent updating write would constitute a security violation. The rule fetches
the thunk t from the lower heap, i.e. t 7→Σ(`L), and extends the heap labeled
as the configuration with a copy of the thunk, i.e. Σ[`H][y

`H ] := JtK∅. Observe
that this operation relabels the original thunk t from `L to `H securely because
t is duplicated, ensuring that the free variables in t will, by the time they are
about to be evaluated, be wrapped in lazyDup, so that [LAZYDUP2] kicks in
again. In rule [NEW], a computation at level `L creates a reference labeled with



CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 87

(APP1)
fresh(x `)

(∆`, t1 t2,S
`) ; (∆`[x ` 7→ t2], t1, x

` : S `)

(APP2)
(∆`, λy .t , x ` : S `) ; (∆`, t [x ` / y ],S `)

(VAR1)
(∆`[x ` 7→ t ], x `,S `) ; (∆`, t ,#x ` : S `)

(VAR2)
(∆`, v ,#x ` : S) ; (∆`[x ` 7→ v ], v ,S `)

(LIFT)
(Γ (`), t1,S

`
1) ; (∆`, t2,S

`
2)

〈Σ,Γ, t1,S `1〉 −→ 〈Σ,Γ [` 7→ ∆`], t2,S
`
2〉

(LAZYDUP1)
¬ isVar (t) fresh(x `)

〈Σ,Γ, lazyDup t ,S `〉 −→ 〈Σ,Γ [`][x `] := t , lazyDup x `,S `〉

(LAZYDUP2)
x `L 7→t ∈ Σ(`L) fresh(y`H)

〈Σ,Γ, lazyDup x `L ,S `H〉 −→ 〈Σ,Γ [`H][y
`H ] := JtK∅, y`H ,S `H〉

(NEW)
|Σ(`H)| = n fresh(x `L)

〈Σ,Γ,new t ,S `L〉 −→ 〈Σ[`H][n] := x `L ,∆[`L][x
`L ] := t , return (Ref n),S `L〉

(WRITE2)
fresh(x `L)

〈Σ,Γ,Ref n,write t : S `L〉 −→ 〈Σ[`H][n] := x `L , Γ [`L][x
`L ] := t , return (),S `L〉

(READ2)
Σ(`)[n] = x `

〈Σ,Γ,Ref n, read : S `〉 −→ 〈Σ,Γ, return x `,S `〉

(READD )
〈Σ,Γ,DRef n, read : S `H〉 −→ 〈Σ,Γ, return (lazyDup Σ(`L)[n]),S

`H〉

Fig. 17: Decorated Semantics
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`H. The thunk t is allocated on the `L heap under the name x `L , which is written
to the fresh cell in memory Σ(`H). This ensures the invariant that in well-typed
configurations a memory holds references to lower heaps. The same applies to
rule [WRITE2]. Rule [READ2] enforces that a computation at level ` can only
read from a non-duplicated reference if the referenced variable is at the same
level `. Relaxing this would allow a high thread to read a thunk from a low level
and thus open another leaky channel. But the interplay of rule [FORK] (in its
annotated variant in Figure 21 in Appendix D), rule [LAZYDUP2] and lazyDup
rewriting of references to duplicate-on-read references precludes this scenario.
Rule [READD] then allows a `H high computation to read a low variable from a
duplicate-on-read reference, by duplicating it to ensure security.

6.4 Erasure Function

The term ε`A(t :: τ) is obtained from a term t with type τ by erasing data not
observable by an attacker at level `A. For clarity, we omit the type annotation
when irrelevant or obvoius. Ground values (e.g., (), True) are unaffected by
the erasure function. For most syntactic forms, the function recurses homomor-
phically as in ε`A(lazyDup t :: τ) = lazyDup (ε`A(t :: τ)). The interesting
cases are terms of type Labeled ` τ and Ref ` τ . For such cases, the era-
sure function recurses as usual if ` v `A. If, however, ` 6v `A, and the
resource is above the attacker’s level, then it is erased and replaced by •, e.g.
ε`A(Labeled t :: Labeled ` τ) = Labeled (ε`A(t :: τ)) if `A v ` or Labeled •
otherwise. The erasure function is described with more detail in Appendix D.

6.5 Decorated Progress-Sensitive Non-Interference

The non-interference proof relies on the two main properties determinancy and
simulation. Determinancy simply states that transitions are deterministic:

Proposition 10 (Determinancy) If c1 ↪→ c2 and c1 ↪→ c3 then c2 ≡ c3.

The equality in this statement is alpha-equality, i.e. up to the choice of variables.
In the machine-checked proofs all variables are De Bruijn indexes, and we
indeed obtain structural equality.

