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Abstract
Technology and voltage scaling is making integrated circuits increasingly suscepti-

ble to failures caused by soft errors. The source of soft errors are temporary hardware
faults that alter data and signals in digital circuits. Soft errors are predominately caused
by ionizing particles, electrical noise and wear-out effects, but may also occur as a result
of marginal circuit designs and manufacturing process variations.

Modern computers are equipped with a range of hardware and software based mech-
anisms for detecting and correcting soft errors, as well as other types of hardware errors.
While these mechanisms can handle a variety of errors and error types, protecting a com-
puter completely from the effects of soft errors is technically and economically infeasi-
ble. Hence, in applications where reliability and data integrity is of primary concern, it
is desirable to assess and measure the system’s ability to detect and correct soft errors.

This thesis is devoted to the problem of measuring hardware error sensitivity of com-
puter systems. We define hardware error sensitivity as the probability that a hardware er-
ror results in an undetected erroneous output. Since the complexity of computer systems
makes it extremely demanding to assess the effectiveness of error handling mechanisms
analytically, error sensitivity and related measures, e.g., error coverage, are in practice
determined experimentally by means of fault injection experiments.

The error sensitivity of a computer system depends not only on the design of its
error handling mechanism, but also on the program executed by the computer. In addi-
tion, measurements of error sensitivity is affected by the experimental set-up, including
how and where the errors are injected, and the assumptions about how soft errors are
manifested, i.e., the error model. This thesis identifies and investigates six parameters,
or sources of variation, that affect measurements of error sensitivity. These parameters
consist of two subgroups, those that deal with systems characteristics, namely, (i) the
input processed by a program, (ii) the program’s source code implementation, (iii) the
level of compiler optimization; and those that deal with measurement setup, namely, (iv)
the number of bits that are targeted in each experiment, (v) the target location in which
faults are injected, (vi) the time of injection.

To accurately measure the error sensitivity of a system, one needs to conduct several
sets of fault injection experiments by varying different sources of variations. As these
experiments are quite time-consuming, it is desirable to improve the efficiency of fault
injection-based measurement of error sensitivity. To this end, the thesis proposes and
evaluates different error space optimization and error space pruning techniques to reduce
the time and effort needed to measure the error sensitivity.
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1
Thesis Summary

1 Introduction

Measurements play a vital role in science and engineering. Without measurements,
we cannot improve products and processes. A measure is a number (or a vector of
numbers) representing a property of an object or activity. It serves as a point of reference
and enables comparison. The most common forms of measures are those that describe
physical properties such as speed, weight, length, and temperature.

Another type of measures is the ones that describe system properties. Measuring
properties of systems is not always as easy as measuring physical properties of objects.
This is due to the complexity of systems. Examples of such measures are quality at-
tributes of computer systems such as performance, energy consumption, dependability,
and safety. The process of finding proper measures and obtaining them to assess and rea-
son about these attributes requires a great deal of knowledge about different components
of a system and its infrastructure.

Measuring and evaluating dependability properties of computing systems have be-
come increasingly important in applications where computers are used to control safety-
critical and mission-critical processes. Examples of such applications can be found in
the automotive, avionic, and nuclear power industries.

This thesis deals with techniques for measuring the impact of an increasingly im-
portant class of computer errors called soft errors. Soft errors are caused by temporary
hardware faults generated by ionizing particles, electrical noise, wear-out effects, etc.
Such errors have become an increasingly important source of computer failures due to
technology and voltage scaling [Bor05, ITR]. Modern computers are equipped with a

1
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range of error handling mechanisms to protect them from soft errors, as well as other
types of errors, using different error detection and error correction techniques.

The focus of the thesis is on techniques for measuring the error sensitivity of sys-
tems, or programs, with respect to soft errors. We define error sensitivity as the proba-
bility that an error in a computer system results in an undetected erroneous output, also
known as a silent data corruption.

Obtaining the error sensitivity of a computer system by purely analytical methods
(such as Failure Mode Effects Analysis) is difficult, and often infeasible, due to the high
complexity of computer systems. Researchers and engineers, therefore, measure the
error sensitivity experimentally by means of fault injection experiments. Fault injec-
tion is an established method used for measurement, test and assessment of dependable
computer systems. The inclusion of fault injection as a highly recommended assessment
method in the ISO 26262 standard [ISO09] for functional safety of road vehicles demon-
strates the increasing importance of experimentally validating error handling techniques
in critical computer systems.

The basic approach of fault injection is to artificially insert faults into a system to en-
able an analysis of the system’s behaviour in the presence of faults. The work presented
in this thesis considers injection of bit-flip errors in instruction set architecture (ISA)
registers and static random-access memory (SRAM) words using hardware-based fault
injection, for emulating the effects of soft errors. In addition, it also considers software-
based injection of bit-flip errors into a LLVM (Low Level Virtual Machine) compiler’s
intermediate code.

The remainder of this introduction includes a problem statement, which provides
an overview of the technical challenges addressed by the thesis, and a summary of the
thesis contributions.

1.1 Problem Statement
The use of fault injection experiments for measuring error sensitivity involves many
technical and scientific challenges. This thesis focuses on two important aspects of such
measurements:

• Sources of variation
• Measurement efficiency

In general, the error sensitivity of a system depends on the design and implemen-
tation of the system (including its error handling mechanisms), as well as the inputs
processed by the system. In addition, when measuring the error sensitivity of a system
(or a program) the results of the measurements may depend heavily on the experimental
set-up, and especially on the fault model. Thus, when measuring error sensitivity, sys-
tem evaluators need to consider multiple sources of variations when they interpret and
assess the validity of the experimental results.

The thesis presents studies of six important sources of variation in fault injection
experiments. These studies focus on measuring the error sensitivity of programs, i.e.,
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they consider the case when the purpose of the measurements is to compare the error
sensitivity of different programs, or program versions, under the assumption that the
hardware platform is fixed.

Three of the sources of variation are related to system characteristics and program
implementation: (i) the input processed by a program, (ii) the program’s source code
implementation and (iii) the level of compiler optimization. The other three are related to
measurement setup, namely, (i) the number of bits that are targeted in each experiment,
(ii) the location in which faults are injected and (iii) the time of injection.

It should be noted that the sources of variation addressed in this thesis represent
either systematic variations in the true error sensitivity of the targets system related to
its design, or systematic variations caused by the experimental set-up. They are con-
ceptually different from "sources of uncertainties", such as those addressed by Skarin et
al. [SBK10a], which are associated with measurement procedures, tools, non-repeatability
of experiments, non-representative sampling, time instants chosen for collecting mea-
surements, and so forth.