The choice of determinism makes the concurrent model robust against sched-
uler refinement attacks. The second property, i.e., simulation, says that if a
thread steps in a global configuration, then, either the same thread steps in
the erased configuration, when the thread’s level is visible to the attacker, i.e.,
` v `A, or otherwise, the initial and resulting configuration are indistinguish-
able to the attacker. We call such indistinguishability relation `A-equivalence,
written c1 ≈`A c2 and defined as ε`A(c1) ≡ ε`A(c2). Observe that two `A-
equivalent configurations contain exactly the same number of `A-equivalent
public threads, but possibly a different number of secret threads. The notation
c1 ↪→(`,n) c2 expresses that the configuration c1 runs the n-th thread at security
level `—threads are identified by label and number in the decorated semantics.
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Proposition 11 (Simulation) Given a global reduction step c1 ↪→(`,n) c′1 then

– ε`A(c1) ↪→(`,n) ε`A(c
′
1), if ` v `A, or

– c1 ≈`A c′1, if ` 6v `A

From the propositions 10 and 11 we prove progress-sensitive non-interference.
Note that, unlike our previous work [49], Proposition 11 does not simulate
sensitive threads, because `A-equivalence suffices for PSNI. For more details,
please refer to our Agda formalization27.

Theorem 1 (PSNI) Given two configurations c1 ≈`A c2 and a reduction c1 ↪→(`,n)

c′1, then there exists a configuration c′2 such that c′1 ≈`A c′2 and c2 ↪→∗ c′2.

As usual, ↪→∗ denotes the transitive reflexive closure of ↪→.

Proof 1 If ` v `A, by `A-equivalence, configuration c2 contains a thread
identified by (`,n), that is `A-equivalent to that run by c1. However, c2 might
contain a finite number of high threads, which are scheduled before that. After
running those high threads, i.e., c2 ↪→∗ c′′2 , for some configuration c′′2 , the
same low thread is scheduled, i.e., c′′2 ↪→(`,n) c′2, for some other configuration
c′2. Applying the simulation proposition to the first set of steps yields c2 ≈`A
c′′2 , as they are all above the attackers level, and by transitivity it follows that
c1 ≈`A c′′2 , i.e., ε`A(c1) ≡ ε`A(c

′′
2 ). Applying simulation again we learn that

ε`A(c
′′
2 ) ↪→(`,n) ε`A(c

′
2), since ` v `A as well as ε`A(c1) ↪→(`,n) ε`A(c

′
1).

The determinancy proposition shows ε`A(c
′
1) ≡ ε`A(c

′
2) or, in other words,

c′1 ≈`A c′2. If ` 6v `A, then simulation tells us c1 ≈`A c′1 and c′′2 ≈`A c′2, so we
obtain c′1 ≈`A c′2 by transitivity.

6.6 Simulation between Vanilla and Decorated semantics

To conclude the proof of the security guarantees of our system we have to
relate the decorated semantics with the vanilla semantics. On the one hand, we
show that we can strip off the annotations from a decorated program, run it
in the vanialla semantics and get the same behavior as running the decorated
program in the decorated semantics. On the other hand we show that we can
annotate a well-typed vanilla program, based on the type derivations, and obtain
an annotated program that executes correspondingly.

The main challenge is to map the partitioned heap, memory stack in the
annotated calculus into a single heap, memory, and stack and vice versa. We
apply techniques inspired by other IFC works on dynamic allocation [4] and
partitioned heaps [18] and show that configurations in the annotated calculus
are equal to those in the vanilla calculus up to bijection on variables names
and memory addresses. These bijections describe how to flatten the partitioned
memories and heaps into single entities without changing the results produced

27 Available at https://github.com/marco-vassena/lazy-mac

https://github.com/marco-vassena/lazy-mac
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by programs—of course, modulo variable names and memory addresses. Note
that our references are opaque to programs, i.e., there is no pointer arithmetic,
equality, etc., which makes the proof easier.

We work with two bijections, Ψ1 for heap variables and Ψ2 for memory
addresses:

Ψ1 :: (Label × Var)→ Var
Ψ2 :: (Label × N)→ N

Var is the set of variables and N the set of memory addresses. When we refer to
both bijections, we simply write Ψ .

As one expects, we consider an annotated configuration equivalent up to
bjections to a vanilla configuration, written 〈Σ,Γ, t ,S `〉 ∼=Ψ 〈M , ∆, t ′,S 〉, if
and only if their components are related, i.e.,Σ ∼=Ψ M , Γ ∼=Ψ ∆, S ` ∼=Ψ S , and
t ∼=Ψ t ′. The equivalences on memories (Σ ∼=Ψ M ), heap (Γ ∼=Ψ ∆), and stack
(S ` ∼=Ψ S ) are defined point-wise. Equivalence of terms is a congruence relation
with x ` ∼=Ψ y if and only if Ψ1 (`, x ) = y and Ref n ::Ref ` τ ∼=Ψ Ref m and
DRef n ::Ref ` τ ∼=Ψ DRef m if and only if Ψ2 (`,n) = m . Using this notion
of equivalence modulo Ψ , we can state the simulation results:

Proposition 12 (Decorated to Vanilla) Given configurations 〈Σ,Γ, t1,S `〉 and
〈M , ∆, t2,S 〉 which are well-typed and denote a computation of type MAC ` τ ,
if we have that:

– 〈Σ,Γ, t1,S `〉 −→ 〈Σ′, Γ ′, t ′1,S ′
`〉 and

– 〈Σ,Γ, t1,S `〉 ∼=Ψ 〈M , ∆, t2,S 〉

then there exist M ′, ∆′, t ′2, S ′ and Ψ ′ such that:

– 〈M , ∆, t2,S 〉 −→ 〈M ′, ∆′, t ′2,S
′〉

– 〈Σ′, Γ ′, t ′1,S ′
`〉 ∼=Ψ ′ 〈M ′, ∆′, t ′2,S

′〉

Note that the resulting configurations are in relation according to some new
bijection Ψ ′, rather than Ψ , as the bijection has to be extended with new memory
or heap allocations. Dually, we show that configurations in the vanilla calculus
can be simulated in the annotated one.