Concerning measurement efficiency, the thesis addresses the problem of input selec-
tion and error space pruning. In setting up a fault injection experiment, the evaluator
must select the set of inputs that the target system will process during the experiments.
Since the error sensitivity depends on the inputs processed by the system, error sen-
sitivity measurements are usually conducted with multiple input vectors representing
different use cases of the target system. (In this context, an input vector corresponds to
the set of inputs processed by the target system for a specific use case, processing cycle,
or program run.)

Thus, an important goal of error sensitivity measurements is to investigate how much
the error sensitivity varies for different input vectors (use cases). Since measuring the
error sensitivity for a single use case (one input vector) could be quite time consuming
– it may require several thousands and even millions of fault injection experiments –
it is desirable to develop methods that can distinguish between input vectors that are
likely to produce different (or similar) outcome distributions before any fault injection
experiments have been conducted.

To this end, the thesis presents a method for input selection that relies on profiling
of the dynamic machine instructions executed for a given input vector. This method
can increase measurement efficiency, since it helps an evaluator to avoid conducting
experiments with several input vectors that are likely to yield similar results.

Another important challenge addressed in this thesis is the problem of error space
reduction, also known as error space pruning. The purpose of error space pruning is to
reduce the size of the error space from which the injected bit-flips are sampled, so that
the injection of "uninteresting" bit-flips is avoided. Examples of such bit-flips include
those that cannot be activated by program execution, or those that are overwritten by
the program without affecting the behaviour of the target system. Another example is
bit-flips whose impact can be determined a priori without the need for an experiment.
(A concrete example of the latter is bit-flips in the most significant bit of the program
counter, which in most systems always raises a hardware exception.)
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Prior work have proposed pre-injection analysis techniques for error space reduction,
e.g. [TP13, SHK+12, BVFK05], while other authors have proposed heuristic pruning
methods [HANR12, LT13] to improve the efficiency of fault injection-based measure-
ment of dependability metrics.

This thesis proposes and evaluates two pre-injection analysis techniques for improv-
ing the efficiency of fault injection experiments. One of them identifies the type of
data-items (address, data or control bits) held in a potential target location (an ISA reg-
ister or memory word). This technique allows the evaluator to focus the injections to
target locations that hold a specific type of data-item. The other pre-injection analysis
technique avoids injection of bit-flips in certain bits which are known to always trigger a
hardware exception (e.g., certain bits of program counter and stack pointer register). In
addition, the thesis also presents an error pruning technique that reduces the error space
when performing experiments with multiple-bit injections.

1.2 Main Contributions

The contributions of this thesis are presented in six papers referred to as Paper I – Paper
VI. The summary of each paper and its contributions can be found in Section 3. This
thesis, in addition to extending two fault injection tools, namely GOOFI-2 [SBK10b]
and LLFI [TP13], makes the following main contributions. The contributions are di-
vided into two categories; those that are related to sources of variation (C1 – C6) and
those that are related to the measurement efficiency (C7 – C9).

C1. Evaluates the extent in which variation of a program’s input affect its outcome
distributions and identifies the input length as a program property that could be
linearly correlated to the program’s error sensitivity. (Paper V)

C2. Assesses the extent in which a program’s error sensitivity is affected by its source
code implementation and identifies different program characteristics that cause
variations in the error sensitivity. (Paper I, II, III, VI)

C3. Evaluates the variation in the outcome distributions of programs compiled with
different levels of compiler optimization and concludes that compiler optimization
levels have only a minor impact on the error sensitivity. (Paper II)

C4. Compares the error sensitivity of programs with respect to the number of errors
caused due to one or multiple hardware faults and concludes that single-bit errors,
in most cases, yield a higher error sensitivity compared to multiple-bit errors.
(Paper III, IV)

C5. Evaluates the outcome distributions of different target registers and memory words,
including the significance of target bits and identifies bits that if targeted by errors,
would never cause an erroneous output. (Paper I, II, III)

C6. Compares the error sensitivity of programs with respect to the time of injection
using two fault injection techniques called inject-on-read and inject-on-write and
concludes that it is unlikely that the latter technique would expose weaknesses
that are not revealed by the former. (Paper I, IV)
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C7. Designs and evaluates a technique called input selection that improves the effi-
ciency of error sensitivity measurement, by identifying inputs that are likely to
result in different outcome distributions. (Paper V)

C8. Designs and evaluates different error space pruning techniques that are used to
improve the efficiency of error sensitivity measurement when using multiple bit-
flip fault injection campaigns. (Paper IV)

C9. Designs and evaluates two pre-injection analysis techniques that improve the con-
trollability and efficiency of fault injection campaigns by identifying the data type
of data-items stored in target registers and memory locations. (Paper VI)

1.3 Thesis Structure

The remaining of this thesis is organized as follows. Section 2 briefly describes the
background to this thesis. Section 3 summarizes the papers presented in Chapters 2 – 7
and discusses their contributions. Section 4 describes some of the conclusions and the
future directions of this thesis. And finally, the six papers discussed in this thesis are
included to Chapters 2 – 7.

2 Background

Measurement of error sensitivity is useful in several domains. Frontiers of these do-
mains are the ones dealing with dependable and safety-critical computer systems, such
as avionics and automotive industries, where failures in their systems could jeopardize
systems’ dependability and potentially result in loss of life. Error sensitivity of com-
puter systems should be measured both with respect to software level and hardware
level errors. As discussed in Section 1, hardware level error sensitivity measurement is
specifically of utmost importance, since the rate of hardware errors are expected to in-
crease in systems. This is because technology scaling is making transistors increasingly
susceptible to soft errors caused by process variations, wear-out effects, and ionizing
particles [Bor05].

After assessing a system’s software and hardware components, one should also mea-
sure the error sensitivity of the whole system as one. This is due to the existing interac-
tions amongst different hardware and software units. For example, errors in a micropro-
cessor may affect execution of a program that runs on it. In fact, it is likely that future
microprocessors will exhibit an increasing rate of incorrect program executions caused
by hardware related errors.

The rest of this section is organized as follows. First, some threats to dependability
are presented. Then, fault tolerance mechanisms are presented that can be used to miti-
gate the negative impact of these threats. This is followed by a presentation of different
failure modes. Then, some dependability measures are compared. This is followed by
a presentation of some fault injection tools, including the ones used in this thesis to
measure the error sensitivity.
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2.1 Dependability Threats
According to Avižieniz et al. [ALRL04], the threats to dependability are faults, errors,
and failures. A failure is termination of a system’s ability to perform a function as
required. The cause of this termination is called an error. In other words, an error is
raised as a result of a discrepancy between a measured value and a theoretically correct
value [ISO09]. The cause of this discrepancy is known as a fault. For example, a fault is
when a hardware defect makes a certain location in the main memory unusable. An error
is raised as a result of an access to the faulty memory location. And a failure happens
when the error causes the system to produce an incorrect output.

Faults can also be classified according to their nature of persistence, namely, per-
manent, transient, and intermittent. Permanent faults remain in or at the boundary of
a system once they occur, requiring the faulty component to be repaired or replaced.
Transient faults, on the other hand, occur at a specific time, remaining only for a short
period of time in the system. Intermittent faults occur repeatedly at the same location,
i.e., repeatedly appearing transient faults are called intermittent faults. Note that any of
these three types of faults can jeopardize the system’s safety by increasing the error sen-
sitivity of its components. That is why fault tolerance mechanisms are needed to tolerate
and mitigate the impact of these faults to the system.

2.2 Fault Tolerance Mechanisms
Fault tolerance mechanisms are implemented in different layers of abstraction, such as
hardware, software, and system. Hardware is the first line of defence where different er-
ror detection and error correction mechanisms detect and signal many errors as well as
correcting a fraction of the detected ones. These mechanisms include hardware excep-
tions (e.g., illegal opcodes and invalid memory access), parity checking, error correcting
codes (ECCs) and triple modular redundancy (TMR), etc. If a detected error cannot be
tolerated, it is signalled to allow higher-layer mechanisms to take appropriate action.

Software-implemented fault tolerance mechanisms are implemented in software and
are normally used in conjunction with hardware-level mechanisms. Software-implemented
mechanisms are cost-effective and flexible as they do not require extra hardware com-
ponents. Popular software-implemented fault tolerance techniques include the follow-
ings. Time-redundant execution [AVFK02] corresponding to when a program is being
executed multiple times and the results of all executions are being compared to; soft-
ware assertions [And79] that corresponds to placement of some checks on programs
variables, such as boundary checking of an integer variable; aspect-oriented fault tol-
erance [AK11, Gal02] which implements the fault tolerance mechanism separately as
aspects instead of placing the fault tolerance code as part of the main function that
needs to be protected; software watchdog timers that detect errors that have caused a
program to hang or to be stuck in an infinite loop; control flow checking [MHGT92],
which are several checks that are placed in the program verifying that the code is ex-
ecuting in a allowed order; other examples include recovery blocks [HLMSR74] and
N-version programming [CA78].
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System-layer fault tolerance mechanisms are the last line of defence. In a distributed
computer system, this layer of fault tolerance should detect and tolerate failures in the
computer systems and data-buses. This is normally achieved by physical replication of
the nodes and buses in conjunction with other types of fault tolerance protocols.

2.3 Failure Modes
A hardware fault can affect a program (or system) in one of the following ways:

• Crash. An exception is raised and the program is terminated.
• Hang. The program runs for a significantly longer time than normal. Watchdog

timers could be used to detect these errors.
• Silent data corruption (SDC), a.k.a. undetectable value failure. The program

terminates normally, but the output is incorrect (based on a bit-wise comparison),
and there is no indication of the failure.

• Detectable value failure. The program terminates normally, but the output is in-
correct; however, the program can detect the failure.

• Timing failure. The program delivers the output too late, or too early. Watchdog
timers could be used to detect these errors.

• Silent failure. The program, unexpectedly, delivers no output. The lack of output
delivery could be combined with watchdog timers to detect these errors.

• Signaled failure. The program sends a failure signal, indicating an error detection.
• Benign. The program terminates normally and the fault does not affect the pro-

gram’s output. This category could be the result of internal robustness of the
program.

Except the benign category, all other categories correspond to different types of fail-
ure modes. Failure modes describe the nature of a failure, i.e., the way in which a
program (or system) can fail. Among the different failure modes, SDCs are considered
the most severe, because users will trust the program’s output in the absence of an error
indication; whereas for all other categories, upon the detection of an error, a recovery
routine could be called to recover the system. Moreover, there is no generic method to
detect SDCs without re-executing the entire program and checking for a mismatch, or
without a significant amount of hardware redundancy, both of which are expensive.

2.4 Dependability Measures
This section presents different measures that could be used to evaluate the dependabil-
ity of computer systems. These measures include the architectural vulnerability factor
(AVF), program vulnerability factor (PVF), error coverage, error resiliency and error
sensitivity.

The AVF is designed with the idea that not all faults in a microarchitectural structure
affect the final outcome of a program. For example, a single-bit error in a branch predic-
tor will not affect the sequence or results of any committed instructions. Therefore, AVF
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is defined as the probability that a fault in a processor structure will result in a visible
error in the final output of a program. The AVFs of different processor structures could
be estimated using an approach that tracks the subset of processor state bits required
for architecturally correct execution (ACE) [MWE+03]. AVF, however, is intricately
tied to the microarchitectural design of a processor, and cannot be used to reason about
software resilience in isolation.

Sridharan et al. [SK09] separate the hardware-specific component of AVF from the
software-specific component and propose the PVF, which is a systematic method to effi-
ciently evaluate the error resilience of software under hardware faults. PVF can also be
used for predictive and comparative analysis studies to understand the effect of differ-
ent protection techniques or code transformations on the error resilience. However, PVF
does not distinguish between failure modes (see Section 2.3) and, essentially, treats all of
them as equally severe. Therefore, using PVF to estimate application error resilience and
inform the protection mechanisms often leads to overprotecting applications, thereby re-
sulting in unnecessary performance and energy overheads.

Error coverage – usually denoted by c – is defined as the conditional probability
that the program recovers, given the occurrence of a fault [BCS69, Arn73]. Similar to
PVF, error coverage does not distinguish between different failure modes. However, as
mentioned in Section 2.3, in practice, SDCs are the more important class of failures,
as the erroneous outputs are generated with no indication of failure, making them very
difficult to detect. Therefore, instead of the error coverage, some researchers have used
error resiliency [FLP+16, LFW+15] as the dependability metric.

Error resiliency is defined as the conditional probability that the program does not
produce an SDC after a transient hardware fault occurs and impacts the program state.
In other words, similar to work such as [dKNS10, FGAM10, KM14], it deals with faults
passing the hardware and seen by the software. Error sensitivity, on the other hand,
is a complementary metric to error resiliency and is defined as the probability that an
SDC occurs in the program’s output, given that a transient hardware error has occurred
in a hardware unit. In other words, the error sensitivity is equal to 1 minus the error
resiliency metric.