Proposition 13 (Vanilla to Decorated) Given configurations 〈Σ,Γ, t1,S `〉 and
〈M , ∆, t2,S 〉which are well-typed and denote a computations of type MAC ` τ ,
if we have that:

– 〈M , ∆, t2,S 〉 −→ 〈M ′, ∆′, t ′2,S
′〉

– 〈Σ,Γ, t1,S `〉 ∼=Ψ 〈M , ∆, t2,S 〉

then there exist Σ′, Γ ′, t ′1, S ′
` and Ψ ′ such that:

– 〈Σ,Γ, t1,S `〉 −→ 〈Σ′, Γ ′, t ′1,S ′
`〉 and

– 〈Σ′, Γ ′, t ′1,S ′
`〉 ∼=Ψ ′ 〈M ′, ∆′, t ′2,S

′〉
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In both propositions we assume well-typed configurations. We omit the typing
rules, which are rather standard. The important bits are present in the type
signatures given in Figures 2 and 8. For the decorated calculus, the typing rules
correspond to those of the vanilla calculus, but in addition ensure that the security
labels appearing in the type conincide with those in the decorations. The proof
is rather standard including references and variables allocation, where we keep
some invariant regarding the lengths of heap and memories to connect the notion
of “freshness” of variables on both calculi. The details of the proofs of these
simulations can be found in Appendix B.

6.7 Vanilla Progress-Sensitive Non-Interference

We prove that well-typed programs in the vanilla lazy calculus satisfy progress-
sensitive non-interference. This result relies on the PSNI proof for the decorated
calculus and the simulations described above. We first define that two global con-
figurations are `A-equivalence up to a bijection Ω, written 〈M1, ∆1, Ts1〉 ≈Ω`A
〈M2, ∆2, Ts2〉, if and only if they are well-typed and their components are `A-
equivalent up to bijection Ω, where `A-equivalence between terms is also type-
driven and follows a structure similar to the one for the decorated calculus—the
main difference being that it inspects the type-derivation of term and use the bi-
jection Ω to relate memory addresses and heap variables. In the vanilla calculus
we need to consider low-equivalence up to a bijection as in [4] to relate execu-
tions which might allocate a different amount of high entities, thus affecting the
addresses and names of public references and variables respectively. Observe
that bijection Ω connects heap variables and memory addresses of the vanilla
calculus, that is Ω is a pair of bijections of type:

Ω1 :: Var → Var
Ω2 :: N→ N

Configurations of the form 〈[ ],∅, [(t , [ ])]〉 are initial configurations in the
vanilla calculus, where the memory and thread’s stacks are empty ([ ]), and
the heap consists of an empty mapping (∅).

Theorem 2 (Vanilla PSNI) Given closed terms t1::MAC ` τ and t2::MAC ` τ
written with the surface syntax (i.e., they do not contain constructors Labeled
and Ref ), we have that if:

– t1 ≈∅
`A

t2, and
– 〈[ ],∅, [(t1, [ ])]〉 ↪→∗ c1, then:

there exists c2 and bijection Ω such that:

– 〈[ ],∅, [(t2, [ ])]〉 ↪→∗ c2, and
– c1 ≈Ω`A c2
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Proof 2 (Sketch) Define i1 = 〈[ ],∅, [(t1, [ ])]〉 and i2 = 〈[ ],∅, [(t2, [ ])]〉.
Since t1 and t2 are closed and well-typed terms in the surface syntax, we can
lift them in the decorated calculus, as decorated terms tD1 , tD2 , and their cor-
responding initial annotated configurations iD1 and iD2 . Configurations i1 and
i2 are equivalent up to the empty bijection ∅, i.e. iD1 ∼=∅ i1 and iD2 ∼=∅ i2 and
iD1 ≈`A iD2 . By lifting Proposition 13 to thread pools and repetitively applying
it, there exists a bijection Ψa and a configuration cD

1 , such that iD1 ↪→∗ cD
1 and

cD
1
∼=Ψa c1. By Theorem 1, there exists a decorated configuration cD

2 such that
iD2 ↪→∗ cD

2 and cD
1 ≈`A cD

2 . By lifting Proposition 12 to thread pools and repet-
itively applying it, we have that there exists a bijection Ψb and configuration c2
such that i2 ↪→∗ c2 where cD

2
∼=Ψb c2. We then conclude that c1 and c2 are `A-

equivalent up to bijectionΩ, obtained composing Ψa (from vanilla to decorated),
and Ψ−1b (from decorated to vanilla), i.e. c1 ≈Ω`A c2, where Ω = Ψa ◦ Ψ−1b .