2.5 Fault Injection

Fault injection techniques have been extensively used to evaluate the effectiveness of
error handling mechanisms as well as to improve the accuracy of measures such as
the ones presented in Section 2.4. Several fault injection techniques have been pro-
posed in the past decades for injecting hardware faults into systems. These techniques
can be categorized into simulation-based, software-implemented, hardware-based, and
radiation-based techniques. Table 1.1 shows a summary of some of the fault injection
tools developed in the past 30 years along with the fault injection techniques they use.

Simulation-based techniques inject faults into hardware models (e.g. VHDL models)
as opposed to an actual physical system or prototype. Software-implemented (SWiFI)
techniques, on the other hand, emulate the effects of physical faults in software. SWiFI
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Table 1.1: Some Fault Injection Techniques and Tools Used in the Past 30 Years to Inject
Hardware Faults into Computer Systems.

Fault injection tools Fault injection techniques
simulation-based software-implemented hardware-based radiation-based

FIAT [SVS+88] X
MESSALINE [ACL89] X

Karlsson et al. [KGLT91] X X
FERRARI [KKA92] X
Czeck et al. [CS92] X

Goswami and Iyer [GI93] X
FINE [KIT93] X

RIFLE [MS94, MRMS94] X
Karlsson et al. [KLD+94] X

MEFISTO [JAR+94] X
FTAPE [TI95] X

DOCTOR [HSR95] X
Xception [CMS98] X
FIMBUL [FSK98] X
AFIT [MGM+99] X
GOOFI [AVFK01] X X

MAFALDA [AFR02] X
INTERTE [YRLG03] X
Xception [CMCS03] X X

Fidalgo et al. [FAF06a] X
GOOFI-2 [SBK10b] X X
MODIFI [SVET10] X X X
Relyzer [HANR12] X

LLFI [TP13] X
GemFI [PTAB14] X

FAIL* [SHK+12, SHD+15] X X

can emulate faults in various parts of the hardware (such as CPU registers, the arithmetic
logic units and the main memory) and could be divided into runtime and pre-runtime
techniques. Hardware-based techniques, however, are applied on actual implementa-
tions or prototypes of a system, instead of the system’s model. While the observability
and controllability can be limited, the efficiency is often high. Techniques for hardware-
based fault injection can be divided into pin-level fault injection, test port-based fault
injection, and power supply disturbances. And finally, in radiation-based techniques,
faults can be injected into processors by exposing them to external disturbances such as
Electromagnetic Interference (EMI) and particle radiation.

The use of fault injection has recently been increased in the embedded systems and
automotive industries. For example, Table 1.2 shows that fault injection is either recom-
mended or highly recommended in more than 10 assessment activities proposed by ISO
26262 [ISO09] standard for functional safety of road vehicles.

In this thesis, the error sensitivity is measured using hardware-based fault injection
and software-implemented fault injection (SWiFI). To this end, two distinct fault in-
jection tools, namely GOOFI-2 [SBK10b] and LLFI [TP13] are used (and extended).
GOOFI-2 facilitates hardware-based fault injection using test port-based fault injection;
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Table 1.2: Assessment Activities Recommended/Highly Recommended to be Performed
by Fault Injection According to ISO 26262 Standard.

Development
Level Assessment Context

System

System design verification
Correct implementation of technical safety requirements at the hardware-software level
Effectiveness of a safety mechanism’s diagnostic coverage at the hardware-software level
Correct implementation of functional safety and technical safety requirements
Effectiveness of a safety mechanism’s failure coverage at the system level
Correct implementation of the functional safety requirements at the vehicle level
Effectiveness of a safety mechanism’s failure coverage at the vehicle level

Hardware Hardware design verification
Hardware integration tests

Software Methods for software unit testing
Methods for software integration testing

whereas LLFI facilitates SWiFI. These tools use the bit-flip errors to mimic transient
hardware faults caused by soft errors that occur in the processor’s register file, ALUs,
and in different pipeline registers that eventually manifest as a data corruption in a source
or destination register or memory word.

2.5.1 GOOFI-2 (Generic Object-Oriented Fault Injector)

GOOFI [AVFK01] was first presented in 2001 and then enhanced with support for more
target systems and new injection techniques in its next version GOOFI-2 [SBK10b] in
2010. GOOFI-2 can be configured to conduct test port-based fault injection as well as
two software-implemented fault injection (SWiFI) techniques. The first SWiFI tech-
nique places the fault injection code in exception-handling routines intended for debug-
ging, while the second one injects faults by instrumenting the executable file with fault
injection code before it is downloaded to the target system.

This thesis uses GOOFI-2 to conduct test port-based fault injection, which includes
techniques that use TAPs (test access ports) to inject faults. Examples of TAPs used
for fault injection include JTAG (standard test access port and boundary-scan architec-
ture) [JTA01], BDM (background debug mode) [How96], and Nexus [Nex]. GOOFI-2’s
test port-based technique uses the Nexus [Nex] port to inject errors into ISA (instruction
set architecture) registers and memory segments of MPC565 and MPC5554, PowerPC-
based microcontrollers from Freescale. Nexus is a standard on-chip debug interface,
which provides read/write access to processor’s resources. Using the test port-based
technique, GOOFI-2 conducts fault injection without altering the software of the target
system.

GOOFI-2 defines a fault injection experiment to be the injection of one fault and
the monitoring of its impact on the program. A fault injection campaign, on the other
hand, is a set of fault injection experiments using the same fault model on a given work-
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load. And a workload is a program running with a given input. During each experi-
ment, GOOFI-2 controls the program under test using a development environment called
winIDEA [win] in conjunction with the iC3000 debugger [iC3]. GOOFI-2 stores the ac-
quired data of each experiment into a database, which can later on be used to classify
the outcome of the experiments.

2.5.2 LLFI (LLVM-Based Fault Injector)

LLFI [TP13] is an open source fault injection tool that facilitates SWiFI. SWiFI is often
faster than hardware-based injection, and requires no extra hardware support. LLFI in-
jects faults into the LLVM [LA04] framework’s intermediate code of a program. LLVM
is a collection of reusable compiler tools and components, and allows analysis and op-
timization of code written in multiple programming languages. The key component of
LLVM is its intermediate representation (IR), an assembly-like language that abstracts
out the hardware and ISA-specific information.