7 Related Work

Mutable references and lazyness In Section 3.2 we present an operational seman-
tics that features both mutable references and lazyness. It is a straight-forward
combination of Sestoft’s semantics with the standard approach to model ref-
erences using a store, as described by Pierce et al. in the context of call-by-
value [34, 35]. To the best of our knowledge, this is the first work that presents
this combination. The “Awkward Squad” paper [33], which describes the im-
plementation of I/O in Haskell, and addresses both references and concurrency,
remarkably avoids dealing with sharing in its operational semantics.

deepDup Our primitive lazyDup was inspired by the related primitive deepDup
proposed by the second author [7], with the aim to limit sharing in cases where it
is actually detrimental to program performance. Because the terms in that work
are in Administrative Normal Form (ANF), the rules for deepDup look different
from our [LAZYDUP2], but this difference is inconsequential. We significantly
improve over that work with the support to handle references, via the duplicate-
on-read references introduced in Section 4.2. The Haskell library ghc-dup
implements deepDup without changes to the compiler or runtime, therefore we
are optimistic that an implementation of lazyDup is feasible.

Evaluation strategies and IFC Sabelfeld and Sands suggest that lazy evalua-
tion might be safer than eager evaluation for termination leaks [42]. Buiras and
Russo identify the risk imposed by internal timing leaks via lazy evaluation [11].
Vassena et al. enrich MAC’s API for labeled expressions by considering them
as (applicative-like) functors [49] and show that their extension is vulnerable to
termination leaks under eager evaluation, but secure under lazy evaluation. In
a imperative sequential setting, Rafnsson et al. describe how Java’s on-demand
(lazy) class initialization process can be exploit to reveal secrets [38]. Strictness
analysis detects functions that always evaluate their arguments, which can then
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be eagerly evaluated to boost performance of lazy evaluation [28]. In this context,
this technique could be used to safely force the evaluation of shared thunks up-
front. However, the analysis must necessarily be conservative, especially when
it comes to infinite data structures and advanced features such as references and
concurrency, therefore it is unlikely that all leaks could be closed by the analysis
alone. Nevertheless, strictness analysis could avoid unnecessary duplication: the
thunks, which are guaranteed by the analysis to be evaluated anyway, could be
eagerly forced, and lazy duplication could be applied otherwise.

IFC libraries LIO dynamically enforces IFC applying similar concepts to MAC
(i.e., labeled expressions, secure computations, etc.). We argue that LIO can be
secure against the attack presented in this work by applying lazyDup to the “rest
of the computation” every time that the current label gets raised. For that, LIO
needs to be reimplemented to work in a continuation passing style (CPS)—we
leave this direction as future work. HLIO (hybrid-LIO) works as LIO except it
enforces IFC by combining type-level enforcement with dynamic checks [10].
To secure HLIO, lazyDup needs to be inserted when forking threads if IFC
gets enforced statically and when raising the current label if dynamic checks
are involved. HLIO also needs to be reimplemented using CPS. In MAC, the
type signature for the bind operator restricts computations to maintain the same
security level. Its type could be relaxed to involve different increasing labels,
along the lines of the “is protected” relation used in the typing rule of bind
in the Dependency Core Calculus (DCC) [1]. However, in that case, a secure
computation would not enjoy a standard monadic structure, but it would rather
incorporate multiple monads.

Devriese and Piessens provide a monad transformer to extend imperative-
like APIs with support for IFC [13]. Jaskelioff and Russo implement a li-
brary which dynamically enforces IFC using secure multi-execution (SME) [20].
Schmitz et al. [43] provide a library with faceted values, where values present
different behavior according to the privilege of the observer. While these li-
braries do not support concurrency yet, we believe that, this work could secure
them against lazy evaluation attacks, if they were extended with concurrency.

Programming languages Besides the already mentioned tools Jif, Paragon,
FlowCaml, and JSFlow, we can remark the SPARK language and its IFC analy-
sis, which has been extended to guarantee progress-sensitive non-inference [37]
and JOANA [46], which stretches the scalability of static analyzes, in this case
of Java programs. Some tools apply dependent-types to protect confidentiality
(e.g., [24, 27, 30]). In such languages, type-checking triggers evaluation, poten-
tially opening up possibilities to leak sensitive data via covert channels (e.g.,
lazy evaluation). In this light, it would be possible to learn something about
a static secret when type-checking the program—an interesting direction for
future work. Laminar combines programming languages and operating systems
techniques to provide decentralized information flow control [39]. While sup-
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porting concurrency, Laminar does not handle covert channels like termination
or internal timing leaks.

8 Conclusions

We present a solution to internal timing leaks via lazy evaluation, an open prob-
lem for security libraries written in Haskell. We believe that repairing existing
libraries with lazyDup would be reasonably a painless experience. The utiliza-
tion of lazyDup would make past and future systems built with security libraries
more secure (e.g., Hails [15]). Even though it is still not clear which evaluation
strategy is more beneficial for security, this work shows that the risks of lazy
evaluation in concurrent settings can be successfully avoided.

Generally speaking, functional languages (and Haskell in particular) rely on
their runtime (e.g., lazy evaluation, garbage collector, etc.) to provide essential
features. Unfortunately, besides providing their functionality, they could also be
misused to jeopardize security. This work shows that a program can control parts
of the complex runtime system (e.g., sharing) via a safe interface (lazyDup).
Then, the obvious question is which other features of the runtime system could
jeopardize security and how to safely control them—an intriguing thought to
drive our future work.
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VAR
x ∈ Dom(Γ (`)) y ∈ Dom(∆) ΨΓ,∆(`, x ) = y Ψ−1

Γ,∆(y) = (`, x )

x ` ∼=ΨΓ,∆ y

HEAP
∀ ` x y x ` ∼=ΨΓ,∆ y Γ (`)(x ) ∼=ΨΓ,∆ ∆(y)

Γ ∼=ΨΓ,∆ ∆

REF
n < |Σ(`)| m < |∆| ΨΣ,M (`,n) = m Ψ−1

Σ,M (m) = (`,n)

Ref ` n
∼=ΨΣ,M Ref m

MEMORY
∀ ` n m Ref ` n

∼=ΨΣ,M Ref m Σ(`)[n] ∼=ΨΣ,M M [m]

Σ ∼=ΨΣ,M M

STACK1

[ ]` ∼=Ψ [ ]

STACK2

C ` ∼=Ψ C S ` ∼=Ψ S

C ` : S ` ∼=Ψ C : S

VAR#

x 6∈ Dom(Γ (`)) y 6∈ Dom(∆)

#x ` ∼=ΨΓ,∆ #y

Fig. 18: Definition of ∼=ΨΓ,∆ and ∼=ΨΣ,M

Appendix

A Securing LIO

In LIO, it is not possible to know, at the time of forking, if the parent or the
spawned thread will become sensitive, because threads get dynamically “tainted”
when they observe a piece of sensitive information, e.g., by means of unlabel—
an approach known as floating-label system. One could follow the same idea
used in MAC and conservatively apply lazyDup to all spawned threads. How-
ever, such approach would overly restrict sharing, e.g., if the thread never ob-
serves secrets. Instead, lazyDup should be applied to the “rest of the computa-
tion” whenever the thread gets tainted—only then the evaluation of thunks can
leak information! Implementing this idea requires to refactor the full implemen-
tation of LIO to work in a continuation-passing style, where the continuation
represents the “rest of the computation”. Then, when the thread gets tainted,
lazyDup can be applied to the continuation, thus disabling sharing with the
parent thread from that point on.

B Simulation

In this section, we prove the simulation Propositions 12 and 13, that we used
in Section 6 to prove Theorem 2. We give details for the interesting cases, i.e.,
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rules [VAR1,VAR2,LAZYDUP1, LAZYDUP2,NEW]. Firstly, we refine the type
for bijection on heap variables with a heap map Γ and a heap ∆. In particular
we write Var∆ to restrict the type of heap variables to those in the domain
of ∆, i.e., Var∆ = {x | x ∈ Dom(∆)}. Similarly, we write NM , to
restrict the type of memory addresses to those in the domain of memory M ,
i.e., NM = {n | n < |M |}. We then write (` : Label × P(`)), for
the dependent pair type (also known as Sigma-type) Σ(`:Label)P (`). We then
give the following more precise type to heap variables and memory addresses
bijections:

ΨΓ,∆ :: (` : Label × VarΓ (`))→ Var∆

ΨΣ,M :: (` : Label × NΣ(`))→ NM

In particular heap-indexed and memory-indexed bijections relate only variables
and addresses in their domains. In the following we abbreviate the pair of bijec-
tion (ΨΓ,∆, ΨΣ,M ) with Ψ , and sometimes we specify only the relevant compo-
nent of the pair to avoid clutter. Figure 18 shows the definition of equivalence up
to heap-bijection (∼=ΨΓ,∆ ) and equivalence up to memory-bijection (∼=ΨΣ,M ) for
the interesting cases. Rule [VAR] relates the variables in the domain of Γ (`) and
∆ respectively, using the bijection ΨΓ,∆. Rule [HEAP] defines equivalence of
heaps up to bijection pointwise for the variables in their domain, i.e., a store and
a heap are equivalent up to bijection, if and only if they map related variables
into related terms. Rules [REF,MEMORY] apply the same principles to memory
addresses. In decorated calculus we write Ref ` n , to denote that the reference
has type Ref ` τ , for some type τ—the vanilla reference Ref m has the same
type. Note that related stacks share the same structure, i.e., all their continu-
ations are related, where the only interesting case involve the update marker
continuation, i.e., #x . Rule [VAR#] states that a decorated continuation #x `

and a vanilla continuation #y are related if and only if both variables are free in
their respective heaps. Term-equivalence up to bijection is defined inductively
on their structures, e.g., lazyDup tD ∼=Ψ lazyDup t if and only if tD ∼=Ψ t . We
remark that these relations are defined over well-typed terms of the same type,
that is tD ∼=Ψ t , assumes typing judgment π ` t : τ , for some typing context
π, and that tD has type τ in the same typing context—we distinguish decorated
terms (e.g., tD ), from vanilla terms (e.g., t), with a superscript. The typing rules
for the vanilla calculus are standard and thus omitted—they corresponds to the
type signatures given in Figures 2 and 8.

Weakening If two configurations are equivalent up to bijection Ψ , i.e., cD ∼=Ψ c,
then they are equivalent up to any bijection Ψ ∪ {x ` ↔ y}, for any pair of
variables x ` and y , that are fresh in the respective configurations.