3 Summary of Papers and Contributions
This section presents a summary of the papers included in Chapters 2 – 7. For each
paper, the problem statement and related work are presented as well as the paper’s con-
tributions and their implications. A statement of contributions of each co-author is also
presented for each paper explaining the division of work between the authors.

3.1 Paper I: A Comparison of Inject-on-Read and Inject-on-Write
in ISA-Level Fault Injection

Problem statement and related work 80-90% of randomly injected faults are often
not even activated [MS94, YRLG03]. Therefore, one could improve the efficiency of
fault injection campaigns by eliminating faults with no possibility of activation. Ex-
amples of these are faults placed in a target location (i.e., instruction set architecture
(ISA) registers and memory words) just before the location is written into (and is over-
written), and faults that are injected into unused locations. In other words, the effi-
ciency of fault injection campaigns could be improved by merely targeting live target
locations. Inject-on-read is one of the techniques used for targeting live locations,
where a fault is only injected into a source target location before it is read by an in-
struction [TP13, SHK+12, BVFK05]. Using this technique, Barbosa et al. [BVFK05]
managed to reduce the error space of workloads by two to five orders of magnitude.

In the inject-on-read technique, all faults targeting a specific bit of a given target lo-
cation, from the time the location is written into until it is read, are considered equivalent.
However, this technique needs to take into account the exposure time of each location
and bit to a potential hardware fault, due to the fact that the longer a location is live and
waiting to be read, the more likely it is for a fault to occur in that location. Here, we refer
to the exposure time of a location as the lifetime of the location. Therefore, to obtain
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an accurate estimate of measures such as the error sensitivity, it is necessary to apply a
weight factor corresponding to the lifetime of each target location [BVFK05, SBS15].
This way, we could give a higher weight to the failure modes of locations that have a
higher lifetime.

In this paper, we enhance the inject-on-read technique by measuring the lifetime
of different target locations. The lifetime of a target location to a fault should ideally
be the number of CPU cycles between the time that the location is accessed (read or
written into) and when the location is read. However, we instead estimate the lifetime
by counting the number of instructions executed between the time that a location is
accessed and the when it is read.

This paper also addresses the fault model, as an essential parameter used in fault
injection techniques. Fault model specifies the type of faults that are emulated by a
fault injection technique. Here, we compare two fault models by means of two distinct
fault injection techniques, namely inject-on-read and inject-on-write. The former injects
an error into the source register (or memory word) before it is read by an instruction,
whereas the latter injects an error into the destination register after it is written into.
The inject-on-read technique [TP13, RCMM07] emulates soft errors that occurred in
the processor’s register file or a memory cell. However, soft errors occurred in other
hardware units such as the ALU is more likely to corrupt the destination register of an
ISA instruction, instead of the source register. Therefore, the inject-on-write is used to
model these types of faults.

Contributions and their implications This paper measures the percentage of SDCs
(see Section 2.3) for when the inject-on-read and inject-on-write ISA-level fault injec-
tion techniques are used. These techniques are used to analyse the impact of (i) the
weight factor, and (ii) the time of injection to the SDC results. To this end, a new pre-
injection analysis technique is implemented on GOOFI-2 [SBK10b] to facilitate the in-
jection of errors into destination locations of assembly-level instructions, allowing us to
conduct inject-on-write fault injection campaigns. For each program under test, results
are reported for the entire program as well as the different locations targeted, namely
general purpose registers, program counter registers, miscellaneous registers and mem-
ory words.

Results of our experiments show that the weight factor could significantly affect the
fault injection results by causing variations in the percentage of SDCs. Moreover, we
identify three factors that contribute to these variations. The first one is the type of data
stored in different target locations. We use data-item as a generic term for denoting the
content of an ISA register or memory word. A data-item can contain a datum, an address
or a condition flag. The second factor corresponds to the distribution of different types
of data-items in the programs under test. And the third factor corresponds to the average
lifetime of different data-items in the programs under test. In general, when using the
weight factor, the percentage of SDCs is biased more towards the percentage of SDCs
of data-items that has high distributions as well as high lifetime.

When it comes to the time of injection (before reading a location or after writing



3. SUMMARY OF PAPERS AND CONTRIBUTIONS 13

into a location), one could already expect that in case a data-item is only read once (after
being updated by an instruction), there is no difference between the SDC results of
injecting errors into source and destination locations, given that the same target location
and the same bit, or bits, are corrupted in the two cases. In contrast, for data-items
that are read multiple times, injecting errors into the source registers (locations) results
in a larger fault space compared to when injecting errors into the destination registers.
Therefore, we observed that the SDC results are more biased towards the SDC results of
data-items that are read multiple times.

Furthermore, this study shows that the impact of the weight factor and the time of
injection to the SDC results are highly dependent on a subset of the data-items targeted.
This implies that these data-items and their data types could be identified before con-
ducting any fault injection experiments allowing us to improve the efficiency of fault
injection campaigns by focusing on a subset of data-items that are of interest.

Statement of contributions The paper was coauthored with Fatemeh Ayatolahi, Roger
Johansson, and Johan Karlsson. Behrooz Sangchoolie came up with the original idea be-
hind the paper, designed and conducted the experiments and was the main contributor
in writing the paper. Fatemeh Ayatolahi provided feedback during different phases of
the study and contributed to designing the fault injector for brake-by-wire application
(which is one of the applications targeted by faults in this study). Johan Karlsson pro-
vided feedback during different phases of the study. Roger Johansson helped in solving
technical issues around the fault injection setup. All authors contributed to the writing
of the paper.

3.2 Paper II: A Study of the Impact of Bit-flip Errors on Programs
Compiled with Different Optimization Levels

Problem statement and related work One of the main motivations for optimizing a
program is to minimize its execution time. Compilers such as GCC facilitate this by
reducing the number of dynamic instructions through enabling different optimization
flags. A reduction in the number of dynamic instructions reduces the risk that a program
is affected by transient hardware errors. This is due to the fact that the program under
optimization would have a lower exposure to this type of errors. In other words, com-
piler optimizations have a positive effect on system reliability in terms of a lower error
occurrence probability (exposure time). However, the impact of compiler optimizations
on system reliability and failure modes is elusive. Therefore, this study mainly investi-
gates the impact of compiler optimizations on failure mode distributions. The optimized
codes are produced with the optimization levels -O1, - O2, -O3, and -Os defined by GCC
compiler.

This paper also investigates the extent in which variations in the source code imple-
mentation of a program (compiled with and without an optimization level) affects its
hardware error sensitivity.
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Alexandersson et al. [AK11] study the impact of optimizing a program on the er-
ror sensitivity only for the -O3 optimization level. Demertzi et al. [DAH11] analyse
the effect of standard optimization levels on the application’s vulnerability. The au-
thors use ACE analysis [MWE+03] (see Section 2.4) to evaluate the applications’ re-
silience, which is typically much less accurate than fault injection [WMP07]. Sridharan
et al. [SK09] also use the ACE analysis, however along with PVF (see Section 2.4), to
study variations cause due to different program implementations and two compiler op-
timizations flags. Jones et al. [JOE08] study the impact of individual flags (as opposed
to optimization levels) on application vulnerability and attempt to find a set of flags that
offer both resilience and performance. Similar to [DAH11], here the authors use AVF
to measure vulnerability and do not consider the final outcome of the application caused
by the error. Narayanamurthy et al. [NPR16] also study the impact of individual flags
and use genetic algorithms to find the application-specific set of compiler optimizations
that can boost performance without degrading the application’s error resilience.

Contributions and their implications The results show that compiler optimization
levels had only a minor impact on the error sensitivity of the programs under test. This
suggests that compiler optimizations can be used in safety- and mission-critical systems
without a significant increase in the risk that the system produces undetected erroneous
outputs.

The results imply that one could improve the efficiency of measuring hardware error
sensitivity, by first optimizing the program under test, since this reduces the number of
dynamic instructions without having a significant impact on the error sensitivity mea-
sured.

Furthermore, the results of our study show that the source code implementation of
programs has a significant impact on their hardware error sensitivity. The cause of this
variation is due to the varying characteristics of the programs, e.g., in terms of the num-
ber of dynamic instructions, number of memory accesses, size of the input variable, type
of data structures used in program, etc.

In this paper, we also conduct a detailed analysis of the hardware error sensitivity of
different types of data that were targeted for fault injection. This analysis allowed us to
identify data-item types with high hardware error sensitivity, which could be candidates
for being protected by software-based fault tolerance techniques.

Statement of contributions The paper was coauthored with Fatemeh Ayatolahi, Roger
Johansson, and Johan Karlsson. Behrooz Sangchoolie and Fatemeh Ayatolahi came up
with the original idea behind the paper, designed and conducted the fault injection ex-
periments and were the main contributors in writing the paper. Johan Karlsson provided
feedback during different phases of the study. Roger Johansson helped in solving tech-
nical issues around the fault injection setup. All authors contributed to the writing of the
paper.
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3.3 Paper III: A Study of the Impact of Single Bit-Flip and Double
Bit-Flip Errors on Program Execution

Problem statement and related work The fault model used in SWiFI techniques
needs to be both straightforward to implement, and representative of real hardware
faults. The single bit-flip model has been a popular engineering approximation to mimic
particle induced soft errors both in the combinational logic and storage elements (e.g.,
flip-flops). However, earlier studies have found that many soft errors manifest as multiple-
bit errors at the application level [CMC+13, KKA93, ZCM+96], which has led re-
searchers to question the validity of the single bit-flip used for modelling the effect
of soft errors.

In this paper, we compare the impact of single and double bit-flip errors injected
into the same target locations. Comparing the results obtained for these two fault mod-
els, provides insights to an important open question, namely, whether the single bit-flip
model provides optimistic or pessimistic estimates of error sensitivity. Lu et al. [LFW+15]
and Adamu-Fika et al. [AFJ15] also compare the results of injecting single bit-flip er-
rors with injecting double bit-flip errors. They, however, conducted the fault injection
experiments at the LLVM (Low Level Virtual Machine) [LA04] compiler’s intermediate
code level as opposed to the assembly level, which is used in our paper. Touloupis et
al. [TMCW07], use VHDL (VHSIC Hardware Description Language) simulation model
to investigate the impact of single and double bit-flip errors.

Contributions and their implications The results show that the proportion of SDCs
(see Section 2.3) in the program output is almost the same for single and double bit-flip
errors. This suggests that it is unlikely that experiments with double-bit errors would ex-
pose weaknesses that are not revealed by single bit-flip injection. This suggests that one
could improve the efficiency of measuring hardware error sensitivity by only conducting
single bit-flip injections.

This study also presents detailed statistics about the hardware error sensitivity of dif-
ferent target registers and memory locations, including bit positions within registers and
memory words. The results show that the hardware error sensitivity varies significantly
between different bit positions and registers. However, we also observe that injections
in certain bit positions always have the same impact regardless of when the error is in-
jected. This allows us to reduce the error space size of future experiments by avoiding
injection of faults into these bit positions as we know a priori the impact of targeting
them with errors.

Statement of contributions The paper was coauthored with Fatemeh Ayatolahi, Roger
Johansson, and Johan Karlsson. Behrooz Sangchoolie and Fatemeh Ayatolahi came up
with the original idea behind the paper, designed and conducted the experiments and
were the main contributors in writing the paper. Johan Karlsson provided feedback dur-
ing different phases of the study. Roger Johansson helped in solving technical issues
around the fault injection setup. All authors contributed to the writing of the paper.
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3.4 Paper IV: One Bit is (Not) Enough: An Empirical Study of the
Impact of Single and Multiple Bit-Flip Errors

Problem statement and related work The necessity of conducting multiple bit-flip
fault injection campaigns was already discussed in Section 3.3 (Paper III). However, in
that paper, we limited the analysis to only double bit-flip errors injected in the same
word. In this paper, we go beyond the double bit-flip injections by injecting up to 30
bit-flip errors in single words as well as different words in each program run.

In order to conduct multiple bit-flip injections, there are two main challenges that
need to be addressed, namely (i) how to select a representative number of bits to flip as
well as (ii) how to deal with the large error space size. These challenges are caused due
to the fact that there is no commonly agreed model to map transient faults, caused due to
soft errors, to their software-level manifestation. Furthermore, conventional techniques
for reducing (a.k.a pruning) the error space may not be applicable as almost all the exist-
ing techniques for pruning the error space [BVFK05, HANR12, VMHA16] work with
the single-bit fault model, and are not easily extensible to multiple-bit errors. Therefore,
it is essential to find and evaluate error space pruning techniques that are well-suited for
multiple bit-flip campaigns.