Strengthening If two configurations are equivalent via an extended bijection,
e.g., cD ∼=Ψ∪{x`↔y} c, then they are also equivalent in a reduced bijection, e.g.,
cD ∼=Ψ c, if and only if they occur in their respective stack under an update
marker, e.g., #x ` and #y .
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We now prove Propositions 12 and 13 for rules [VAR1,VAR2,LAZYDUP1,
LAZYDUP2 , NEW].

– Rule [VAR1].
• Decorated to Vanilla: Given a step (∆`[x ` 7→ tD ], x `,S `) ; (∆`, tD ,#x `:

S `) and a vanilla configuration (∆, t ,S ) and a bijection Ψ , such that
(∆`[x ` 7→ tD ], x `,S `) ∼=Ψ (∆, t ,S ), show that there exists a config-
uration (∆′, t ′,S ′) such that (∆, t ,S ) ; (∆′, t ′,S ′) and a bijection
Ψ ′ such that (∆`, t ,#x ` : S `) ∼=Ψ ′ (∆′, t ′,S ′). Since the initial con-
figurations are in relation, then so are their heaps (recall ∆` = Σ(`)),
current terms and stacks. Therefore the term t is a variable y , such
that x ` ∼=ΨΓ,∆∪{x`↔y} y and the heap ∆ contains a binding for y ,
that is ∆`[x ` 7→ tD ] ∼=ΨΓ,∆∪{x`↔y} ∆[y 7→ t ]. The vanilla configu-
ration then steps according to rule [VAR1], i.e., (∆[y 7→ t ], y ,S ) ;
(∆, t ,#y : S ), which is equivalent to the decorated configuration up
to the bijection ΨΓ,∆, i.e., the bijection obtained by removing mapping
x ` ↔ y . Note that tD ∼=Ψ t , since they are the image of related vari-
ables in related heaps and #x ` : S ` ∼=ΨΓ,∆ #y : S , since the stacks are
related and the variables are both free in Γ and ∆ respectively—rule
[VAR1] removes them to achieve the blackholing effect.
• Vanilla to Decorated: The proof is symmetric. In this case we have a

vanilla [VAR1] step, i.e., (∆[y 7→ t ], y ,S ) ; (∆, t ,#y : S ). Since the
vanilla configuration denotes a secure computation of type MAC ` τ ,
for some label ` and some type τ , then the equivalent decorated con-
figuration is labeled with `, i.e., (∆`[x ` 7→ tD ], x `,S `). The proof
then follows similarly, by making the same considerations about the
vanilla configuration to draw the same conclusions about the decorated
configuration.

– Rule [VAR2].
• Vanilla to Decorated: Consider a vanilla step [VAR2], i.e., (∆, v ,#x :

S ) ; (∆[x 7→ v ], v ,S ). Since the configuration denotes a secure com-
putation of type MAC ` τ , the Ψ -equivalent decorated configuration is
labeled with ` and has the same shape, i.e., (∆`, vD ,#x ` : S `)—if a
vanilla term v is a value then vD is also a value and if the top of a vanilla
stack has an update marker, so does the equivalent decorated stack, by
rules [STACK2 , VAR#]. The decorated configuration then steps accord-
ing to rule [VAR2], to the configuration (∆`[x ` 7→ vD ], vD ,S `), which
is equivalent to the vanilla configuration up to bijection Ψ∪{x ` ↔ x}—
we extend related heaps with related terms, i.e., vD ∼=Ψ v . Note that
from #x ` ∼=ΨΓ,∆ #x , we have that x ` and x are free in ∆` = Γ (`) and
∆ respectively. By popping related continuations from related stacks
we obtain related stacks, i.e., S ` ∼=Ψ S .
• Decorated to Vanilla: The proof follows symmetrically. In this case the

label ` is explicitly available in the decorated configuration.
– Rule [LAZYDUP1].
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• Vanilla to Decorated: Given step 〈M , ∆, lazyDup t ,S 〉 −→ 〈M , ∆[x 7→
t ], lazyDup x ,S 〉, i.e., rule [LAZYDUP2], lifted by rule [LIFT], where
x is fresh in ∆ and t is not a variable. Observe that, since the con-
figuration denotes a secure computation of type MAC ` τ for some
label ` and some type τ , then the equivalent decorated initial configu-
ration is labeled with `, and it has lazyDup tD as the current term,
where tD ∼=Ψ t and ¬ (isVar tD). Then, the decorated configu-
ration 〈Σ,Γ, lazyDup tD ,S `〉 steps according to rule [LAZYDUP1]
to 〈Σ,Γ [`][x `] := tD , lazyDup x `,S `〉, for some fresh variable x ` in
Γ (`). The final configurations are then equivalent up to the bijection
Ψ ∪ {x ` ↔ x}—note that this is a bijection because x ` and x are fresh
in Γ (`) and ∆ respectively, hence they are not mapped in Ψ . Specifi-
cally the heaps are extended with related terms and hence are related
by the extended bijection Ψ ∪{x ` ↔ x}, and lazyDup tD ∼=Ψ∪{x`↔x}
lazyDup t .
• Decorated to Vanilla: The proof follows symmetrically. In this case the

label ` is explicitly available in the decorated configuration and the step
is simulated in the vanilla calculus by rule [LAZYDUP1] lifted to vanilla
sequential configuration by rule [LIFT].