Jiantao Pan [Pan99] introduces a model called dimensionality to pin-point the num-
ber of function call parameters that are responsible for a failure. The model is used in a
subsequent work [PKS99] to improve software robustness. However, multiple errors are
only introduced to the parameters of each interface, which may not be representative of
multiple errors that occur in variables used within the function. Moreover, the number
of errors that are introduced to each interface is limited by the number of parameters
used by the interface. There are also studies addressing intermittent faults, which could
potentially model some multiple-bit errors. For example, Rashid et al. [RPG15] build an
intermittent fault model at the microarchitectural level using intermittent stuck-at-last-
value and stuck-at-zero/one models. However, they assume that (i) a microarchitectural
unit may be affected by at most a single intermittent fault and (ii) at most a single mi-
croarchitectural unit may be affected by an intermittent fault. These assumptions may
not hold for transient faults due to soft errors, which is our focus.

Contributions and their implications To overcome the challenge of selecting a rep-
resentative number of bits to flip, we propose a systematic error space exploration that
is based on error space clustering, where each cluster is represented by two parameters,
(i) the number of bit-flip errors that could occur in the cluster; and (ii) the distance (in
terms of the number of dynamic instructions) between consecutive injections. These
parameters allow us to quantify the maximum (upper bound) number of multiple bit-flip
errors needed to cause pessimistic percentage of SDCs (see Section 2.3).

We also found that the single bit-flip model mostly results in pessimistic percentage
of SDCs compared to the multiple bit-flip model; and even when it does not, in most
cases, at most three errors are enough to result in a pessimistic percentage of SDCs.

To overcome the challenge of dealing with the large error space size, we propose
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three ways of pruning the error space based on the fault injection results obtained. Using
these error pruning techniques, we derive new insights about how the results of single
bit-flip experiments can be used to prune the multiple bit-flip error space by targeting
only a fraction of these errors, that reveal weaknesses of the programs under test (in
terms of the number of SDCs) that are not revealed by the single bit-flip model. In fact,
we can leverage the results from the single bit-flip fault injections to choose the locations
for multiple bit-flip injections to get conservative SDC results.

Statement of contributions The paper was coauthored with Karthik Pattabiraman and
Johan Karlsson. Behrooz Sangchoolie and Karthik Pattabiraman came up with the orig-
inal idea behind the paper and were the main actors in different phases of the study and
writing of the paper. Behrooz Sangchoolie designed and conducted the fault injection
experiments. Johan Karlsson provided feedback during different phases of the study and
contributed to the writing of the paper.

3.5 Paper V: On the Impact of Hardware Faults –An Investigation
of the Relationship between Workload Inputs and Failure Mode
Distributions

Problem statement and related work The error resilience for software-implemented
error handling techniques often depends on the input vector processed by the target sys-
tem. Thus, to assess the variability in error resilience, it is essential to conduct fault
injection experiments with different input vectors. In [SVS+88], matrix multiplication
and selection sort are fed with three and two inputs, respectively. Folkesson and Karls-
son in [FK99] estimated the error coverage for quicksort and shellsort, both executed
with 24 different inputs.

When assessing the variability in error resilience of a program, it is unfeasible to
cover all possible inputs, especially since conducting fault injection experiments is time-
consuming. Therefore, this paper presents a technique called input selection, where
inputs are selected such that they are likely to result in widely different failure mode dis-
tributions. The input selection technique uses hierarchical clustering [JMF99] analysis
to divide the input sets into homogenous groups based on assembly-level signature of
execution flows.

We adopted the hierarchical clustering [JMF99] due to the fact that unlike other clus-
tering techniques (e.g., K-means [JMF99]), it does not require a preliminary knowledge
of the number of clusters. Thus, we can validate a posteriori if the execution flows are
clustered as expected. The hierarchical clustering adopted in this work evaluates the
distance between two clusters according to the centroid method [JMF99]. A similar
approach is used by Natella et al. [NCDM13].

Contributions and their implications Results show a clear variation among the per-
centage of SDCs (see Section 2.3) of programs using different inputs. In fact, there is
a linear correlation between the percentage of SDCs and the length of input in two of
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the target programs. On the other hand, results illustrate that the percentage of errors
detected by the hardware exceptions is program dependent, i.e., it is not affected by
the input. The results obtained are from single bit-flip fault injection experiments into
four programs where faults are injected in CPU registers and main memory of the target
system. For each program, fault injection experiments are conducted for nine differ-
ent inputs. The inputs are chosen to represent input lengths that are common in real
applications.

The study shows that similar inputs (e.g., same length inputs) result in a similar
failure distribution; thus, the input selection technique helps to reduce the number of
fault injections. This is done in three steps. First, the fault-free executions of a program
for a large set of inputs are profiled using assembly code metrics. Then a cluster analysis
is used to form clusters of similar execution flows. Finally, one representative execution
flow from each cluster is selected for conducting fault injection analysis.

This paper also addresses a software-implemented hardware fault tolerant (SIHFT)
technique [RCV+05, RRV04] that relies on triple-time redundant execution, majority
voting and forward recovery (TTR-FR) [AK11]. Thus, in addition to the basic version
of the programs, faults are also injected on programs equipped with the TTR-FR. Re-
sults of this analysis show that a simple software-implemented hardware fault tolerant
mechanism, TTR-FR, can successfully increase the error coverage, on the average, to
more than 97%, regardless of the input.

Statement of contributions The paper was coauthored with Fatemeh Ayatolahi, Domenico
Di Leo, Roger Johansson, and Johan Karlsson. Domenico Di Leo came up with the
original idea behind the paper. Domenico Di Leo, Behrooz Sangchoolie and Fatemeh
Ayatolahi provided feedback during different phases of the study, designed and con-
ducted the fault injection experiments and were the main contributors to the writing of
the paper. Johan Karlsson provided feedback during different phases of the study. Roger
Johansson helped in solving technical issues around the fault injection setup. All authors
contributed to the writing of the paper.

3.6 Paper VI: Light-Weight Techniques for Improving the Control-
lability and Efficiency of ISA-Level Fault Injection Tools

Problem statement and related work Fault injection techniques could be charac-
terized based on different properties such as repeatability, observability, reachability,
intrusiveness, controllability and efficiency. In this paper we present two pre-injection
analysis techniques, namely data type identification and fault space optimization, that
improve the controllability and efficiency of fault injection techniques, where the former
refers to the ability to control when and where a fault is injected while the latter refers
to the time and effort needed to conduct a fault injection campaign. Our techniques rely
on object code analysis, i.e., no source code is required.

The controllability property is addressed by works such as [SBK10b] where faults
are identified by time-location pairs according to a fault-free execution of a program.
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In this paper, we improve the controllability by identifying the type of data-items that
are potential fault injection candidates, prior to conducting fault injection experiments.
Here data-item refers to the content of a register or memory word and the type of a data-
item could be a data variable, memory address, or control information. The motivation
for the data type identification comes from prior work (Paper I, Paper II, and Paper III)
where we learned that the outcome of a fault injection experiment is highly dependent
on the type of data-items targeted.