– Rule [LAZYDUP2].
• Vanilla to Decorated Given step 〈M , ∆, lazyDup x ,S 〉 −→ 〈M , ∆[y 7→

JtK∅], y ,S 〉, i.e., rule [LAZYDUP2], lifted by rule [LIFT], where vari-
able y is fresh and variable x is bound to term t in the heap ∆, the Ψ -
equivalent decorated configuration contains a Ψ -equivalent heap map
Γ , i.e. Γ ∼=Ψ ∆, a Ψ -equivalent stack S `H , i.e. S `H ∼=Ψ S , and a Ψ -
equivalent current term lazyDup x `L , i.e. lazyDup x `L ∼=Ψ lazyDup x ,
from which it follows that x `L ∼=Ψ x . Since variables and heaps are re-
lated, we have that the corresponding thunks are also related, i.e. there
exists tD , such that Γ (`L)(x

`L) = tD and tD ∼=Ψ t . The decorated
configuration then steps according to rule [LAZYDUP2], giving heap
map Γ [`H][y

`H ] := JtDK∅ and current term y`H , for some fresh vari-
able y`H . The resulting decorated configuration is then equivalent to the
vanilla configuration up to the bijection Ψ ′ = Ψ ∪ {y`H ↔ y}—it is
a bijection because the variables are fresh. The heaps are related, i.e.
Γ [`H][y

`H ] := JtDK∅ ∼=Ψ ′ ∆[y 7→ JtK∅], because we extend related
heaps with related terms—function JK∅ preserves equivalence up to
bijection, i.e. if tD ∼=Ψ t then JtDK∅ ∼=Ψ JtK∅. The current terms are
related by definition, i.e. y`H ∼=Ψ ′ y , because (y`H ↔ y) ∈ Ψ ′.

• Decorated to Vanilla: The proof follows symmetrically. In this case the
label ` is explicitly available in the decorated configuration and the step
is simulated in the vanilla calculus by rule [LAZYDUP2] lifted to vanilla
sequential configuration by rule [LIFT].

– Rule [NEW]
• Vanilla to Decorated: Consider the step 〈M , ∆,new t ,S 〉 −→ 〈M [n 7→

x ], ∆[x 7→ t ], return (Ref n),S 〉, where |M | = n and x is fresh.
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The Ψ -equivalent configuration, consists of a Ψ -equivalent store Σ, i.e.,
Σ ∼=Ψ M , a Ψ -equivalent heap map Γ , i.e., Γ ∼=Ψ ∆, a Ψ -equivalent
current term new tD , i.e., new tD ∼=Ψ new t , from which we have
tD ∼=Ψ t . From the type derivation of the well-typed vanilla configu-
ration, we know that term new t has type MAC `L (Ref `H τ), for
some type τ and some labels `L and `H, such that `L v `H. The dec-
orated configuration steps according to rule [NEW], giving for a fresh
variable x `L and m = |Σ(`H)|, the store Σ[`H][m] := x `L , heap map
∆[`L][x

`L ] := tD and current term return (Ref `L
m). The resulting

configurations are equivalent up to the bijection Ψ ′ = (ΨΓ,∆ ∪ {x `L ↔
x}, ΨΣ,M ∪ {(`H,m)↔ n}), i.e., the bijection obtained by extending
the heap variables and memory addresses bijections with the new map-
pings x `L ↔ x and (`H,m)↔ n respectively. The heaps are equivalent
up to the bijection ΨΓ,∆ ∪{x `L ↔ x} since we extend ΨΓ,∆-equivalent
heaps variables with respectively fresh variables x `L and x , which are
bound to Ψ -equivalent terms, i.e., tD ∼=Ψ t . Similarly, the memories
are equivalent up to the bijection ΨΣ,M ∪ {(`H,m) ↔ n}, since we
extend ΨΣ,M -equivalent memories, by assigning equivalent references
i.e., x `L ∼=ΨΓ,∆∪{x`L↔x} x to fresh addresses. Observe that the current
terms in the final configurations are related, i.e., return (Ref `L

m) ∼=Ψ ′
return (Ref n), because the addresses are related by the bijection Ψ ′,
i.e., m ∼=ΨΣ,M∪{(`H,m)↔n} n .
• Decorated to Vanilla: The proof follows symmetrically. In this case

the labels `L and `H are explicitly available in the decorated configu-
rations, i.e., 〈Σ,Γ,new tD ,S `L〉 ; 〈Σ[`H][m] := x `L , Γ [`L][x

`L ] :=
tD , return (Ref `H

m),S `L〉.

C Sharing and References

Our calculus captures sharing precisely, even in presence of references, and
despite the extra-indirection between the memory and heap. We provide two
examples showing the interaction among references, sharing, and thunks.