The efficiency property is also addressed by work such as [TP13, SHK+12, BVFK05]
where pre-injection analysis is used to identify live target locations resulting in the re-
duction of the error space size. However, the error space size of programs under test
could still be significantly large which is why most fault injection tools only sample
a subset of the error space or employ different heuristic pruning methods [HANR12,
LT13] to cover the complete error space.

The fault space optimization technique improves the efficiency of fault injection
campaigns by fault pruning, i.e., by avoiding injection of faults that are known a priori
to be detected by the system under test. The fault space optimization technique iden-
tifies certain bits of specific registers and memory segments that would always raise a
hardware exception and exclude them from the fault space. This technique leverages the
fact that faults in certain bits in the program counter and the stack pointer registers are
always detected by machine exceptions (see Paper III).

Contributions and their implications Using the data type identification technique,
we managed to successfully identify the type of data-items in 84-100% of target loca-
tions. Knowing the type of different data-items, provides us with a better control over
the selection of locations where faults should be injected into.

This implies that we can design cost-efficient fault injection campaigns that only
target sensitive data-items, as well as providing us with useful information about loca-
tions that need to be hardened by fault tolerance mechanisms. Moreover, one could also
design cost-efficient fault tolerant mechanisms that are data-type-specific, suitable for
tolerating faults in data-items with specific data types.

According to the result of our fault injection campaigns, we managed to, on average,
prune 25% of the fault space using the fault space optimization technique. This reduction
in the error space size significantly reduces the time it takes to conduct a fault injection
campaign.

Statement of contributions The paper was coauthored with Roger Johansson and
Johan Karlsson. Behrooz Sangchoolie came up with the original idea behind the paper,
designed and conducted the fault injection experiments and was the main contributor
in writing the paper. Johan Karlsson provided feedback during different phases of the
study. Roger Johansson helped in solving technical issues around the fault injection
setup. All authors contributed to the writing of the paper.
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4 Concluding Remarks and Future Work

This thesis presents several studies aimed at investigating sources of variations in fault
injection-based measurements of the error sensitivity of computer systems. In addition,
it proposes several error pruning and pre-injection analysis techniques for improving the
accuracy and efficiency of fault injection experiments. The thesis focuses entirely on the
problem of measuring error sensitivity with respect to soft errors, i.e., errors caused by
temporary hardware faults.

An important contribution of the thesis is a detailed study of how the inputs pro-
cessed by a program affect its soft error sensitivity. Our study confirms results from
previous research, which shows that the likelihood for a program to exhibit an SDC (a
silent data corruption, see Section 2.3) due to a soft error strongly depends on the in-
put to the program. Thus, when assessing the error sensitivity of a program by fault
injection, it is desirable to perform experiments with several inputs. However, as fault
injection campaigns are time-consuming in nature, a technique for input selection is pro-
posed for selecting inputs such that they are likely to result in widely different outcome
distributions. To this end, a set of 47 assembly metrics corresponding to different types
of instructions and access types (read, write) to registers and memory words are adopted.
The input selection technique seems promising for programs with a linear relation be-
tween an input property (i.e., length) and the failure distribution, however, additional
assembly metrics are required for programs with no linear relation between the input
length and the failure distribution. Therefore, looking forward, it would be worthwhile
to investigate additional software profiling metrics to improve the confidence of the input
selection technique.

Hardware error sensitivity of programs also shows great variations to different source
code implementations and programming styles. The thesis shows that small differences
in the C code implementations (e.g. making use of pointer structures instead of union
structures), can significantly affect the hardware error sensitivity. In fact, one could im-
prove the error resiliency of programs by simply applying different data structures or
programming styles without using additional fault tolerance mechanisms. However, as
our observations are based on one rather small program, there is a need to further inves-
tigate the impact of source code implementation on error sensitivity for other programs,
especially for programs with higher code size.

Concerning variations in error sensitivity resulting from the use of different levels of
compiler optimization, we show that the GCC compiler optimization levels (-O1, -O2,
-O3, -Os) have only a minor impact on the hardware error sensitivity of the investi-
gated programs. This suggests that compiler optimization is unlikely to increase error
sensitivity and therefore can be used in safety- and mission-critical systems without a
significant increase in the risk that the system produces undetected erroneous outputs.
However, as our study is limited to 12 rather small programs, further experiments with
larger programs are needed to confirm our observation that complier optimization have
a minor impact on error sensitivity of a program.

Regarding differences in the impact of single and multiple bit-flips, our experiments



4. CONCLUDING REMARKS AND FUTURE WORK 21

show that single bit-flip errors resulted in a higher proportion of SDCs compared to
multiple bit-flip errors, for most of the conducted fault injection campaigns. Thus, we
observed that the single bit-flip model, on average, provides more pessimistic estimates
of error sensitivity than our multiple bit-flip model. However, we also saw a few cam-
paigns where the injection of multiple-bit errors resulted in a higher proportion of SDC
compared to the corresponding campaigns conducted with single-bit errors, which sug-
gest that investigating the impact of multiple bit errors may still be relevant for some
systems. For such studies, we propose error space pruning techniques that significantly
reduce the size of the error space in experiments where multiple bit-flips are injected.

When investigating variations in the error sensitivity of different ISA-registers and
memory words, we noted that errors in certain bit positions always have the same impact
regardless of when the error is injected. For example, errors injected in some bits of
the stack pointer and the program counter registers are always detected by hardware
exceptions. Based on this observation, we designed a pre-injection analysis technique
that excludes injection of errors in such bit positions.

Finally, the thesis also presents a comparison of the inject-on-read and inject-on-
write techniques. It shows that inject-on-read causes a higher percentage of SDCs than
inject-on-write. However, in cases where a data-item is read only one time (after be-
ing updated by an instruction), there is no difference between the SDC results of the
inject-on-read and inject-on-write techniques. The difference between the percentages
of SDCs observed for the two techniques comes from registers an memory words that
are read multiple times. In fact, the error space of the inject-on-read technique is much
larger than the inject-on-write technique due to the fact that a register could be read mul-
tiple times after being updated by an instruction. Depending on the error sensitivity of
the registers that are read multiple times, either of the inject-on-read and inject-on-write
techniques could result in pessimistic SDC results. Therefore, there is a need to conduct
more detailed studies to gain a better understanding of the differences in impact of the
two techniques.
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