Example 1. Consider the following program, which creates a reference, imme-
diately overwrites it with 1, and finally returns 0:

let x = 0 in
do r ← new x

write r 1
return x

If reference r pointed directly to x (no extra-indirection), the next write
operation would actually rewrite x to 1 in the immutable heap and the program
would return 1, instead of 0.
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ε`A(〈∆
`, t ,S `〉) =

{
〈ε`A(∆

`), ε`A(t), ε`A(S
`)〉 if ` v `A

• otherwise

ε`A(〈Σ,Γ, t ,S
`〉) =

{
〈ε`A(Σ), ε`A(Γ ), ε`A(t), ε`A(S

`)〉 if ` v `A

• otherwise

ε`A(Ref n :: Ref `H τ) =

{
Ref • if `H 6v `A

Ref n otherwise

ε`A(label t :: Mac `L (Labeled `H τ)) =

{
label • if `H 6v `A

label (ε`A(t :: τ)) otherwise

ε`A(fork t :: Mac `L ()) =

{
fork• (ε`A(t :: Mac `H ())) if `H 6v `A

fork ε`A(t) otherwise

ε`A(•) = •

Fig. 19: Erasure function

Example 2. Consider the following program, which writes a thunk in a refer-
ence, reads it and evaluates its content twice.

let x = id 1 in
do r ← new x

y ← read r
when (y 6 0) return ()
z ← read r
when (z > 0) return ()

This program demands the value of y to evaluate y 6 0 and the value to z to
evaluate z > 0, but, surprisingly enough, the value of z is already computed.
This sounds counter-intuitive because we expect y and z to be bound to the
same expression id 1, since the program does not overwrite reference r between
the first and the second read. In fact, variables y and z are aliases of the same
variable x , whose thunk id 1 is updated with 1 after checking y 6 0, thanks
to sharing, and used to check z > 0. Observe that, while this program does not
contain an explicit write operation, it still does perform one subtly, in the heap,
since it indirectly updates x .

D Erasure Function

Figure 19 shows the definition of the erasure functions for the interesting cases.
Configurations, whose label is above that of the attacker, i.e., ` 6v `A are
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(HOLE1)
•; •

(HOLE2)
• −→ •

Fig. 20: Semantics rules for •

(FORK)
Φ(`L) = Ts1[n 7→ (fork t ,S `L)] Φ(`H) = Ts2 |Ts2| = m

T ′s1 = Ts1[n 7→ (return (),S `L)] T ′s2 = Ts2[m 7→ (lazyDup t , [ ]`H)]

〈Σ,Γ, Φ〉 ↪→ 〈Σ,Γ, Φ[`L 7→T ′s1][`H 7→T ′s2]〉

(FORK•)
Φ(`L) = Ts1[n 7→ (fork• t ,S

`L)] T ′s1 = Ts1[n 7→ (return (),S `L)]

〈Σ,Γ, Φ〉 ↪→ 〈Σ,Γ, Φ[`L 7→T ′s1]〉

Fig. 21: Semantics rules of fork and fork•

rewritten to •, otherwise they are erased by erasing each component. Steps
involving sensitive configurations are then simulated by rules [HOLE1 , HOLE2],
shown in Figure 20. Memories, heaps, stacks and thread pools labeled with `
are also collapsed to •, if their label is not visible to the attacker, i.e., ` 6v `A,
otherwise they are erased homomorphically. Label partitioned data structures,
i.e., heap maps, stores and pool maps, are erased pointwise, e.g. ε`A(Γ ) = ` 7→
ε`A(Γ (`)). The term label t :: MAC `L (Labeled `H τ) is erased to label •, if
`H 6v `A, so that rule [LABEL] commutes. The terms new , write, fork are
interesting. Observe that all these terms perform a write-effect, to a non-lower
security level, due to the no write-down policy, which allows a computation
visible to the attacker (`L v `A) to write to a non-visible resource (`H 6v `A).
Simulating such steps, i.e., the label-decorated version of rules [NEW, WRITE,
FORK], is challenging and requires two-steps erasure [50], a technique that
performs erasure in two-stages, by firstly rewriting the problematic constructs ,
such as new , write and fork to special constructs, i.e., new•, write• and fork•,
whose special semantics rule guarantees simulation. We remark that such special
constructs are introduced due to mere technical reasons and they are not part
of the plain calculus. We use fork• as an example to illustrate this technique.
Figure 21 shows rules [FORK] and [FORK•], that is the label annotated rules for
fork and fork• respectively. Rule [FORK] is similar to its annotated counterpart
shown in Figure 14, save for the extra look-up and update through the thread pool
map Φ. Rule [FORK•] mimics rule [FORK], for what concerns the parent thread,
but it ignores thread t , which is not added to the thread pool. Observe that rule
[FORK] does not correctly simulate fork operations that occur in high threads.
In particular, the high thread pool Ts2 is rewritten by the erasure function to •,
since `H 6v `A, however | • | 6≡ m .
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On the other hand by rewriting fork to a new term, i.e., fork•, we are free
to adjust its semantics, to correctly simulate a low thread forking a high one
in erased configurations. Specifically, we can show that [FORK] commutes
with [FORK•], by proving that for all thread pool maps Φ, Φ′, such that Φ′ =
Φ[`H 7→(t ,S `H)] and `H 6v `A, then ε`A(Φ) ≡ ε`A(Φ

′), i.e., the attacker is
oblivious to writes in thread pools above its security level.
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